
Rete Algorithm for P System Simulators

Carmen Graciani, Miguel A. Gutiérrez-Naranjo, Agust́ın Riscos-Núñez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
{cgdiaz,magutier,ariscosn}@us.es

Summary. The Rete algorithm is a well-known algorithm in rule-based production sys-
tems which builds directed acyclic graphs that represent higher-level rule sets. This allows
the rule-based systems to avoid complete re-evaluation of all conditions of the rules each
step in order to check the applicability of the rules and, therefore, the computational
efficiency of the production systems is improved. In this paper we study how these ideas
can be applied in the improvement of the design of computational simulators in the
framework of Membrane Computing.

1 Introduction

Rules is one of the most used paradigms in Computer Science for dealing with
information. Given two pieces of knowledge V and W , expressed in some language,
the rule V → W is usually considered as a causal relation between V and W .
The interpretation of the rule can change according to the context, but roughly
speaking, the rule V → W claims that the statement W can be derived from the
statement V . The problem of knowing if a piece of information G can be obtained
via derivation from a set of current statements A and a set of rules R arises in a
natural way. This is usually called a reasoning problem and it will be denoted by
〈A,R,G〉.

In Computer Science, there are two basic methods for seeking a solution of
a reasoning problem, both of them based on the inference rule known as Modus
Ponens:

V V →W

W

which allows to obtain W from the rule V →W and the piece of information W .
The first method is data-driven and it is known as forward chaining, the latter is
query-driven and it is called backward chaining [1]. A study of these methods in
the framework of Membrane Computing can be found in [12, 13].

The piece of information V (the left-hand side of the rule or LHS) is usually
split into unit pieces v1, v2, . . . , vn. The forward chaining derivation of W (the right

126 C. Graciani et al.

Forward chaining
Input: A reasoning problem 〈A, R, G〉
Initialise: Memory = A, Deduced = ∅

if G ∈Memory then
return true

end if
while Memory 6= Deduced do

Deduced←Memory
for all (v1v2 . . . vn →W) ∈ R such that

{v1, v2, . . . , vn} ⊆ Deduced do
if W = G then

return true

else
Deduced← Deduced ∪ {W}

end if
end for

end while
return false

Fig. 1. From a computational point of view, the reasoning problem 〈A, R, G〉, can be
solved with the forward chaining algorithm

hand side of the rule or RHS) according to the Modus Ponens via the rule V →W
needs to check if the statements v1, v2, . . . , vn belong to the set of statements
currently accepted. Figure 1 shows a detailed description of the forward chaining
method.

The key point of this algorithm is to check for all rules v1v2 . . . vn →W whether
{v1, v2, . . . , vn} ⊆ Deduced or not. A naive algorithm for this checking consists on

1. Enumerating the rules and the Deduced set.
2. Performing a sequential pattern matching between them.

In the framework of Expert Systems [10], a solution to this problem was pro-
posed by Charles L. Forgy in his Ph.D. dissertation at the Carnegie-Mellon Univer-
sity in 1979 [8, 9]. The solution was called the Rete1 algorithm. The Rete algorithm
places pieces of information in the nodes of a graph and gets faster response time
than the naive algorithm of checking one by one the information units in the LHS
of the rules.

In spite of the notable differences between the semantics of the rules in Expert
Systems and in Membrane Computing, the problem of checking if the restrictions of
the LHS of the rule hold is common in both paradigms. In Membrane Computing,
a rule of the form

un1
1 . . . unk

k [vm1
1 . . . vml

l]αi → u′ [v′]α
′

i

1 Rete means net in Latin.

Rete Algorithm for P System Simulators 127

is applicable if, in the current configuration, there exists a membrane labelled
by i, with polarisation α, containing enough objects v1 . . . vl and such that its
surrounding membrane contains enough objects u1 . . . uk. Although the application
of the rule is different in both paradigms (in Membrane Computing, the objects in
the LHS are consumed and the objects in the RHS are created; in Expert Systems
the information in the LHS does not change, and the one in the RHS is considered
true), in both cases it is necessary a checking of the conditions in order to decide
the applicability of the rule.

