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Preface

The Eleventh Brainstorming Week on Membrane Computing (BWMC) was orga-
nized in Sevilla, from February 4 to February 8, 2013, in the organization of the
Research Group on Natural Computing from the Department of Computer Science
and Artificial Intelligence of Sevilla University. The first edition of BWMC was
organized at the beginning of February 2003 in Rovira i Virgili University, Tarrag-
ona, and all the next editions took place in Sevilla at the beginning of February,
each year.

In the style of previous meetings in this series, the eleventh BWMC was con-
ceived as a period of active interaction among the participants, with the emphasis
on exchanging ideas and cooperation. Several “provocative” talks were delivered,
mainly devoted to open problems, research topics, conjectures waiting for proofs,
followed by an intense cooperation among the 33 participants – see the list in the
end of this preface. The efficiency of this type of meetings was again proved to be
very high and the present volume illustrates this assertion.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

Selections of the papers from these volumes will be considered for publication
in special issues of International Journal of Unconventional Computing.

After each BWMC, one or two special issues of various international journals
were published. Here is their list:

• BWMC 2003: Natural Computing – volume 2, number 3, 2003, and New Gen-
eration Computing – volume 22, number 4, 2004;

• BWMC 2004: Journal of Universal Computer Science – volume 10, number 5,
2004, and Soft Computing – volume 9, number 5, 2005;

• BWMC 2005: International Journal of Foundations of Computer Science –
volume 17, number 1, 2006);
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• BWMC 2006: Theoretical Computer Science – volume 372, numbers 2-3, 2007;
• BWMC 2007: International Journal of Unconventional Computing – volume 5,

number 5, 2009;
• BWMC 2008: Fundamenta Informaticae – volume 87, number 1, 2008;
• BWMC 2009: International Journal of Computers, Control and Communica-

tion – volume 4, number 3, 2009;
• BWMC 2010: Romanian Journal of Information Science and Technology –

volume 13, number 2, 2010;
• BWMC 2011: International Journal of Natural Computing Research – volume

2, numbers 2-3, 2011.
• BWMC 2012: International Journal of Computer Mathematics – volume 99,

number 4, 2013

Other papers elaborated during the eleventh BWMC will be submitted to
other journals or to suitable conferences. The reader interested in the final
version of these papers is advised to check the current bibliography of membrane
computing available in the domain website http://ppage.psystems.eu.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Ludek Cienciala, Silesian University in Opava, Czech Republic,
ludek.cienciala@fpf.slu.cz

2. Lucie Ciencialová, Silesian University in Opava, Czech Republic,
ciecilka@gmail.com

3. Mari Angels Colomer Cugat, University of Lleida, Spain,
colomer@matematica.udl.cat

4. Rudolf Freund, Technological University of Vienna, Austria,
rudifreund@gmx.at

5. Manuel Garćıa Quismondo Fernández, University of Seville, Spain,
mgarciaquismondo@us.es

6. Adolfo Gastalver-Rubio, University of Seville, Spain,
adolaurion@hotmail.co.jp

7. Marian Gheorghe, University of Sheffield, United Kingdom,
m.gheorghe@sheffield.ac.uk

8. Carmen Graciani Dı́az, University of Seville, Spain, cgdiaz@us.es
9. Miguel A. Gutiérrez Naranjo, University of Seville, Spain, magutier@us.es

10. Florentin Ipate, University of Bucharest, Romania,
florentin.ipate@ifsoft.ro

11. Sergiu Ivanov, Université Paris-Est Créteil, France, sivanov@colimite.fr
12. Alica Kelemenová, Silesian University in Opava, Czech Republic,

alice.kelemenova@fpf.slu.cz

13. Miroslav Langer, Silesian University in Opava, Czech Republic,
miroslav.langer@i.cz
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14. Raluca Lefticaru, University of Bucharest, Romania,
raluca.lefticaru@gmail.com

15. Alberto Leporati, University of Milan – Bicocca, Italy,
leporati@disco.unimib.it

16. Luis Felipe Maćıas Ramos, University of Seville, Spain, lfmaciasr@us.es
17. Miguel A. Mart́ınez del Amor, University of Seville, Spain, mdelamor@us.es
18. Giancarlo Mauri, University of Milan – Bicocca, Italy,

mauri@disco.unimib.it

19. Santiago Maza López de los Mozos, University of Seville, Spain,
omazalopez@gmail.com

20. Niall Murphy, Universidad Politécnica de Madrid, Spain, nmurphy@gmail.com
21. David Orellana Mart́ın, University of Seville, Spain, dorelmar@gmail.com
22. Adam Obtu lowicz, Polish Academy of Sciences, Warsaw, Poland,

A.Obtulowicz@impan.pl

23. Gheorghe Păun, University of Seville, Spain, and Institute of Mathematics of
the Romanian Academy, gpaun@us.es

24. Ignacio Pérez Hurtado de Mendoza, University of Seville, Spain, perezh@us.es
25. Mario de J. Pérez Jiménez, University of Seville, Spain, marper@us.es
26. Antonio Enrico Porreca, University of Milan – Bicocca, Italy,

porreca@disco.unimib.it

27. José Luis Pro Mart́ın, University of Seville, Spain, jlpro@modinem.com
28. Agust́ın Riscos Núñez, University of Seville, Spain, ariscosn@us.es
29. Francisco José Romero Campero, University of Seville, Spain, fran@us.es
30. Álvaro Romero Jiménez, University of Seville, Spain, romero.alvaro@us.es
31. Juan Carlos Soriano Ramı́rez, University of Seville, Spain,

juanki.soriano@gmail.com

32. Luis Valencia Cabrera, University of Seville, Spain, lvalencia@us.es
33. Claudio Zandron, University of Milan – Bicocca, Italy,

zandron@disco.unimib.it

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es) and all its
members were enthusiastically involved in this (not always easy) work.

The meeting was supported from various sources: (i) Ministerio de Economı́a
y Competitividad (grants TIN2008–04487–E, TIN2009 – 13192, TIN2012 – 37434,
cofinanced by FEDER funds), (ii) Junta de Andalućıa (grant P08 – TIC 04200,
also cofinanced by FEDER funds), (iii) Instituto de Matemáticas de la Univer-
sidad de Sevilla (IMUS), (iv) Fundación para la Investigación y el Desarrollo de
las Tecnoloǵıas de la Información en Andalućıa (FIDETIA), as well as by the De-
partment of Computer Science and Artificial Intelligence from Sevilla University.

Gheorghe Păun
Mario de Jesús Pérez-Jiménez

(Sevilla, May 2013)
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R. Freund, Gh. Păun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Kernel P Systems – Version I
M. Gheorghe, F. Ipate, C. Dragomir, L. Mierlă,
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Flattening P Systems with Active Membranes

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Summary. Given a P system Π with active membranes having several membranes, we
construct a P system Πf having only one membrane and rules involving catalysts, coop-
eration and priorities. The evolution of this “flat” P system Πf simulates the evolution
of initial P system with active membranes Π by replacing any rule that changes the
configuration in Π by prioritized rules application in a configuration of Πf .

1 Introduction

The family of membrane systems (also called P systems) is presented in the mono-
graph [6] and in the handbook [7], while several applications of membrane com-
puting are presented in [4]. Membrane systems are distributed, parallel and non-
deterministic computing models inspired by biological entities. The structure of
the cell is represented by a set of hierarchically embedded regions, each one de-
limited by a surrounding boundary (called membrane), and all of them contained
inside a skin membrane. A membrane without any other membrane inside it is said
to be elementary, while a membrane with other membranes inside is said to be
composite. Multisets of objects are distributed inside these regions, and they can
be modified or communicated between adjacent compartments. Objects represent
the formal counterpart of the molecular species (ions, proteins, etc.) floating inside
cellular compartments, and they are described by means of strings over a given
alphabet. Evolution rules represent the formal counterpart of chemical reactions,
and are given in the form of rewriting rules which operate on the objects, as well
as on the membrane structure.

A membrane system can perform computations in the following way. Starting
from an initial configuration that is defined by multisets of objects initially placed
inside the compartmentalized structure and by sets of evolution rules, the system
evolves by applying evolution rules in a non-deterministic and maximally parallel
manner (every rule that is applicable inside a region has to be applied in that
region). A rule is applicable when all the objects that appear on its left-hand side
are available in the region where the rule is placed (there are not used by other
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rules applied in the same step). Due to the competition for resources, some rules
are applied non-deterministically. A halting configuration is reached when no rule
is applicable.

A flat membrane system Πf can be constructed to simulate a membrane system
Π with multiple membranes and dissolution [1]. The central idea of this construction
is to use pairs of objects and labels from Π as objects in Πf . Each rule r of Π
is translated into sets of rules rf for Πf . This simulation is at no extra cost: the
flat-membrane system does not use more time or space than the membrane system
with multiple membranes.

In order to simulate a P system Π with multiple active membranes by a flat
membrane P system Πf , a bigger amount of rules and more time is needed to
perform the simulation. The increase in the number of rules derives from the fact
that Π has a ’higher dimension’ (the changes in the topology) in working with its
symbols: for instance, it can change the polarization of one compartment affecting
in this way all the symbols in it. The larger amount of time depends on the fact
that in Π configuration changes are done in one step (one rule application), while
in Πf this cannot be achieved in one step.

A motivation of this study is this one: many researcher classify computational
complexity classes in terms of the kinds of rules present in P systems with active
membranes. For instance, NP problems can be solved with these kind of systems
when rules of types (a), (b), (c) and (d) or when rules of kind (a), (c), (e) and
polarities are there. These kinds of rules are rather powerful and they could hide
some power in their definition. We aim to unify these rules in terms of simple rules,
hoping to compare their power. For instance, we may prove that the simple rules
needed to simulate rules of the kind (a), (b), (c) and (d) are the same as the simple
rules needed to simulate rules of the (a), (c), (e) and polarities.

2 P Systems with Active Membranes

Biological membranes are not completely passive: when a molecule passes through
a membrane, the molecule and the membrane itself can be modified. These ideas
lead to the introduction of P systems with active membranes where the central role
in computation is played by membranes. Each membrane is supposed to have an
electrical polarization (also called charge), one of the three possible: positive (+),
negative (−) and neutral (0).

Definition 1 ([6]). A P system with active membranes is a construct
Π = (V, T,H, µ,w1, . . . , wn, α1, . . . , αn, R)

where:

1. n ≥ 1 represents the number of membranes;
2. V is an alphabet (the total alphabet of the system);
3. T ⊆ V (the terminal alphabet);
4. H is a finite set of labels for membranes;



Flattening P Systems with Active Membranes 3

5. µ is a membrane structure, consisting of n membranes, labelled in a one-to-one
manner with elements of H;

6. w1, . . . , wn are strings over V , describing the multisets of objects placed in the
n regions of µ;

7. α1, . . . , αn, with αi ∈ {+,−, 0} for i ∈ {1, . . . , n}, are the initial polarizations
of the membranes;

8. R is a finite set of developmental rules, of the following forms:

a) [a→ v]αh , for h ∈ H, α ∈ {+,−, 0}, a ∈ V , v ∈ V ∗
object evolution

An object a placed inside a membrane evolves into a multiset of objects v,
depending on the label h and the charge α of the membrane. The membrane
does not take part in the application of the rule and is not modified by it.

b) a[ ]α1

h →[b]α2

h , for h ∈ H, α1, α2∈{+,−, 0}, a, b ∈ V
communication

An object a is introduced in the membrane labelled h and with charge α1.
However, the object a may be modified to b and the polarization may be
changed from α1 to α2 during the operation. The label of the membrane
remains unchanged.

c) [a]α1

h →[ ]α2

h b, for h ∈ H, α1, α2∈{+,−, 0}, a, b ∈ V
communication

An object a is removed from the membrane labelled h and with charge α1.
However, the object a may be modified to b and the polarization may be
changed from α1 to α2 during the operation. The label of the membrane
remains unchanged.

d) [a]αh → b, for h ∈ H, α∈{+,−, 0}, a, b ∈ V
dissolving

An object a dissolves the surrounding membrane labelled h and with charge
α. However, the object a may be modified to b during the operation.

e) [a]α1

h →[b]α2

h [c]α3

h , for h∈H, α1,α2,α3∈{+,−, 0}, a, b, c∈V
division of elementary membranes

In reaction with an object a, a membrane labelled h and with charge α is
divided into two membranes with the same label, maybe of different polar-
izations. However, the object a may be replaced in the two new membranes
by possibly new objects.

f) [ [ ]α1

h1
. . . [ ]α1

hk
[ ]α2

hk+1
. . . [ ]α2

hn
]α0

h0
→ [ [ ]α3

h1
. . . [ ]α3

hk
]α5

h0
[ [ ]α4

hk+1
. . . [ ]α4

hn
]α6

h0
for

k ≥ 1, n > k , hi ∈ H, 0 ≤ i ≤ n, and α0, . . . , α6 ∈ {+,−, 0} with
{α1, α2} = {+,−}

division of non-elementary membranes
If a membrane labelled h0 contains other membranes than those with the la-
bels h1, . . . , hn specified above, then they should have neutral charge for this
rule t be applicable. The division of non-elementary membranes is possible
only if a membrane contains two immediately lower membranes of oppo-
site polarization, + and −. The membranes of opposite polarizations are
separated in the two new membranes, but the polarization can change. All
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membranes of opposite polarizations are separated always by applying this
rule.

It can be noticed that the objects interact indirectly by means of membranes and
their polarizations. The above rules are applied in the usual non-deterministic max-
imally parallel manner, with the following details:

• Any object can be subject of only one rule of any type and any membrane can
be subject of only one rule of types (b)-(f);

• Rules of type (a) are not counted as applied to membranes, but only to objects;
• If a membrane is dissolved, then all the objects and membranes in its region are

left free in the surrounding region;
• The rules are applied in a bottom-up manner;
• The skin membrane cannot be dissolved or divided, but it can be the subject of

in/out operations.

3 Flattening P Systems with Active Membranes

We may reduce an initial P system Π with active membranes, as described in Sec-
tion 2, to the following P system Πf with only one membrane, priorities, catalysts
and cooperative rules as described below.

Πf = (V f , T f , [ ], wf , Rf )
where

1. V f = {ah | a ∈ V, h ∈ H ∪HN}
∪ {αh, αdih , αmh | α ∈ {+,−, 0}, h, i ∈ H ∪HN}
∪ {pij , p′ij | i, j ∈ H ∪HN}

• ah - models an object a from membrane h;
• αh - models the polarization α of membrane h;
• pij - represents the fact that membrane i is included in membrane j; this

object is used to model the membrane structure of the initial system;
• HN = {hi | h ∈ H, i ∈ N} is used to uniquely track the copies of the

membranes from H created by division;

2. T f = {ah | a ∈ T, h ∈ H ∪HN}
• the terminal alphabet is obtained by considering all combination of terminal

objects and locations from initial system;

3. wf = {ah, a′h | a ∈ wh, h ∈ H}
∪ {αh | h ∈ H} ∪ {pij | membrane i is included in membrane j in µ}

• ah - models an object a from the initial multiset wh;
• αh - models the initial polarization α of membrane h;

• Rf is a finite set of evolution rules:

a) a rule [a→ v]αh is simulated with the rule:
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i. αhah → αhv
′
h;

v′h denotes the fact that to all objects from the multiset v a label h is
added and that the newly created objects cannot be used by any other
rules in the current evolution step;

b) a rule a[ ]α1

h →[b]α2

h is simulated with the rule:
i. phiaiα1h → phib

′
hα2h;

ai is an object from the membrane i surrounding membrane h; this
relation between membranes is captured by the object phi.

c) a rule [a]α1

h →[ ]α2

h b is simulated with the rule:
i. phiahα1h → phib

′
iα2h;

bi is an object from the membrane i surrounding membrane h; this
relation between membranes is captured by the object phi.

d) a rule [a]αh → b is simulated with the rules:
i. phiahαh → p′hiα

di
h b
′
i

αdih represents a special object that models the fact that the membrane
labelled h in the initial membrane structure is marked to be dissolved (d
- symbolizes dissolution, i - the parent membrane of dissolved membrane
h), and to signal that objects that in the initial membrane structure
were in membrane h should move to membrane i. When a membrane
is marked dissolution, some objects pij need to be modified in order
to keep track with the modification of the initial structure. To do this
the object phi is replaced with the object p′hi in order to announce any
children of membrane h, if any, to change the parent to i.

ii. p′hipjh → p′hipji
In the presence of the object p′hi any membrane contained in the dis-
solved membrane h, if any, changes its parent from h to i, namely the
object pjh is replaced with the object pji.

iii. p′hi → ε
If there are no more membranes with parent h, the intermediate object
p′hi is removed.

iv. αdih ah → αdih a
′
i

In the presence of the object αdih any object from the initial membrane
h is moved to membrane i, namely an object ah is replaced with an
object a′i.

v. αdih → ε
If there are no more objects in the dissolving membrane h, then inter-
mediate object αdih is removed.

The rules are applied according to the following sequence of priorities:
(d).i > (d).ii > (d).iii > (d).iv > (d).v

e) a rule [a]α1

h →[b]α2

h [c]α3

h is simulated with the rules:
i. phiahα1h → ph1ib

′
h1
ph2ic

′
h2
αmh

αmh represents a special object that models the fact that the membrane
labelled h in the initial membrane structure is multiplied (m - sym-
bolizes multiplication). In order to keep track which objects belong to
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which membrane in the initial system, we consider that the new copies
of the membrane and its inner objects have labels that uniquely identify
them, namely h1 and h2. To be able to apply similar rules as for the
initial membrane h also to the newly created membranes labelled by h1
and h2 we duplicate the rules from h in the newly created membranes
by replacing the objects ah by the objects ah1

or ah2
, respectively. As

an example, for the rule αhah → αhvh of membrane h, an instance of it
is created for each membrane hi, i ∈ {1, 2}, namely αhiahi → αhivhi .

ii. αmh ah → αmh a
′
h1
a′h2

In the presence of the object αmh any object from the initial membrane
h is duplicated in the two new copies of membrane h, namely the object
ah is replaced with the objects a′h1

and a′h2
.

iii. αmh → αh1αh2

After all objects of membrane h are replicated into the new copies of
membrane h, namely h1 and h2, the object αmh is replaced with the
objects αh1

and αh2
, representing the polarizations of the newly created

membranes.
The rules are applied according to the following sequence of priorities:

(e).i > (e).ii > (e).iii
f) a rule [ [ ]α1

h1
. . . [ ]α1

hk
[ ]α2

hk+1
. . . [ ]α2

hn
]α0

h0
→ [ [ ]α3

h1
. . . [ ]α3

hk
]α5

h0
[ [ ]α4

hk+1
. . . [ ]α4

hn
]α6

h0

is simulated with the rules:
i. phih0

+hi
phjh0

−hj
→ αm0h0

phih01
+′hi

phjh02
−′hj

The division of the non-elementary membrane h0 is possible only if it
contains two immediately lower membranes hi, hj of opposite polariza-
tion, + and −. In this case, the membranes of opposite polarizations
are separated in the two new membranes h01 and h02 together with
all the membranes of similar charge, but for which the polarizations
can change. The membranes with neutral charge are copied in both
obtained membranes. The newly created object αmh0

indicates that the
membrane h0 will multiply. The labels h01 and h02 are used to indicate
uniquely the two instances of membrane h0. We shall use the subscript
1 for the membrane containing the membranes initially charged with
+, and the subscript 2 for the membrane containing the membranes
initially charged with −.

ii. αmh0
phih0

+hi
→ αmh0

phi1h01
+′hi

iii. αmh0
phih0−hi → αmh0

phi2h02−′hi

iv. αmh0
phih00hi → αmh0

phi1h01phi2h020′hi

Using these rules, is modelled the change of the membrane structure in
the initial membrane system such that the membranes with charge +
are included in membrane h01 and the label is changed from hi to hi1,
while the membranes with charge − are included in membrane h02 and
the label is changed from hi to hi2. For the membranes with charge 0
a fresh copy is included both in membranes h01 and h02 and the label
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hi is changed to hi1 and hi2. The charge is primed so no other rule can
be used for the obtained membranes until the division ends.

v. +′hi
ahi → +′hi

a′hi1

vi. −′hi
ahi
→ −′hi

a′hi2

vii. 0′hi
ahi
→ 0′hi

a′hi1
a′hi2

The objects are relocated to the new obtained membranes, and when
necessary duplicated.

viii. +′hi
→ αhi1

ix. −′hi
→ αhi2

x. 0′hi
→ αhi1

αhi2

xi. αmh0
→ αh01

αh02

This rules have a lower priority than the one above. When there are no
more objects to be transferred to the newly obtained membranes, the
primed polarizations are changed to new polarizations. If there are no
primed polarizations remained, then modelling of the division process
is finished by changing the label αmh0

to two new membranes αh01
and

αh02
. To be able to apply similar rules as for the initial membranes

h0, h1, . . . , hn also to the newly created membranes the rules for hi are
duplicated for the newly created membranes using instead of objects ahi,
objects ahi1

or ahi2
, respectively. As an example, for the rule αhi

ahi
→

αhi
vhi

of membrane hi, an instance of it is created for each membrane
hij , j ∈ {1, 2} namely αhij

ahij
→ αhij

vhij
.

The rules are applied according to the following sequence of priorities:
(f).ii > (f).i > (f).xi
(f).iii > (f).i > (f).xi
(f).iv > (f).i > (f).xi

(f).v > (f).viii
(f).vi > (f).ix
(f).vii > (f).x

g) a′h → ah
After applying all possible rules in a step, in order to mve the next step
of the evolution, the primed objects (e.g., a′h) are transformed into simple
objects (e.g., ah).

The rules are simulated using the application details for P systems with active
membranes, except for rule (g) that has the lowest priority among all rules and is
applied last in order to prepare the system for a new evolution step.

Remark 1. We end by emphasizing the size of the P system Πf with respect to that
of Π. The cardinality depends on the size of a halting configuration of the initial
membrane system. Consider that the largest configuration has m membranes. Thus,
the cardinality of the alphabet V f is,

card(V f ) = m× (card(V ) + 10×m)
while the cardinality of the rule set Rf is,:

card(Rf ) = m× (card(R(a)) + card(R(a)) + card(R(c))+
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+5× card(R(d)) + 3× card(R(e)) + 11× card(R(f)) + card(V f )),
where R(a) denotes the number of (a) rules from the set of rules R.

4 Conclusion

The idea of using a flat membrane system to simulate P systems with multiple
membranes has previously appeared in several papers; a formal presentation can
be found in [5]. However, the P systems with multiple membranes had a static
structure, not involving dissolution. The dissolution aspects where tackled in [1].

In this paper we presented a general approach for P systems with active mem-
branes, based on the use of catalysts, cooperation and priorities.

The translation presented here can be used to simplify proofs of statements
involving general P systems with active membranes by using only flat P systems.
However, concerns may appear regarding the increasing number of objects and rules
in the P system Πf , according to Remark 1.
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Summary. In this paper, we report a pioneer study of the decrease in chlorophyll fluo-
rescence produced by the reduction of MTT (a dimethyl thiazolyl diphenyl tetrazolium
salt) monitored using an epifluorescence microscope coupled to automate image analysis
in the framework of P systems. Such analysis has been performed by a family of tissue
P systems working on the images as data input.

1 Introduction

Membrane Computing has many features that makes it suitable for the study and
the implementation of algorithms of digital images. One of them is that, usually,
these algorithms can be parallelized and locally solved. Regardless how large the
picture is, many algorithmic processes can be performed in parallel in different
local areas. Another interesting feature is that the local information needed for
a pixel transformation can also be easily encoded in the data structures used in
Membrane Computing.

Recently, a new research line has been open by applying well-known Membrane
Computing techniques for solving problems from digital images. For example, seg-
mentation is a well-known problem in the process of digital images which tries to
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assign a label to every pixel in an image in such way that pixels with the same
label share certain visual characteristics. Segmentation has shown its utility, for
example, in bordering tumors and other pathologies or computer-guided surgery.
In [11, 12, 13, 15, 31] we can find several approaches to this problem with Mem-
brane Computing techniques. Other problems as thresholding [10] or smoothing
[25] has also been considered in the framework of membrane computing. Special
attention deserves [18], where the symmetric dynamic programming stereo (SDPS)
algorithm [19] for stereo matching was implemented by using simple P modules
with duplex channels or [33], where the authors combine Membrane Computing
and quantum-inspired algorithms for image processing.

In [2], a first approach of the application of Membrane Computing techniques to
the study of images from Microbiology was presented. Automated image analysis
is increasingly used in Microbiology to quantify important parameters for research
and application. The most studied so far are the cell numbers, cell volumes, fre-
quencies of dividing cells, in situ classification of bacteria, enumeration of actively
respiring bacteria, characterization of bacterial growth on solid medium, viability
and physiological activity in biofilms (e.g. [9, 17, 29, 30]).

In [2], the focus was the study of the application of Membrane Computing
techniques to the problem of counting cells. The whole process is a combination
of different techniques of processing images (binarization, segmentation, noise re-
duction . . . ) which can be performed by different families of P systems. The final
algorithm is a sequence of partial processes which can be performed by Membrane
Computing techniques, and the application of such processes can be seen as a
global machine which takes as input a digital image showing a biological entity
(usually, a photograph taken with a microscopy in a wet lab) and the output is the
number of cells in the picture.

In this paper, we focus on the problem of considering the intensity of color in
cyanobacteria, a phylum of bacteria that obtain their energy through photosyn-
thesis, by using algorithms based on Membrane Computing techniques. We report
a new study of the decrease in chlorophyll fluorescence produced by the reduction
of MTT (a dimethyl thiazolyl diphenyl tetrazolium salt) monitored using an epi-
fluorescence microscope coupled to automate image analysis in the framework of
P systems The different stages of the analysis have been performed by a family of
tissue P systems working on the images as data input.

Such families of P systems used in the stages of the process have inspired par-
allel software programs which have been developed by using a device architecture
called CUDATM, (Compute Unified Device Architecture). CUDATM is a general
purpose parallel computing architecture that allows the parallel NVIDIA1 Graph-
ics Processors Units (GPUs) to solve many complex computational problems in a
more efficient way than on a CPU. GPUs constitute nowadays a solid alternative
for high performance computing, and the advent of CUDA allows programmers a
friendly model to accelerate a broad range of applications. This novel architecture
has been previously used to implement parallel software that simulates the behav-
1 http://www.nvidia.com.
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ior of P systems [5, 6, 7, 8, 24, 25], and, in a similar way to other implementations,
the obtained results in the problem of detecting cyanobacteria are quite promising.

The paper is organized as follows: Next, we recall the computational model
used to design the different families of P systems that performs the stages of
the algorithm. In Section 3, a short presentation of the biological experiment on
cyanobacteria is presented. Section 4 outlines the steps of the analysis via a family
of P systems with takes as input data the images taken in the wet lab. Section 5
provides some details of the implementation of such families on CUDA and finally,
the paper ends with some conclusions and open lines for future research.

2 Formal Framework

Next, we recall some basics on the P system model chosen for implementing the
solution described below. The model is tissue-like P systems with promoters. Pro-
moters are usually defined on cell-like models [20] and its extension to tissue-like
is quite natural. Next, we recall the formal definition.

Definition 1. A tissue-like P system with promoters of degree q ≥ 1 is a tuple of
the form

Π = (Γ,Σ, E , w1, . . . , wq,R, iin, iout)

where

1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ ⊆ Γ is the input alphabet;
3. E ⊆ Γ is a finite alphabet representing the set of the objects in the environment

available in an arbitrary large amount of copies;
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration;
5. R is a finite set of rules of the following form:

(pro | i, u/v, j), for 0 ≤ i 6= j ≤ q, pro, u, v ∈ Γ ∗

In these rules, the labels 1, . . . , q correspond to the q cells and the label 0 cor-
responds to the environment;

6. iin ∈ {1, 2, . . . , q} denotes the input region;
7. iout ∈ {1, 2, . . . , q} denotes the output region.

The rule (pro | i, u/v, j) can be applied over two cells (or a cell and the envi-
ronment) i and j such that u (contained in cell i) is traded against v (contained in
cell j). The rule is applied if in i the objects of the promoter pro are present. The
promoter is not modified by the application of the rule. If the promoter is empty,
we will write (i, u/v, j) instead of (∅ | i, u/v, j).

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered). In one step, each
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object in a membrane can only be used for one rule (non-deterministically chosen
when there are several possibilities), but any object which can participate in a
rule of any form must do it, viz., in each step we apply a maximal multiset of
rules. A configuration is an instantaneous description of the system Π, and it
is represented as a tuple (w0, w1, . . . , wq), where w1, . . . , wq, where represent the
multiset of objects contained in the q cells and w0 represent the multiset of objects
from Γ −E placed in the environment (initially w0 = ∅). Given a configuration, we
can perform a computation step and obtain a new configuration by applying the
rules in a parallel manner as it is shown above. A sequence of computation steps
is called a computation. A configuration is halting when no rules can be applied
to it.

3 Cyanobacteria

The object of study of our research are cyanobacteria. It is a phylum of bacteria
that obtain their energy through photosynthesis. The ability of cyanobacteria to
perform oxygenic photosynthesis is the reason why the primitive reducing atmo-
sphere has became an oxidizing one. This new atmosphere sustained the emer-
gence of living beings depending of oxygen, and changed the face of the Earth. It
is thought that chloroplasts in plants and eukaryotic algae evolved from cyanobac-
terial ancestors.

Cyanobacteria are the most diversified, ecologically most successful and evo-
lutionary most important group of prokaryotes [27] clearly defined by the ability
to carry out oxygenic photosynthesis in the thylakoid membranes and respiration
both in plasma membrane and thylakoid membrane [26].

Oxygenic photosynthesis, the ability to use the light energy to synthetize glu-
cides from carbon dioxide and water, and to evolve oxygen from water molecules
is essential for all the other forms of life on Earth. Historically, cyanobacteria were
the first organisms to perform oxygenic photosynthesis and this metabolic abil-
ity of early cyanobacteria have converted the early reducing atmosphere of Earth
(when no free molecular oxygen was available) into an oxidizing one. This pro-
cess emerged approximately 3.5 billion years and had an essential effect on the
evolution of life on our planet. There is a general agreement that the oxic atmo-
sphere allowed the emergence and evolution of aerobic microorganisms, this is the
occurrence of one of the greatest evolutive events on Earth, the emergence of eu-
karyotic cells most probably by endosymbiotic association between different types
of prokaryotic cells.

The early cyanobacteria participated to this endosymbiosis thus all photosyn-
thetic organisms on Earth have some cyanobacteria as ancestors; together with
cyanobacteria (50 % contribution at planetary level) all these photosynthetic eu-
karyotes, including higher plants, contribute today to the synthesis of organic
matter and oxygen production, the basis of all life forms here.

As an example of the importance of cyanobacteria for the life on our planet,
one can remember that Prochorococcus -the most abundant cyanobacterium on
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Earth- is responsible for 20 % of the molecular oxygen evolved (and, correspond-
ing for 20 % of the consumed carbon dioxide and 20 % organic matter synthetized
during oxygenic photosynthesis). Some cyanobacteria have also the ability to use
atmospheric nitrogen as nitrogen source for growth, thus being able to live in en-
vironments where the concentrations of organic or inorganic nitrogen are very low.
Cyanobacteria being very versatile microorganisms can live in very different envi-
ronments for example from warmer springs to many cold sites, including glaciers.
The important functions in Nature make cyanobacteria very strong candidates
for the development of bio(nano)technologies the most known topics being the
photoproduction of molecular hydrogen or electricity, biomass (and related pro-
cesses, including valuable products) production and removal of different pollutants
(petroleum hydrocarbon, heavy metals, nitrogen and phosphorus etc., ) from the
environment.

The concentration of metalimnetic populations of Planktothrix sp. can be mea-
sured by epifluorescence microscopy of filaments collected on membrane filters.
Computer image analysis is used to determine the length of filaments whose phy-
coerythrin fluoresces strongly in green light [32]. Similar methods have been used
for enumeration of picoplanktonic cyanobacteria [1]. Image analysis was used in a
previous work done on color analysis of cyanobacteria under labelling with quan-
tum dots [3] and the cells within filamentous cyanobacteria were counted with
tissue-like P systems [2].

Sarchizian et al. [28] investigated the ability of a cyanobacterial strain- iso-
late IS-H- to reduce MTT [(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide)], an artificial electron acceptor, with special emphasis on quantitative
determinations at single cell level using automated image analysis for precise color
measurement of cells within the filaments of this strain. Up to our best knowledge
this is the first report on the use of automated image analysis for the measure-
ment of reduction of artificial redox carriers at single cell level in cyanobacteria
or any other levels. The results show a strong decrease in the blue signal during
MTT reductions by each individual analyzed cell, as a consequence of orange light
absorption by reduced MTT.

Cyanobacterial filaments (actually each filament is one biological specimen)
contains chlorophyll a which has a characteristic red fluorescence. This red fluores-
cence can be seen using different physical instruments, as fluorescence microscopes.
This fluorescence is related to the light initially absorbed by the cell. In constant
experimental conditions the fluorescence as one can be seen using a fluorescence
microscope is practically constant. In our experiments cyanobacterial culture were
challenged with a special chemical, namely MTT. MTT (3-(4,5-Dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole), a chemical belonging
to tetrazolium salts that is largely used to measure the metabolic activity in living
cells (see, e.g., [4] or [28]).

The rationale design of our experiments is the following: the interaction of
living cyanobacteria with MTT causes the reduction of MTT with electrons com-
ing from cyanobacterial metabolism (photosynthesis, respiration and intermedi-
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Fig. 1. The decrease of chlorophyll red fluorescence as a consequence of the accumulation
inside the cell of MTT formazans crystal can be used to measure the intensity of MTT
metabolic, light -dependent, reduction by cyanobacteria

ary metabolism). The reduction of MTT further decrease the intensity of chloro-
phyll fluorescence. The chemical reduction of MTT changes some of its properties,
namely the color and the physical state of the molecule. The oxidized molecule is
yellowish and water soluble whereas the reduced molecule (the so-called formazan)
is dark brown, having a specific absorption spectrum, and it is insoluble in water
(Fig. 1 (A)).

Fig. 1 (B) shows how MTT is reduced by enzymes called reductase (acting in
photosynthesis, respiration and intermediary metabolism) to formazan. MTT is
yellowish, soluble in water, and reduced MTT (MTT formazan) is insoluble (not
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shown); when an appropriate chemical is added to dissolve the insoluble purple
formazan product into a colored solution, this colored solution can be quantified
by measuring the optical density at a certain wavelength (usually between 500 and
600 nm, as one can see, by a spectrophotometer).

Thus the reduction of MTT generate crystals of formazan which remain inside
the cyanobacterial cell covering the intracellular structures of cyanobacteria. The
most important intracellular structures of cyanobacteria involved in the reduction
of MTT (as well as in the reduction of other artificial electron acceptors) are the
thylakoides. Thylakoides are the sites where some of the light energy absorbed by
thylakoids is converted in chemical stable energy found in molecules such as ATP
and reduced form of chemical compounds (e.g NADPH etc.,); other part of some
of the light energy absorbed by thylakoids is re-emitted as fluorescence.

During the process of MTT reduction by living cyanobacteria in light, the
reduced MTT (formazan) accumulate inside the cell; this accumulation can be
seen microscopically using light microscopy and even quantificated by automated
image analysis [28]. This accumulation of reduced MTT inside the cell physically
covers intracellular structures, including thylakoides thus acting as a shield which
blocks the access of light to thylakoides, thus decreasing the intensity of chlorophyll
fluorescence.

Up to our best knowledge, this is for the first time when the decrease in chloro-
phyll fluorescence produced by the reduction of MTT is monitored using an epiflu-
orescence microscope. However, the inhibition of important metabolic processes in
cyanobacteria during tetrazolim salt reduction is documented in literature. Paerl
and Bland [23] show the effects of localized reduction of five tetrazolium salts has
strong negative impact on three important metabolic processes in cyanobacteria :
N2 fixation (acetylene reduction), CO2 fixation, and H2 consumption.

During short-term (within 30 min) exposures in the cyanobacterium A. oscil-
larioides, salt reduction in heterocysts occurred simultaneously with inhibition of
acetylene reduction

Conversely, when salts failed to either penetrate or be reduced in heterocysts,
no inhibition of acetylene reduction occurred. When salts were rapidly reduced in
vegetative cells, 14CO2 fixation and 3H2 utilization rates decreased [23] .

The type of experiment presented in this paper has a deeper biological theoret-
ical significance and a stronger practical application than our previous work done
on color analysis of cyanobacteria under labelling with quantum dots [3] because of
metabolic background. The decrease of chlorophyll fluorescence as a consequence
of the accumulation inside the cell of MTT formazans crystal can be used to (in-
directly) measure the intensity of MTT reduction at the level of filaments or even
at the level of individual cells within each filament, cells which are subcomponents
of the biological individual (the filament in the case of filamentous cyanobacteria).
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4 Analyzing the Images

The study of the chlorophyll fluorescence in cyanobacteria has been split in several
stages. In each stage, an image is provided as input and it is processed by a tissue
P system with promoters described above. The result is an automatized image
process performed by a sequence of P systems.

The target is to obtain information about the central cyanobacteria of the
image of Fig. 2 (a). To do that, the following stages are performed:

Stage 1: Grey Scale. The image is transformed into a grey scale one (Fig. 2
(b)). We only keep the information on the red plane to do this.

Stage 2: Sampling (Fig. 3 (a)). Before being processed by a computer, the
images greater than an specific size must be sampled. The aim of this is a basic
process is to obtain images of the same size before comparing them.

Stage 3: Dynamical AGP Segmentator (First threshold, Fig 3 (b)). This
is an iterative stage. We apply, in each iteration, a variant of the AGP segmentator
(See [14]). In order to blur the image, each pixel on the boundary turns on white
or it takes the smallest gray value of their neighbours. As usual in P systems, this
process finishes when no more segmentation rules can be applied.

Stage 4: Iterative Edge Erosion Fig 3 (c). In each iteration, rules of the
following type are applied: K1 K2 K3

1, K8 B K4

K7 K6 K5

/
K1 K2 K3

K8 K
′ K4 , 0

K7 K6 K5


where K ′ = min{Ki : i = 1, . . . , 8 ∧Ki 6= B}

Stage 5: Segmentation (Second threshold, Fig 4 (a)). Again, the P system
implementation of the Sobel segmentator is used, but in this stage it is combined
with the AGP segmentator [14] in order to obtain a sharper definition of the
boundary.

Stage 6: Quantization (Third threshold, Fig 4 (b)) Quantization is a lossy
compression technique achieved by compressing a range of values to a single quan-
tum value. In our study we apply the tissue P system implementation presented in

(a) (b)

Fig. 2. (a) An example image (b) Grey Scale Stage
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(a) (b) (c)

Fig. 3. (a) Sampling Stage (b) Dynamical AGP Segmentator Stage (c) Iterative Edge
Erosion Stage

[24]. So, we propagate the background, black pixels, between the dark areas (with
color early to black).

Stage 7: Spot Erasing: In this stage, two copies of the image provided as
output of the previous stage are taken as input. This new stage is split into two
steps:

• White Marking: Rules of type (1,K N/BN, 0) are applied. Eight rules are
defined, one for each neighbour of the pixel (K). (Fig 4 (c)).

• White Unmarking: Rules of the same type as the used ones in the iterative
edge erosion perform this step, but in this case, the neighbours are taken from
the second copy of the image. (Fig 5 (a)).

Stage 8: Edge Erasing

• Edge Erasing type 1: The white edges adjacent to pixels with a associated color
different to black are deleted. Rules as the ones in the iterative edge erosion
stage are used (Fig 5 (b)).

• Edge Erasing type 2: Edges are eliminated by using the same type of rules of
the iterative edge erosion stage. (Fig 5 (c)).

(a) (b) (c)

Fig. 4. (a) Segmentation Stage (b) Quantization Stage (c) Spot Erasing Stage: White
Marking
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(a) (b) (c)

Fig. 5. (a) Spot Erasing Stage: White Unmarking (b) Edge Erasing Stage: type 1 (c)
Edge Erasing Stage: type 2

Stage 9: Dealing with Connected Components. Labelled connected com-
ponents are seeked (Fig 6). In this case, two pixels are considered connected when
their distance is less than 3. See [16] for a detailed description of a family of tissue
P systems for finding connected components in a binary image.

After finishing all the stages of the previous algorithm, some information of each
connected component, i.e., each cyanobacteria, like the area, medium intensity, etc.
can be obtained, and, of course, the number of studied Cyanobacteria too.

For example, the algorithm can be applied to study the medium intensity in
two images where the same Cyanobacteria appears with a little difference of time
(See Fig 7 (a) and (b)). After applying the algorithm, the images in Fig 7 (c) and
(d) are obtained, where the different connected components are shown.

Finally, some statistical information is obtained. On one hand, for the first
image, we have detected 6 connected components. We have kept the greatest of
them (the chosen cyanobacterium for the study) whose area has 6375 pixels and a
size of 1570244. Moreover, its average intensity is 246, 31. On the other hand, the
image taken in the second place has the same 6 connected components. The greater

Fig. 6. Dealing with Connected Components Stage
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(a) (b)

(c) (d)

Fig. 7. (a) Original Images of the previous example (b) Image taken an briefly later in-
stant (c) Different Cyanobacteria detected by our software in the first image (d) Different
Cyanobacteria detected by our software in the second image

of them (our cyanobacterium) has a greater area with respect to the previous. In
this case it has 7227 pixels and a size of 1784567 and the average intensity is
similar or lightly greater to the cyanobacteria of the previous image. In this case,
it is 246, 93.

5 Implementation

Inspired in the families of tissue-like P systems that perform the stages of the pro-
cess of counting cells, a software tool has been implemented by using CUDATM,
(Compute Unified Device Architecture) [21, 22]. CUDATM is a general purpose
parallel computing architecture that allows the parallel NVIDIA Graphics Pro-
cessors Units (GPUs) to solve many complex computational problems in a more
efficient way than on a CPU.

The experiments have been performed on a computer with a CPU AMD Athlon
II x4 645, which allows to work with four cores of 64 bits to 3.1 GHz. The computer
has four blocks of 512KB of L2 cache memory and 4 GB DDR3 to 1600 MHz of
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main memory. The used graphical card (GPU) is an NVIDIA Geforce GT240
composed by 12 Stream Processors with a total of 96 cores to 1340 MHz. It has
1 GB DDR3 main memory in a 128 bits bus to 700 MHz. So, the transfer rate
obtained is by 54.4 Gbps. The used Constant Memory is 64 KB and the Shared
Memory is 16 KB. Its Compute Capability level is 1.2 (from 1.0 to 2.1). The
implementation deals with N blocks of threads for the complete image in our
GPU of 96 cores.

6 Conclusions

The discovery of new application areas of Membrane Computing is a powerful
engine for future research. In parallel, the new hardware architectures, as CUDA,
allows a real implementation of the inherent parallelism of P systems. In this paper,
we report a new step in the applications of Membrane Computing techniques
to Digital Images. As pointed above, Membrane Computing techniques allow a
natural treatment of the parallelism of the flow of information in Digital Images
algorithms where the information can be encoded with simple data structures.

From a practical point of view, such techniques are a real innovation in the
study of biological images. In this paper, the case study has been the chloro-
phyll fluorescence in cyanobacteria and its use for computing their density. A
deep study of these cyanobacteria can contribute for the development of future
bio(nano)technologies as the production of electricity or pollutants removal.

In near future we intend to simultaneously measure on the same sample both
the formation of MTT formazan (using bright field microscopy, as in [28]) and the
decrease in chlorophyll fluorescence (using epifluorescence microscopy, as in this
report) and to quantitatively analyse the correlation between the two processes.
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Summary. Evolution-Communication P system with energy (ECPe systems) is a cell-
like variant P system which establishes a dependence between evolution and communi-
cation through special objects, called ‘energy,’ produced during evolution and utilized
during communication. This paper presents our initial progress and efforts on the im-
plementation and simulation of ECPe systems using Graphics Processing Units (GPUs).
Our implementation uses matrix representation and operations presented in a previous
work. Specifically, an implementation of computations on ECPe systems without antiport
rules is discussed.

1 Introduction

Evolution-Communication P system with energy (ECPe systems) is a modifica-
tion to Evolution-Communication P system (ECP system). Objects evolve through
evolution rules while communication of objects to other regions bounded by mem-
branes is done through symport/antiport rules. The unique features of an ECPe
system not present for Evolution-Communication P system are listed below.

• A communication rule must require at least one quantum of energy, referred
to as e, to be triggered.

• This quantum of energy, e, is produced by evolution rules and consumed by
communication rules only i.e. it can never be present at the initial configuration.
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ECPe systems are actually presented to provide a measure for communication over
Evolution-Communication P systems [1].

Other important characteristics of ECPe systems which are common to other
variants of P systems are also worth mentioning. Objects in each membrane are
considered as multisets since there can be multiple instances and type of objects
present within membranes. Evolution rules and communication rules within each
membrane are applied in a nondeterministic maximally parallel manner. Maximal
parallelism ensures that all rules that can be applied must be applied given the
multiset of objects in each membrane while nondeterministic application of rules
arises because it is possible that more than one rule is applicable at the same time.
Further definition and discussion about ECPe systems is found in section 2.

Computations in ECPe system have been represented using vectors, matrices
and linear algebra in [6]. As suggested in [8], we can make these vectors and matrix
representations local to regions to avoid dealing with sparse vectors and matrices
and to make computations in the system suitable for parallel processing.

Many works have been made for simulating P systems. Efforts for simulation
is motivated by the fact that simulations help in the analysis of P systems. Since
P systems are highly parallel in nature, many of the works are focused on its par-
allel implementation. One example is the parallel implementation of Transition P
systems on a cluster of computers presented in [5]. Another is that in [3] wherein
Spiking Neural P systems are simulated in parallel using GPUs. Though there
are already a number of parallel implementations for P systems, none of these is
directly applicable to ECPe systems. We are interested in a parallel implementa-
tion of ECPe systems in GPUs to contribute on researches implementing cell-like
variant of P systems on GPUs. We also aim to spark interest and aid in further
researchers in the field of Membrane computing, particularly ECPe systems, and
parallel computing paradigms in general.

Just like the work in [3], we will make use of NVIDIA GPUs for this parallel
simulation and implementation. NVIDIA, a manufacturer of GPUs, introduced
Compute Unified Device Architecture (CUDA). CUDA is a software and hardware
architecture that permits programmers to have a control over NVIDIA’s GPU
hardware and use them for parallel computations.

Our parallel implementation of ECPe systems is a continuation on an earlier
study [8]. Algorithms for the methodology presented in [8] are developed and are
implemented in CUDA C. It is important to emphasize that the implementation
done only involves methodology for forward computing of Evolution Communica-
tion P system without antiport rules only

2 ECPe system

2.1 Definitions and notations

ECPe system is introduced in [1] as a model where special objects are used to
establish dependence of communication on evolution. The goal of [1] is mainly to



A GPU Simulation for ECPe Systems Having no Antiport Rules 27

initiate communication complexity analysis for P systems. In order to evaluate
communication complexity for computations in ECPe systems, a cost of using a
communication rule is considered. This cost is in the form of a quantity of “energy”.
A single object can be transported by a communication rule with the help of one
or more quantum of energy, e. This quantum of energy is a special object, e 6∈ O,
which can be produced by evolution rules and consumed through communication
rules only. No communication rules can be applied without consuming an amount
of “energy”. When objects are transported, the quanta of energy consumed are
lost. They do not pass across membranes.

Following the definition in [1], an EC P System with energy is a construct of
the form

Π = (O, e, µ, ω1, ..., ωm, R1, R
′
1, ..., Rm, R

′
m, iout)

where:

1. O is the alphabet of objects;
2. m is the total number of membranes;
3. µ is the membrane structure

Membrane i is called the parent membrane of a membrane j, denoted parent(j),
if the paired-labelled square brackets corresponding to membrane j is inside the
paired-labelled square brackets corresponding to membrane i, i.e., [i . . . [j ]j ]i.
Conversely, membrane j is called a child membrane of membrane i, denoted
j ∈ children(i) where children(i) is referring to the set of membranes inside
membrane i.

4. ω1, ..., ωm are multisets of objects present in the regions bounded by mem-
branes;

5. R1, ..., Rm are sets of evolution rules, each associated with a region delimited
by a membrane;
An evolution rule is of the form a→ v where a ∈ O, v ∈ (O∪{e})∗ i.e e should
never be in the initial configuration and cannot be evolved.

6. R′1, ..., R
′
m are sets of symport/antiport rules each associated with a membrane;

A symport rule is of the form (aei, in) or (aei, out), where a ∈ O, i ≥ 1.
The number i is called the energy of the rule. An antiport rule is of the form
(aei, out; bej , in) where i, j ≥ 1. The number i + j is called the energy of the
rule.

7. iout ∈ {0, 1, ...,m} is the output region where i0 is the environment;

As in classical cell-like variants, rules must be applied in a nondeterministic and
maximally parallel manner. A configuration at any time i is denoted by Ci while
a transition from Ci to Ci+1 through nondeterministic and maximally parallel
manner of rule application can be denoted as Ci ⇒ Ci+1. A series of transition
is said to be a computation and can be denoted as Ci ⇒∗ Cj where i < j.
Computation succeeds when the system halts; this occurs when the system reaches
a configuration wherein none of the rules can be applied. This configuration is
called a halting configuration. If the system doesn’t halt, this implication failure
of computation because the system did not produce any output.
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Fig. 1. An ECPe system with a construct of Π =
({a,#, e}, e, [1[2]2]1, ω1, ω2, R1, R2, R

′
1, R

′
2, 2) where ω1 = {a2,#}, ω2 = ∅, R1 =

{r11 : a→ aa, r12 : a→ ee}, R2 = {#→ #}, R′
1 = ∅, R′

2 = {r
′
21(ae, in), r

′
22 : (#e, in)}

2.2 Matrix Representations

In [6], a matrix representation for ECPe system is obtained. With this representa-
tion, matrix operations can be used to model computations in ECPe system. The
work is motivated by the fact that an algebraic representation helps in simulating
P system. An implementation can help in easier or faster analysis of ECPe system.
To obtain a matrix representation, a total order over the objects and over the rules
are defined so that the elements can be identified by their positions. The following
are also defined:

• Configuration vector Ci is a vector with length |(O ∪ {e}) × {1, ...,m}| and
whose elements are numbers representing the multiplicity of objects in each
region at time i.

• Application vector ai is a vector with length |
⋃

1≤k≤mRk ∪ R′k| and whose
elements are the number of times each rule is applied during a transition
Ci−1 ⇒ Ci.

• Transition matrix MΠ is an n by r matrix (n = |
⋃

1≤k≤mRk ∪ R′k| and r =
|(O ∪ {e}) × {1, ...,m}|) that shows the effect of the application of each rule.
The matrix MΠ(r, (α, k)) gives the number of consumed or produced object
α in region k when the rule r is applied once. Elements with negative value
represent the number of objects consumed or moved out of a given region
while elements with positive value represent the number of objects that will be
produced or moved in a given region. Elements with zero value represent the
objects that are either not involved in the rule or involved but the total effect
of their production and consumption is zero.

• Trigger matrix is an r×n matrix that represents all the needed objects in order
to activate the rule. The elements are the number of objects required for a rule
to be applied.
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(Formal definitions of the vectors and matrices above are presented in [6]).
Forward computing is the process of finding all possible next configuration

given an input configuration. Equation 1 shows that given a configuration vector
for a certain time Ck−1, transition matrix MΠ and an application vector for a
transition Ck−1 ⇒ Ck, the next configuration vector Ck can be computed:

(Ck = Ck−1 + ak ·MΠ) (1)

The equation above implies that in order to compute all next configurations
for forward computing, there is a need to find all valid application vectors ak. [7]
shows that this problem can be reduced into solving a system of linear equations.

2.3 Localization of Computations

In [7], the localization of rules in ECPe system are taken into consideration, divid-
ing equation (1) into multiple equations (one for every local region) making them
suitable for parallel processing. Localization also provides a hint to unreachability
based on rules and initial multiset of objects. The following notations are defined
over an ECPe system Π without antiport rules.

• Let IO(r, k) be the set of objects in region k involved in a rule r.
• Let TO(r, k) be the set of objects in region k that trigger a rule r.

The following definitions and theorems taken from [7].

Definition 1 Involved Rules in Region k

IR(k) = Rk ∪R′k ∪ (
⋃
k′∈children(k)R

′
k′)

Definition 2 Possible Objects in Region k

PO(k) = {α|α appeared in wk} ∪ (
⋃
r∈IR(k) IO(r, k))

Definition 3 Effect Rules in Region k

ER(k) = {r|r ∈ Rk} ∪ (IR(k)− {r′|r′ ∈ IR(k) and TO(r′, k) 6= ∅})

Definition 4 Trigger Rules in Region k

TR(k) = {r|TO(r, k) 6= ∅}

Definition 5 Configuration Vector for each Region k
A configuration vector Ci,k is a vector whose length is |PO(k)|. The vector Ci,k(α)

refers to the multiplicity of object α in region k at configuration Ci.

Definition 6 Application Vector for each Region k
An application vector ai,k is a vector whose length is |IR(k)|. The vector ai,k(r)

refers to the number of application of rule r specifically in region k during the
transition Ci−1 ⇒ Ci.
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Definition 7 Transition Matrix for each Region k
A transition matrix MΠ,k is a matrix whose dimension is |IR(k)|× |PO(k)|. The

matrix MΠ,k(r, α) returns the number of consumed or produced object α in region k
upon single application of rule r. The consumed objects have negative values while
the produced objects are positive. If object α in region k is not used in rule r, then
its value is zero.

Theorem 1 (from [7]) The effect of Equation (1) is the same as the effect of
performing

Ci,k = Ci−1,k + ai,k ·MΠ,k (2)

for each region k provided that if k and k
′

are the sender and receiver regions cor-
responding to a communication rule r

′ ∈ IR(k)∩ IR(k′), then ai,k(r
′
) = ai,k′(r

′
).

Corollary 1 (from [7]) The formula for computing backward is

Ci−1,k = Ci,k − ai,k ·MΠ,k (3)

for each region k provided that if k and k
′

are the sender and receiver regions cor-
responding to a communication rule r

′ ∈ IR(k)∩ IR(k′), then ai,k(r
′
) = ai,k′(r

′
).

The above definitions and theorems are used to make vectors and matrices local
to regions to exploit independence between regions for parallel computations.

2.4 Methodology for Forward Computing

Given Ci,k, we determine Ci+1,k by forward computing using the methodology
presented in [8].
1. Categorize all possible objects in PO(k) for all region k. First, categorize
all α ∈ PO(k) for a certain region k. The categories are:

• Category 1: Evolution Trigger
Object α is in this category if there exists r ∈ Rk such that TO(r, k) = {α}.

• Category 2: Communication Trigger Only
Object α belongs in this category if there does not exist r ∈ Rk such that
TO(r, k) = {α} but there exists r′ ∈ IR(k) such that α ∈ TO(r′, k).

• Category 3: Not a Trigger
Object α is not in Category 1 and is not in Category 2.

2. Construct identity rules for objects in Category 2 and 3 for all region
k. For each α ∈ PO(k) that belongs to one of Category 2 and Category 3, include
an identity rule α→ α. Place all these rules in a set labelled Radd,k. Also, keep a
list of α′ ∈ PO(k)− {e} that fall under Category 2. Call this list as Listcat2 and
sort it in increasing order of transport energy requirement.
3. Construct Trigger Matrix TMΠ,k for all region k The defined rules as-
sociated with the rows of TMΠ,k must be the rules that lessen the multiplicity
of objects in region k. These rules are represented in the set TR(k). Again, let
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the additional rules from Radd,k be represented in the rows as well. The set of ob-
jects represented in the columns of TMΠ,k remains PO(k). TMΠ,k has dimensions
|TR(k) ∪ Radd,k| × |PO(k)|. TMΠ,k(r, α) gives the multiplicity of α in region k
that is required to apply rule r once.
4.Set the length of the vector of unknowns (extended application vec-
tor) a′

i,k for all region k The length of a′
i,k is |TR(k) ∪Radd,k|.

5. Solve system of linear equation Find all solutions to the equation

a′
i,k · TMΠ,k = Ci−1,k (4)

Again, because the application vector’s ( a′
i,k) elements represent the number

of application of rules, it must not contain negative numbers i.e. the elements
must always be natural numbers. The value a′

i,k(r) returns either the number of
application of each rule r ∈ TR(k) or how many object α is unevolved or unmoved
(if (r : α→ α) ∈ Radd,k). TR(k) and Radd,k are disjoint sets.
6. Filter solutions in step 5 For each region k, if Listcat2 6= ∅, scan the sorted
Listcat2 and find out the first object, labelled αcat2,min, falling under Category
2 whose corresponding identity rule application is non-zero, i.e. a′

i,k(αcat2,min →
αcat2,min) > 0. Since Listcat2 is sorted in increasing order of energy requirement
for transport, αcat2,min has the least energy required for communication. Label its
corresponding energy as energy(αcat2,min). Filter solutions in step 5 by adding,
for each region k with a non-empty Listcat2 , the inequality below:

a′
i,k(e→ e) < energy(αcat2,min) (5)

7. For each solution in step 6, find ai,k When values for a′
i,k in all region k

are found, disregard all identity rules r′ ∈ Radd,k. Fill the values of an application
vector ai,k through the equation

ai,k(r) = a′
i,k(r), r ∈ Rk. (6)

For every communication rule r ∈ IR(r, k′) ∩ IR(r, k′′),

ai,k′(r) = ai,k′′(r) = a′
i,k′(r) (7)

for all communication rule r ∈ IR(k′) ∩ IR(k′′) where region k′ is the sending
region.

Theorem 2 (from [7]) All possible ai,k generated through the above methodology
leads to a valid Ci,k yielded from Ci−1,k in one computational step.

3 Graphics Processing Unit (GPU)

3.1 On Using GPUs

Although GPUs are initially used for image processing, it is actually designed to
handle computationally demanding applications. Thus, its use is extended to ac-
commodate different applications. GPU has been widely used to work with highly
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Fig. 2. NVIDIA CUDA automatic scaling(More cores, faster execution), from [3]

parallel applications due to its parallel nature as compared to setting-up multiple
CPUs that will harness the same power by that of a GPU [3]. Another reason is
that they provide not only the hardware but also application programming inter-
faces (APIs) for computation. As mentioned in [11], the GPU is designed to cater
to a class of applications with the following characteristics,

• Computational requirements are large.
• Parallelism is substantial.
• Throughput is more important than latency.

3.2 Compute Unified Device Architecture (CUDA)

The Compute Unified Device Architecture (CUDA) programming model is intro-
duced by NVIDIA, a manufacturer of GPUs. CUDA is a hardware and software
architecture that runs highly parallel computations on the family of GPUs manu-
factured by NVIDIA [3]. With this feature and compatibility with today’s leading
GPU devices, CUDA became popular and progress has been made to make pro-
gramming in CUDA easier. Though CUDA is an extension of the C programming
language for parallel computations, programmers can also access CUDA APIs with
FORTRAN, Haskell, Perl, Python, Ruby, and etc.

The parallel code written in extensions of the C programming language is
executed in multiple threads within multiple blocks which are in turn parts of a
grid of blocks. These blocks belong to the GPU. Each GPU consists of multiple
cores having their own block of threads [3]. This feature is illustrated in Figure 2.
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Fig. 3. NVIDIA CUDA showing execution of sequential code in the host and parallel
execution of the kernel function in the device, from [3]

CUDA distinguishes CPU (host part) from the GPU (device part). Typically,
initial operations and preparations are done before proceeding to the demandingly
parallel computations. CUDA deals with this by performing preparations in the
host and moving the prepared data to the GPU for fast parallel computation
then, moving the results of the parallel computation back to the host for further
interpretation of output. The entity that connects the CPU and GPU, or makes the
data movement possible, is the kernel function. This function is called in the host
but is executed in the device [13] as illustrated in Figure 3. Usually, preparations
for the data are done to maximize parallelism. Operationally, the CPU controls
the flow of the application program while the GPU acts as a co-processor to the
host where demanding computations are held.

4 CUDA GPU Computing and ECPe systems

4.1 Generating all possible configuration vectors

The process of finding all possible configurations for all regions of an ECPe sys-
tem is illustrated by Figure 4. Input files contain information regarding the ECPe
system to be simulated. Some of the necessary information regarding the ECPe
system are the current configuration, membrane structure, number of possible
objects, number of involved rules and Transition matrix for each region k. Con-
figuration vectors, the initial configuration and the generated configurations, are
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Fig. 4. Flow chart of finding all possible configurations of an ECPe system until a halting
configuration is reached or until the maximum number of iterations set by the user is
reached.

written to a file. Thus, to explore each configuration, each configuration vector
must be read first from a file. This vector will be labelled as the current configu-
ration and will undergo computations, as illustrated by Figure 5 to determine all
valid application vectors and to produce possible next configurations. Results are
appended at the bottom of this file.

The process illustrated in Figure 4 will generate all possible next configurations
until a maximum number of explored configurations have been reached, or no
further configurations needs to be explored (the case of halting configuration).



A GPU Simulation for ECPe Systems Having no Antiport Rules 35

Fig. 5. Flow chart of finding all possible application vectors for all region(s) of an ECPe
system. A subprocess of finding all possible configuration vectors illustrated in Figure 4,
highlighted in red.

4.2 Generating all possible application vectors

The generation of all possible application vectors is guided by the methodology for
forward computing as discussed in Section 2.4. It is further illustrated in Figure 5.
Steps 1-4: Preparation of input We can notice that steps 1 through 4 are done
to prepare the values needed for generating application vectors. It is in Step 5 that
computation starts to generate all possible application vectors. Thus, to simulate
steps 1 through 4, we read from a file the necessary values needed for generating
all possible application vectors.
Step 5: Finding extended application vectors through solving a system
of linear equations Finding extended valid applications involves finding solu-
tions to a system of equations. Forward computing step 5 in Section 2.4 details
the system of linear equations to be solved. This can be implemented in paral-
lel. We extend the sequential implementation of computation on ECPe systems
without antiport rules and adapt ideas on parallelizing some of the processes of
the implementation presented in [8]. The implementation uses localized matrix
representation discussed in Section 2.4.