In this paper we explore if the successful ideas underlying the Rete algorithm
can be adapted to the current P systems simulators and contribute to improve
their efficiency so that they can face medium-size instances of real life problems.

The paper is organised as follows: Next, we recall some preliminaries on the
derivation process in logic and rule-based expert systems. In Section 3 a short
description of the Rete algorithm is provided. Section 4 shows how this algorithm
can be adapted to P system simulators. Some final remarks and lines for future
research are provided in the last section.

2 Production Systems

Next, we recall some preliminaries on production systems and the derivation of
pieces of knowledge by using rules.

2.1 Formal Logic Preliminaries

An atomic formula (also called an atom) is a formula with no deeper structure.
An atomic formula is used to express some fact in the context of a given problem.
The universal set of atoms is denoted with U . A knowledge base is a construct
KB = (A,R) where A = {a1, a2, . . . , an} ⊆ U is the set of known atoms and R, a
set of rules of the form V →W with V,W ⊆ U , is the set of production rules.

In propositional logic, the derivation of a proposition is done via the inference
rule known as Generalised Modus Ponens

P1, P2, . . . , Pn P1 ∧ P2 ∧ · · · ∧ Pn → Q

Q

The meaning of this rule is as follows: if P1 ∧ P2 ∧ · · · ∧ Pn → Q is a production
rule and P1, P2, . . . , Pn ⊆ A then Q can be derived from this knowledge. Given
a knowledge base KB = (A,R) and an atomic formula g ∈ U , we say that g
can be derived from KB, denoted by KB ` g, if there exists a finite sequence of
atomic formulas F1, . . . , Fk such that Fk = g and for each i ∈ {1, . . . , k} one of
the following claims holds:

• Fi ∈ A.
• Fi can be derived via Generalised Modus Ponens from R and the set of atoms
{F1, F2, . . . , Fi−1}

128 C. Graciani et al.

3 Rule-based Expert Systems

Instead of viewing computation as a specified sequence of operations, production
systems view computation as the process of applying transformation rules in a
sequence determined by the data.

A classical production system has three major components: (1) a global
database (or working memory) that contains facts or assertions about the par-
ticular problem being solved, (2) a rulebase that contains the general knowledge
about the problem domain, and (3) a rule interpreter that carries out the problem
solving process.

The facts in the global database can be represented in any convenient formal-
ism. The rules have the form IF <condition> THEN <action>

In general, the LHS or condition part of a rule can be any pattern that can be
matched against the database. It is usually allowed to contain variables that might
be bound in different ways, depending upon how the match is made. Once a match
is made, the right-hand-side (RHS) or action part of the rule can be executed. In
general, the action can be any arbitrary procedure employing the bound variables.
In particular, it can result in addition/elimination of facts to the database, or
modification of old facts in the database.

What follows is the basic operation for the rule interpreter (this operation is
repeated until no more rules are applicable):

1. The condition part of each rule (LHS) is tested against the current state.
2. If it matches, then the rule is said to be applicable.
3. From the applicable rules, one of them is chosen to be applied.
4. The actions of the selected rule are performed.

Production systems may vary on the expressive power of conditions in produc-
tion rules. Accordingly, the pattern matching algorithm which collects production
rules with matched conditions may vary.

3.1 The Rete Algorithm

The Rete algorithm is a well-known algorithm for efficiently checking the many
pattern/many object pattern match problem [8], and it has been widely used
mainly in production systems. In rule-based systems the checking process takes
place repeatedly. This algorithm takes advantage of two empirical observations:

• Temporal redundancy: The application of the rules does not change all the cur-
rent knowledge. Only some pieces of information are changed and the remaining
ones (probably, most of them) keep unchanged.