The following observations on the system of linear equations used in finding
extended valid application vectors are helpful in solving the system in parallel.
Let us take as an example the ECPe system Π illustrated in Figure 1. If we let
Ci−1,1 be the initial configuration, the system of linear equations produced upon
performing a′

i,1 · TMΠ,1 = Ci−1,1 is,

a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
a′i,1(r′22) + a′i,1(Add11) = 1

a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2
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• Each variable’s value in the resulting system of linear equations can
only be a natural number since these variables correspond to the number
of applications of a rule.

• Every equation in the system corresponds to an object condition.
Since the dimension of the Trigger matrix TMΠ,k is |IR(k)∪Radd,k|×|PO(k)|,
each equation resulting upon performing a′

i,1 · TMΠ,1 = Ci−1,1, will give us
the equation for the application of each rules (i.e. the variables in the left hand
side of the equation) whose available triggering objects is in the right hand side
of the equation.

a: a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
#: a′i,1(r′22) + a′i,1(Add11) = 1
e: a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

• If k is a sending region for at least one (1) communication rule, an
energy condition must be in the resulting system of equations for
that region. In our example, the resulting system of linear equations of the
two regions are,
Region 1:

a: a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
#: a′i,1(r′22) + a′i,1(Add11) = 1
e: a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

Region 2:

a: a′i,2(r′21) + a′i,2(Add21) = 0
#: a′i,2(r21) + a′i,2(r′22) = 0

Since region 2 is a receiving region only for both symport rules, it does not
have an energy condition unlike region 1 which is a sending region for both
symport rules.

• Each variable (representing application of a particular communica-
tion rule) in the energy equation occurs in exactly one other ob-
ject condition. Moreover, only variables associated with communica-
tion rules in energy equation can occur in other object conditions,
other variables occur exactly in one equation.

a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
a′i,1(r′22) + a′i,1(Add11) = 1

a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

• Coefficients of the terms for non-energy conditions is always one
because of non-cooperative form of the evolution rules and the restriction to
communication rules that only one object can be transported by a rule. Co-
efficients of the terms in energy equation can be any positive inte-
ger since communication rules must consume any amount of energy |e| ≥ 1.
The union of all rules in the non energy conditions not including the identity
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rules represents the set of trigger rules. For example, if (ae, in) is (ae2, in) and
(#e, in) is (#e3, in), the resulting system of linear equations becomes,

a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
a′i,1(r′22) + a′i,1(Add11) = 1

2a′i,1(r′21) + 3a′i,1(r′22) + a′i,1(Add12) = 2

With the above observations, all possible application vectors can be found by
solving first the energy condition. We can use each solution for solving non-energy
equations since each variable representing rule application of a certain communica-
tion rule in the energy equation occurs in one and only one other object condition.
For example in this equation,

a: a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
#: a′i,1(r′22) + a′i,1(Add11) = 1
e: a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

The possible solutions to the energy condition are,

a′i,1(r′21) a′i,1(r′22) a′i,1(Add12)
2 0 0
1 1 0
0 2 0
0 1 1
0 0 2
1 0 1

We substitute the rule application to its corresponding object to communicate.
Let’s take the first three solutions as an example. It will give us,

a′i,1(r11) + a′i,1(r12) + 2 = 2
0 + a′i,1(Add11) = 1

2 + 0 + 0 = 2
a′i,1(r11) + a′i,1(r12) + 1 = 2

1 + a′i,1(Add11) = 1
1 + 1 + 0 = 2

a′i,1(r11) + a′i,1(r12) + 0 = 2
2 + a′i,1(Add11) = 1

0 + 2 + 0 = 2

Then subtract it to the number in the right hand side of the equation which
corresponds to the current count of the associated communicated object.
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a′i,1(r11) + a′i,1(r12) = 2− 2 = 0
a′i,1(Add11) = 1− 0 = 1

2 + 0 + 0 = 2
a′i,1(r11) + a′i,1(r12) = 2− 1 = 1

a′i,1(Add11) = 1− 1 = 0
2 + 0 + 0 = 2

a′i,1(r11) + a′i,1(r12) = 2− 0 = 2
a′i,1(Add11) = 1− 2 = −1

2 + 0 + 0 = 2

If this yields a negative number, then this solution for energy equation is not appli-
cable. If not, solutions for the objects constitute one extended application vector
[8]. In the above illustrations the solution 0 2 0 is not a valid solution. The new
linear systems of equation to solve are now,

a′i,1(r11) + a′i,1(r12) = 0
a′i,1(Add11) = 1

a′i,1(r11) + a′i,1(r12) = 1
a′i,1(Add11) = 0

a′i,1(r11) + a′i,1(r12) = 2
a′i,1(Add11) = 0

a′i,1(r11) + a′i,1(r12) = 2
a′i,1(Add11) = 2

a′i,1(r11) + a′i,1(r12) = 1
a′i,1(Add11) = 1

The new systems of linear equations are then solved independently of each other.

Solving Equations. As what has been observed, each equation in the system of
linear equations are not always independent nor dependent of each other. In case of
regions that has energy condition, each non-energy object condition are dependent
on it. However, each non-energy equation iscomputation independent of each other,
this is also true in regions that does not have energy condition. Thus, the approach
is to solve each equation independently of each other, except for energy conditions.
As discussed in the previous section, regions with energy condition solves the
equation for the energy condition first. After reflecting the solutions for the energy
condition to the equations for the non-energy condition, solutions to the equations
for the non-energy solutions are computed.

For regions without energy condition, the computation goes straight to the
independent computations for solutions to the equations for the non-energy equa-
tion. The computation for the solutions to each equation can be reduced to the
Integer Partition Problem as proposed in [8].

Solving Integer Partition Problem. Integer partitioning means finding a way of
writing r as a sum of positive integers which are called partitions. To use these
partitions in solving a non-energy equation, the number of partitions must be less
than or equal to the number of variables m in the left hand side of the equation.
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Fig. 6. Interpreting
(
5
3

)
as integer partitions through the sticks and pebbles analogy.

If the number of partitions is less than m, zeroes must be padded accordingly so
that it represents a vector with m elements. Then permutations of the partitions
must be obtained. The problem of partitioning r with m components and then
obtaining permutation of the partition can be reduced to solving combinations of(
n
s

)
where n = r +m− 1, s = m− 1.
Combinations can be interpreted or converted into integer partitions through

the sticks and pebbles analogy (see Figure 6). In a
(
n
s

)
combinations, there are

n positions, s sticks, and n − s pebbles. Elements in the combinations represent
the position of each sticks and the pebbles take the position where there is no
stick. The number of pebbles between each stick are the elements of the integer
partition.

However, solutions to each equation in the system of linear equations does not
end on the generation of integer partitions. Since equations for the energy condition
can contain a coefficient greater than or equal to 1, the generated integer partitions
need to be further filtered to ensure that they are valid solutions to the equation for
the energy condition.Given an energy equation of the form c1a1+c2a2+...+cmak =
n, we first obtain a lexicographic order of the partitions, add zeroes to these
partitions accordingly, and get the permutations of the partitions. Equate these
permutated partitions to the equation to get the energy solutions. Let p1, p2, ..., pm
be the partitions of r with m components. a1 = c1

p1
, a2 = c2

p2
, ..., am = cm

pm
is an

energy solution if every ai, i ∈ 1, 2, ...,m is a natural number.
No similar filtering is needed for the solutions to the equations for the non-

energy condition since we have observed that the coefficient of the equations for
the non-energy condition is always equal to 1.

Parallel Implementation To solve the equation for energy condition, the process of
generation of combinations and its conversion to integer partitions (whose process
is described in the previous section), are given to the threads in the GPU device.
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If the number of permuted integer partitions C (also equal to the number of
combinations of

(
n
s

)
) is less than or equal to the number of all available threads

T then each thread will produce one permuted integer partition only and equate
this to the energy equation to check if it is valid. If C > T , then each thread will
produce and check dCT e partitions except for the last thread. The last thread will

produce at most dCT e partitions. The number of blocks to be used is equal to d TM e,
where M is equal to maximum threads per block. Since the non-energy equations

Fig. 7. When C > T . If there are three (3) available threads, each thread, except for
the last thread, will generate four (4) integer partitions namely, Ci, ..., Ci+4and the last
thread will generate three (3) integer partitions.

are independent of one another (they depend only on the energy equation) their
solutions can be obtained in parallel. If there is an energy equation, the solutions
to non-energy equations can be obtained in parallel after the solutions of energy
equations are substituted in the system. For the implementation in GPU, a block is
responsible for generating solutions of a non-energy equation. At most M threads
will produce the partitions for the assigned non-energy equation to the block where
they belong. If the number of non-energy equations NC is less than or equal to
the number of blocks B then each block will produce solutions for one non-energy
equation only. If NC > B, then each block will produce solutions for dNCB e number
of non-energy equations except for the last block. The last block will produce
solutions for at most dCT e number of non-energy equations.
Step 6: Filter extended application vectors. If the system has an energy
equation, the extended application vectors must be filtered. Filtering is done in
parallel. If the number of extended application vectors E is less than or equal to
the number of all available threads T then each thread will filter one extended
application vector only. If E > T , then each thread will filter dET e extended appli-

cation vectors except for the last thread. The last thread will produce at most dET e
extended application vectors. The number of blocks to be used is equal to d EM e.
The analogy of job allocation to threads is similar to Figure 7.
Step 7: Finding all valid application vectors In this step other necessary
values are loaded from a file as well as the extended application vectors generated
from the previous steps (namely, Step 5 and 6) Identity rules at each region is
removed. Thereafter, the extended application vectors are merged with each other
to reflect the application of symport rules from sending regions to receiving regions
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Fig. 8. When NC ≤ B. If there are three (3) available blocks and equation for non-energy
conditions, each block will generate solutions to each equations utilizing the threads
allocated for each block to generate integer partitions similar to

since the computation done are local to each region only. This will give us all the
valid application vectors of region k at time i. This step is done in the host only,
using computing and memory resources of the host only.

5 Space and Communication Requirements

STEP HOST ALLO-
CATION

HOST TO
DEVICE

DEVICE AL-
LOCATION

DEVICE TO
HOST

Finding solutions 1 (C ×left) 1
for the energy equation solcount ×left 1 solcount ×left
in the system of linear equa-
tions

solcount ×left

Finding solutions for non-
energy equation in

TM rows
×TM cols

NEeqCount ×2 NEeqCount ×
TM rows × 2

the system of linear
equations NEeqCount ×

TM rows ×2
NEeqCount ×
validCount

NEeqCount

NEIPsize
Finding extended applica-
tion vectors

TM rows × ex-
tAppVecCount

TM rows × ex-
tAppVecCount

TM rows × ex-
tAppVecCount

1 1 1

Table 1. Memory allocations in Host and Device together with the communication
between them if there is an energy equation.

Tables 1 and 2 summarizes the space requirements and size of message com-
municated between host and device. Note that in case of allocation, the value one
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STEP HOST ALLO-
CATION

HOST TO
DEVICE

DEVICE AL-
LOCATION

DEVICE TO
HOST

Finding solutions for non-
energy equation in the sys-
tem of linear equations

TM rows×
TM cols

NEeqCount×2 NEeqCount×
NEIPsize

Finding extended applica-
tion vectors

TM rows

Table 2. Memory allocations in Host and Device together with the communication
between them if no energy equation.

(1) on the table implies that an extra variable is allocated to hold values for use
as counter or flag. A value 1 is also used as signal for communication between
host and device. In Tables 1 and 2, cells without values indicate no allocation or
communication. The variables used are defined as follows:

• membraneCount is the number of membranes in the system
• IR is the number of involved rules in the region
• TM rows is the number of rows of the trigger matrix
• TM cols is the number of columns in the trigger matrix
• NEeqCount is the number of non-energy equations. For sender regions, this is

equal to TM rows− 1.
• left is the number of terms(partitions) in the left-hand side of the energy

equation
• right is the multiplicity of an object at the right-hand side of the energy equa-

tion.
• C = (left+right−1)!

(right)!(left−1)!) is the number of integer partitions of right hand side of

the energy equation (multiplicity of energy in the system) with components
equal to the number of partitions in the left hand side.

• solcount = O(C) is the number of valid solutions for the energy equation
• validCount is the number of energy solutions for the system of linear equations.
• extAppV ecCount = O(CNEeqCount) is the number of extended application

vectors of the region
• NEIPsize is the summation of combinations of

(
i
j

)
of each non-energy equa-

tion, where i = m2+r2−1, j = m2, m2 being the new number of partitions in
the left-hand side of the equation, and r2 being the new right-hand side after
the energy solutions are substituted.

• validExtAppCount = O(CNEeqCount)

In the variables given, the first six items are variables that is only dependent on
rules and membrane structures for a given P system, while the rest are variables
that are also dependent on configuration. Consequently, this means that the rest
of the variables excluding the first six potentially changes every time a new con-
figuration is explored.

From these tables, it can be observed that the required variables for regions
without energy equations are significantly less than regions with energy equations.
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This is expected since regions without energy equations only act as receivers and
need not be concerned with the number of application of communication rules.
Thus, we only analyze the requirement for sending regions where energy equations
needs to be addressed.

Focusing on sender regions, Table 1 shows that the most expensive commu-
nication step occurs upon accomplishment of finding extended valid application
vectors where the set of all valid application vectors will be communicated from
host to device as a matrix with size at most CNEeqCount × TM cols.

The required memory space in host in finding all valid extended application
vectors (i.e. Steps 1-6 of the methodology for forward computing described section
2.4) when the region has energy is,

Eh = C × left+ TM rows× TM cols+ (NEeqCount× TM rows× 2)

+(TM rows× CNEeqCount × 2) + 3

The needed memory space in host when finding all valid application vectors(i.e.
Step 7 of the methodology for forward computing described section 2.4) is,

M = membraneCount× (membraneCount+ IR+ IR× validAppV ecCount)

From this, we can conclude that the upperbound of the memory needed in host is
O((Eh +M)).

On the other hand, the required memory space in device in finding all valid
extended application vectors (i.e. Steps 1-6 of the methodology for forward com-
puting described in Section 2.4) when the region has energy is,

Ed = C×left×2+(NEeqCount×TM rows×2)+NEeqCount×C+NEeqCount

+NEIPsize+ (TM rows× CNEeqCount × 2) + 3

Note that, when finding all valid application vectors (i.e. Step 7 of the methodol-
ogy for forward computing described in Section 2.4), there is no need to allocate
memory in device.

6 Conclusion and Future Works

In this paper, we were able to present a hybrid implementation of computation for
ECPe systems without antiport by employing GPUs. Our implementation makes
use of matrix representation and operations discussed in [6]. To improve our im-
plementation, the following are recommended for further study:

• Optimize memory usage
Some processes in the parallel simulation makes use of arrays that may become
large (depending on the number of rules and objects in a region, number of
regions, and etc). An example is the padding of energy and non-energy solutions
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with 0s so that all generated solutions will have the same dimension and is
faithful to the size of extended application vector determined in Step 4 of the
methodology for forward computing described in Section 2.4. It is primarily
done to make merging easier when it comes to finding valid application vectors.
However, doing so might require a significant amount of memory.

• Accept input from P Lingua
It is a good characteristic of the program if it is P Lingua compatible. That
is, from the definition of an ECPe system, say Π. Its corresponding P Lingua
format is accepted as an input of the program. In this way, running any ECPe
system in the program would be easier. The number of input files used by the
program will also lessen.

• Concurrent processes for solving energy solutions of a region and
non-energy solutions of regions without energy equation
Our approach in solving system of linear equations is to solve first for the energy
solutions if there is an energy equation in the said system of linear equations.
Thus, in this way we cannot generate solutions for the non-energy equations
yet. However, it can be done that while energy solutions are being generated,
non-energy solutions for other regions are also being generated.

• Extend parallel simulation of ECPe system to include antiport rules
Since the current implementation is done without antiport rules and there is
still no existing parallel simulation of ECPe systems which include antiport
rules as of the writing of this paper, it is attractive to extend the work to
include antiport rules.

Acknowledgements

F.G.C. Cabarle and R.A. B. Juayong are supported by the Engineering Research
and Development (ERDT) Scholarship Program. H.N. Adorna is funded by a
DOST-ERDT research grant and the Semirara Mining Corporation professorial
chair of the UP Diliman, College of Engineering. M.A. Mart́ınez-del-Amor is sup-
ported by “Proyecto de Excelencia con Investigador de Reconocida Vaĺıa P08-TIC-
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Appendix

Assumptions on input files

Figure 9 and 11 shows the file format for all the necessary input files. Given below
are the assumptions for the input files needed in our implementation.

• A total order for objects is assumed for all of the vectors and matrices used. For
example, if the correspondence of possible objects in the Transition matrix is
< a,#, e >, then the correspondence of possible objects in the Trigger matrix
must also be < a,#, e >.

• A total order for rules is assumed for all of the vectors and matrices used.
For example, if the correspondence of involved rules in the Transition matrix
is < r11, r12, r

′
21 >, then the correspondence of involved rules in the Trigger

matrix must also be < r11, r12, r
′
21 >.

• If a region involves symport rule(s), the correspondence of the rule(s) is as-
sumed to be at the latter part of the vectors and matrices defined for the
region. For example, if r11, r12, r′21, r′22 are the rules involved in region k, and
r′21, r′22 are symport rules, The total order should be < r11, r12, r

′
21, r

′
22 > or

< r11, r12, r
′
22, r

′
21 >.

• If a region contains symport rule(s) wherein it is a receiving region, the cor-
respondence of the said symport rules(s) is assumed to be at the last part of
the vector and matrices defined for the region. For example, if r11, r12, r′21,
r′22, r′23 are the involved rules in region k, and r′21 is the symport rules where
in region k is a sending region and r′22, r′23 are symport rules where in region
k is a receiving region. The total order should be, < r11, r12, r

′
21, r

′
22, r

′
23 > or

< r11, r12, r
′
21, r

′
23, r

′
22 >.
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Fig. 9. Input file for generating all possible next configuration (trans file.txt)

Fig. 10. Output file of all possible next configurations Left: list of all possible next
configurations(conf.txt), Right: label of all possible next configurations(conf index.txt)
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Fig. 11. Input file for generating extended application vectors (find extended app.txt)
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Fig. 12. Flow and communication between host and device for Step 5: Finding extended
valid application vectors. (If region has an energy condition)
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Fig. 13. Flow and communication between host and device for Step 5: Finding extended
valid application vectors. (If region does not have an energy condition)

Fig. 14. Flow and communication between host and device for Step 6: Filtering extended
valid application vectors.
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Summary. We continue the investigation of 2D P colonies introduced in [1], a class
of abstract computing devices composed of independent agents, acting and evolving in
a shared 2D environment where the agents are located. Agents have limited information
about the contents of the environment where they can move in four directions.

1 Introduction

P colonies were introduced in the paper [5] as formal models of computing devices
belonging to membrane systems and similar to formal grammars called colonies.
This model is inspired by the structure and the behaviour of communities of living
organisms in a shared environment. The independent organisms living in a P colony
are called agents. Each agent is represented by several objects embedded in a mem-
brane. The number of objects inside each agent is the same and constant during
computation. The environment is agents’ communication channel and storage place
for objects. At any moment all agents “know” about all the objects in the envi-
ronment and they can access any object immediately. More information about
P colonies the reader can find in [4, 2]. P colonies are one of the types of P sys-
tems. They were introduced in 2000 in [6] by Gheorghe Păun as a formal model
inspired by the structure and the behaviour of cells.

With each agent a set of programs is associated. The program, which deter-
mines the activity of an agent, is very simple and depends on the contents of agents
and on types and number of objects placed in the environment. An agent can
change the contents of the environment through programs and it can affect the be-
haviour of other agents through the environment. This influence between agents
is the key factor in the functioning of the P colony. At any moment each object
inside every agent is affected by the execution of the program.

For more information about P systems see [8, 7] or [11].
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In addition 2D P colony has the environment in a form of a 2D grid of square
cells. The agents are located in this grid and their view is limited to the cells that
immediately surround them. Based on the contents of these cells, the agents decide
their future locations.

Behaviour of each agent is based on its set of programs. The programs are
formed from two rules of type rewriting, communication and movement. By using
the rewriting rule one object within the agent is changed (evolved) to another
object. When the communication rule is applied one object from the environment
is consumed by the agent and one object from content of the agent is placed
to the environment. The last type of rules is the movement rule. The condition
for the movement of an agent is to find specific objects in specific locations in
the environment. This is specified by a matrix with elements - objects. The agent
is looking for at most one object in every surrounding cell. If the condition is
fulfilled then the agent moves one cell up, down, left or right.

The program can contain one movement rule at most. To achieve the greatest
simplicity in agent behaviour, we set another condition. If the agent moves, it
cannot communicate with the environment. So if the program contains a movement
rule, then the second rule is the rewriting rule.

Although the colony is a theoretical computing model through 2D, it is a suit-
able tool for modelling the behaviour of natural multi-agent systems - colonies
of bacteria or ants, spreading substances in homogeneous and inhomogeneous
medium.

In this paper we present hydrological modelling flow of liquid over the Earth’s
surface using 2D P colonies. Based on the entered data - the slope surface, a source
of fluid and quantity - we simulate the fluid distribution in the environment.

The first part of the paper is devoted to 2D P colonies. The rest is organised
as follows: The issue of the flow of liquid over the surface, problem solution - maps
preparation, definition of the agent, process simulation, comparison with cellular
automaton and future expansion.

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics of the
formal language theory.

We use NRE to denote the family of the recursively enumerable sets of natural
numbers. Let Σ be the alphabet. Let Σ∗ be the set of all words over Σ (includ-
ing the empty word ε). We denote the length of the word w ∈ Σ∗ by |w| and
the number of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects
V is denoted by V ◦. The set V ′ is called the support of M and is denoted by
supp(M) if for all x ∈ V ′ f(x) 6= 0 holds. The cardinality of M , denoted by
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|M |, is defined by |M | =
∑

a∈V f(a). Each multiset of objects M with the set of
objects V ′ = {a1, . . . an} can be represented as a string w over alphabet V ′, where
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters represent the same multiset M . The ε represents the empty multiset.

3 2D P colonies

We briefly summarize the notion of 2D P colonies. A P colony consists of agents and
an environment. Both the agents and the environment contain objects. With each
agent a set of programs is associated. There are three types of rules in the programs.

The first rule type, called the evolution rule, is of the form a → b. It means
that the object a inside the agent is rewritten (evolved) to the object b. The second
rule type, called the communication rule, is of the form c↔ d. When the commu-
nication rule is performed, the object c inside the agent and the object d outside
the agent swap their places. Thus, after the execution of the rule, the object d
appears inside the agent and the object c is placed outside the agent.

The third rule type, called the motion rule, is of the form matrix 3×3→ move
direction. Based on the contents of the neighbouring cells, an agent can move one
step to the left, right, up or down.

A program can contain maximum one motion rule. When there is a motion rule
inside a program, there cannot be a communication rule inside the same program.

Definition 1. The 2D P colony is a construct
Π = (A, e,Env,B1, . . . , Bk, f), k ≥ 1, where

• A is an alphabet of the colony, its elements are called objects,
• e ∈ A is the basic environmental object of the colony,
• Env is a pair (m×n,wE), where m×n,m, n ∈ N is the size of the environment

and wE is the initial contents of environment, it is a matrix of size m × n of
multisets of objects over A− {e}.

• Bi, 1 ≤ i ≤ k, are agents, each agent is a construct Bi = (Oi, Pi, [o, p]) ,
0 ≤ o ≤ m, 0 ≤ p ≤ n, where
– Oi is a multiset over A, it determines the initial state (contents) of

the agent, |Oi| = 2,
– Pi = {pi,1, . . . , pi,li} , l ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where each

program contains exactly 2 rules, which are in one of the following forms
each:
· a→ b, called the evolution rule,
· c↔ d, called the communication rule,
· [aq,r]→ s, 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓}, called the motion rule;

• f ∈ A is the final object of the colony.

The configuration of the 2D P colony is given by the state of the environment
- matrix of type m× n with multisets of objects over A−{e} as its elements, and
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by the state of all agents - pairs of objects from alphabet A and the coordinates of
the agents. An initial configuration is given by the definition of the 2D P colony.

The computational step consists of three parts. The first part lies in determin-
ing the applicable set of programs according to the actual configuration of the P
colony. There are programs belonging to all agents in this set of programs. In
the second part we have to choose one program corresponding to each agent from
the set of applicable programs. There is no collision between the communication
rules belonging to different programs. The third part is the execution of the chosen
programs.

A change of the configuration is triggered by the execution of programs and
it involves changing the state of the environment, contents and placement of
the agents.

The computation is nondeterministic and maximally parallel. The computation
ends by halting when no agent has an applicable program.

The result of the computation is the number of copies of the final object placed
in the environment at the end of the computation.

Another way to determine the result of the computation is to take into account
not only the number of objects but also their location. The result could then be
a grayscale image, a character string or a number that is dependent on both
the number and pposition of the objects (for example, g =

∑n−1
j=0

(∑m−1
i=0 f(i, j)

)
·

ni, where f(i, j) is the number of copies of object f in the [i, j]-cell).
The reason for the introduction of 2D P colonies is not the study of their

computational power but monitoring their behaviour during the computation. We
can define certain measures to assess the dynamics of the computation:

• the number of moves of agents
• the number of visited cells (or not visited cells)
• the number of copies of a certain object in the home cell or throughout the en-

vironment.

These measures can be observed both for the individual steps of the computation
and the computation as a whole.

4 The issue of the flow of liquid over the surface

The issue of the flow of liquid over the Earth’s surface is studied by experts from
two areas - hydrology and geoinformatics. Both of these disciplines work closely
together on the issue of the so-called “surface runoff”. Surface runoff is the water
flow that occurs when the soil is infiltrated to full capacity and excess water from
rain, meltwater, or other sources flows over the land.

Surface runoff can be generated in four reasons: infiltration excess overland
flow, saturation excess overland flow, antecedent soil moisture, subsurface return
flow. Infiltration excess overland flow occurs when the rate of rainfall on a sur-
face exceeds the rate at which water can infiltrate the ground, and any depression
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storage has already been filled. When the soil is saturated and the depression stor-
age filled, and rain continues to fall, the rainfall will immediately produce surface
runoff - saturation excess overland flow. Soil retains a degree of moisture after
a rainfall. This residual water moisture (antecedent soil moisture) affects the soil’s
infiltration capacity. During the next rainfall event, the infiltration capacity will
cause the soil to be saturated at a different rate. The higher the level of antecedent
soil moisture, the more quickly the soil becomes saturated. Once the soil is satu-
rated, runoff occurs. After water infiltrates the soil on an up-slope portion of a hill,
the water may flow laterally through the soil, and exfiltrate (flow out of the soil)
closer to a channel. This is called subsurface return flow or throughflow.

We can say that generation surface runoff depends on type of soil, temperature,
humidity and rainfall. The task of our model is to determine which way the flow
would run and which areas could be affected by flash floods.

5 Problem solution

We divide solution of the problem into two parts - (1) preparation of maps (2D
P colony’s environment) and (2) definition of agents. We assume that the soil is
already saturated thus the main factor of overland flow is the slope of the field.

5.1 Preparation of maps

Map data is obtained from the geographic information system (GIS) and processing
system ArcGIS. We use the map data for the Czech Republic called the digital
model of the terrain in scale 1: 25 000 (DMÚ25).

Raster graphics images are probably the most appropriate format for modelling
real-world phenomena in the field of GIS. To process this format, many tools
were created and can be used for performing various analyses. A raster image is
composed of a regular network of cells, usually in a square shape, to which values
of displayed properties can be assigned independently. More information about
GIS and image processing the reader can find in [3] and about geosimulation in
[10].

The first step to simulate the flow of liquid over relief was the determination of
its runoff from individual pixels (cells). Gradient with respect to an adjacent cell
is defined as the ratio of the height difference to the horizontal distance. Gradient
is positive due to the lower neighbours, or negative due to higher and zero in
relation to the neighbours of the same height. Lowest neighbour is neighbour with
the largest positive gradient.

Basic classification algorithms to calculate the runoff:

• Single flow direction (SFD) - each pixel of the liquid flows in one direction only
(toward neighbour in the direction of the largest gradient). Each pixel belongs
to only one basin.



56 L. Cienciala, L. Ciencialová, M. Langer

• Multiple flow direction (MFD) - fluid can flow out of each pixel in multiple
directions, maximum of eight. In the case of MFD a unit volume flow is fairly
distributed among all lower neighbours. The MFD may include the pixel to
multiple basins.

There is implemented a tool for calculating the flow direction in ArcGIS soft-
ware, called simply Flow direction. Flow Direction tool works as a simple flow
direction (SFD). After its execution integer raster file is created that specifies the
flow direction for each cell. Every cell can reach value ranging from 1 to 255.

Eight basic directions of the flow are represented by the numbers 1, 2, 4, 8, 16,
32, 64 and 128 (see Table 1). Other directions are generated as sums of values of
the basic directions.

32 64 128

16
↖ ↑ ↗
← →
↙ ↓ ↘

1

8 4 2

Table 1. The numbers of eight basic directions

When creating the model, we used the test data to propose group of programs.
The final visualization is based on data from DMÚ 25.

What we obtain from ArcGIS is a raster file with natural number in each cell
corresponding to the runoff from this cell. Because 2D P colony works with discrete
symbols and not with numbers, it needed to transcode numbers to symbols. A
coding table is shown on Table 2

direction → ← ↑ ↓ ↘ ↙ ↗ ↖
symbol a E i m q u y 2

Table 2. The coding table

The first processed map is map without drainless area and its size is 20 × 12
and it is shown on the Table 3. Transcoded symbols are shown on the Table 4.

5.2 Definition of the agent

Agents in 2D P colonies have capacity 2. It follows that the agent contains two
objects, and each program is composed by two rules.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 ↖ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↗
1 ← ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ →
2 ← ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ →
3 ← ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ →
4 ← ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ →
5 ← → ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ →
6 ← ↓ ↓ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ →
7 ← ↓ ↓ ↓ ↓ ↓ ↘ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ →
8 ← ↓ ↓ ↓ ↓ ↓ ↓ ↘ ↘ ↘ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ →
9 ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↘ ↘ ↘ → ↗ ↗ ↗ ↗ ↗ ↗ →
10 ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↘ ↘ ↗ ↗ ↗ ↗ ↗ →
11 ← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↘

Altitude (meters above sea level)

1320 1330 1340 1350 1360 1370 1380 1390

Table 3. Processed map

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 2 i i i i i i i i i i i i i i i i i i y
1 E y y y y y y y y y y y y y y y y y y a
2 E y y y y y y y y y y y y y y y y y y a
3 E y y y y y y y y y y y y y y y y y y a
4 E y y y y y y y y y y y y y y y y y y a
5 E a y y y y y y y y y y y y y y y y y a
6 E m m y y y y y y y y y y y y y y y y a
7 E m m m m m q y y y y y y y y y y y y a
8 E m m m m m m q q q y y y y y y y y y a
9 E m m m m m m m m q q q a y y y y y y a
10 E m m m m m m m m m m m q q y y y y y a
11 E m m m m m m m m m m m m m m m m m m t

Table 4. Transcoded symbols

Each of the objects carries the information about the state of the agent.
The first object has information about the activity of the agent. At this stage
of the simulation it is the information that the agent “flows” down the terrain or
it is still inactive (belonging to the rainfall that have not fall). The second ob-
ject stores information about the previous direction of flow. This information can
further modify the way of the agent as inertia.

Objects and their association to the flow directions are given in the following
table.

direction → ← ↑ ↓ ↘ ↙ ↗ ↖
symbol 9 8 6 7 D D U U
symbol L K H I I I H H
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The inertia of crossing directions is modified because of longer distance between
the centres of the cells.

The first subset of programs with priority 0 is defined for the first step of
computation. The initial configuration of each “working” agent is Xe.

(1)

〈∗ ∗ ∗∗ a ∗
∗ ∗ ∗

→ ⇒; e→ 9

〉
; (2)

〈∗ ∗ ∗∗ E ∗
∗ ∗ ∗

→ ⇐; e→ 8

〉
;

(3)

〈∗ ∗ ∗∗ i ∗
∗ ∗ ∗

→ ⇑; e→ 6

〉
; (4)

〈∗ ∗ ∗∗ m ∗
∗ ∗ ∗

→ ⇓; e→ 7

〉
;

(5)

〈∗ ∗ ∗∗ q ∗
∗ ∗ ∗

→ ⇒; e→ D

〉
; (6)

〈∗ ∗ ∗∗ u ∗
∗ ∗ ∗

→ ⇐; e→ D

〉
;

(7)

〈∗ ∗ ∗∗ y ∗
∗ ∗ ∗

→ ⇒; e→ U

〉
; (8)

〈∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

→ ⇐; e→ U

〉
;

In the case of programs (5) and (6) (resp. (7) and (8)) it is neccessary to take
one step down (resp. up).

(9)

〈∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

→ ⇓; D → I

〉
; (10)

〈∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

→ ⇑; U → H

〉
;

While agents apply programs with priority 1 (9) and (10), agents, that do not
move in a cross direction, must stand. Therefore, they use a program composed of
two rewriting rules. The programs have priority 2.
(11) 〈X → X; 6→ H〉; (12) 〈X → X; 7→ I〉; (13) 〈X → X; 8→ K〉;
(14) 〈X → X; 9→ L〉;

The following programs with priority 0 are used to guide the agent in the next
steps, the agent may hold information about the movement in the previous step.

(15)

〈∗ ∗ ∗∗ a ∗
∗ ∗ ∗

→ ⇒; H → 9

〉
; (16)

〈∗ ∗ ∗∗ E ∗
∗ ∗ ∗

→ ⇐; H → 8

〉
;

(17)

〈∗ ∗ ∗∗ i ∗
∗ ∗ ∗

→ ⇑; H → U

〉
; (18)

〈 ∗ ∗ ∗∗ m ∗
∗ ∗ ∗

→ ⇓; H → 7

〉
;

(19)

〈∗ ∗ ∗∗ q ∗
∗ ∗ ∗

→ ⇒; H → D

〉
; (20)

〈∗ ∗ ∗∗ u ∗
∗ ∗ ∗

→ ⇐; H → D

〉
;

(21)

〈 ∗ ∗ ∗∗ y ∗
∗ ∗ ∗

→ ⇒; H → U

〉
; (22)

〈∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

→ ⇐; H → U

〉
;
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(23)

〈∗ ∗ ∗∗ a ∗
∗ ∗ ∗

→ ⇒; I → 9

〉
; (24)

〈∗ ∗ ∗∗ E ∗
∗ ∗ ∗

→ ⇐; I → 8

〉
;

(25)

〈∗ ∗ ∗∗ i ∗
∗ ∗ ∗

→ ⇑; I → 6

〉
; (26)

〈∗ ∗ ∗∗ m ∗
∗ ∗ ∗

→ ⇓; I → 7

〉
;

(27)

〈∗ ∗ ∗∗ q ∗
∗ ∗ ∗

→ ⇒; I → D

〉
; (28)

〈∗ ∗ ∗∗ u ∗
∗ ∗ ∗

→ ⇐; I → D

〉
;

(29)

〈∗ ∗ ∗∗ y ∗
∗ ∗ ∗

→ ⇒; I → U

〉
; (30)

〈∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

→ ⇐; I → U

〉
;

(31)

〈∗ ∗ ∗∗ a ∗
∗ ∗ ∗

→ ⇒; J → 9

〉
; (32)

〈∗ ∗ ∗∗ E ∗
∗ ∗ ∗

→ ⇐; J → L

〉
;

(33)

〈∗ ∗ ∗∗ i ∗
∗ ∗ ∗

→ ⇑; J → 6

〉
; (34)

〈 ∗ ∗ ∗∗ m ∗
∗ ∗ ∗

→ ⇓; J → 7

〉
;

(35)

〈∗ ∗ ∗∗ q ∗
∗ ∗ ∗

→ ⇒; J → 7

〉
; (36)

〈∗ ∗ ∗∗ u ∗
∗ ∗ ∗

→ ⇐; J → D

〉
;

(37)

〈 ∗ ∗ ∗∗ y ∗
∗ ∗ ∗

→ ⇒; J → 6

〉
; (38)

〈 ∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

→ ⇐; J → U

〉
;

(39)

〈 ∗ ∗ ∗∗ a ∗
∗ ∗ ∗

→ ⇒; K → N

〉
; (40)

〈∗ ∗ ∗∗ E ∗
∗ ∗ ∗

→ ⇐; K → 8

〉
;

(41)

〈 ∗ ∗ ∗∗ i ∗
∗ ∗ ∗

→ ⇑; K → 6

〉
; (42)

〈∗ ∗ ∗∗ m ∗
∗ ∗ ∗

→ ⇓; K → 7

〉
;

(43)

〈∗ ∗ ∗∗ q ∗
∗ ∗ ∗

→ ⇒; K → D

〉
; (44)

〈∗ ∗ ∗∗ u ∗
∗ ∗ ∗

→ ⇐; K → 7

〉
;

(45)

〈∗ ∗ ∗∗ y ∗
∗ ∗ ∗

→ ⇒; K → U

〉
; (46)

〈∗ ∗ ∗∗ 2 ∗
∗ ∗ ∗

→ ⇐; K → 6

〉
;

We need one more program for “resetting” inertia. This is for the case when
the slope of the terrain changes extremely. (47) 〈X → X; N → e〉;

If we run the obtained 2D P colony in the simulator, agents, which represent
a unit volume of water, will begin to move around the environment. The number
of agents located in one cell at one moment corresponds to the amount of water
that at once flowed through the territory in one unit of time.
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A source of water is placed into cells [5, 6], [5, 7], [6, 6], [6, 7]. In every source
cell there are four agents. To simulate rain all agents are not active in the initial
configuration. Only one agent has the configuration of Xe in each cell. The next
three become active always in two computational steps. The numbers of active
agents in the environment are shown in the Tables 5 - 13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. The numbers of active agents in the initial configuration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6. The numbers of active agents after 2 step of computation

The obtained results were compared with data that are listed in the master
thesis [9]. This work is devoted to the simulation flow of liquid over the Earth’s
surface using cellular automata.

In work [9], the author devotes a great deal of time preparing data for cellular
automaton, calculates not only the direction of flow but also the number and
direction of outflows and inflows into the cell. After then cellular automaton starts
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7. The numbers of active agents after 4 step of computation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8. The numbers of active agents after 6 step of computation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 9. The numbers of active agents after 8 step of computation
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 10. The numbers of active agents after 10 step of computation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 11. The numbers of active agents after 12 step of computation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 12. The numbers of active agents after 14 step of computation



2D P Colonies 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 13. The numbers of active agents after 16 step of computation

working. The results are shown in Figure 1. Cells shown white are cells that contain
water.

Fig. 1. Cellular automaton

If we compare the simulation process using 2D P colonies and using cellular
automaton we obtain the following:

• Cells are flooded with water in the same time sequence.



64 L. Cienciala, L. Ciencialová, M. Langer

• 2D P colony needs twice as many steps for the computation as cellular automa-
ton.

• In 2D P colonies we do not need pre-treatment of data, output from the tool
Flow direction is sufficient.

6 Conclusion and future work

The aim of this paper was to analyse the situation and to create a 2D model
P colonies that would simulate the flow of liquid over the Earth’s surface, a phe-
nomenon called Surface runoff. This process is very common in nature and accu-
mulation of water leads to flash flooding or floods in general. Flow down of water
on the surface is influenced by many factors: the surface slope, soil saturation,
temperature, humidity, size of source and lots of others. The first condition was
partially met. Water flows down the surface in the right direction. In the case of
places which are depressions, the possibility of overflow of the “tank” and the sub-
sequent redistribution have not been implemented. The way of solving the problem
is obvious and it is similar to absorption of water into the ground - certain amount
of objects, which will represent the amount of water to be absorbed, needs to be
added. Agents which have stopped, consumed the object and sets the direction of
the flow using flow direction in neighbouring cells if it is possible.

Remark 1.
This work was partially supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070),
by SGS/7/2011 and by project OPVK no. CZ.1.07/2.2.00/28.0014.
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Summary. In this paper we define and study Scenario Based P Systems, a model of
computation inspired by the metabolic pathways and networks. Starting from the classical
definition of P systems with symbol objects and multiset rewriting rules, we define regular
expressions able to capture the causal dependencies among different executions of the
rules. The results show the computational power of this model.

1 Motivation

Metabolic pathways are sequences of biochemical reactions occurring inside the
living cell which are involved in cell’s energy management and in the synthesis of
structural components. Because in such sequences participate many biochemicals
(the metabolites), metabolic pathways are usually very complex. Moreover, many
distinct pathways co-exist inside the cell and they form what is called the metabolic
network. A metabolic pathway illustrate all the changes in time by which an ini-
tial molecule is transformed into another product. Usually, the products of one
biochemical reaction constitute the substrate for the next biochemical reaction.
The resulting product can be used by the cell to start another metabolic pathway,
or it can be stored for a later use. Depending on the needs of the cell and on the
availability of the substrate, these metabolic pathways are started.

In a broader perspective, the principle of causality plays the main role in find-
ing/expressing metabolic pathways which connect parts of a metabolic network
(our understanding of phenomena happening inside the cells is based on the causal
relations existing among cell’s ”observable” events). In this context, one can con-
sider the biochemical reactions as causal consequences where the input metabolites
can cause the output metabolites. Moreover, there might be a certain temporal
order by which any later event is determined by the earlier one, and which is not
necessarily related with the involved metabolites.

This paper explores the concept of causality in the P system framework having
as inspiration the biochemical dynamics expressed by the metabolic pathways. Its
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goal is to capture the causal dependencies existing among the executions of rules,
while abstracting away other aspects. In the membrane computing literature there
were several attempts to formalize causal semantics [3], [4], [2], and [8], most of
them proposing a notion of causality based on the temporal order of single rule
application. Our new approach introduces regular expressions to define the causal
relation between the executions of rules; the time between the moments when
these rules compete for objects can be also specified in the definition of regular
expressions. Therefore, we define scenarios as a method to model different possible
evolutions in the metabolic networks, and their causal relationships.

2 Preliminaries

We recall some notions and results from the classical theory of formal languages
[5].

An ET0L system is a construct H = (V, T, ω,∆), where V is an alphabet,
T = {T1, . . . Tm}, m ≥ 1, such that Ti, 1 ≤ i ≤ m, are finite complete sets of
rules (tables) of non-cooperative rules over V , ω ∈ V ∗ is the axiom, and ∆ is
the terminal alphabet. In a derivation step, all the symbols present in the current
sentential form are rewritten using one (nondeterministically chosen) table. The
language generated by H consists of all the strings over ∆ which can be generated
in this way by starting from ω.

Lemma 1. For each L ∈ ET0L there is an extended tabled Lindemayer system
H = (V, T, ω,∆) with two tables (T = {T1, T2}) generating L, such that for each
a ∈ ∆ if a→ α ∈ T1 ∪ T2 then α = a.

A register machine is a formal construct M = (n,P, l0, lh) where n ≥ 1 is
the number of registers, P is a finite set (card(P = k) of instructions bijectively
labeled by elements from the set B = {l0, . . . , lk−1}, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M are of the following types:

• l1 : (add(r), l2, l3 where l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ r ≤ n, increments the value
stored by the register r and non-deterministically proceeds to the instruction
labeled by l2 or l3;

• l1 : (sub(r), l2, l3) where l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ n, if the value
stored by register r is 0 then proceeds to the instruction labeled by l3, other-
wise decrements the value stored by register r and proceeds to the instruction
labeled by l2;

• lh : halt stops the machine.

A register machine is deterministic if l2 = l3 in all its add instructions.
A non-deterministic register machine M starts with all registers being empty

and runs the program P, starting from the instruction with the label l0. Consid-
ering the content of register 1 for all possible computations of M which are ended
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by the execution of the instruction labeled lh, one gets the set N(M) ⊆ IN – the
set generated by M .

A deterministic register machine M accepts a natural number by starting with
the number as input in register 1, with all other registers being empty. M runs
the program P, starting from the instruction with the label l0, and if it reaches
the instruction lh then it halts, accepting the number.

It is known the following result ([6]).

Theorem 1. For any recursively enumerable set Q ⊆ IN there exists a non-
deterministic register machine with 3-registers generating Q such that when start-
ing with all registers being empty, M non-deterministically computes and halts
with n in register 1, and registers 2 and 3 being empty iff n ∈ Q.

If FL is a family of languages, then by NFL we denote the family of length
sets of languages in FL. We denote by REG, CF , ET0L, and RE the family of
regular, context-free, extended tabled interactionless Lindemayer, and recursive
enumerable languages, respectively. It is know that

NREG = NCF ⊂ NET0L ⊂ NRE.
The non-semilinear set {2n | n ≥ 0} ∈ NETOL \NCF .

3 Scenario Based P Systems

The principle of causality implies a certain temporal order between some events
and by which any later event is determined by the earlier one. However, the actual
time elapsed between the occurrence of consecutive events that are in a given
causality relation is not important. Based on these considerations we introduce a
new model of P systems that use regular expressions to express a certain causal
dependence relation between the execution of the rules.

The reader is assumed to be familiar with the basic notions, notations, and
functioning of P Systems.

A Scenario Based P System (a SBP system, for short) of degree m ≥ 1 is a
construct Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, E1, . . . Em, i0), where
• O is an alphabet of objects;
• C ⊆ O is the set of catalysts;
• µ is a tree structure of m ≥ 1 uniquely labelled membranes (which delimit

the regions of Π); usually, the set of labels is {1, . . . ,m};
• wi ∈ O∗, for 1 ≤ i ≤ m, are multisets of objects which are initially present

in the regions of µ (as indicated by the index);
• Ri, 1 ≤ i ≤ m, is a finite set of labelled multiset rewriting rules. The set

of labels is denoted by Li and each label in Li uniquely identifies a rule from
Ri; in addition, Li ∩ Lj = ∅ for all i 6= j, 1 ≤ i, j ≤ m. A rule from Ri is
written as l : α → β where l ∈ Li and α, β ∈ O∗. In particular, a rule can be
non-cooperative l : a → v or catalytic l : ca → cv, where l ∈ Li, a ∈ O \ C,
v ∈ ((O \ C)× {here, out, in})∗, and c ∈ C;



70 G. Ciobanu, D. Sburlan

• Ei, 1 ≤ i ≤ m, is a finite set of regular expressions over Li ∪ {d}, where

d is a special symbol (the “delay” symbol), d 6∈
m⋃

i=0

Li; moreover, if e ∈ Ei then

L(e) ⊆ (Li ∪ {d})∗Li(Li ∪ {d})∗ (that is, any word in L(e) contains at least one
symbol from Li);
• i0 ∈ {1, . . . ,m} is the label of the output region of Π.

A configuration of Π is a vector (α1, . . . , αm), where αi ∈ O∗, 1 ≤ i ≤ m, is
the multiset of objects present in the region i of Π. The initial configuration of Π
is the vector C0 = (w1, . . . , wm).

Let Ei = {e(i,1), . . . , e(i,si)}, where 1 ≤ i ≤ m and such that si ≥ 1; in addition,
let L(i,1), . . . , L(i,si) be the corresponding regular languages. A word l0 . . . lt ∈
L(i,j), 1 ≤ i ≤ m, 1 ≤ j ≤ si (a finite sequence of symbols from Li ∪ {d}) is called
a scenario and illustrates the fact that the corresponding rules (if there exists such
corresponding rules; recall that d is not associated with any rule) will be applied
(if possible) in the implicit order of symbols. Given a multiset of objects w, a
scenario l0 . . . lt is applicable to w if the rule having the label l0 is applicable to w
or l0 = d; similarly, a scenario is started if the rule labeled with l0 is applied to w
or l0 = d.

As usually in the P system framework, a computation of Π is a sequence
of configurations (possibly infinite) C0, C1, . . . , Ck, Ck+1, . . .. Given a configura-
tion Ck = (w(k,1), . . . , w(k,m)), then one gets the next configuration Ck+1 =
(w(k+1,1), . . . , w(k+1,m)) by applying on each multiset w(k,i), 1 ≤ i ≤ m, some
rules from Ri in a nondeterministic, maximal parallel manner and with competi-
tion on objects; these rules are selected according with the conditions described
below.

For a scenario l0 . . . lt that is started in configuration Ck, the rule labeled li,
1 ≤ i ≤ t, li 6= d, compete for objects in configuration Ck+i iff the rules labeled
li−j , 1 ≤ j ≤ i, li−j 6= d were applied (won the competitions) in the correspond-
ing configurations Ck+i−j . A started scenario is said to be entirely applied if the
rules corresponding to all labels were applied in the given order, in consecutive
configurations; in case there exists a rule labeled li, 1 ≤ i ≤ t, li 6= d, that lost the
competition on objects or if the rule cannot be applied then the started scenario
is said to be interrupted ; the executions of the remaining rules (in case they exist,
that is, not all the remaining symbols in the scenario are d) in the subsequent
configurations are dropped.

In any configuration, new scenarios from each L(i,j), 1 ≤ i ≤ m, 1 ≤ j ≤
si, are nondeterministically selected for applications.Given such a scenario and a
configuration Ck, if the first label of rule appears in the scenario on position l ≥ 0
(the first symbols being all d) then the corresponding rule will compete for objects
with other rules (from the scenarios in progress) after l computational steps. For
each multiset w(k,i) from Ck, 1 ≤ i ≤ m, there might exist new scenarios, scenarios
in progress, and interrupted scenarios, which determine the rules to be applied in
order to obtain the next configuration Ck+1.
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A computation of Π is a halting one if no rule can be applied (all the started
scenarios are interrupted and no matter how a new scenario is selected for appli-
cation it becomes interrupted at the first symbol corresponding to a rule) in the
last configuration (the halting configuration). The result of a halting computation
is the number of objects from O contained in the output region i0, in the halting
configuration. A non-halting computation yields no result. By collecting the re-
sults of all possible halting computations of a given P system Π, one gets N(Π)
– the set of all natural numbers generated by Π.

The family of all sets of numbers computed by SBP systems with at most m
membranes and with a list of features f is denoted by NOSBPm(f). The features
considered in this paper are ncoo (P systems using only non-cooperative rules)
and catk (P systems using non-cooperative rules and catalytic rules with at most
k catalysts).

The above definition can be relaxed such that in a halting configuration one
counts only the symbols from a given alphabet Σ ⊆ O.

Given a scenario based P system Π with m > 1 membranes and using the
features f , it is easy to construct an equivalent scenario based P system with
the same features but having only one region. This can be accomplished by a
simple encoding of the region labels into the objects and expressing the rules
accordingly [1].

Theorem 2. NOSBPm(cat1) = NRE, k ≥ 1.

Proof. The inclusion NOSBPm(cat) ⊆ NRE is supposed to be true by invoking
the Church-Turing thesis. The opposite inclusion can be shown to be true by
simulating the computation of an arbitrary register machine M = (n,P, l0, lh)
with a scenario based P system Π = (O,C, µ,w1, R1, E1) where

O = {ai | 1 ≤ i ≤ n}
∪ {l1, l2 | l1 : (add(r), l2) ∈ P}

∪ {l1, l2, l3, l1, l2, S, S, S,X | l1 : (sub(r), l2, l3)}
C = {c}, µ = [ ]1, w1 = l0.

The set of rules R1 and the set of regular expressions E1 are defined as follows:

• for each register machine instruction l1 : (add(r), l2), the rule rl1 : l1 → arl2 is
added to R1 and the regular expression rl1 is added to E1.

• for each register machine instruction l1 : (sub(r), l2, l3), the next rules are added
to R1:

r(l1,1) : l1 → l1S , r(l1,2) : car → cX

r(l1,3) : X → λ , r(l1,4) : l1 → l2

r(l1,5) : S → S , r(l1,6) : S → S

r(l1,7) : S → λ , r(l1,8) : l1 → l3

r(l1,9) : l2 → l2 .
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The regular expressions r(l1,1)r(l1,2), r(l1,3)r(l1,4), r(l1,5)r(l1,6),
r(l1,7)r(l1,8), r(l1,9) are added to E1.

• for the register machine instruction l1 : halt, the rule rl1 : l1 → λ is added to
R1 and the regular expression rl1 is added to E1.

The simulation of the register machine M by the scenario based P system Π
proceeds as follows. At a certain moment during the computation of M the values
stored by the registers are t1, . . . , tr, . . . tn, and the label of the instruction that has
to be executed is l1. Correspondingly, the multiset contained in the region of Π is
at1
1 . . . atr

r . . . atn
n l1c (that is, the value tr stored by the register r of M is modeled

in this simulation as the multiplicity of the object ar in a configuration of Π).
If l1 is the label of an addition instruction l1 : (add(r), l2), then Π is executing

the scenario described by rl1 , that is the rule l1 → arl2 is applied. As a consequence
the next configuration of Π will be at1

1 . . . atr+1
r . . . atn

n l2c (which indicates that the
addition instruction was simulated correctly).

If l1 is the label of a subtraction instruction l1 : (sub(r), l2, l3), then Π is
executing the scenario described by r(l1,1)r(l1,2). Consequently, because in this
scenario the rule r(l1,1) : l1 → l1S is executed firstly, the next configuration of Π is
described by the multiset at1

1 . . . atr
r . . . atn

n l1Sc. Because the object S appeared in
the multiset, then the scenario r(l1,5)r(l1,6) will be started. Next, two cases might
happen:

• if tr > 0 then the rule r(l1,2) : car → cX is executed (the second rule
from the already started scenario r(l1,1)r(l1,2)) in the same moment with the
rule r(l1,5) : S → S (from scenario r(l1,5)r(l1,6)). The configuration of Π
becomes at1

1 . . . atr−1
r . . . atn

n l1XSc. Next, the scenario r(l1,3)r(l1,4) is started.

It follows that the rules r(l1,6) : S → S (from scenario r(l1,5)r(l1,6)) and
r(l1,3) : X → λ (from scenario r(l1,3)r(l1,4)) are simultaneously executed;

the configuration of Π becomes at1
1 . . . atr−1

r . . . atn
n l1 Sc. Finally, the scenario

r(l1,7)r(l1,8) is started. Accordingly, the rules r(l1,4) : l1 → l2 (from scenario

r(l1,3)r(l1,4)) and r(l1,7) : S → λ (from scenario r(l1,7)r(l1,8)) are executed in
the same time; the configuration of Π becomes at1

1 . . . atr−1
r . . . atn

n l2c. Next,
the scenario r(l1,7)r(l1,8) interrupts its execution (the object l1 is not anymore
present in the current configuration of Π, hence the rule r(l1,8) cannot be exe-
cuted); the scenario r(l1,9) starts its execution and this yields to the configura-
tion at1

1 . . . atr−1
r . . . atn

n l2c (which indicates a correct simulation of the register
machine subtraction instruction in the case when register r is not empty);

• if tr = 0 then the rule r(l1,2) : car → cX cannot be executed and consequently
the object X (which triggered the execution of the scenario r(l1,3)r(l1,4)) is not
produced anymore. However, in this case the scenario r(l1,5)r(l1,6) is started

and the rules r(l1,5) : S → S and r(l1,6) : S → S are executed in consecutive

configurations of Π. The resulting configuration becomes at1
1 . . . atr

r . . . atn
n l1 Sc.

Next, the scenario r(l1,7)r(l1,8) starts its execution and after two computational
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steps the resulting multiset becomes at1
1 . . . atr

r . . . atn
n l3c (which indicates a cor-

rect simulation of the register machine subtraction instruction in the case when
register r is empty).

In case the configuration of Π is at1
1 . . . atn

n l1c where the object l1 corresponds
to the label of the register machine halting instruction, then the scenario rl1 is
started (the rule rl1 : l1 → λ is executed). The next configuration of Π becomes
at1
1 . . . atn

n c and the computation stops.
Consequently, since the computation of M was correctly simulated by Π and

the register machines are computational universal, we have NOSBPm(cat) ⊇
NRE.

4 A More Realistic Scenario

A particular case, interesting from a biological point of view, is when all
possible scenarios used by a SBP system Π in any region i are of type
dl1w1d

l2w2d
l3 . . . dlkwkd

lk+1 , where wi ∈ L+
i , li ∈ IN , 1 ≤ i ≤ k + 1. We will

consider that the regular expressions from each Ei, 1 ≤ i ≤ m, are of type
d∗α1d

∗α2d
∗ . . . d∗αkd

∗ where each αj , 1 ≤ j ≤ k, are regular expressions over
Li which use only the grouping and the Boolean OR operations in their defini-
tions (consequently, each αi indicates a finite language). Such regular expressions
and their corresponding scenarios suggest that one knows the application order of
the rules but does not know when their executions will actually happen.

Let Ei = {e(i,1), . . . , e(i,si)}, where 1 ≤ i ≤ m, si ≥ 1, and consider the
corresponding regular languages L(i,j), 1 ≤ i ≤ m, 1 ≤ j ≤ si. In the above
conditions, for a scenario x = dl1w1d

l2w2d
l3 . . . dlkwkd

lk+1 ∈ L(i,j) we define
deg(x) = max

1≤i≤k
{|wi|}.

For a given SBP system Π we define the degree of synchronization
deg(Π) = max{deg(s) | (∃)1 ≤ i ≤ m, 1 ≤ j ≤ si such that s ∈ L(i,j)}.

In this case, the family of all sets of numbers computed by such SBP systems
with the feature f ∈ {ncoo, cat} and of synchronization degree at most n will be
denoted by NOSBP dn

m (f).
The following example shows how to generate a non-semilinear set of num-

bers with a SBP systems with non-cooperative rules and with a synchronization
degree 1.
Example 1. Let Π1 = (O,C, µ,w1, R1, E1, i0) such that

O = {a, b}; C = ∅; µ = [ ]1; w1 = ab;
R1 = {r1 : b→ b, r2 : a→ aa, r3 : b→ λ};
E1 = {d∗r1d∗r2d∗r3d∗}; i0 = 1.

The system Π1 computes the set {a2n | n ≥ 1}, the well know non–semilinear
set from NET0L \NCF . The regular expression used in the definition of Π can
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be simplified such that E1 = {r1d∗r2d∗r3}.Using this simplification, the system
performs the computation as follows. In the first configuration C0 = (ab), a sce-
nario r1dn1r2d

n2r3, n1, n2 ≥ 0, is selected for application. This means that the rule
labeled r1 is applied in the configuration C0 because there exists an object b; the
rule labeled r2 will compete for objects after n1 computational steps (where n1 can
be any natural number) and if it is applied, it will double the objects a. Finally,
after the next n2 computational steps the rule r3 compete for the object b, and if
it is applied then it will delete the objects b (and consequently the selection of a
scenario for an application is blocked). I all these computational steps (between
the starting of the first scenario and the application of its last rule labeled r3)
new scenarios are selected for applications. Each of them will double the number
of symbols a. Consequently, the system computes the set {a2n | n ≥ 1}.

Theorem 3. For any n ≥ 2,

NOSBPm(f) ⊇ NOSBP dn
m (f) ⊇ NOSBP dn−1

m (f), f ∈ {ncoo, catk}, k ≥ 1.

The following result shows the relation between the family of all sets of num-
bers computed by SBP systems with at most m membranes and using only non-
cooperative rules and the family of length sets of context-free languages.

Proposition 1. NOSBP d1
m (ncoo) ⊃ NCF = NREG.

Proof. From the above observation one knows that NOSBPm(ncoo) =
NOSBP1(ncoo), hence in our proof we will use a scenario based P system with one
region. Let G = (N,T, P, S) be a context-free grammar and let P = {r1, . . . , rk}
be the set of labeled productions. Then one can construct an equivalent scenario
based P system Π = (O,C, [ ]1, R1, E1, i0 = 1) defined by:

O = N ∪ T, C = ∅,
R1 = P ∪ {rA : A→ A | A ∈ N},
E1 = {d∗rd∗ | r ∈ P} ∪ {d∗rXd∗ | X ∈ N}.

At any moment during the computation of Π scenarios from the languages indi-
cated by the regular expressions from E1 can be started. A scenario of type dkrdp,
r = A→ α ∈ R1, k, p ≥ 0, simulates the application of the context-free production
A→ α ∈ P . In order to prevent the maximal parallel rewriting of the object A in
a given configuration of Π, scenario of type dkrAd

p, rA = A → A ∈ R1 are em-
ployed. It follows that there exist a computation of Π where for any configuration
exactly one object A ∈ N is rewritten.

Thus, Π correctly simulates G, and so we conclude that NOSBP d1
m (ncoo) ⊇

NCF = NREG. The strict inclusion follows easily from Example 1.

The length set of any language generated by an ET0L system can be generated
by a SBP systems with non-cooperative rules and synchronization degree 2.

Theorem 4. NOSBP d2
m (ncoo) ⊇ NET0L.
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Proof. To prove this result, we simulate the computation of a arbitrary ET0L
system using a SBP system with non-cooperative rules and having the synchro-
nization degree 2. Without loss of generality, let H = (V, T, ω,∆) be an ET0L
system, such that V = {a1, . . . , ak}, ∆ = {a1, . . . , ap}, p ≤ k, and T = {T1, T2},
where

T1 = {ai → α1,j | 1 ≤ i ≤ k, 1 ≤ j ≤ l1,i},
T2 = {ai → α2,j | 1 ≤ i ≤ k, 1 ≤ j ≤ l2,i}.

Then we construct the SBP system Π = (O,C, µ,w1, R1, E1, i0 = 1) that
simulates the computation of H as follows:

O = V ∪ {a | a ∈ V }
∪ {ti,j | i ∈ {1, 2}, 1 ≤ j ≤ 2k + 1}
∪ {t, f,#};

C = ∅; µ = [ ]1; w1 = tω.

In order to simplify the notation and construction, we will present the regular
expressions from E1 by using directly the rules in their descriptions (and not the
labels of the rules). The set of rules R1 is composed by all the rules appearing
in these regular expressions. In addition, the regular expressions will be grouped
according to their usage in the simulation.