• Structural similarity: Several rules can (partially) share the same conditions in
the LHS.

This algorithm provides a generalised logical description of an implementa-
tion of functionality responsible for matching data from the current state of the

Rete Algorithm for P System Simulators 129

system against productions rules in a pattern-matching. It reduces or eliminates
certain types of redundancy through the use of node sharing. It stores partial
matches when performing joins between different fact types. This allows the rule-
based systems to avoid complete re-evaluation of all facts each step. Instead, the
production system needs only to evaluate the changes to working memory.

The Rete algorithm builds directed acyclic graphs that represent higher-level
rule sets. They are generally represented at run-time using a network of in-memory
objects. These networks match rule conditions (patterns) to facts (relational data
tuples) acting as a type of relational query processor, performing projections, se-
lections and joins conditionally on arbitrary numbers of data tuples. In other words
the set of rules is preprocessed yielding a network in which each node comes from
a condition of a rule. If two or more rules share a condition then they usually share
that node in the constructed network. The path from the root node to a leaf node
defines a complete rule LHS.

Facts flow through the network and are filtered out when they fail a condition.
At any given point, the contents of the network captures all the checked conditions
for all the present facts.

This network (a directed graph) has four kind of nodes:

• Root: acts as input gate to the network. Receives the changes in the knowledge
base and then those tokens pass to the root successors.

• Alpha nodes: perform conditions which depend on just one pattern. If the
test succeeds, then received token passes to the node successors. There are
different alpha nodes depending on the considered pattern.

• Beta nodes: perform inter-patterns conditions, for example, if two patterns
have a common variable. It receives tokens from two nodes and stores the tokens
that arrive from each parent in two different memories. If a token arrives from
one of its input, then the condition will be checked against all the tokens in the
another input’s local memory. For each successfully checked pair, a new token,
combining both of them, passes to the node successors.

• Terminal nodes: receive tokens which match all the patterns of the LHS of
a rule and produce the output of the network.

For example, if the following set of production rules and facts are considered,
then the network displayed in Figure 2 will be created. The figure also shows how
tokens corresponding to different facts pass through the network.

Rule: R1 Fact: f1 H1(2, 1).
Exists H2(Y, Z, Z). Fact: f2 H1(2, 4).
Exists H1(X, Y > 3). Fact: f3 H2(4, 3, 3).

=> ... Fact: f4 H2(5, 9, 9).

Rule: R2 Fact: f5 H3(3).
Exists H2(Y, Z, Z). Fact: f6 H3(9).
Exists H3(Z).

=> ...

130 C. Graciani et al.

Beta

H2

H1

H3

2nd el. = 3rd el.

Y(H1) = Y(H2)

2nd el. > 3

Alpha

R1

Z(H2) = Z(H3)

R2

f1
f2

f3
f4

f5
f6

f2

f3
f4

f3
f4

f3
f4

f2,f3

f3,f5
f4,f6

Fig. 2. Example of a Rete network and tokens flow

The most important issue regarding performance is the order of the conditions
in the LHS of the rule. This lead us to consider the following strategies in order
to improve the efficiency.

• Most specific to most general. If the rule activation can be controlled by a
single data, place it first.

• Data with the lowest number of occurrences in the working memory should go
near the top.

Rete Algorithm for P System Simulators 131

• Volatile data (ones that are added and eliminated continuously) should go last,
particularly if the rest of the conditions are mostly independent.

With those strategies we are trying to minimise (in general) the number of beta
nodes that will exist in the network and, therefore, the number of checks performed
until a token arrived in a terminal node.

4 Membrane Computing

In this section we explore how the Rete algorithm can be adapted to Membrane
Computing simulators. For a first approximation we have chosen to focus on rules
handling polarisations, which can be written in the following form

un11 · · · u
nk
k [vm11 · · · v

ml
l]αi → u′[v′]α

′

i

(k and/or l can be 0) with u1, . . . , uk, v1, . . . , vl ∈ Γ , u′, v′ ∈ Γ ∗, and either
vm11 · · · v

ml
l 6= λ or v′ 6= λ.