1. regular expressions/rules used to select a table to be simulated:
d∗ t→ t

max{l1,i|1≤i≤k}
1,1 X d∗

d∗ t→ t
max{l2,i|1≤i≤k}
2,1 X d∗

2. regular expressions/rules used to simulate an application of the table T1:
d∗ t1,1 → t1,1 a1 → α1,j d∗ where 1 ≤ j ≤ l1,1

d∗ t1,1 → t1,2 a1 → # d∗

d∗ t1,2 → t1,2 a2 → α1,j d∗ where 1 ≤ j ≤ l1,2

d∗ t1,2 → t1,3 a2 → # d∗

. . .
d∗ t1,k → t1,k ak → α1,j d∗ where 1 ≤ j ≤ l1,k

d∗ t1,k → t1,k+1 ak → # d∗

d∗ t1,k+1 → t1,k+2 a1 → a1 d∗

d∗ t1,k+2 → t1,k+3 a2 → a2 d∗

. . .
d∗ t1,2k → t1,2k+1 ak → ak d∗

3. regular expressions/rules used to simulate an application of the table T2:
d∗ t2,1 → t2,1 a1 → α2,j d∗ where 1 ≤ j ≤ l2,1

d∗ t2,1 → t2,2 a1 → # d∗

d∗ t2,2 → t2,2 a2 → α2,j d∗ where 1 ≤ j ≤ l2,2

d∗ t2,2 → t2,3 a2 → # d∗

. . .
d∗ t2,k → t2,k ak → α2,j d∗ where 1 ≤ j ≤ l2,k
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d∗ t2,k → t2,k+1 ak → # d∗

d∗ t2,k+1 → t2,k+2 a1 → a1 d∗

d∗ t2,k+2 → t2,k+3 a2 → a2 d∗

. . .
d∗ t2,2k → t2,2k+1 ak → ak d∗

4. starting over the simulation or ending the simulation:
d∗ t1,2k+1 → λ X → t d∗

d∗ t1,2k+1 → λ X → f d∗

5. checking if there are ”nonterminals” in the last configuration:
d∗ f → f1 a1 → # d∗

d∗ f1 → f2 a2 → # d∗

. . .
d∗ fp → λ ap → # d∗

d∗ #→ # d∗.

The SBP system constructed above simulates the computation of an ET0L system
as follows. At the beginning of simulation, scenarios from all the languages indi-
cated by the regular expressions from E1 are started. However, because there is an
object t in the initial configuration, only the rules that appear in scenarios from
the group 1 can be applied (that is it will be applied either t→ t

max{l1,i|1≤i≤k}
1,1 X

or t→ t
max{l2,i|1≤i≤k}
2,1 X). Let us assume that the rule t→ t

max{l1,i|1≤i≤k}
1,1 X was

executed, hence the table to be simulated is T1. The number max{l1,i | 1 ≤ i ≤ k}
of objects t1,1 guarantees that any combination of the rules from T1 which have
the same symbol on the left and which are executed at certain moment by H, can
be simulated by Π. Consequently, scenarios indicated by the regular expressions

d∗ t1,1 → t1,1 a1 → α1,j d∗ where 1 ≤ j ≤ l1,1

are started. In these scenarios the rules of type a1 → α1,j (which correspond to
the rules a1 → α1,j ∈ T1) are applied at a certain moment. However, also the
scenarios indicated by the regular expression

d∗ t1,1 → t1,2 a1 → # d∗

start their execution; in case the rule t1,1 → t1,2 is executed and there are objects
a1 in the region, then the symbol # will be produced and the system Π will never
stop (no output). This scenario is used to check if all objects a1 were rewritten.

The computation continues in the same manner for all the objects from V .
After all objects from V were rewritten (i.e., in the current configuration there are
only objects from the set {a | a ∈ V } and object t1,k+1), the system Π rewrites
back all the objects from the set {a | a ∈ V } into their corresponding version from
V . Scenarios indicated by the following regular expressions are used to complete
the task:

d∗ t1,k+1 → t1,k+2 a1 → a1 d∗

d∗ t1,k+2 → t1,k+3 a2 → a2 d∗

. . .
d∗ t1,2k → t1,2k+1 ak → ak d∗
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Finally, scenarios from group 4 start, and object X is rewritten either into ob-
ject t (and Π restarts the computation by simulating the application of another
table of H) or into object f (which will be used to check whether the current
configuration of Π corresponds to a string computed by H which is formed only
by symbols from ∆). In case object f is generated, then scenarios indicated by
regular expressions

d∗ f → f1 ap+1 → # d∗

d∗ f1 → f2 ap+2 → # d∗

. . .
d∗ fp → λ ak → # d∗

d∗ #→ # d∗.

are applied and if in the current configuration there exists a symbol from V \∆,
then the symbol # is generated and the computation never stop. Otherwise, the
system stops generating a multiset that correspond to a string from L(H).
Consequently, it was proved that NOSBP d2

m (ncoo) ⊇ NET0L.

The following result shows the computation power of SBP systems using non-
cooperative and catalytic rules, and the degree of synchronization 3.

Theorem 5. NOSBP d3
m (cat1) = NRE.

Proof. For the inclusion NOSBP d3
m (cat1) ⊇ NRE we will simulate with a SBP

system with one region Π = (O,C, µ,w1, R1, E1, i0 = 1) a register machine M =
(n,P, l0, lh). The system Π is defined as follows:

O = {ai | 1 ≤ i ≤ n} ∪ {l1, l2 | l1 : (add(r), l2) ∈ P}
∪ {l1, l2, l3, l1, l2, X, Y | l1 : (sub(r), l2, l3)};

C = {c}, µ = [ ]1, w1 = l0.

The sets R1 of rules and E1 of regular expressions are constructed as follows:

• for any instruction l1 : (add(r), l2) we add the rule r(l1,1) : l1 → arl2 to R1 and
the regular expression d∗r(l1,1)d

∗ to E1;
• for any instruction l1 : (sub(r), l2, l3) we add the following rules to R1 and the

regular expressions to E1

The rules added to R1 The regular expressions added to E1

r(l1,1) : l1 → l1X
r(l1,2) : car → c d∗r(l1,1)r(l1,2)r(l1,3)d

∗

r(l1,3) : l1 → l2
r(l1,4) : X → Y
r(l1,5) : Y → λ d∗r(l1,4)r(l1,5)r(l1,6)d

∗

r(l1,6) : l1 → l3
r(l1,7) : l2 → l2 d∗r(l1,7)d

∗

• for the instruction l1 : halt, the rule rl1 : l1 → λ is added to R1 and the regular
expression d∗rl1d

∗ is added to E1.
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Similarly as in the proof of Theorem 2, we model the value stored in the register
r of M as the multiplicity of the object ar in a configuration of Π.

Since the scenarios are nondeterministically selected from the languages indi-
cated by the regular expressions, and these scenarios may contain as a prefix a
string of an arbitrary length and which is composed only by symbols d, then we
don’t know when the first rules of the scenarios will be executed.

Let Π be in a configuration C1 = at1
1 . . . atr

r . . . atn
n l1c and let us assume that in

the configuration C1 a rule from R1 will be executed. In this configuration there
might exist scenarios already in execution and/or scenarios that can be started. No
matter which is the case, the single rule that can be applied in configuration C1 is
l1 → l1X which belongs to a scenario s1 from L(d∗ l1 → l1X car → c l1 → l2 d∗)
(a scenario started in a previous configuration). This rule will be applied once and
the resulting configuration will be C2 = at1

1 . . . atr
r . . . atn

n l1Xc. Next, we distinguish
two cases:

• if tr > 0 (that is, in C2 there exists objects ar) then the rule car → c from
scenario s will be executed. Moreover in this configuration will start new sce-
narios (apart from those already in execution). In particular, a scenario s2 from
L(d∗ X → Y Y → λ l1 → l3 d∗) will be executed (which means that the
rule X → Y will compete for objects, at a certain moment, in one subsequent
configuration). However, there might be the case that a scenario of the same
kind, started in a previous step, attempts to execute the rule X → Y in config-
uration C2. Consequently we have two possible cases: in configuration C2 will
be only executed the rule car → c (hence the next configuration will become
C(3,1) = at1

1 . . . atr−1
r . . . atn

n l1Xc) or the pair of rules car → c and X → Y

(hence the next configuration will become C(3,2) = at1
1 . . . atr−1

r . . . atn
n l1Y c).

In the first case (i.e., in configuration C(3,1)) we have again a branch in the
computation: either will be executed the rule l1 → l2 (which means that the
next configuration will be C(3,1,1) = at1

1 . . . atr−1
r . . . atn

n l2Xc) or the pair of
rules l1 → l2 and X → Y (which means that the next configuration will be
C(3,1,2) = at1

1 . . . atr−1
r . . . atn

n l2Y c).
It follows that for the configuration C(3,1,1) will be executed a scenario that, at
a certain moment, will rewrite firstly the object X into Y (by an application
of the rule X → Y ) and then will delete the object Y (by an application of
the rule Y → λ). In the same time, a scenario that applies the rule l2 → l2
will be executed and the configuration reached will be at1

1 . . . atr−1
r . . . atn

n l2c
which corresponds to a correct simulation of the register machine subtraction
instruction.

• if tr = 0 then the rule car → c from scenario s cannot be executed anymore
and so, the execution of the scenario s will be interrupted (hence the rule
r(l1,3) : l1 → l2 is not executed anymore in this simulation of the subtraction
instruction). However the rule r(l1,4) : X → Y in a scenario from the set
L(d∗r(l1,4)r(l1,5)r(l1,6)d

∗) will be executed at a certain moment. Next, the object
Y will trigger the execution of the rule r(l1,5) : Y → λ. Finally the rule r(l1,6) :
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l1 → l3 is applied and the resulting multiset will become at1
1 . . . atn

n l3c which
again corresponds to a correct simulation of the register machine subtraction
instruction.

It follows that Π correctly simulates the computation of M , and so, taking into
account the Turing-Church thesis, NOSBP d3

m (cat1) = NRE.

5 Conclusion

Metabolic pathways are usually composed of chains of enzymatically catalyzed
chemical reactions. They are interconnected in a complex way in the framework
of a metabolic network. Inspired by this biological phenomenon, we have defined
and studied the scenario based P systems. In this computational model, regular
expressions are used to express the causal dependence relations existing between
various executions of the rules. In this way we intend to identify certain causalities
in the chains of reactions connecting different parts of the metabolic network.
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Summary. Whether P systems with only one catalyst can already be universal, is still
an open problem. Here we establish universality (computational completeness) by using
specific variants of additional control mechanisms. At each step using only multiset rules
from one set of a finite number of sets of rules allows for obtaining computational com-
pleteness with one catalyst and only one membrane. If the targets are used for choosing
the multiset of rules to be applied, for getting computational completeness with only
one catalyst more than one membrane is needed. If the available sets of rules change
periodically with time, computational completeness can be obtained with one catalyst in
one membrane. Moreover, we also improve existing computational completeness results
for P systems with mobile catalysts and for P systems with membrane creation.

1 Introduction

P systems with catalytic rules were already considered in the originating papers
for membrane systems, see [9]. In [3] two catalysts were shown to be sufficient
for getting universality/computational completeness (throughout this paper, with
these notions we will indicate that all recursively enumerable sets of (vectors of)
non-negative integers can be generated). Since then, it has become one of the most
challenging open problems in the area of P systems, whether or not one catalyst
might already be enough to obtain computational completeness.

Using additional control mechanisms as, for example, priorities or promot-
ers/inhibitors, P systems with only one catalyst can be shown to be computation-
ally completene, e.g., see Chapter 4 of [11]. On the other hand, additional features
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for the catalyst may be taken into account; for example, we may use bi-stable cat-
alysts (catalysts switching between two different states) or mobile catalysts (cat-
alysts able to cross membranes). Moreover, additional membrane features may be
used, for example, membrane creation or controlling the membrane permeability
by means of the operations δ and τ .

P systems with membrane creation were introduced in [8], showing both their
universality and efficiency (the Hamiltonian path problem is solved in linear time
in a semi-uniform way; this result was improved in [4], where a polynomial solution
to the Subset Sum problem in a uniform way is provided). For proving universality,
in [8] (Theorem 2) P systems starting with one membrane, having four membranes
at some time during the computation, using one catalyst, and also controlling the
membrane permeability by means of the operations δ (deleting the surrounding
membrane) and τ (increasing the thicknes of the surrounding membrane, i.e., mak-
ing it impermeable for objects to pass through) are needed. However, as already
shown in [10], P systems with one catalyst and using the operations δ and τ are
universal, i.e., the membrane creation facility is not necessary for getting univer-
sality in this framework. Here we improve the result shown in [8] from two points
of view: (i) the control of membrane permeability is not used, and (ii) the maximal
number of membranes used during a computation is two.

P systems with mobile catalysts were introduced in [5], and their universality
was proved with using three membranes and target indications of the forms here,
out, and inj . We here improve this result by replacing the target indications inj
with the weaker one in.

Recently, several variants of P systems using only one catalyst together with
control mechanisms for choosing the rules applicable in a computation step have
been considered: for example, in [6] the rules are labeled with elements from an
alphabetH and in each step a maximal multiset of rules having the same label from
H is applied. In this paper, we will give a short proof for the universality of these
P systems with label selection with only one catalyst in a single membrane. As a
specific variant, for each membrane we can choose the rules according to the target
indications, and we will prove universality for these P systems with target selection
with only one catalyst, but needing more than one membrane (such systems with
only one membrane lead to the still open problem of catalytic P systems with one
catalyst).

Regular control languages were considered already in [6] for the maximally
parallel derivation mode, whereas in [1] universality was proved for the sequential
mode: there even only non-cooperative rules were needed in one membrane for
time-varying P systems to obtain universality (in time-varying systems, the set of
available rules varies periodically with time, i.e., the regular control language is of
the very specific form W = (U1 . . . Up)

∗
, allowing to apply rules from a set Ui in

the computation step pn+ i, n ≥ 0; p is called the period), but a bounded number
of steps without applying any rule had to be allowed. We here prove that time-
varying P systems using the maximally parallel derivation mode in one membrane
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with only one catalyst are computationally complete with a period of six and the
usual halting when no rule can be applied.

2 Prerequisites

The set of integers is denoted by Z, the set of non-negative integers by N. An
alphabet V is a finite non-empty set of abstract symbols. Given V , the free monoid
generated by V under the operation of concatenation is denoted by V ∗; the ele-
ments of V ∗ are called strings, and the empty string is denoted by λ; V ∗ \ {λ} is
denoted by V +. Let {a1, · · · , an} be an arbitrary alphabet; the number of occur-
rences of a symbol ai in a string x is denoted by |x|ai

; the Parikh vector associated

with x with respect to a1, · · · , an is
(
|x|a1

, · · · , |x|an

)
. The Parikh image of a lan-

guage L over {a1, · · · , an} is the set of all Parikh vectors of strings in L, and we
denote it by Ps (L). For a family of languages FL, the family of Parikh images
of languages in FL is denoted by PsFL; for families of languages of a one-letter
alphabet, the corresponding sets of non-negative integers are denoted by NFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(
|x|a1

, · · · , |x|an

)
= (m1, · · · ,mn). Fixing the sequence

of symbols a1, · · · , an in the alphabet V in advance, the representation of the mul-
tiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1 · · · amn
n is unique. The set of all finite

multisets over an alphabet V is denoted by V ◦.
The family of regular and recursively enumerable string languages is denoted

by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [2] and [12].

A register machine is a tuple M = (m,B, l0, lh, P ), where m is the number of
registers, P is the set of instructions bijectively labeled by elements of B, l0 ∈ B
is the initial label, and lh ∈ B is the final label. The instructions of M can be of
the following forms:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to in-
struction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of this
instruction are usually called zero-test and decrement, respectively.

• lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction
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to be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching the HALT -instruction.

Register machines provide a simple universal computational model [7]. In the
generative case as we need it later, we start with empty registers, use the first two
registers for the necessary computations and take as results the contents of the k
registers 3 to k + 2 in all possible halting computations; during a computation of
M , only the registers 1 and 2 can be decremented. In the following, we shall call
a specific model of P systems computationally complete or universal if and only if
for any (generating) register machine M we can effectively construct an equivalent
P system Π of that type simulating each step of M in a bounded number of steps
and yielding the same results.

2.1 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the
objects placed in the membrane regions, and the evolution rules. The membrane
structure is a hierarchical arrangement of membranes. Each membrane defines a
region/compartment, the space between the membrane and the immediately inner
membranes; the outermost membrane is called the skin membrane, the region out-
side is the environment, also indicated by (the label) 0. Each membrane can be
labeled, and the label (from a set Lab) will identify both the membrane and its re-
gion. The membrane structure can be represented by a rooted tree (with the label
of a membrane in each node and the skin in the root), but also by an expression of
correctly nested labeled parentheses. The objects (multisets) are placed in the com-
partments of the membrane structure and usually represented by strings, with the
multiplicity of a symbol corresponding to the number of occurrences of that symbol
in the string. The evolution rules are multiset rewriting rules of the form u → v,
where u is a multiset of objects from a given set O and v = (b1, tar1) . . . (bk, tark)
with bi ∈ O and tari ∈ {here, out, in} or tari ∈ {here, out} ∪ {inj | j ∈ Lab},
1 ≤ i ≤ k. Using such a rule means “consuming” the objects of u and “producing”
the objects b1, . . . , bk of v; the target indications here, out, and in mean that an
object with the target here remains in the same region where the rule is applied,
an object with the target out is sent out of the respective membrane (in this way,
objects can also be sent to the environment, when the rule is applied in the skin
region), while an object with the target in is sent to one of the immediately inner
membranes, non-deterministically chosen, wheras with inj this inner membrane
can be specified directly. In general, we omit the target indication here.

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, f)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at the
beginning of a computation , R1, . . . , Rm are finite sets of evolution rules, asso-
ciated with the regions of µ, and f is the label of the membrane region from
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which the outputs are taken (f = 0 indicates that the output is taken from the
environment).

If a rule u → v has at least two objects in u, then it is called cooperative,
otherwise it is called non-cooperative. In catalytic P systems we use non-cooperative
as well as catalytic rules which are of the form ca→ cv, where c is a special object
which never evolves and never passes through a membrane (both these restrictions
can be relaxed), but it just assists object a to evolve to the multiset v. In a purely
catalytic P system we only allow catalytic rules. In both catalytic and purely
catalytic P systems, we replace O by O,C in order to specify those objects from
O which are the catalysts in the set C.

The evolution rules are used in the non-deterministic maximally parallel way,
i.e., in any computation step of Π we choose a multiset of rules from the sets
R1, . . . , Rm in such a way that no further rule can be added to it so that the
obtained multiset would still be applicable to the existing objects in the membrane
regions 1, . . . ,m.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation. A computation is halting if it reaches
a configuration where no rule can be applied. With a halting computation we
associate a result, in the form of the number of objects present in membrane
f in the halting configuration. The set of vectors of non-negative integers and
the set of (Parikh) vectors of non-negative integers obtained as results of halting
computations in Π are denoted by N (Π) and Ps (Π), respectively.

The family of sets Y (Π), Y ∈ {N,Ps}, computed by P systems with at most
m membranes and cooperative rules and with non-cooperative rules is denoted by
Y OPm (coop) and Y OPm (ncoo), respectively. It is well known that for any m ≥ 1,
Y REG = Y OPm (ncoo) ⊂ NOPm (coop) = Y RE, see [9].

The family of sets Y (Π), Y ∈ {N,Ps}, computed by (purely) catalytic
P systems with at most m membranes and at most k catalysts is denoted by
Y OPm (catk) (Y OPm (pcatk)); from [3] we know that, with the results being sent
to the environment in order to avoid the discussion how to count the catalysts in
the skin membrane, we have Y OP1 (cat2) = Y OP1 (pcat3) = Y RE.

If we allow catalysts to move from one membrane region to another one, then we
speak of P systems with mobile catalysts. The families of sets N (Π) and Ps (Π)
computed by P systems with at most m membranes and k mobile catalysts is
denoted by NOPm (mcatk) and PsOPm (mcatk), respectively.

For all the variants of P systems using rules of some type X as defined above,
we may consider systems containing only rules of the form u → v where u ∈ O
and v = (b1, tar) . . . (bk, tar) with bi ∈ O and tar ∈ {here, out, in} or tar ∈
{here, out} ∪ {inj | j ∈ H}, 1 ≤ i ≤ k, i.e., in each rule there is only one target
for all objects bi; if catalytic rules are considered, then we request the rules to be
of the form ca → c (b1, tar) . . . (bk, tar). P systems with target selection contain
only these forms of rules; moreover, in each computation step, for each membrane
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region i we choose a maximal non-empty (if it exists) multiset of rules from Ri

having the same target indication tar (for different membranes these targets may
be different). The families of sets N (Π) and Ps (Π) computed by P systems with
target selection with at most m membranes and rules of type X are denoted by
NOPm (X, ts) and PsOPm (X, ts), respectively.

For all the variants of P systems of type X, we may consider to label all the
rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H and
to take a set W containing subsets of H. Then a P system with label selection is
a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H is
a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any transition
step in Π we first select a set of labels U ∈ W and then apply a non-empty
multiset R of rules such that all the labels of these rules in R are in U and the set
R cannot be extended by any further rule with a label from U so that the obtained
multiset of rules would still be applicable to the existing objects in the membrane
regions 1, . . . ,m. The family of sets N (Π) and Ps (Π) computed by P systems
with label selection with at most m membranes and rules of type X is denoted by
NOPm (X, ls) and PsOPm (X, ls), respectively.

Another method to control the application of the labeled rules is to use control
languages (see [6] and [1]). A controlled P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H
is a set of labels for the rules in the sets R1, . . . , Rm, and W is a string language
over 2H from a family FL. Every successful computation in Π has to follow a
control word U1 . . . Un ∈ W : in transition step i, only rules with labels in Ui are
allowed to be applied, and after the n-th transition, the computation halts; we may
relax this end condition, and then we speak of weakly controlled P systems. If W =
(U1 . . . Up)

∗
, Π is called a (weakly) time-varying P system: in the computation step

pn+ i, n ≥ 0, rules from the set Ui have to be applied; p is called the period. The
family of sets Y (Π), Y ∈ {N,Ps}, computed by (weakly) controlled P systems and
(weakly) time-varying P systems with period p, with at most m membranes and
rules of typeX as well as control languages in FL is denoted by Y OPm (X,C (FL))
(Y OPm (X,wC (FL))) and Y OPm (X,TVp) (Y OPm (X,wTVp)), respectively.

In the P systems with membrane creation considered in this paper, besides the
catalytic rules ca → c (u, tar) and the non-cooperative rules a → (u, tar) we also
use catalytic membrane creation rules of the form ca → c[ u ]

i
(in the context

of c, from the object a a new membrane with label i containing the multiset u
is generated) and membrane dissolution rules a → uδ (we assume that no ob-
jects can be sent into a membrane which is going to be dissolved; with dissolving
the membrane i by applying δ, all objects contained inside this membrane are
collected in the region surrounding the dissolved membrane); in all cases, c is a
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catalyst, a is an object, u is a multiset, and tar is a target indication of the form
here, out, and inj . The family of sets Y (Π), Y ∈ {N,Ps}, computed by such
P systems with membrane creation and using at most k catalysts, with m initial
membranes and having at most h membranes during its computations is denoted
by Y Pm,h (catk,mcre).

3 Computational Completeness of P Systems with Label
Selection

Theorem 1. Y OP1 (cat1, ls) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1 (cat1, ls). Let us consider
a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . We construct the
following P system:

Π = (O, {c} , [ ]
1
, cdl0, R1, H,W, 0),

O = A ∪B ∪ {c, d,#} ,
H = {l, l′ | l ∈ B} ∪ {lx | x ∈ {1, 2, d,#}} ,

and the sets of labels in W and the rules for R1 are defined as follows:

A. Let li : (ADD (r) , lj , lk) be an ADD instruction in I. If r > 2, then the
(labeled) rules

li : li → lj (ar, out) , l′i : li → lk (ar, out) ,

are introduced, and for r ∈ {1, 2}, we introduce the rules

li : li → ljar, l′i : li → lkar.

In both cases, we define {li, l′i} to be the corresponding set of labels in W . The
contents of each register r, r ∈ {1, 2}, is represented by the number of objects ar
present in the skin membrane; any object ar wit r > 2 is immediately sent out
into the environment.

B. The simulation of a SUB instruction li : (SUB (r) , lj , lk), for r ∈ {1, 2}, is
carried out by the following rules and the corresponding sets of labels in W : For
the case that the register r, r ∈ {1, 2}, is empty we take the (labeled) rules

li : li → lk, lr : car → c, ld : cd→ c#,

(if no symbol ar is present, i.e., if the register r is empty, then the trap symbol #
is introduced) and for the case that the register r is not empty, we introduce the
rules

l′i : li → lj , l′r : car → c#
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(if at least one symbol ar is present, i.e., if the register r is not empty, then the
trap symbol # is introduced); the corresponding sets of labels to be taken into W
are {li, lr, ld} and {l′i, l′r}, respectively. In both cases, the simulation of the SUB
instruction works correctly, if we have made the right choice.

C. We also add the labeled rule l# : #→ # to R1 and {#} to W , hence, the
computation cannot halt once the trap symbol # has been generated.

In sum, we have the equality Ps (M) = Ps (Π), which completes the proof.

4 Computational Completeness of P Systems with Target
Selection

Theorem 2. Y OP7 (cat1, ts) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP7 (cat1, ts). Let us consider
a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . The set of labels
B \ {lh} is divided into three disjoint subsets:

B+ = {l | li : (ADD (r) , lj , lk) ∈ I} ,
B−r = {l | li : (SUB (r) , lj , lk) ∈ I} , r ∈ {1, 2} ;

moreover, we define B− = B−1 ∪ B−2, B′− = {l′ | l ∈ B−}, B′′− = {l′′ | l ∈ B−},
and B′ = B+ ∪ B− ∪ B′− ∪ B′′− as well as A = {a1, . . . , an+2}. We construct the
following P system:

Π = (O, {c} , [ [ ]
2
. . . [ ]

7
]
1
, w1, . . . , w7, R1, . . . , R7, 0),

O = A ∪ {a′1, a′2} ∪B′ ∪ {c, d,#} ,

with w1 = l0, w2 = c, and wi = λ for 3 ≤ i ≤ 7. In order to make argumentation
easier, in the following we refer to the membrane labels 1 to 7 according to the
following table:

1 2 3 4 5 6 7
skin − 01 02 −1 −2 +

The sets of rules now are constructed as follows:

A. The simulation of any instruction from I starts in the skin membrane with
moving all objects except the output symbols ar for r > 2 into an inner mem-
brane; according to the definition, taking the target in means non-deterministically
choosing one of the inner membranes, but the same membrane for all objects to
be moved in. The output symbols ar for r > 2 are sent out into the environment
by ar → (ar, out), thus yielding the result of a halting computation as the number
of symbols ar sent out into the environment during this computation. Hence, in
sum we get
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R1 = {x→ (x, in) | x ∈ B+ ∪B− ∪ {a1, a2, a′1, a′2,#}} ∪
{
x→ (xd, in) | x ∈ B′−

}
∪ {ar → (ar, out) | 3 ≤ r ≤ n+ 2} .

B. For the simulation of an ADD instruction li : (ADD (r) , lj , lk) ∈ I all non-
terminal symbols (all symbols except ar for r > 2) are expected to have been sent
to membrane +:

R+ = {li → (ljar, out) , li → (lkar, out) | li : (ADD (r) , lj , lk) ∈ I}
∪ {l→ (#, out) | l ∈ B′ \B+}
∪ {x→ (x, out) | x ∈ {a1, a2,#}} .

If the symbols arrive in membrane + with a label l ∈ B′\B+, then the trap symbol
# is generated and the computation will never halt. Sending out all terminal
symbols ar for r > 2 from the skin membrane can be done as a last step of
a successful computation, but we may also choose to send out all those present
there at a specific moment instead of immediately continuing the simulation of an
instruction of the register machine. Hence, the simulation of an ADD instruction
by Π takes at most three steps.

C. The simulation of a SUB instruction li : (SUB (r) , lj , lk) is carried out in
two steps for the zero test, i.e., when the register r is empty, using (the rules in)
membrane 0r, and in five steps for decrementing the number of symbols ar, first
using membrane −r to mark the corresponding symbols ar into a′r and then using
the catalyst c in membrane − to erase one of these primed objects; the marking
procedure is necessary to guarantee that the catalyst erases the correct object. For
r ∈ {1, 2}, we define the following sets of rules:

R0r = {li → (lk, out) , ar → (#, out) | li : (SUB (r) , lj , lk) ∈ I}
∪ {l→ (#, out) | l ∈ B′ \B−r}
∪ {x→ (x, out) | x ∈ {a3−r,#}} .

If the number of objects ar is not zero, i.e., if the register r is not empty, the
introduction of the trap symbol # causes the computation to never halt. On the
other hand, if we want to decrement the register, we have to guarantee that exactly
one symbol ar is erased:

R−r
= {li → (l′i, out) | li ∈ B−r} ∪ {ar → (a′r, out)}
∪ {l→ (#, out) | l ∈ B′ \B−r}
∪ {x→ (x, out) | x ∈ {a3−r,#}} .

The whole multiset of objects, with the primed versions of li and the ar, via the skin
membrane now has to enter membrane −; here the dummy symbol d guarantees
that the catalyst cannot do nothing if no primed symbol a′r has arrived; again the
generation of # causes the computation to not halt anymore:

R− =
{
l′i → l′′j , ca

′
r → c, l′′i → #, l′′i → (lj , out) | li : (SUB (r) , lj , lk) ∈ I

}
∪ {cd→ c#, d→ (λ, out)} ∪ {a′r → (ar, out) | r ∈ {1, 2}} ,
∪
{
l→ (#, out) | l ∈ B′ \B′′−

}
∪ {x→ (x, out) | x ∈ {a3−r,#}} .
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In R−, for correctly continuing the simulation of a SUB instruction, exactly two
steps have to be carried out:

In the first step, the target indication here has to be used with applying the two
rules l′i → l′′j and ca′r → c (eliminating exactly one copy of a′r, i.e., decrementing
register r) and leaving all other objects unchanged; if instead the target indication
out were chosen, the forced application of the rule l′i → (#, out) would yield the
trap symbol #. In the second step, the target indication out has to be chosen and
the rules l′′i → (lj , out), d → (λ, out), and a′r → (ar, out) are to be applied; if
instead the target indication here were chosen again, the forced application of the
rule l′′i → # would yield the trap symbol #.

Whenever a trap symbol is generated in one of the inner membranes, we get
an infinite computation, as in R1 we have the rule #→ (#, in) and in every inner
membrane we have the rule #→ (#, out).

We finally observe that a computation in Π halts if and only if the final label lh
appears (and then stays in the skin membrane) and no trap symbol # is present,
hence, we conclude Ps (M) = Ps (Π).

To eventually reduce the number of inner membranes remains as a challenging
task for future research.

5 Computational Completeness of Time-Varying P Systems

Theorem 3. NOP1 (cat1, αTV6) = NRE, Y ∈ {N,Ps}, α ∈ {λ,w}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1 (cat1, TV6). Let us consider a
register machine M = (n+ 2, B, l0, lh, I) with only the first and the second register
ever being decremented. Again, we define A = {a1, . . . , an+2} and divide the set
of labels B \ {lh} into three disjoint subsets:

B+ = {l | li : (ADD (r) , lj , lk) ∈ I} ,
B−r = {l | li : (SUB (r) , lj , lk) ∈ I} , r ∈ {1, 2} ;

moreover, we define B− = B−1 ∪B−2 as well as

B′ =
{
l, l̃, l̂ | l ∈ B \ {lh}

}
∪
{
l−, l0, l̄−, l̄0, | l ∈ B−

}
.