This rule is associated with any membrane with label i. In such a rule we can
distinguish three kinds of conditions:

• Membrane label is i and charge must be α: []αi
• Outside the membrane there must be at least nj copies of element uj: u

nj
j

• Inside the membrane there must be at least mi copies of element vi: [vmii]

Now conditions can be reordered in order to follow the proposed strategies for
production systems. For example, consider the following rules:

• (R1) b3[ef]+2 → u[v]α2
• (R2) b3[fe2]+2 → u′[v′]α

′

2 .

We can describe them as follows in order to put at the beginning common
conditions:

• (R1) []+2 [f]b3[e] → u[v]α2
• (R2) []+2 [f]b3[e2] → u′[v′]α

′

2 .

To complete the example let us now consider a configuration where a mem-
brane labelled by 2 has positive charge, objects {f3, e7, o4, x} are inside it and the
objects {c, b8, g3} are in the surrounding membrane. This configuration leads to
the applicability of both rules.

Figure 3 shows the network associated to the rules of this example and how
objects of the considered configuration go through different nodes. When there is
not enough objects to pass trough a node they remain in it. Notice that from the
output of the network we deduce that each rule can be used at most two times.

Figure 4 shows a generic algorithm to simulate a P system with active mem-
branes using such networks. The halting conditions can be: A prefixed number of
repetitions, there is no rule that can be applicable, occurrence of specific objects. . .

132 C. Graciani et al.

Charge: +

Membrane: 2

Inside: f

Copies: 1

Alpha

Outside: b

Copies: 3
b2

Inside: e

Copies: 1

Copies: 2
[e]

[f]+

([e])5

(R1)2

[e2]

(R2)2

+

([f])3

([f]+)3
(b3)2

(b3[f]+)2([e])7

(b3[f]+)2

([e2])3

(b3[ef]+)2

(b3[fe2]+)2

Fig. 3. Rete Network for P system

Rete Algorithm for P System Simulators 133

Create the network associated to the rules of the system
Include in the network objects from the initial configuration
while some halting condition do

while there is no unmarked rule in the output of the network do
Select one rule from the output of the network (or a set)
Eliminate in the network all elements from the LHS of that rule
Mark the charge if its going to change (and marked any rule of
the output that change the charge for the same membrane)
Accumulate the objects that must be included in the system

end while
Eliminate marks to rules of the output
Change in the network the marked charges
Add all the accumulated objects

end while

Fig. 4. Generic pseudocode of a simulation algorithm

5 Final Remarks

Let us notice some final considerations:

• As there exists a big number of different P systems models (both syntactically
and semantically different), it is not possible to melt together all of them to have
a single way to construct the network. So, the basic lines shown in this paper
should be adapted to each specific model in order to improve the efficiency of
the designed simulator.

• One of the key points of the efficiency of the algorithm is the proper order in
the conditions of the LHS of the rule and this is a final choice of the designer
of the P system. For example, electrical charge is usually used as a controlling
condition, but it is the user who decided its role.

• Little syntactic or semantic changes on the model can have drastic influence
on the efficiency of the algorithm. As an illustrative example, we can consider
two similar models such that in the first one the membranes are injectively
labelled and in the second, two different membranes can share the same label.
This apparently slight difference requires a major change in the algorithm.

Recent applications of P system techniques to real-world problems (e.g.,[2, 7])
require more and more efficient simulators. In the similar way to other areas in
Computer Science, the availability of huge amount of data, together with the
iteration of probabilistic process in an attempt of simulating natural processes
needs of more and more efficient algorithms.