The main challenge in the construction for the time-varying P system Π is that
the catalyst has to fulfill its task to erase an object ar, r ∈ {1, 2}, for both objects
in the same membrane where all other computations are carried out, too; hence,
at a specific moment in the cycle of period six, parts of simulations of different
instructions have to be coordinated in parallel. The basic components of the time-
varying P system Π are defined as follows (we here do not distinguish between a
rule and its label):



Universal P Systems: One Catalyst Can Be Sufficient 91

Π = (O, {c} , [ ]
1
, l0, R1 ∪ · · · ∪R6, R1 ∪ · · · ∪R6, (R1 . . . R6)

∗
, 0),

O = A ∪ {a′1, a′2} ∪B′ ∪ {c, h,#} .

We now list the rules in the sets of rules Ri to be applied in computation steps
6n+ i, n ≥ 0, 1 ≤ i ≤ 6:

R1: in this step, the ADD instructions are simulated, i.e., for each li :
(ADD (r) , lj , lk) ∈ I we take

cli → car l̃j , cli → car l̃k (only in the sixth step of the cycle, from l̃j and l̃k the
corresponding unmarked labels lj and lk will be generated); in order to obtain the
output in the environment, for r ≥ 3, ar has to be replaced by (ar, out);

cl → cl−, cl → cl0 initiate the simulation of a SUB instruction for register 1
labeled by l ∈ B−1;

cl → cl̂ marks a label l ∈ B−2 (the simulation of such a SUB instruction for
register 2 will start in step 4 of the cycle);

# → # keeps the trap symbol # alive guaranteeing an infinite loop once #
has been generated;

h→ λ eliminates the auxiliary object h needed for simulating SUB instructions
and eventually generated two steps before.

R2: in the second and the third step, the SUB instructions on register 1 are
simulated, i.e., for all l ∈ B−1 we start with

ca1 → ca′1 (if present, exactly one copy of a1 can be primed) and
l− → l̄−h, l− → l̄0h for all l ∈ B−1;
#→ #;
cl̃→ cl̃, l̃→ # for all l ∈ B+,
cl̂→ cl̂, l̂→ # for all l ∈ B−2.

R3: for all li : (SUB (1) , lj , lk) ∈ I we take

cl̄0i → cl̃k, a′1 → #, l̄0i → # (zero test; if a primed copy of a1 is present, then
the trap symbol # is generated);

l̄−i → l̃j , ca
′
1 → c, ch → c# (decrement; the auxiliary symbol h is needed to

keep the catalyst c busy with generating the trap symbol # if we have taken the
wrong guess when assuming the register 1 to be non-empty);

#→ #;
cl̃→ cl̃, l̃→ # for all l ∈ B+;
cl̂→ cl̂, l̂→ # for all l ∈ B−2.

R4: in the fourth step, the simulation of SUB instructions on register 2 is
initiated, i.e., we take

cl̂→ cl−, cl̂→ cl0 for all l ∈ B−2;
cl̃→ cl̃, l̃→ # for all l ∈ B+ ∪B−1;
#→ #,
h→ λ.

R5: in the fifth and the sixth step, the SUB instructions on register 2 are
simulated, i.e., for all l ∈ B−2 we start with
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ca2 → ca′2 (if present, exactly one copy of a2 can be primed) and
l− → l̄−h, l− → l̄0h for all l ∈ B−2;
cl̃→ cl̃, l̃→ # for all l ∈ B+ ∪B−1;
#→ #.

R6: the simulation of SUB instructions li : (SUB (2) , lj , lk) ∈ I on register 2 is
finished by

cl̄0i → clk, a′2 → #, l̄0i → # (zero test; if a primed copy of a2 is present, then
the trap symbol # is generated);

l̄−i → lj , ca
′
2 → c, ch → c# (decrement; the auxiliary symbol h is needed to

keep the catalyst c busy with generating the trap symbol # if we have taken the
wrong guess when assuming the register 2 to be non-empty);

cl̃→ cl, l̃→ # for all l ∈ B+ ∪B−1.

Without loss of generality, we may assume that the final label lh in M is only
reached by using a zero test on register 2; then, at the beginning of a new cycle,
after a correct simulation of a computation from M in the time-varying P system
Π no rule will be applicable in R1 (another possibilty would be to take cl̄0i → c
instead of cl̄0i → clh in R6).

At the end of the cycle, in case all guesses have been correct, the requested
instruction of M has been simulated and the label of the next instruction to be
simulated is present in the skin membrane. Only in the case that M has reached
the final label lh, the computation in Π halts, too, but only if during the simulation
of the computation of M in Π no trap symbol # has been generated; hence, we
conclude Ps (M) = Ps (Π).

6 Computational Completeness of P Systems with
Membrane Creation

Theorem 4. Y OP1,2 (cat1,mcre) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1,2 (cat1,mcre). Let us consider
a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2}. We construct the
following P system:

Π =
(
O, {c} , [ ]

1
, cdl0, R1, R2, R3, 0

)
,

O = A ∪ {l, l′, l′′ | l ∈ B} ∪ {c, d, d′, d′′,#} ,

and the sets of rules are constructed as follows.

A. For each ADD instruction li : (ADD (r) , lj , lk) in I, the rules

step 1: li → l′i, d→ d′,

step 2: l′i → arlj , l
′
i → arlk, d

′ → d.
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are introduced in R1 and obviously simulate an ADD instruction in two steps.

B. For each SUB instruction li : (SUB (r) , lj , lk) in I, the following rules are
introduced in R1 and Rr+1, r ∈ {1, 2}:

Step R1 Rr+1

1 cli → c[ li ]
r+1

, d→ d′ –

2 car → c (ar, inr+1) , d′ → (d′, inr+1) li → l′i
3 – ar → λδ, l′i → l′′i , d

′ → d′′

4 cl′′i → clj , d
′′ → d l′′i → lk, d

′′ → dδ

A SUB instruction li : (SUB (r) , lj , lk) (with r ∈ {1, 2}) is simulated according to
the four steps suggested in the table given above:

In the first step, we create a membrane with the label r+ 1, where li is sent to,
and simultaneously d becomes d′. In the next step, if any ar exists, i.e., if register
r is not empty, then one copy of ar should enter the membrane r + 1 just having
been created in the preceding step. Note that the selection of the membrane (the
use of inr+1 instead of in) is important: ar has to go to the membrane created in
the previous step, when r+ 1 has been specified by the label li. At the same time,
d′ enters the membrane r + 1, and li becomes l′i in this membrane. If the register
r is empty, then the catalyst is doing nothing in this second step.

In the third step, in membrane r + 1, l′i becomes l′′i and d′ becomes d′′. If ar
is not present in membrane r + 1, nothing else happens there in this step; if ar
is present, it dissolves the membrane and disappears. Observe that in both cases
car → c (ar, inr+1) will not be applicable (anymore) in R1. Thus, we either have
cl′′i d

′′ in the skin membrane (when the register has been non-empty), or we have
only c in the skin membrane and l′′i d

′′ in the inner membrane r + 1. In the first
case, in the fourth step we use the rules cl′′i → clj and d′′ → d from R1, which
is the correct continuation of the simulation of the SUB instruction; in the latter
case, we use l′′i → lk and d′′ → dδ in Rr+1. The inner membrane is dissolved, and
in the skin membrane we get the objects clkd. In both cases, the simulation of
the SUB instruction is correct and we return to a configuration as that we started
with, hence the simulation of another instruction can start.

C. We also add the rules ar → (ar, out) for 3 ≤ r ≤ n+ 2 and #→ # to R1.
In any moment, any copy of a terminal symbol ar in the skin membrane is

sent out to the environment. Once the trap symbol # has been introduced, the
computation continues forever.

There is one interference between the rules of Π simulating the ADD and the
SUB instructions of M . If in the second step of simulating a SUB instruction,
instead of d′ → (d′, inr+1) we use d′ → d, then the case when register r is non-
empty continues correctly, as the simulation lasts four steps, and in the end d is
present in the skin membrane (the dissolution of membrane r is done by ar). If
the register r has been empty, l′′i will become lk in membrane r + 1 and it will
remain there until d′ enters the membrane, changes to d′′, and then dissolves it (as
long as d, d′ switch to each other in the skin membrane, the computation cannot
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halt). Thus, also in this case we return to the correct submultiset clkd in the skin
membrane.

Consequently, exactly the halting computations of M are simulated by the
halting computations in Π; hence, Ps (M) = Ps (Π). The observation that the
maximal number of membranes in any computation of Π is two completes the
proof.

It remains as an open problem whether it is possible to use the target indication
in only instead of the inj .

7 Computational Completeness of P Systems with Mobile
Catalysts

If the membrane creation rules are of the form ca → [ cb ]
i
, then this implic-

itly means that the catalyst is moving from one region to another one. However,
for mobile catalysts, the universality of such systems with only one catalyst has
already been proved in [5], using three membranes and target indications of the
forms here, out, and inj . In this paper, we improve this result from the last point
of view, making only use of the target indications here, out, and in. In fact, if
in the proof of Theorem 2 we let the catalyst c move with all the other objects,
then we immediately obtain a proof for NOP7 (mcat1) = NRE where even only
the target indications out and in are used (but instead of three we need seven
membranes).

Theorem 5. Y OP3 (mcat1) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1 (cat1, ls). Let us consider
a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . We construct the
following P system:

Π = (O, {c} , [ [ ]
2
[ ]

3
]
1
, cl0, R1, R2, R3, 0),

O = A ∪ {l, l′, l′′, l′′′ | l ∈ B} ∪ {c,#} ,

and the sets of rules are constructed as follows:

A. Let li : (ADD (r) , lj , lk) be an ADD instruction in I. If r = 3, then the
rules li → lj (a3, out) , li → lk (a3, out) are introduced in R1; if r ∈ {1, 2}, in
R1 we introduce the rules li → lj (ar, in) , li → lk (ar, in) , as well as the rules
a4−j → # and # → # in Rj+1, j ∈ {1, 2}. The contents of each register r,
r ∈ {1, 2}, is represented by the number of objects ar present in membrane r + 1;
any object ar, 3 ≤ r ≤ n+2, is immediately sent out into the environment. If a4−j
is introduced in membrane j, j ∈ {1, 2}, then the trap object # is produced and
the computation never halts.
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B. The simulation of a SUB instruction li : (SUB (r) , lj , lk) is carried out by the
following rules (the simulation again has four steps, as in the proof of Theorem 4):

For the first step, we introduce the rule cli → (c, in) (li, in) in R1 and the
rule li → # in both R2 and R3 (if c and li are not moved together into an inner
membrane, then the trap object # is produced and the computation never halts).

In the second step, Rr+1 has to use the rule cli → cl′i. This checks whether c
and li have been moved together into the right membrane r + 1; if this is not the
case, then the rule cli → cl′i is not available and the rule li → # must be used,
which causes the computation to never halt.

Thus, after the second step, we know whether both c and li (l′i) are in the
correct membrane r + 1. The rules car → (c, out) and l′i → l′′i are introduced in
Rr+1 in order to perform the third step of the simulation. If there is any copy of
ar in membrane r+1 (i.e., if register r is not empty), then the catalyst exits, while
also removing a copy of ar. Simultaneously, l′i becomes l′′i . Hence, if the register
r has been non-empty, we now have c in the skin membrane and l′′i in membrane
r + 1; if register r has been empty, we have both c and l′′i in membrane r + 1. We
introduce the rules cl′′i → (c, out) (lk, out) , l′′i → (l′′′i , out) , in Rr+1 and the rules
cl′′′i → clj , l′′′i → #, #→ # in R1. If c is inside membrane r+1, we get clk in the
skin membrane, which is the correct continuation for the case when the register
is empty. If c is not in membrane r + 1, then l′′i exits alone thereby becoming l′′′i ,
and, together with c, which waits in the skin membrane, introduces lj , which is
a correct continuation, too. If the rule l′′i → (l′′′i , out) is used although c is inside
membrane r + 1, then in the skin membrane we have to use the rule l′′′i → # and
the computation never halts.

In all cases, the simulation of the SUB instruction works correctly, and we
return to a configuration with the catalyst and a label from H in the skin region.

In sum, we have the equality Ps (M) = Ps (Π), which completes the proof.

8 Final Remarks

Although we have exhibited several new universality results for P systems using
only one catalyst together with some additional control mechanism, the orignal
problem of characterizing the sets of non-negative integers generated by P systems
with only one catalyst still remains open. A similar challenging problem is to con-
sider purely catalytic P systems with only two catalysts: with only one catalyst,
we obtain the regular sets; as shown in [3], three catalysts are enough to obtain
universality. With two catalysts and some additional control mechanism, univer-
sality can be obtained, too; for example, the proof of Theorem 1 for P systems
with label selection for the rules can easily be adapted for purely catalytic P sys-
tems, i.e., NOP1 (pcat2, ls) = NRE. For the other variants of additional control
mechanisms, the case of purely catalytic P systems with two catalysts remains for
future research.
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Acknowledgements. The work of Gheorghe Păun has been supported by
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dalućıa, grant P08 – TIC 04200, co-financed by FEDER funds.

References
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Summary. A basic P system, called kernel P system4 (kP system for short), combining
features of different P systems introduced and studied so far is defined and discussed. The
structure of such systems is defined as a dynamic graph, similar to tissue-like P systems,
the objects are organised as multisets, and the rules in each compartment, rewriting and
communication together with system structure changing rules, are applied in accordance
with a specific execution strategy. The definition of kP systems is introduced and some
examples illustrate this concept. Two classes of P systems, namely neural-like and gen-
eralised communicating P systems are simulated by kP systems. Some case studies prove
the expressive power of these systems.

1 Introduction

Different classes of P systems have been introduced and studied for their compu-
tational power or for specifying or modelling various problems, like solving simple
algorithms [4, 2], NP-complete problems [8] and other applications [5]. More re-
cently various distributed algorithms and problems [13] have been studied with a
new variant of P systems. In many cases the specification of the system investigated
requires features, constraints or types of behaviour which are not always provided

4 This concept was introduced initially in [10]; in this paper it is presented a revised
version of it.
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by the model in its initial definition. It helps in many cases to have some flexibility
with modelling approaches, especially in the early stages of modelling, as it might
simplify the model, shorten associated processes and clarify more complex or un-
known aspects of the system. The downside of this is the lack of a coherent and
well-defined framework that allows us to analyse, verify and test this behaviour
and simulate the system. In this respect in [10] the concept of kernel P system (kP
system) has ben introduced in order to include the most used concepts from P
systems. It is intended to formally define these systems in an operational style and
finally implement it within a model checker (SPIN [3], Maude [6]) and integrate
it into the P–Lingua platform.

This new class of P systems use a graph-like structure (so called, tissue P sys-
tems) with a set of symbols, labels of membranes, and rules of various types. A
broad range of strategies to run the rules against the multiset of objects available
in each compartment is provided. The rules in each compartment will be of two
types: (i) object processing rules which transform and transport objects between
compartments or exchange objects between compartments and environment and
(ii) structure changing rules responsible for changing the system’s topology. Each
rule has a guard resembling activators and inhibitors associated with certain vari-
ants of P systems. We consider rewriting and communication rules, membrane
division, dissolution, bond creation and destruction.

The paper consists of five chapters. Chapter 2 introduces basic definitions,
Chapter 3 compares the newly introduce kP systems with some other classes of P
systems, Chapter 4 presents a case study based on a static sorting, studying how
this problem is solved with various variants of P systems. Finally Chapter 5 briefly
describes two specification languages for kP systems with their implementations
and some examples.

2 kP Systems

A kP system is a formal model that uses some well-known features of existing
P systems and includes some new elements and, more importantly, it offers a
coherent view on integrating them into the same formalism. The key elements of a
kP system will be formally defined in this section, namely objects, types of rules,
internal structure of the system and strategies for running such systems. Some
preliminary formal concepts describing the syntax of kP systems and an informal
description of the way these systems are executed will be introduced.

We consider that standard concepts like strings, multisets, rewriting rules, and
computation are well-known concepts in P systems and indicate [15] as a compre-
hensive source of information in this respect. First we introduce the key concept
of a compartment.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.
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Remark 1. The compartments used by the definition of the kP systems will be
instantiated from the compartment types defined above. The types of rules and
the execution strategy will be discussed later.

Definition 2. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; µ defines the membrane struc-
ture, which is a graph, (V,E), where V are vertices indicating components, and
E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting of
a compartment type from T and an initial multiset, wi over A; io is the output
compartment where the result is obtained.

Remark 2. The inner part of each compartment is called region, which is delimited
by a membrane.

2.1 kP System Rules

The discussion below assumes that the rules introduced belong to the same com-
partment, Ci.

Each rule r may have a guard g, its generic form is r {g}. The rule r is
applicable to a multiset w when its left hand side is contained into w and g is true
for w. In the sequel we will analyse how the guards are specified and evaluated.

The guards are constructed using multisets over A and relational and Boolean
operators – like Boolean expressions. Before presenting the definition we introduce
some notations.

For a multiset w over A and an element a ∈ A, we denote by #a(w) the
number of a′s occurring in w. Let Rel = {<,≤,=, 6=,≥, >} be the set of relational
operators, γ ∈ Rel, a relational operator, an a multiset and r {g} a rule with guard
g.

Definition 3. If g is the abstract relational expression γan and the current mul-
tiset is w, then the guard denotes the relational expression #a(w)γn. The guard g
is true for the multiset w if #a(w)γn is true.

Let us consider the Boolean operators ¬ (negation), ∧ (conjunction) and ∨ (dis-
junction), listed wrt decreasing precedence order. Abstract relational expressions
can be connected by Boolean operators generating abstract Boolean expressions.

Definition 4. If g is the abstract Boolean expression and the current multiset
is w, then the guard denotes the Boolean expression for w, obtained by replacing
abstract relational expressions with relational expressions for w. The guard g is
true for the multiset w when the Boolean expression for w is true.

Definition 5. A guard is: (i) one of the Boolean constants true or false; (ii) an
abstract relational expression; or (iii) an abstract Boolean expression.
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Example 1. If the rule is r : ab→ c {≥ a5∧ ≥ b5∨¬ > c}, then this can be applied
iff the current multiset, w, includes the left hand side of r, i.e., ab and the guard
is true for w - it has at least 5 a′s and 5 b′s or no more than a c.

Definition 6. A rule from a compartment Cli = (tli , wli) can have one of the
following types:

• (a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A
and tj indicates a compartment type from T – see Definition 2 – with instance
compartments linked to the current compartment; tj might indicate the type
of the current compartment, i.e., tli – in this case it is ignored; if a link does
not exist (the two compartments are not in E) then the rule is not applied;
if a target, tj, refers to a compartment type that has more than one instance
connected to li, then one of them will be non-deterministically chosen;

• (b) structure changing rules; the following types are considered:
– (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},

where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj
, tj,hj

) like in
rewriting and communication rules; the compartment li will be replaced by
p compartments; the j-th compartment, instantiated from the compartment
type tij contains the same objects as li, but x, which will be replaced by yj;
all the links of li are inherited by each of the newly created compartments;

– (b2) membrane dissolution rule: []tli → λ {g};
the compartment li will be destroyed together with its links;

– (b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};
the current compartment is linked to a compartment of type tlj and x is
transformed into y; if more than one instance of the compartment type tlj
exists then one of them will be non-deterministically picked up; g is a guard
that refers to the compartment instantiated from the compartment type tl1 ;

– (b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};
is the opposite of link creation and means that the compartments are dis-
connected.

Input-output rules considered in [10] will be expressed as rewriting and com-
munication rules.

2.2 kP System Execution Strategy

In kP systems the way in which rules are executed is defined for each compartment
type t from T – see Definition 1 and Remark 1. As in Definition 1, Lab(R) is the
set of labels of the rules R.

Definition 7. For a compartment type t = (R, σ) from T and r ∈ Lab(R),
r1, . . . , rs ∈ Lab(R), the execution strategy, σ, is defined by the following

• σ = λ, means no rule from the current compartment will be executed;
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• σ = {r} – the rule r is executed;
• σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be chosen non-

deterministically and executed; if none is applicable then none is executed; this
is called alternative or choice;

• σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times ( arbitrary
parallelism);

• σ = {r1, . . . , rs}> – the rules are executed according to maximal parallelism
strategy [15];

• σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤
s, describes any of the above cases, namely λ, one rule, a choice, arbitrary
parallelism or maximal parallelism; if one of σi fails to be executed then the
rest is no longer executed;

• for any of the above σ strategy only one single structure changing rule is al-
lowed.

Remark 3. Let us suppose that a certain order relationship exists, e.g., r1, r2 >
r3, r4, which means that when weak priority is applied, the first two rules are
executed first, if possible, then the next two. If both are executed with maximal
parallelism, this is described by {r1, r2}> {r3, r4}>.

Remark 4. The result of a computation will be the number of objects collected in
the output compartment. For a kP systems kΠ, the set of all these numbers will
be denoted by M(kΠ).

2.3 kP System Examples

In this section we illustrate the newly introduced P system model with some
examples.

Example 2. Let us consider the set of component types
T = {t1, t2, t3}, where t1 = (R1, σ1), t2 = (R2, σ2), t3 = (R3, σ3), with
R1 = {r1 : a→ a(b, 2)(c, 3) {≥ p}; r2 : p→ p; r3 : p→ λ}, and σ1 = Lab(R1)>,
R2 = {r1 : b→ (b, 0)c {≥ p}; r2 : p→ p; r3 : p→ λ}, and σ2 = Lab(R2)>,
R3 = ∅ and σ3 = Lab(R3)>.
A kP system with n = 4 compartments is kΠ1 = (A,µ,C1, . . . , C4, 1), where
A = {a, b, c, p}, C1 = (t1, w1,0), C2 = (t2, w2,0), C3 = (t2, w3,0), C4 = (t3, w4,0);
with w1,0 = a3p, w2,0 = w3,0 = p, w4,0 = λ;
µ is given by the graph with nodes {C1, C2, C3, C4} and edges {C1, C2}, {C1, C3},
{C1, C4}.

One can note that we do not use targets for objects meant to stay in the
current compartment (i.e., we have r1 : a → a(b, 2)(c, 3) {≥ p} instead of r1 :
a→ (a, 1)(b, 2)(c, 3) {≥ p}). The rule r1 in R2 simulates an input/output rule [10]
which is meant to bring a c from the environment (0) and to send out a b instead.

In this example there are only rewriting and communication rules; some rules
have a guard, ≥ p (p is a promoter), others do not have any and in each compart-
ment the rules are applied in maximal parallel way in every step, as indicated by
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σj , 1 ≤ j ≤ 3. As two instances of the compartment type t2, C2, C3, appear in the
system, when the rule r1 from the compartment C1 is applied, the object b goes
non-deterministically to one of the two compartments labelled 2 (from t2) as long
as p remains in compartment C1; object c goes always to the compartment C4, of
type t3.

The initial configuration of kΠ1 is M0 = (a3p, p, p, λ). The only applicable
rules are r1, r2 and r3 from C1 and r2, r3 from C2, C3. If r1, r2 are chosen in C1

and r2 in C2, C3, then a3p is rewritten by r1, r2 in C1 and p in C2, C3 by r2;
then three a′s stay in C1, three b’s go non-deterministically to C2, C3, three c’s
go to compartment C4, and each p in C2, C3 stays in its compartment. Let us
assume that two of them go to C2 and one to C3. Hence, the next configuration is
M1 = (a3p, b2p, bp, c3). If in the next step the same rules are applied identically in
the first compartment, C1, and rules r1, r2 are used in C2 and r1, r3 in C3, then
the next configuration is M2 = (a3p, b2c2p, bc, c6). If now r1, r3 are used in C1,
with r1 used in the same way and r1, r3 in C2 (no rule is available in C3) then
M3 = (a3, b2c4, b2c, c9); this is a final configuration as there is no p to trigger a
further step.

Example 3. Let us reconsider the example above enriched with rules dealing with
the system’s structure. First the set T will be replaced by T ′ = {t1, t′2, t3}, where
t′2 = (R′2, σ

′
2), with R′2 = R2 ∪ Rstr

2 and σ′2 = Lab(R2)>&Lab(Rstr
2 )>. We can

notice that σ′2 tells us that first the rewriting and communication rules are applied
in a maximal parallel manner and then one of system’s structure rules is chosen
to be executed. The set Rstr

2 denotes the set of membrane division rules for t′2,
i.e., Rstr

2 = {r4 : []2 → []2[]2 {≥ b2∧ ≥ p}}. The new kP system, denoted kΠ2, will
have the following four compartments:
C1 = (t1, w1,0), C ′2 = (t′2, w2,0), C ′3 = (t′2, w3,0), C4 = (t3, w4,0).

If the system follows the same pathway as kΠ1 then M2 shows a different
configuration given that in C ′2 after applying R2 in a maximal parallel manner,
Rstr

2 is applied as indicated by σ′2, when the guard of r4 is true. The compart-
ment C ′2 is divided into two compartments, C2,1, C2,2, instantiated from the same
compartment type t2, with the content of C ′2 and appearing on positions 2 and 3
in the new configuration, M ′2 = (a3p, b2c2p, b2c2p, bc, c6); the new compartments,
C2,1, C2,2, are linked to compartment C1. Compartment C ′3 is not divided as the
guard of r4 is not true for its current multiset. In the next step both C2,1, C2,2 are
divided as they contain the guard triggering the membrane division rule r4. The
process will stop when either p will be rewritten to λ or b2 stops coming to these
compartments.

Remark 5. If we aim to dissolve one of the compartments instantiated from t2 or to
disconnect it from compartment C1, once a certain condition is true, for instance
{≥ b2∧ ≥ c2∧ ≥ p}, then two more rules will be added to Rstr

2 , namely
r5 : []2 → λ {≥ b2∧ ≥ c2∧ ≥ p}, r6 : []2 − []1 → []2; []1 {≥ b2∧ ≥ c2∧ ≥ p}. The
expression σ′2 remains the same, but in this case Rstr

2 contains three elements and
at most one is applied at each step, in every compartment with label 2. For this
reason σ′2 can also be written as Lab(R2)>&Lab(Rstr

2 ).
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2.4 Final Remarks

We will recap and summarise how various rules are applied in a compartment
instantiated from a compartment type tli .

The rules presented in Section 2.1 are applied as follows:

• A rewrite - communication rule, x→ (a1, t1) . . . (ah, th) {g}, is executable
if and only if
1. its left hand side multiset, x, is contained within the current multiset;
2. its associated guard, g, holds (i.e., it is true for the current multiset);
3. for each right hand side element, (aj , tj), tj ∈ T (see Definition 1), there is

at least one connected compartment of type tj to receive aj , otherwise the
rule is not applicable.

• A membrane division rule, [x]tli → [y1]ti1 . . . [yp]tip {g}, is executable if and
only if
1. the multiset on the left hand side, x, is included in the current multiset;
2. its associated guard, g, is true for the current multiset;
3. no other structure changing rule (see Definitions 6 and 7) has been applied

in the same step;
4. the compartment instantiated from tli is replaced by p compartments in-

stantiated from the compartment types ti1 , . . . , tip ; their contents will be
the same as the content of the compartment on the left hand side, but x
will be replaced by y1, . . . , yp, respectively;

5. all the links of the compartment instantiated from tli will be inherited by
each of those instantiated from the compartment types ti1 , . . . , tip .

• A membrane dissolution rule, []tli → λ {g}, will destroy the compartment
obtained from li and its links, given the guard g is true for the current multiset;
no other structure changing rule (see Definitions 6 and 7) has been applied in
the same step;.

• A link creation rule, [x]tli ; []tlj → [y]tli − []tlj {g}, is executable if and only

if
1. its left hand side multiset, x, is contained in the current multiset in the

compartment;
2. its associated guard, g, holds;
3. there exists at least one membrane instance of type tlj which is not con-

nected to the instance of type tli (i.e there is at least one instance to link to);
if there are more instances then one will be non-deterministically chosen;

4. no other structure changing rule (see Definitions 6 and 7) has been applied
in the same step.

• A link destruction rule is executed when conditions similar to those men-
tioned for link creation hold.
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3 Neural-like P Systems and P Systems with Active
Membranes versus kP Systems

In order to prove how powerful and expressive kP systems are, we will show how
two of the most used variants of P systems are simulated by kP systems. More
precisely, we will show how neural-like P systems and P systems with active mem-
branes are simulated by some reduced versions of kP systems.

Definition 8. A neural-like P system (tissue P system with states) of degree n is
a construct Π = (O, σ1, ...σn, syn, i0) ([14], p. 249), where:

• O is a finite, non-empty set of objects, the alphabet;
• σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, represents a cell and

– Qi is the finite set of states of cell σi;
– si,0 ∈ Qi is the initial state;
– wi,0 ∈ O∗ is the initial multiset of objects contained in cell σi;
– Ri is a finite set of rewriting and communication rules, of the form sw →

s′xygozout; when such a rule is applied, x will replace w in cell σi, the objects
from y will be sent to neighbouring cells, according to the transmission mode
(see Remark 6) and the objects from z will be sent out into the environment;
cell σi will move from state s to s′;

• syn ⊆ {1, ..., n} × {1, ..., n}, the connections between cells, synapses;
• i0 is the output cell.

Remark 6. We discuss here a special class of P systems introduced in Definition 8
that will help us to prove a first result.

1. For neural-like P systems, three processing modes are considered, called “max”,
“min”, “par”, and three transmission modes, namely “one”, “repl”, “spread”.
For formal definitions and other details we refer to [14].

2. We denote by simple neural-like P systems the class of P systems given by
Definition 8, where the rewriting and communication rules have the form sw →
s′x(a1, t1) · · · (ap, tp), where th, 1 ≤ h ≤ p, denotes the target cell (σh), and
processing mode “max”, transmission mode defined by the target indications
mentioned in each rule.

Notation. For a given P system, Π, the set of numbers computed by Π will
be denoted by M(Π).

Theorem 1. If Π is neural-like P system of degree n, then there is a kP system,
Π ′, of degree n and using only rules of type (a), rewriting and communication
rules, simulating Π and such that M(Π ′) ⊆M(Π) ∪ {2}.

Proof. Let Π be a simple neural-like P systems of degree n, as defined by Remark
6.2. We construct the kP system, Π ′, as follows: the set of compartment types
T = {t1, . . . , tn}, where ti = (R′i, σi), 1 ≤ i ≤ n, (see below the definitions of ti
components) and Π ′ = (A,µ,C1, . . . , Cn, i0) where:
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• A = O ∪ (
⋃

1≤i≤nQi)∪ {γ}; γ is a new symbol neither in O nor in
⋃

1≤i≤nQi;
• µ = syn;
• Ci = (ti, w

′
i,0), 1 ≤ i ≤ n; and

– w′i,0 = γ, 1 ≤ i ≤ n;
– R′i contains the following rules:

1. γ → si,0twi,0, where si,0, wi,0 are the initial state and initial multiset,

respectively, associated with cell σi, and t ∈ Q(i)
si,0 . For s ∈ Qi, denote

by Q
(i)
s = {t|t ∈ Qi, sx → ty ∈ Ri}; i.e., Q

(i)
s gives, when the cell σi

is in state s, all the states where σi can move to. In the first step, in
compartment Ci, a rule γ → si,0twi,0 is applied and the current multiset
becomes w′i = si,0wi,0.

2. For each pair (s, t), t ∈ Q(i)
s , there are rules

sxj → tyj ∈ Ri, 1 ≤ j ≤ p (∗).
If there are no rules in Ri from s to t then another pair of states is
considered. For the above rules from Ri, (∗), the following rules are
considered in R′i:
xj → yj {= s ∧ = t}, 1 ≤ j ≤ p, and st → tq {≥ x1 ∨ . . .∨ ≥ xp},
q ∈ Q(i)

t (∗∗).
In the above guards the notation ≥ xj , if xj = aj,1 . . . aj,lj , denotes
≥ aj,1 ∧ . . .∧ ≥ aj,lj . The rules (∗∗) make use of guards; the first p rules
are applied iff the current multiset contains one s and one t, whereas
the last one is applicable iff at least one or more of the occurrences of
one of the multisets xj , 1 ≤ j ≤ p, is included in the current multiset.
Clearly, in state s only the rules (∗) of Π are applicable for this P system,
depending on the availability of the multisets occurring on the left hand
side of them; the next state Π is moving to t. Similarly, in Π ′ only the
rules denoted by (∗∗) are applicable; the rule st→ tq {≥ x1∨. . .∨ ≥ xp}
is applied once whereas the first p rules are applied as many times as
their corresponding (∗) rules are applied.

If the set Q
(i)
t used in st→ tq {≥ x1 ∨ . . .∨ ≥ xp} of (∗∗) is empty, i.e., there

are no rules from state t, then the rule is replaced by st→ λ. When Q
(i)
si,0 = ∅ then

the rule γ → wi,0 is introduced in R′i.
At any moment the component Ci of the kP system Π ′ contains a multiset

which is the multiset of σi augmented by the current state of σi, s, and one of the
next states, t, if it exists.

The process will stop in component Ci of Π ′ when no pair of rules of type (∗∗)
is applicable, which means no sxi → tyi rule is applicable in state s.

The multiset M(Π ′) contains M(Π) and maybe two states s, t occurring in the
last step of the computation. Hence M(Π ′) ⊆M(Π) ∪ {2}. ut

Remark 7. A few comments regarding Theorem 1.

1. The above simulation can be assessed with respect to number of compartments,
objects and rules as well as the computation steps.
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2. When rules sw → txygo ∈ Ri are used in the “spread” mode, this means
that any a ∈ O occurring in y may go to any of the neighbours. In this case if
y = y1ay2 then for each such a ∈ O, in the set R′i the rule w → xy {= s ∧ = t},
defined in the proof of Theorem 1, will be replaced by w → xy1(a, j)y2 {= s ∧ =
t}, where j the label of one of the neighbours of the current compartment. For
“one” mode all a′s in y will point to the same target, j, for all neighbours of
the compartment i.

3. The transmission replicative mode - when a symbol is sent to all the neighbours,
can also be simulated. Indeed if j1, . . . , jh are the neighbours of i, then w →
xy1(a, j)y2 is transformed into w → xy1(a, j1) . . . (a, jh)y2 for each a.

4. If a rewriting rule contains zout on its right side, i.e., sw → txygoxout then in
the set of rules transcribing it, w → α, we will have α = xy1(a, j)y2z

′, where if
z = a1 . . . ak, then z′ = a′1 · · · a′k; also rules a′ → λ will be added to R′i, for any
a ∈ O. In this way in the next step all the prime elements are removed from
the compartment.

5. If we want to simulate the “min” processing mode then this can be obtained
by specifying the sequential behaviour of the component i - by changing the
definition of σi corresponding to the component.

We study now how P systems with active membranes are simulated by kP sys-
tems. In this case we are dealing with a cell-like system, so the underlying structure
is a tree and a set of labels (types) for the compartments of the system. The sys-
tem will start with a number of compartment and its structure will evolve. In the
study below it will be assumed that the number of compartments simultaneously
present in the system is bounded.

Definition 9. A P system with active membranes of initial degree n is a tuple (see
[15], Chapter 11) Π = (O,H, µ,w1,0, . . . , wn,0, R, i0) where:

• O, w1,0, . . . , wn,0 and i0 are as in Definition 8;
• H is the set of labels for compartments;
• µ defines the tree structure associated with the system;
• R consists of rules of the following types

– (a) rewriting rules: [u → v]eh, for h ∈ H, e ∈ {+,−, 0} (set of electrical
charges), u ∈ O+, v ∈ O∗;

– (b) in communication rules: u[]e1h → [v]e2h , for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (c) out communication rules: [u]e1h → []e2h v, for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (d) dissolution rules: [u]eh → v, for h ∈ H\{s}, s denotes the skin membrane
(the outmost one), e ∈ {+,−, 0}, u ∈ O+, v ∈ O∗;

– (e) division rules for elementary membranes: [u]e1h → [v]e2h [w]e3h , for h ∈ H,
e1, e2, e3 ∈ {+,−, 0}, u ∈ O+, v, w ∈ O∗;

The following result shows how a P system with active membranes starting
with n1 compartments and having no more than n2 simultaneously present ones
can be simulated by a kP system using only rules of type (a).
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Theorem 2. If Π is a P system with active membrane having n1 initial com-
partments and utilising no more than n2 compartments at any time, then there
is a kP system, Π ′, of degree 1 and using only rules of type (a), rewriting and
communication rules, such that Π ′ simulates Π.

Proof. Let us denote J0 = {(i, h)|1 ≤ i ≤ n2, h ∈ H}; for a multiset w = a1 . . . am,
(w, i, h), (i, h) ∈ J0, denotes (a1, i, h) . . . (am, i, h). Let us consider the P system
with active membranes, Π = (O,H, µ,w1,0, . . . , wn1,0, R, i0). The polarizations of
the n1 compartments are all 0, i.e., e1 = . . . = en1 = 0.

We construct Π ′ using T = {t1}, where t1 = (R′1, σ1) (where R′1 and σ1 will
be defined later) as follows:
Π ′ = (A,µ′, C1, 1) where:

• A =
⋃

(i,h)∈J0
{(a, i, h)|a ∈ O ∪ {+,−, 0} ∪ {δ}}, where δ is a new symbol; let

us denote by = δall the guard ¬ = (δ, 1, 1) ∧ . . .∧¬ = (δ, n2, | H |), | H | is the
number of elements in H (= δall stands for none of the (δ, i, h), (i, h) ∈ J0);

• µ′ = []1;
• C1 = (t1, w

′
1,0), and

– w′1,0 = (w1,0, 1, h1) . . . (wn1,0, n1, hn1
)(e1, 1, h1) . . . (en1

, n1, hn1
),

e1 = . . . = en1
= 0; let Jc = J0 \ {(i, hi)|1 ≤ i ≤ n1} (Jc denotes indexes

available for new compartments and J0 \Jc the set of indexes of the current
compartments);

– R′1 contains the following rules
1. for each h ∈ H and each rule [u → v]eh ∈ R, e ∈ {+,−, 0}, we add the

rules (u, i, h)→ (v, i, h) {= (e, i, h) ∧ = δall}, 1 ≤ i ≤ n2; these rules are
applied to every multiset containing elements with h ∈ H, only when
the polarization (e, i, h) appears and none of the (δ, j, h′) appears;

2. for each h ∈ H and each rule u[]e1h → [v]e2h ∈ R, e1, e2 ∈ {+,−, 0}, we
add the rules (u, j, l)(e1, i, h) → (v, i, h)(e2, i, h) {= δall}, 1 ≤ i ≤ n2,
j is the parent of i of label l; these rules will transform (u, j, l) corre-
sponding to u from the parent compartment j to (v, i, h) corresponding
to v from compartment i of label h, the polarization is changed; for each
polarization, (e1, i, h) only one single rule can be applied at any moment
of the computation;

3. for each h ∈ H and each rule [u]e1h → []e2h v ∈ R, e1, e2 ∈ {+,−, 0}, we
add the rules (u, i, h)(e1, i, h) → (v, j, l)(e2, i, h) {= δall}, 1 ≤ i ≤ n2, j
is the parent of i of label l;

4. for each h ∈ H and each rule [u]eh → v ∈ R, e ∈ {+,−, 0}, we add
the rules (u, i, h)(e, i, h) → (v, j, l)(δ, i, h) {= δall}, 1 ≤ i ≤ n2, j is
the parent of i of label l; all the elements corresponding to those in
compartment i must be moved to j - this will happen in the presence of
(δ, i, h) when no other transformation will take place; this is obtained by
using rules (a, i, h) → (a, j, l) {= (δ, i, h)}, a ∈ O and (δ, i, h) → λ {=
(δ, i, h)}; the set of available indexes will change now to Jc = Jc∪{(i, h)};
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5. for each h ∈ H and each rule [u]e1h → [v]e2h [w]e3h ∈ R, e1, e2, e3 ∈
{+,−, 0}; if j1, j2 are the indexes of the new compartments, we add
(u, i, h)(e1, i, h) → (v, j1, k1)(e2, j1, k1)(w, j2, k2)(e3, j2, k2)(δ, i, h) {=
δall}, 1 ≤ i ≤ n2; the content corresponding to compartment i should
be moved to j1 and j2, hence rules (a, i, h) → (a, j1, k1)(a, j2, k2 {=
(δ, i, h)}, a ∈ O and finally (δ, i, h) → λ {= (δ, i, h)}; Jc is updated,
Jc = Jc ∪ {(i, h)} \ {(j1, k1), (j2, k2)}.

The size of the multiset obtained in i0 by using Π computation is the same as
the size of the multiset in Π, when only (a, i0, h) are considered, minus 1 (the
polarization is also included). ut

4 Case Study - Static Sorting

In this section we analyse the newly introduced kP systems by comparing them
with established P system classes by using them to specify a static sorting algo-
rithm. This algorithm was first written with symport/antiport rules [4] and then
reconsidered in some other cases [2]. The specification below mimics this algorithm.

4.1 Static Sorting with kP Systems

Let us consider a kP system having the following n = 6 compartment types:
ti = (Ri, σi) and corresponding compartments Ci = (ti, wi,0), 1 ≤ i ≤ n, where
w1,0 = a3;w2,0 = a6p;w3,0 = a9;w4,0 = a5p;w5,0 = a7;w6,0 = a8p.

The rules of the set Ri, 1 ≤ i ≤ n, are :
r1 : a→ (b, i− 1) {≥ p}, only for i > 1
r2 : p→ p′

r3 : p′ → (p, i− 1), for i even and r′3 : p′ → (p, i+ 1), for i odd
r4 : ab→ a(a, i+ 1), i < n
r5 : b→ a, i < n.

We assume that any two compartments, Ci, Ci+1, 1 ≤ i < n, are connected.
The aim of this problem is to order the content of these compartments such that
the highest element (a9) will be in the leftmost compartment, C1, and the smallest
one (a3) in the rightmost compartment, Cn, (n = 6).

Remark 8. The functioning of the kP systems is presented below:

• A = {a, b, p, p′} is the set of objects;
• the rule r1 is absent from the compartment C1;
• the last two rules, r4, r5, are only present in compartments C1 to Cn−1;
• for n = 2k + 1 we need an auxiliary compartment, Cn+1, which will start

with an initial multiset p and will contain a set of rules with r2 : p → p′ and
r3 : p′ → (p, n); whereas Cn should have an additional rule r′3 : p′ → (p, n+ 1);
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• in each compartment Ci, σi = {r1, r2, r3, r4}>{r5}>, if i is even; for odd values
of i, r3 is replaced by r′3; σi tells us that firstly the rules from the first set are
applied in a maximal parallel manner and then r5, also in a maximal way;

• σi describes an order relationship, r1, r2, r3, r4 > r5; so we can replace this kP
system by a P system with promoters and having an order relationships on the
set of rules associated with each membrane.

The table below presents the first steps of the computation. In the first step the
only applicable rules are r1, r2; given the presence of p, rule r1 moves all a′s from
each even compartment to the left compartment as b′s and rule r2 transforms p
into p′. Next, rules r3, r4, r5 are applicable; first r3 and r4 are applied, this means
p′ is moved as p to the left compartments and for each ab an a is kept in the
current compartment and a b is moved as an a to the right compartment; finally,
the remaining b′s, if any, are transformed into a’s. These two steps implement a
sort of comparators between two adjacent compartments moving to the left bigger
elements. In the previous steps the comparators have been considered between
odd and even compartments. In the next step p′s appear in even compartments
and the comparators are now acting between an even and an odd compartment.
The algorithm does not have a stopping condition. It must stop when no changes
appear in two consecutive steps. Given that the algorithm must stop in maximum
2(n− 1) steps, then we can introduce such a counter, c, in each compartment and
rules c→ c1, ci → ci+1, 1 ≤ i ≤ 2(n− 1)− 2 and c2(n−1)−1p→ λ.

Compartments - Step C1 C2 C3 C4 C5 C6

0 a3 a6p a9 a5p a7 a8p
1 a3b6 p′ a9b5 p′ a7b8 p′

2 a6p a3 a9p a5 a8p a7

3 a6p′ a3b9 p′ a5b8 p′ a7

4 a6 a9p a3 a8p a5 a7p
5 a6b9 p′ a3b8 p′ a5b7 p′

Remark 9. Bounded number of compartment types. The above solution is
using n compartment types for n compartments. As the rules are the same in each
compartment, with two exceptions involving the components at both ends of the
system (compartments C1 and Cn), it is natural to look for a solutions with a
bounded number of types. If we use the same type everywhere except for the two
margins then we face the problem of replacing the rules using targets with different
rules where the targets are now the new types; if these are the same we can no
longer distinguish between left and right neighbours, so we should have at least
two distinct ones. Additionally, we have to distinguish odd and even positions.
Consequently, four types, and two more for the two ends are enough. Are there
further simplifications? The answer to this question and the solution in this case
are left as exercises to the reader.
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4.2 Static Sorting with States

We consider the same n-compartment tissue-like P system structure as in the
previous subsection. Additionally, in this case, the rules in each compartment use
states; an order relationship between rules in each compartment is also considered.
Initial states are s1 in odd compartments and s0 otherwise; the content of the 6
regions is illustrated by the first line, step 0, of the table below.

The addition of states is potentially very useful from a modelling point of view
since many widely-used modelling languages are state-based and, therefore, such
rules were a strong candidate for inclusion in our kP system model. However, as
shown below, states can be effectively simulated by rewriting rules, as shown below.

For the algorithm considered, the rules in each compartment and the order
relationships are as follows
Compartment 1:
r1 : s0x→ s0y
r2 : s0y → s1x
r3 : s1ab→ s0a(a, 2)
r4 : s1b→ s0a
The rules satisfy: r1, r2, r3 > r4 .

Compartment i, 2 ≤ i ≤ n− 1:
r1 : s0a→ s1(b, i− 1)
r3 : s1ab→ s0a(a, i+ 1)
r4 : s1b→ s0a
The rules satisfy: r1, r3 > r4.

Compartment n:
r1 : s0a→ s1bn−1
r2 : s1x→ s1y
r3 : s1y → s1z
r4 : s1z → s0x

Membranes - Step C1 C2 C3 C4 C5 C6

0 s1 : a3x s0 : a6 s1 : a9 s0 : a5 s1 : a7 s0 : a8x
1 s1 : a3b6x s1 : s1 : a9b5 s1 : s1 : a7b8 s1 : x
2 s0 : a6x s1 : a3 s0 : a9 s1 : a5 s0 : a8 s1 : a7y
3 s0 : a6y s1 : a3b9 s1 : s1 : a5b8 s1 : s1 : a7z
4 s1 : a6x s0 : a9 s1 : a3 s0 : a8 s1 : a5 s0 : a7x
5 s1 : a6b9 s1 : s1 : a3b8 s1 : s1 : a5b7 s1 : x

In the case where we have an odd number of compartments, the n−th region
must contain an y instead of x. Thus the starting configuration for n = 7 is the
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following:
w1,0 = a3x;w2,0 = a6;w3,0 = a9;w4,0 = a5;w5,0 = a7;w6,0 = a8;w7,0 = a13y.

4.3 Static Sorting with P Systems Using Polarizations on Membranes

We now use cell-like P systems with active membranes to specify the same algo-
rithm. P systems with active membranes were introduced with the primary aim of
solving NP-complete problems in polynomial (often linear) time [15]. The key fea-
tures of this variant is the possibility of multiplying the number of compartments
during the computation process by using membrane division rules in addition to
multiset rewriting and communication rules. Each membrane can have one of the
three electrical charges {+,−, 0} and a rule can only be executed if the membrane
has the required electrical charge; a rule can also change the polarization of the
membrane when objects cross it (either in or out).

In our static sorting example compartments with two states were used, so,
when the algorithm is implemented using electrical charges, it is expected that
two electrical charges would suffice. Indeed, from the list of rules below one may
observe that 0 and + are the only polarizations utilised.

There is, however, a problem with this approach, arising from the rule appli-
cation strategy. In P systems with membrane division and polarizations, only one
rule which can change the polarization of a membrane can be applied per step [8].
The sorting algorithm however, employs maximal parallel communication rules
to operate the comparator procedure between membranes. In order to correctly
implement this procedure we will accept maximal parallel communication rules
which change the charge of the membrane they traverse to/from if and only if
they target the same final polarization.

In the case of P systems with polarizations on membranes we will use a cell-like
structure with n = 6 regions defined below with the initial multisets included and
initial polarizations; the implementation of the static sorting with P systems with
polarization on membranes is using priorities over the sets of rules.

µ = [[[[[[[a3x1]01a
6x1]+2 a

9x1]03a
5x1]+4 a

7x1]05a
8x1]+6 ]0aux

Rules:
”Comparator” rules:
r1 : a[]0j → [b]0j , 1 ≤ j ≤ n;

r2 : [ab]0j → a[a]+j , 1 ≤ j ≤ n;

r3 : [b→ a]0j , 1 ≤ j ≤ n;

Rules for switching polarities between adjacent membranes:
r4 : [x1 → x2]ij , 1 ≤ j ≤ n;

r5 : [x2]0j → y1[]+j , 1 ≤ j ≤ n;

r6 : [x2]+j → y1[]0j , 1 ≤ j ≤ n;

r7 : [y1 → y2]ij , 1 < j ≤ n+ 1;
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r8 : y2[]0j → [x1]+j , 1 ≤ j ≤ n;

r9 : y2[]+j → [x1]0j , 1 ≤ j ≤ n;
where i ∈ {0,+} ; and the order relationship r1, r2, r4, r5, r6, r7, r8, r9 > r3.

M/S []1 []2 []3 []4 []5 []6 []aux

0 [a3x1]0 [a6x1]+ [a9x1]0 [a5x1]+ [a7x1]0 [a8x1]+ [ ]0

1 [a3b6x2]0 [x2]+ [a9b5x2]0 [x2]+ [a7b8x2]0 [x2]+ [ ]0

2 [a6]+ [a3y1]0 [a9y1]+ [a5y1]0 [a8y1]+ [a7y1]0 [y1]0

3 [a6]+ [a3b9y2]0 [y2]+ [a5b8y2]0 [y2]+ [a7y2]0 [y2]0

4 [a6x1]0 [a9x1]+ [a3x1]0 [a8x1]+ [a5x1]0 [a7x1]+ [ ]0

5 [a6b9x2]0 [x2]+ [a3b
8x2]0 [x2]+ [a5b7x2]0 [x2]+ [ ]0

There are no additional requirements in the case where n = 2k + 1, however
we always entail an extra auxiliary membrane to enable out communication of the
n−th membrane, therefore allowing it to switch polarity.

A similar implementation of the static sorting algorithm can be obtained by
using P systems with labels on membranes. As illustrated in [1], we can encode elec-
trical charges in strings of the membrane labels, in order to differentiate between
the two necessary states. For each membrane hi we synthesise its complementary
label h′i, which is changed to by a communication rule. We leave this as an exercise
to the reader.

A number of (preliminary) conclusions can be drawn from the above case study:

• kP systems are conceptually closer to tissue P systems than cell-like P systems;
in our case studies, this is reflected by the similarity between the specifications
using kP systems and tissue P systems, respectively. On the other hand, the
model realised using the cell-like P system variant is significantly more complex.

• In terms of complexity, the three implementations are roughly equivalent. The
kP system executes in each step one more rule then the P system with states;
this rule is either r2 or r3 (dealing with p). On the other hand, the number
of rules applied in each compartment for every step by cell-like P systems is
similar to the case of kP systems.

5 Specification Languages

In this section a specification language covering the entire model of the kP system
will be described in Section 5.1 and a specification language with a different syntax
for a subset of the same model will be presented in Section 5.2.

5.1 Specification Language for kP Systems

Our Kernel P system research is to be complemented by a set of tools targeting the
simulation and trace analysis of various models on the one hand, but also the formal
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verification by means of automated model checking on the other hand. In order
to utilise such applications, a formal, unambiguous representation of the model
is required. We have attained this objective by designing a modelling language
capable of mapping the kernel P system specification into a machine readable
representation. We call this language kP–Lingua.

There are two principal and naturally opposing precepts which influenced and
guided the development of kP–Lingua:

1. Conciseness, simplicity, minimalism: the language must consist of a minimal
set of (meta-)descriptive symbols, keywords or constructs, such that it satisfies
the necessity for an unambiguous syntax.

2. Clarity, coherence, intelligibility: each statement or sequence of statements
must overly express an entity with its associated values or a binding between
two or more entities in the model; each proposition should be transparent in
its context and intuitive, intelligible in the absence of a reference manual.

This proposal stands at the confluence of these orthogonal aspirations and the
formal description of the computational model. Since kP systems explicitly apply
the type - instance paradigm with respect to compartments, a model definition
reflects this distinction in its structure, which is bi-partitioned as follows:

1. Type definitions - encompassing the instruction set, organised in accordance
with the type’s associated execution strategy.

2. Instance definitions and interlinking - establish the set of compartments and
related connections, assembling the graph-like structure of membranes.

A type is declared using the keyword type followed by the name of the type
- any combination of alphanumeric characters excluding the restricted keywords.
The body of a type declaration consists of a succession of guarded rules or rule
ensembles (choice, arbitrary execution and maximal parallel execution blocks) as
specified in the type’s execution strategy. A rule is represented as a guarded tran-
sition, symbolised by an arrow, between two terms. We illustrate the syntax of a
type definition and its constituents with a comprehensive example:

Example 4. A type definition in kP–Lingua.

type C1 {

2a, 3b -> c .

>= 2c & > 2b : b, c -> a .

choice {

b -> 2b .

< 3b : b -> 3b .

}

max {

a -> a, a(C2), {a, 2b}(C3) .
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}

2c -> -(C2) .

2b -> \-(C2) .

= 5a : a -> [3a, 3b](C1) [3b](C2) [3a](C3) .

}

In this example we define type C1 with the following sequence of rules: a rewrit-
ing rule which takes two a objects and three b objects and produces a c; a guarded
rewriting rule which yields an object a if and only if there are at least two c’s and
more than two b’s in the compartment the rule is applied on; next we have a choice

block with two rewriting rules of which one is guarded, followed by a maximally
parallel block where the rewrite communication rule is exhaustively executed, pro-
ducing an object a inside the membrane and sending an object a to compartments
of type C2, one a and two b’s to membranes of type C3 respectively; next, a link
creation rule expends two c objects to establish a new connection with an instance
of type C2; conversely, the following rule breaks a link with a compartment of type
C2, using two b’s; finally, a guarded membrane division rule takes one object a

and divides the compartment into three distinct compartments of types C1, C2, C3
respectively, if the number of a’s in the membrane is precisely five.

The newly created cells are initialised with the a copy of the multiset contained
in the divisible compartment, however, one a is substituted with the multiset
denoted by the value enclosed in the square brackets.

In kP–Lingua every statement terminates with a full stop and, similar to other
programming languages, each block which groups a set of statements together is
enclosed in curly braces.

An instance is declared as a typed multiset which also designates the initial
configuration of the compartment. Hence, a membrane of type C1 containing two
a and three b objects is encoded as {2a, 3b} (C1). We underline our choice of
a consistent notation both for type references and multiset values across different
declarative contexts. A variable is considered to be a type variable if it is en-
veloped by parentheses. Any other identifier within the scope of a type definition
is interpreted as an object and is prefixed by its multiplicity (if greater than one).
Membrane instances may also bear an identifier, a variable name nominating a
specific compartment in a ‘link’ statement. We further illustrate instantiation and
binding in Example 5.

Example 5. Instantiation and interlinking of compartments expressed in kP–Lingua.

m1 {a, b, 3c} (C1).

m2 {10 xx, 10 xy} (C2).

m1 - m2 .

m2 - m3 {} (C2) - {5 xx, 5 xy} (C2) - {m, 2n} (C3) .

m1 - m3 .

In the first line, compartment m1 of type C1 is declared, with an initial multiset
consisting of an a, a b and three c objects. m2 of type C2 is defined analogous. The
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third statement is a ‘link’ instruction, connecting the two previously instantiated
compartments. In kernel P systems links are bidirectional and consequently, the
connect binary operator (-) is neutral to the order of its arguments. This, however,
becomes relevant when we consider a succession of contiguous vertices in our graph
of compartments. Line four emphasises a more condensed way to link instances
together: the first one is a reference to compartment m2 which connects to a new
compartment of type C2 with an empty multiset and label m3; this is further joined
with an anonymous membrane of type C2 and finally, a second unlabelled instance
of type C3. The last line of the example connects m1 with m3, demonstrating the
necessity for identifiers and referencing when organising instances in a non-linear
structure (i.e., one that is more complex than a list).

We conclude this section by noting the two remaining elements which are not
featured in the examples, namely membrane dissolution, symbolised by ‘#’ and
the arbitrary execution block respectively. We also acknowledge the expressive
power of kP–Lingua whose syntax can intuitively represent a kernel P system
model with its plethora of components, using no more than four keywords (type,
choice, arbitrary, max), five delimiters ((), {}, [], : and .), eight relational
operators (=, !=, < , <=, >, >=, &, |) and four meta-symbols (->, -, \-, #) to identify
an instruction. A complete EBNF formal description of kP–Lingua’s syntax is
available in the Appendix.

5.2 Specification Language for a Subset of kP Systems

The previous section has described in detail the specification language for kernel
P systems (kP systems). However, a previous specification language was provided
to specify and simulate simple kernel P systems (skP systems), a simpler version
not taking into account some of the detailed current features of this model of
computation. The next subsections describe the syntax, the methodology and the
software environment provided with this alternative simpler model, illustrating
the process of specification and simulation through a case study, the NP-complete
Partition problem.

P–Lingua structures

The following structures, including kP–related features, have been added into P–
Lingua version 4, which will be shortly available [16]. The current version of P–
Lingua describes simple kP systems, a subset of kP systems [11]. Thus, it does not
support link creation rules, link destruction rules nor execution strategies (only
maximal parallelism). These features might be incorporated in future releases.

Guards: A guard g denoting a relational expression #a(w)γn (see Section 3) is
represented as {γ′a∗n}, where γ′ is a representation of γ such as < (for <), <=
(for ≤), = (for =), <> (for 6=), >= (for ≥) and > (for >). As illustrative exam-
ples, {<=c*2} represents the guard denoting #c(w) ≤ 2, whereas{>=b} repre-
sents #b(w) ≥ 1. As described in Section 4, guards denoting relational expres-
sions (namely relational guards) can be used in Boolean expressions (namely
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Boolean guards). Boolean operators involved in Boolean expressions, ∧ and
∨, are represented as && and ||, respectively. For instance, {<=a*2}&&{<=b}
represents the guard {≤ a2∧ ≤ b}. Similarly, {<=a*2}||{<=b} represents the
guard {≤ a2∨ ≤ b}. ∧ and ∨ operators can be combined to describe complex
guards, such as
{<=a*2}&&{<=b}||{<=a*3}&&{<=c*3}.
A rule r {g} is defined as
@guard g ? r.
For instance, rule a→ b {= a2} is defined as
@guard {=a*2} ? [a --> b].

Membrane initialisation: Membrane initialisation enables users to define mem-
branes in the initial configuration. According to the membrane structure
of the system defined, the syntax for membrane differs. In this respect,
mu(label1)+=[multiset]’label2;
is used for cell–like membrane structures (i.e, those of PDP systems [7]),
whereas
mu(0)*=[multiset]’label;
is used for tissue–like membrane structures, such as those of kernel P systems.
The former instruction adds a new membrane labelled label2 with associated
multiset multiset as a child of membrane label1, whereas the latter adds a
new membrane labelled label with associated multiset multiset to the initial
configuration.

New rules: In order to define the currently supported subset of kernel P systems,
some rules defined in Section 6 have been incorporated, which are:
Rewriting and communication rules: A rewriting and communication rule x→

y {g}, where x ∈ A+ and y, has the form y = (a1, t1) . . . (ah, th), h ≥ 0,
aj ∈ A and tj indicates a compartment type from T , is represented as
@guard g ? [x]’t0 --> [a1]’t1, ..., [ah]’th,
with t0 being the current compartment. In contrast to the definition given
in Section 6, the P–Lingua implementation of these rules does not require
t0 to be linked to every compartment ti, 1 ≤ i ≤ h.

Structure changing rules: A structure changing rule
[x]tli → [y1]ti1 . . . [yp]tip {g},
where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj

, tj,hj
) like in

rewriting and communication rules, is represented in P–Lingua as
@guard g ? [x]’tli |--> [y1]’ti1, ..., [yp]’tip;.
If any yj , 1 ≤ j ≤ p contains the special symbol @d, then membrane tij is
dissolved. These rules can be used in conjunction with membrane internal
iterators (see below), resulting in arbitrary division and relabelling rules
such as
[a]’1 |--> [b]’2 &{[c,d{i}]’{i}}:{3<=i<=n};.
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Internal iterators: These iterators enable users to define arbitrary, parameter–
dependent multisets, membrane structures and guards. These iterators ex-
pand the possibilities for defining rules and initial configurations. The syntax
for internal iterators is &{items}:{index ranges}, except for ∨–joined guards,
which is |{items}:{index ranges}. Unless otherwise stated, different internal
iterators can be combined in the same rule or sentence, but they cannot be
nested. Internal iterators can be used within three contexts:
Multiset internal iterators: The syntax for these iterators is

&{multiset}:{index ranges}. These iterators allow the extension of multi-
sets in rule definitions. For instance, given a value for n and a set of values
for ei, 1 ≤ i ≤ n, the rules [a→ b, ci, d

ei
i , 1 ≤ i ≤ n]1 are represented as

[a --> b, &{c{i}, d{i}*e{i}}:{1<=i<=n}’1;.
Membrane internal iterators: The syntax for these iterators is

&{[multiset]’{label}}:{index ranges}. These iterators allow to specify
communications to various compartments occurring on the right–hand side
of the rules only. The left–hand side communication cannot be specified
by using this mechanism. For instance, given a value for n and values for
ei, 1 ≤ i ≤ n, rewriting and communication rules x → (aeii , ti), 1 ≤ i ≤ n,
where x, ai ∈ A, 1 ≤ i ≤ n and tj indicates a compartment type from T ,
are represented as
[x]’t0 --> &{[a{i}*e{i}]’{i}}:{1<=i<=n};,
with t0 being the current compartment.

Guard internal iterators: These iterators are a special case, as they have two
possible syntaxes, according to the Boolean operators involved. These
forms are
&{guard}:{index ranges} |{guard}:{index ranges}.
The construct guards joined by ∧ operators (∧–joined guards), whilst the
latter uses ∨ operators (∨–joined guards). In addition, they are the only
internal iterators which can be nested, in the form of an ∧–joined guard
inside an ∨–joined guard. On the other hand, ∨–joined guards cannot be
defined into ∧–joined guards. As an example, given a value for n and a
value for m,
@guard |{{&{{<=B{i,j}*2}}:{1<=j<=m}}}:{1<=i<=n} ? [a-->b]’1;

can be applied iff, prior to the application of the rule, there exists at
least one value i, 1 ≤ i ≤ n, such that the cardinality of each object
Bi,j , 1 ≤ j ≤ m, in membrane 1, is greater than or equal to 2.