In this paper we recover a successful algorithm from the Expert System field
and propose a first attempt to consider it in the Membrane Computing frame-
work. The implementation is currently under development, and in principle it will
be inserted into a simulator within the P-Lingua framework. However, upon com-
pleting the implementation, we are convinced that it will be possible to export this

134 C. Graciani et al.

technique into any other P system simulator. The adaptation of the algorithm has
been made by considering that the computer where the software runs has only one
processor and, in this way, the software simulation of the P systems is made se-
quentially in an one-processor machine. Nonetheless, new hardware architectures
are being used for simulating P systems [3, 4, 5, 6, 15, 16, 17], so the parallel
versions of the Rete algorithm [11, 14] and their relations with parallel simulators
of P systems should be considered in the future.

Acknowledgements

The authors acknowledge the support of the Project of Excellence with Investi-
gador de Reconocida Vaĺıa of the Junta de Andalućıa, grant P08-TIC-04200 and
the project TIN2012-37434 of the Ministerio de Economı́a y Competitividad of
Spain, both cofinanced by FEDER funds.

References

1. Apt, K.R.: Logic Programming. In: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pp. 493–574. The MIT Press (1990)

2. Cardona, M., Colomer, M.Á., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems based on P
systems. Natural Computing 10(1), 39–53 (2011)

3. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Implementing P systems parallelism by means of
GPUs. In: Păun, G. et al. (eds.) Workshop on Membrane Computing. Lecture Notes
in Computer Science, vol. 5957, pp. 227–241. Springer, Berlin Heidelberg (2009)

4. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution
to SAT by using GPUs. Journal of Logic and Algebraic Programming 79(6), 317–325
(2010)

5. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with active membranes
on CUDA. Briefings in Bioinformatics 11(3), 313–322 (2010)

6. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Jiménez, M.J., Ujaldon, M.: The GPU on the simulation of cellular computing mod-
els. Soft Computing 16(2), 231–246 (2012)

7. Colomer, M.A., Margalida, A., Sanuy, D., Pérez-Jiménez, M.J.: A bio-inspired com-
puting model as a new tool for modeling ecosystems: The avian scavengers as a case
study. Ecological Modelling 222(1), 33 – 47 (2011)

8. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19(1), 17–37 (1982)

9. Forgy, C.L.: On the efficient implementation of production systems. Ph.D. thesis,
Department of Computer Science, Pittsburgh, PA, USA (1979)

10. Giarratano, J., Riley, G.: Expert systems: principles and programming. Thomson
Course Technology (2005)

Rete Algorithm for P System Simulators 135

11. Gupta, A., Forgy, C., Newell, A., Wedig, R.: Parallel algorithms and architectures
for rule-based systems. ACM SIGARCH Computer Architecture News 14(2), 28–37
(1986)

12. Gutiérrez-Naranjo, M.A., Rogojin, V.: Deductive databases and P systems. Com-
puter Science Journal of Moldova 12(1), 80–88 (2004)

13. Ivanov, S., Alhazov, A., Rogojin, V., Gutiérrez-Naranjo, M.A.: Forward and back-
ward chaining with P systems. International Journal on Natural Computing Research
2(2), 56–66 (2011)

14. Kuo, S., Moldovan, D.: The state of the art in parallel production systems. Journal
of Parallel and Distributed Computing 15(1), 1 – 26 (1992)

15. Nguyen, V., Kearney, D., Gioiosa, G.: An extensible, maintainable and elegant ap-
proach to hardware source code generation in reconfig-P. Journal of Logic and Alge-
braic Programming 79(6), 383–396 (2010)

16. Peña-Cantillana, F., Dı́az-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A par-
allel implementation of the thresholding problem by using tissue-like P systems. In:
Real, P. et al. (eds.) CAIP (2). Lecture Notes in Computer Science, vol. 6855, pp.
277–284. Springer (2011)

17. Peña-Cantillana, F., Dı́az-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A.: Im-
plementation on CUDA of the smoothing problem with tissue-like P systems. Inter-
national Journal of Natural Computing Research 2(3), 25–34 (2011)