There are some constraints regarding indexes in internal iterators; they cannot
be part of numerical expressions (such as &{a{i+1}}:{1 <= i <= 10}) nor be
used as indexes for constants (such as &{a{g{i}}}:{1 <= i <= 10}). In addi-
tion, names used for indexes in any internal iterator cannot be used anywhere
else, including another internal iterator.
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A Case Study - Partition Problem

In the previous section we have introduced the subset of kP systems which is
included in P–Lingua platform, as well as the main features of the software tool.
This section describes a case study to be modelled and simulated, as explained in
the next section.

The problem we will focus on is the well-known NP-complete problem called the
partition problem. This is formulated as follows: let V be a finite set and weight,
an additive function on V with positive integer values. It is requested to find, if
exists, a partition of V , denoted V1, V2, such that weight(V1) = weight(V2).

A solution to this problem is provided in [9] by using a recogniser tissue P
system with cell division and symport/antiport rules. In this case study we adapt
the solution to skP systems.

Let V = {v1, . . . , vn} be a finite set with weight(vi) = ki, where ki is a positive
integer, 1 ≤ i ≤ n. The following skP system is built, depending on n (the number
of elements in the set), in order to check whether there is a partition, V1, V2, with
weight(V1) = weight(V2) = k (please note we also check that the weights of both
subsets are k). The set of component types, T = {t1, t2}, ti = (Ri, σi), 1 ≤ i ≤ 2.
R1 and R2 are given as follows:

• R1 contains
r1,1 : S → (yes, 0) {≥ T},
r1,2 : S → (no, 0) {≥ F ∧ < T};
r1,1 or r1,2 sends an answer yes or no, respectively, to the environment;

• R2 contains
membrane division rules:
r2,i : [Ai]2 → [BiAi+1]2[Ai+1]2, 1 ≤ i < n,
r2,n : [An]2 → [BnX]2[X]2, 1 ≤ i < n;
these rules generate in n steps all the subsets of V (2n subsets); each of them
being a potential V1 and V2 its complement;
rewriting rules:
r2,i,j : vivj → v {= Bi ∧ 6= Bj ∧ = X ∨ 6= Bi ∧ = Bj ∧ = X},
1 ≤ i < j ≤ n,
r2,n+1 : X → Y ; and
rewriting and communication rules:
r2,n+2 : Y → (F, 1) {≥ v1 ∨ . . . ∨ ≥ vn ∨ 6= vk},
r2,n+3 : Y → (T, 1) {< v1 ∧ . . . ∧ < vn ∧ = vk}.

The execution strategies are given by σi = Lab(Ri)
>, 1 ≤ i ≤ 2, i.e., maximal

parallelism. The skP system is given by skΠ3(n) = (A,µ,C1, C2, 0), where:

• A is the alphabet;
• µ is given by the graph with edge (1, 2);
• C1 = (t1, w1,0), C2 = (t2, w2,0), where w1,0 = S, w2,0 = A1code(n), with

code(n) = v1
k1 . . . vn

kn being the code of the weights of the elements in V , and
being k, half the sum of the ki values.
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The computation leads to an answer, yes or no, in n+3 steps. In fact, in n steps
all the subsets of V are generated, as it can be observed above. In step n+1, in each
compartment C2 every occurrence of an element vi of the subset of V is paired up
with an element vj of the complement as many times as the weights allow to, by
using r2,i,j as many times as possible; objects X are simultaneously transformed
into objects Y . The step n+ 2 consists of sending either T or F to compartment
C1 depending on whether all the elements of the subset and their complements are
paired up and the number of pairs is k (i.e., the weight of the partition), or the
weights of the subsets are different or are not equal to k (rules r2,n+3 and r2,n+2

are respectively used). Finally, in step n + 3 the answer is provided by using one
of the rules of C1.

This solution might be easily changed to only verify that weight(V1) =
weight(V2), by simply removing the condition referred to vk in guards attached
to rules r2,n+2 and r2n+3.

skP Systems Simulation

The previous sections have introduced some background details about P–
Lingua specification language and its new features with regard to skP systems,
along with the description of a case study, the Partition problem, modelled within
this approach. This section has the aim of outlining the basic facts concerning the
simulation environment to work with the above presented model.

An integrated methodology for modelling, simulation, analysis and formal veri-
fication of skP systems was first presented in [11]. This methodology was supported
by the software environment provided by MeCoSim and P–Lingua. P–Lingua pro-
vides the P systems designer with a powerful and expressive language to specify
skP systems or families of them, possibly including variable parameters whose val-
ues depend on the specific instance of the skP system to be generated, such as
n for the size of the input set. MeCoSim provides a customisable and extensible
visual environment to enable the end user interacting with the P system model
implementation. The user provides the input data by custom visual tables, and
then runs the simulations (by using the simulation engine of pLinguaCore, that
includes simulators for skP systems). Finally, custom visual outputs are generated
in the form of tables, charts and/or graphs.

The cited methodology has been applied to our case study, that is, partition
problem. The described model has been specified in P–Lingua format, having n
and the weights in code(n) as variable parameters, depending on the specific set
to analyse. P–Lingua file and some additional details about the interface and
simulation are available at [17].

In addition, a custom application has been defined in MeCoSim, enabling the
user entering n, k and the different weights k1 to kn for the elements in the input
set, as showed in Fig 1. As part of the custom application definition, a mapping is
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set to translate the input data into parameters for the model written in P–Lingua,
possibly after performing additional tasks over the input data. This way, when
the user introduces the specific input data and clicks Simulate!, the values for the
parameters are calculated, the initial configuration is generated, the specific skP
system is instantiated, and then the computation runs until a halting configuration
is reached.

Fig. 1. Input parameters in MeCoSim for Partition

After the simulation has finished, the desired custom outputs are provided
to the end user from the results of the computation, depending on the required
information to be shown. For instance, a skP systems designer might be interested
to know the contents of every membrane, or find out the answer, yes or no, to the
problem. Both outputs have been set in MeCoSim custom application, as shown
in Fig 2.

The explained process should be enough to solve the decision problem, but a
small additional effort could lead us to provide additional information, such as
the elements contained in every specific valid partition, in an automatic way. This
additional stuff has been provided by extending the original model with some
additional informational objects, and some extra output charts defined for the
custom output. The details can be found again in [17], but an example of output
chart for a specific partition is shown in Fig. 3.

6 Conclusions

The kP system introduced in this work represents a low level modelling language.
Its syntax and informal semantics and some examples have been introduced and
discussed. A case study based around a simple sorting algorithm has allowed us to
compare different specifications of this using various types of P systems. Finally
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Fig. 2. Output tables in MeCoSim for Partition

Fig. 3. Partitions Chart in MeCoSim
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two specification languages and an implementation are discussed. In the next stage
an implementation using the SPIN model checker is expected.
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5. G. Ciobanu, Gh. Păun, M. J. Pérez-Jiménez, eds., Applications of Membrane Com-
puting, Springer, 2006.

6. M. Clavel, F.J. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, Maude:
Specification and Programming in Rewriting Logic, Theoretical Computer Science,
285, 187 – 243, 2002.
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7 Appendix

7.1 The EBNF formal description of kP–Lingua’s syntax

kpsystem ::= {statement};

statement ::= type definition | instantiation | link;

type definition ::= ‘type’, space, [space], identifier, [space], ‘{’, [space], {(rule |
rule ensemble), [space]}, ‘}’;

rule ensemble ::= (‘choice’ | ‘max’ | ‘arbitrary’), space, [space], ‘{’, [space],
{rule}, [space], ‘}’;

rule ::= [guard, [space], ‘:’], non-empty multiset, ‘->’ (empty multiset | non-empty
multiset | targeted multiset | link creation | link destruction | dissolution |
division), [space], ‘.’;

multiset ::= empty multiset | non-empty multiset;

empty multiset ::= ‘{}’;

multiset atom ::= [multiplicity], [space], object;

non-empty multiset ::= multiset atom | (multiset atom, [space], ‘,’, [space], non-
empty multiset);

type reference ::= ‘(’, identifier, ‘)’;

targeted multiset atom ::= (multiset atom, [space], type reference) | (‘{’, non-
empty multiset, ‘}’, [space], type reference);
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targeted multiset ::= targeted multiset atom | (targeted multiset atom, [space],
‘,’ [space], targeted multiset);

link creation ::= ‘-’, [space], type reference;

link destruction ::= ‘\-’, [space], type reference;

dissolution ::= ‘#’;

division atom ::= ‘[’, [space], [non-empty multiset], [space], ‘]’;

division ::= {division atom, [space], type reference [space]};

instance ::= [identifier], space, [space], ‘{’, multiset, ‘}’, [space], type reference;

instantiation ::= (instance, [space], ‘.’) | (instance, [space], ‘,’, [space], instan-
tiation);

link operand ::= instance | identifier;

link ::= (link operand, [space], ‘-’, [space], link operand) | link, [space], ‘-’, [space],
link operand, ‘.’;

letter ::= ? A-Za-z ?;

digit ::= ? 0-9 ?;

alphanumeric ::= letter | ‘ ’ | digit;

identifier ::= letter, {alphanumeric};

object ::= letter, {alphanumeric | ‘”};

space ::= ? any space character ?;
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Summary. The Rete algorithm is a well-known algorithm in rule-based production sys-
tems which builds directed acyclic graphs that represent higher-level rule sets. This allows
the rule-based systems to avoid complete re-evaluation of all conditions of the rules each
step in order to check the applicability of the rules and, therefore, the computational
efficiency of the production systems is improved. In this paper we study how these ideas
can be applied in the improvement of the design of computational simulators in the
framework of Membrane Computing.

1 Introduction

Rules is one of the most used paradigms in Computer Science for dealing with
information. Given two pieces of knowledge V and W , expressed in some language,
the rule V → W is usually considered as a causal relation between V and W .
The interpretation of the rule can change according to the context, but roughly
speaking, the rule V → W claims that the statement W can be derived from the
statement V . The problem of knowing if a piece of information G can be obtained
via derivation from a set of current statements A and a set of rules R arises in a
natural way. This is usually called a reasoning problem and it will be denoted by
〈A,R,G〉.

In Computer Science, there are two basic methods for seeking a solution of
a reasoning problem, both of them based on the inference rule known as Modus
Ponens:

V V →W

W

which allows to obtain W from the rule V →W and the piece of information W .
The first method is data-driven and it is known as forward chaining, the latter is
query-driven and it is called backward chaining [1]. A study of these methods in
the framework of Membrane Computing can be found in [12, 13].

The piece of information V (the left-hand side of the rule or LHS) is usually
split into unit pieces v1, v2, . . . , vn. The forward chaining derivation of W (the right
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Forward chaining
Input: A reasoning problem 〈A, R, G〉
Initialise: Memory = A, Deduced = ∅

if G ∈Memory then
return true

end if
while Memory 6= Deduced do

Deduced←Memory
for all (v1v2 . . . vn →W ) ∈ R such that

{v1, v2, . . . , vn} ⊆ Deduced do
if W = G then

return true

else
Deduced← Deduced ∪ {W}

end if
end for

end while
return false

Fig. 1. From a computational point of view, the reasoning problem 〈A, R, G〉, can be
solved with the forward chaining algorithm

hand side of the rule or RHS) according to the Modus Ponens via the rule V →W
needs to check if the statements v1, v2, . . . , vn belong to the set of statements
currently accepted. Figure 1 shows a detailed description of the forward chaining
method.

The key point of this algorithm is to check for all rules v1v2 . . . vn →W whether
{v1, v2, . . . , vn} ⊆ Deduced or not. A naive algorithm for this checking consists on

1. Enumerating the rules and the Deduced set.
2. Performing a sequential pattern matching between them.

In the framework of Expert Systems [10], a solution to this problem was pro-
posed by Charles L. Forgy in his Ph.D. dissertation at the Carnegie-Mellon Univer-
sity in 1979 [8, 9]. The solution was called the Rete1 algorithm. The Rete algorithm
places pieces of information in the nodes of a graph and gets faster response time
than the naive algorithm of checking one by one the information units in the LHS
of the rules.

In spite of the notable differences between the semantics of the rules in Expert
Systems and in Membrane Computing, the problem of checking if the restrictions of
the LHS of the rule hold is common in both paradigms. In Membrane Computing,
a rule of the form

un1
1 . . . unk

k [ vm1
1 . . . vml

l ]αi → u′ [ v′ ]α
′

i

1 Rete means net in Latin.
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is applicable if, in the current configuration, there exists a membrane labelled
by i, with polarisation α, containing enough objects v1 . . . vl and such that its
surrounding membrane contains enough objects u1 . . . uk. Although the application
of the rule is different in both paradigms (in Membrane Computing, the objects in
the LHS are consumed and the objects in the RHS are created; in Expert Systems
the information in the LHS does not change, and the one in the RHS is considered
true), in both cases it is necessary a checking of the conditions in order to decide
the applicability of the rule.

In this paper we explore if the successful ideas underlying the Rete algorithm
can be adapted to the current P systems simulators and contribute to improve
their efficiency so that they can face medium-size instances of real life problems.

The paper is organised as follows: Next, we recall some preliminaries on the
derivation process in logic and rule-based expert systems. In Section 3 a short
description of the Rete algorithm is provided. Section 4 shows how this algorithm
can be adapted to P system simulators. Some final remarks and lines for future
research are provided in the last section.

2 Production Systems

Next, we recall some preliminaries on production systems and the derivation of
pieces of knowledge by using rules.

2.1 Formal Logic Preliminaries

An atomic formula (also called an atom) is a formula with no deeper structure.
An atomic formula is used to express some fact in the context of a given problem.
The universal set of atoms is denoted with U . A knowledge base is a construct
KB = (A,R) where A = {a1, a2, . . . , an} ⊆ U is the set of known atoms and R, a
set of rules of the form V →W with V,W ⊆ U , is the set of production rules.

In propositional logic, the derivation of a proposition is done via the inference
rule known as Generalised Modus Ponens

P1, P2, . . . , Pn P1 ∧ P2 ∧ · · · ∧ Pn → Q

Q

The meaning of this rule is as follows: if P1 ∧ P2 ∧ · · · ∧ Pn → Q is a production
rule and P1, P2, . . . , Pn ⊆ A then Q can be derived from this knowledge. Given
a knowledge base KB = (A,R) and an atomic formula g ∈ U , we say that g
can be derived from KB, denoted by KB ` g, if there exists a finite sequence of
atomic formulas F1, . . . , Fk such that Fk = g and for each i ∈ {1, . . . , k} one of
the following claims holds:

• Fi ∈ A.
• Fi can be derived via Generalised Modus Ponens from R and the set of atoms
{F1, F2, . . . , Fi−1}
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3 Rule-based Expert Systems

Instead of viewing computation as a specified sequence of operations, production
systems view computation as the process of applying transformation rules in a
sequence determined by the data.

A classical production system has three major components: (1) a global
database (or working memory) that contains facts or assertions about the par-
ticular problem being solved, (2) a rulebase that contains the general knowledge
about the problem domain, and (3) a rule interpreter that carries out the problem
solving process.

The facts in the global database can be represented in any convenient formal-
ism. The rules have the form IF <condition> THEN <action>

In general, the LHS or condition part of a rule can be any pattern that can be
matched against the database. It is usually allowed to contain variables that might
be bound in different ways, depending upon how the match is made. Once a match
is made, the right-hand-side (RHS) or action part of the rule can be executed. In
general, the action can be any arbitrary procedure employing the bound variables.
In particular, it can result in addition/elimination of facts to the database, or
modification of old facts in the database.

What follows is the basic operation for the rule interpreter (this operation is
repeated until no more rules are applicable):

1. The condition part of each rule (LHS) is tested against the current state.
2. If it matches, then the rule is said to be applicable.
3. From the applicable rules, one of them is chosen to be applied.
4. The actions of the selected rule are performed.

Production systems may vary on the expressive power of conditions in produc-
tion rules. Accordingly, the pattern matching algorithm which collects production
rules with matched conditions may vary.

3.1 The Rete Algorithm

The Rete algorithm is a well-known algorithm for efficiently checking the many
pattern/many object pattern match problem [8], and it has been widely used
mainly in production systems. In rule-based systems the checking process takes
place repeatedly. This algorithm takes advantage of two empirical observations:

• Temporal redundancy: The application of the rules does not change all the cur-
rent knowledge. Only some pieces of information are changed and the remaining
ones (probably, most of them) keep unchanged.

• Structural similarity: Several rules can (partially) share the same conditions in
the LHS.

This algorithm provides a generalised logical description of an implementa-
tion of functionality responsible for matching data from the current state of the
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system against productions rules in a pattern-matching. It reduces or eliminates
certain types of redundancy through the use of node sharing. It stores partial
matches when performing joins between different fact types. This allows the rule-
based systems to avoid complete re-evaluation of all facts each step. Instead, the
production system needs only to evaluate the changes to working memory.

The Rete algorithm builds directed acyclic graphs that represent higher-level
rule sets. They are generally represented at run-time using a network of in-memory
objects. These networks match rule conditions (patterns) to facts (relational data
tuples) acting as a type of relational query processor, performing projections, se-
lections and joins conditionally on arbitrary numbers of data tuples. In other words
the set of rules is preprocessed yielding a network in which each node comes from
a condition of a rule. If two or more rules share a condition then they usually share
that node in the constructed network. The path from the root node to a leaf node
defines a complete rule LHS.

Facts flow through the network and are filtered out when they fail a condition.
At any given point, the contents of the network captures all the checked conditions
for all the present facts.

This network (a directed graph) has four kind of nodes:

• Root: acts as input gate to the network. Receives the changes in the knowledge
base and then those tokens pass to the root successors.

• Alpha nodes: perform conditions which depend on just one pattern. If the
test succeeds, then received token passes to the node successors. There are
different alpha nodes depending on the considered pattern.

• Beta nodes: perform inter-patterns conditions, for example, if two patterns
have a common variable. It receives tokens from two nodes and stores the tokens
that arrive from each parent in two different memories. If a token arrives from
one of its input, then the condition will be checked against all the tokens in the
another input’s local memory. For each successfully checked pair, a new token,
combining both of them, passes to the node successors.

• Terminal nodes: receive tokens which match all the patterns of the LHS of
a rule and produce the output of the network.

For example, if the following set of production rules and facts are considered,
then the network displayed in Figure 2 will be created. The figure also shows how
tokens corresponding to different facts pass through the network.

Rule: R1 Fact: f1 H1(2, 1).
Exists H2(Y, Z, Z). Fact: f2 H1(2, 4).
Exists H1(X, Y > 3). Fact: f3 H2(4, 3, 3).

=> ... Fact: f4 H2(5, 9, 9).

Rule: R2 Fact: f5 H3(3).
Exists H2(Y, Z, Z). Fact: f6 H3(9).
Exists H3(Z).

=> ...
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Beta

H2

H1

H3

2nd el. = 3rd el.

Y(H1) = Y(H2)

2nd el. > 3

Alpha

R1

Z(H2) = Z(H3)

R2

f1
f2

f3
f4

f5
f6

f2

f3
f4

f3
f4

f3
f4

f2,f3

f3,f5
f4,f6

Fig. 2. Example of a Rete network and tokens flow

The most important issue regarding performance is the order of the conditions
in the LHS of the rule. This lead us to consider the following strategies in order
to improve the efficiency.

• Most specific to most general. If the rule activation can be controlled by a
single data, place it first.

• Data with the lowest number of occurrences in the working memory should go
near the top.
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• Volatile data (ones that are added and eliminated continuously) should go last,
particularly if the rest of the conditions are mostly independent.

With those strategies we are trying to minimise (in general) the number of beta
nodes that will exist in the network and, therefore, the number of checks performed
until a token arrived in a terminal node.

4 Membrane Computing

In this section we explore how the Rete algorithm can be adapted to Membrane
Computing simulators. For a first approximation we have chosen to focus on rules
handling polarisations, which can be written in the following form

un11 · · · u
nk
k [vm11 · · · v

ml
l ]αi → u′[v′]α

′

i

(k and/or l can be 0) with u1, . . . , uk, v1, . . . , vl ∈ Γ , u′, v′ ∈ Γ ∗, and either
vm11 · · · v

ml
l 6= λ or v′ 6= λ.

This rule is associated with any membrane with label i. In such a rule we can
distinguish three kinds of conditions:

• Membrane label is i and charge must be α: []αi
• Outside the membrane there must be at least nj copies of element uj: u

nj
j

• Inside the membrane there must be at least mi copies of element vi: [vmii ]

Now conditions can be reordered in order to follow the proposed strategies for
production systems. For example, consider the following rules:

• (R1) b3[ef]+2 → u[v]α2
• (R2) b3[fe2]+2 → u′[v′]α

′

2 .

We can describe them as follows in order to put at the beginning common
conditions:

• (R1) []+2 [f]b3[e] → u[v]α2
• (R2) []+2 [f]b3[e2] → u′[v′]α

′

2 .

To complete the example let us now consider a configuration where a mem-
brane labelled by 2 has positive charge, objects {f3, e7, o4, x} are inside it and the
objects {c, b8, g3} are in the surrounding membrane. This configuration leads to
the applicability of both rules.

Figure 3 shows the network associated to the rules of this example and how
objects of the considered configuration go through different nodes. When there is
not enough objects to pass trough a node they remain in it. Notice that from the
output of the network we deduce that each rule can be used at most two times.

Figure 4 shows a generic algorithm to simulate a P system with active mem-
branes using such networks. The halting conditions can be: A prefixed number of
repetitions, there is no rule that can be applicable, occurrence of specific objects. . .
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Charge: +

Membrane: 2

Inside: f

Copies: 1

Alpha

Outside: b

Copies: 3
b2

Inside: e

Copies: 1

Copies: 2
[e]

[f]+

([e])5

(R1)2

[e2]

(R2)2

+

([f])3

([f]+)3
(b3)2

(b3[f]+)2([e])7

(b3[f]+)2

([e2])3

(b3[ef]+)2

(b3[fe2]+)2

Fig. 3. Rete Network for P system
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Create the network associated to the rules of the system
Include in the network objects from the initial configuration
while some halting condition do

while there is no unmarked rule in the output of the network do
Select one rule from the output of the network (or a set)
Eliminate in the network all elements from the LHS of that rule
Mark the charge if its going to change (and marked any rule of
the output that change the charge for the same membrane)
Accumulate the objects that must be included in the system

end while
Eliminate marks to rules of the output
Change in the network the marked charges
Add all the accumulated objects

end while

Fig. 4. Generic pseudocode of a simulation algorithm

5 Final Remarks

Let us notice some final considerations:

• As there exists a big number of different P systems models (both syntactically
and semantically different), it is not possible to melt together all of them to have
a single way to construct the network. So, the basic lines shown in this paper
should be adapted to each specific model in order to improve the efficiency of
the designed simulator.

• One of the key points of the efficiency of the algorithm is the proper order in
the conditions of the LHS of the rule and this is a final choice of the designer
of the P system. For example, electrical charge is usually used as a controlling
condition, but it is the user who decided its role.

• Little syntactic or semantic changes on the model can have drastic influence
on the efficiency of the algorithm. As an illustrative example, we can consider
two similar models such that in the first one the membranes are injectively
labelled and in the second, two different membranes can share the same label.
This apparently slight difference requires a major change in the algorithm.

Recent applications of P system techniques to real-world problems (e.g.,[2, 7])
require more and more efficient simulators. In the similar way to other areas in
Computer Science, the availability of huge amount of data, together with the
iteration of probabilistic process in an attempt of simulating natural processes
needs of more and more efficient algorithms.

In this paper we recover a successful algorithm from the Expert System field
and propose a first attempt to consider it in the Membrane Computing frame-
work. The implementation is currently under development, and in principle it will
be inserted into a simulator within the P-Lingua framework. However, upon com-
pleting the implementation, we are convinced that it will be possible to export this
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technique into any other P system simulator. The adaptation of the algorithm has
been made by considering that the computer where the software runs has only one
processor and, in this way, the software simulation of the P systems is made se-
quentially in an one-processor machine. Nonetheless, new hardware architectures
are being used for simulating P systems [3, 4, 5, 6, 15, 16, 17], so the parallel
versions of the Rete algorithm [11, 14] and their relations with parallel simulators
of P systems should be considered in the future.
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3. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
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1Department of Computer Science and Engineering
Indian Institute of Technology, Madras
Chennai-36, India
kamala@iitm.ac.in, ajeeshramanujan@gmail.com

2Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania, and
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Summary. We introduce and briefly investigate P systems with controlled computa-
tions. First, P systems with label restricted transitions are considered (in each step, all
rules used have either the same label, or, possibly, the empty label, λ), then P systems
with the computations controlled by languages (as in context-free controlled grammars).
The relationships between the families of sets of numbers computed by the various classes
of controlled P systems are investigated, also comparing them with length sets of lan-
guages in Chomsky and Lindenmayer hierarchies (characterizations of the length sets of
ET0L and of recursively enumerable languages are obtained in this framework). A series
of open problems and research topics are formulated.

1 Introduction

Most investigations in membrane computing deal with cell-like distributed com-
puting devices (P systems) which process multisets of objects (symbols) in the
compartments defined by membranes. That is, the data structure used is the mul-
tiset, sets with multiplicities associated with their elements; as a consequence, in
a natural way, the results of computations are numbers. However, numerous re-
searches were devoted to computations which have as results strings over given
alphabets (in this way, the P systems generate/compute languages). Details and
references can be found in [5]. A concise presentation of this research direction, also
indicating a series of recent developments and several research topics, is provided
by [4].

One of the suggestions in [4] is to associate a control language to a P sys-
tem, in the way already well-known in formal language theory, e.g., in the case of
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context-free controlled grammars (see [2]). The difficulty in the case of P systems
is the parallelism of computations: arbitrarily many rules can be used in the same
step. There are two ways to overcome this difficulty. The first one, followed in [1],
assumes the computations sequential, but here we follow the way suggested in [6]
and further explored in [7]: in a step one may use only rules with the same label
from a given set of labels, maybe also rules having no label (we say that such a
rule has an empty label, denoted by λ). (Note that the sequential mode is not
obtained as a particular case, considering the rules labeled in a one-to-one manner
and without using the empty label: each single rule r : a → u should be used as
many times as a appears in a multiset.)

Several possibilities appear: to allow rules with empty labels or not; in the
latter case, to allow steps when only rules with empty labels are used or not; to
have a control language which is finite, regular, or from a subregular family of
languages other than the finite ones. Part of these possibilities will be considered
here, for non-cooperating P systems and for catalytic P systems.

Some delicate issues appear in comparison with the standard definition of suc-
cessful computations in P systems (where successful means halting). In the case
when no rule is labeled with λ, then in the end of the control word the com-
putation ends, hence we do not need to consider the halting condition. On the
contrary, when λ steps are possible, the halting condition should be preserved, as
the computation can continue forever by means of λ-steps without interacting with
the control word. Moreover, the rules are used in the maximally parallel manner,
which means that if no rule can be applied, then the maximally applicable mul-
tiset of rules is the empty one; this means that no rule (with the specified label
is applied), but still we consider this as a step of the computation. In the case of
rules with a nonempty label, one symbol of the control word is “consumed”, hence
a change in the system configuration (taking into account both the objects and the
control word) is obtained, but a λ-step where no rule is applied changes nothing
and the computation can continue forever. That is why we impose the restriction
that after a λ-step when no rule can be applied, no further λ-step is permitted.
This is important in ensuring the halting of computations. Note that a rule of the
form λ : a → a can be applied forever to a multiset which contains the object a:
nothing is changed, but the rule is effectively applied, this is not a λ-step when no
rule is applied.

As expected, by imposing restrictions on the way the rules of a P system
are used the computing power is increased. This is confirmed for several cases,
both by comparing the power of classes of controlled P systems to each other
and to (the sets of numbers associated with) classes of languages in Chomsky and
Lindenmayer hierarchies. In this framework, new characterizations of the length
sets of ET0L languages and of recursively enumerable languages are obtained.
Still, many problems remain open, while further related research topics can be
considered (we formulate part of these problems and topics in the last section of
the paper).
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As we mentioned before, P systems with computations controlled by means of
regular languages were also considered in [1], but in a restricted case: the computa-
tions were considered sequential and, moreover, the halting condition was replaced
with a more powerful condition.

2 Prerequisites

We assume the reader to be familiar with basic notions and results in formal
language theory (for details, one can consult [9]) and in membrane computing
(see, e.g., [5] and the area website from [10]), that is why we introduce here only
the notations we use.

For an alphabet V , we denote by V ∗ the set of all strings over V , including the
empty string, denoted with λ; V ∗ − {λ} is denoted by V +.

A Chomsky grammar is a tuple G = (N,T, S, P ), where N is the nonterminal
alphabet, V is the terminal alphabet, S ∈ N is the axiom, and P is the set of
rewriting rules. If the rules are of the forms A→ aB, A→ a, for A,B ∈ N, a ∈ T ,
then the grammar is said to be regular. (We omit the rules of the form A→ λ,A ∈
N , as they can be removed without changing the generated language, possibly
having only a rule S → λ in the case when λ ∈ L(G); however, as usual in formal
language theory, in what follows the empty string is ignored when comparing the
power of two string processing devices. Correspondingly, number 0 is ignored when
comparing the power of two number computing devices.)

We denote by FIN,REG,RE the families of finite, regular, and recursively
enumerable languages, respectively. In general, for a family FL of languages, we
denote by NFL the family of length sets of languages in FL; formally, NFL =
{length(L) | L ∈ FL}, where length(L) = {|x| | x ∈ L} and |x| is the length of the
string x. NREG is the family of semilinear sets of numbers (sometimes denoted
by SLIN1), and NRE is the family of sets of numbers which can be computed by
Turing machines.

A regularly controlled context-free grammar (with appearance checking) is a
6-tuple G = (N,T, S, P,K, F ), where G0 = (N,T, S, P ) is a usual context-free
grammar (nonterminal alphabet, terminal alphabet, axiom, set of rules), K ⊆ Lab∗
is a regular language over an alphabet Lab of labels associated in a one-to-one
manner to rules in P (thus, we can imagine that K ⊆ P ∗, with the rules considered
elements of an alphabet) and F ⊆ Lab. A derivation in G is a terminal derivation
in G0 which follows a control word w ∈ K, in the appearance checking mode: if
a rule r : A → u is to be used, r not in F , then the rule must be used, otherwise
(if A is not present in the sentential form) the derivation is blocked; if r ∈ F and
A appears in the sentential form, then the rule must be used, but if A does not
appear in the sentential form, then the rule is skipped and one passes to the next
label indicated by the control word w. All terminal words generated in this way
form the language L(G). One knows that context-free grammars (using λ-rules)
with regular control languages characterize RE (hence, in terms of length set,
characterize NRE).
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We will also need the notion of an ET0L system (extended tabled interactionless
Lindenmayer system). Such a device is a quadruple γ = (V, T, w, P ), where V is the
total alphabet, T ⊆ V is the terminal alphabet, w ∈ V + is the axiom, and P is the
finite set of tables; a table is a set of rules of the form a→ u, a ∈ V, u ∈ V ∗, which
is complete, i.e., for each a ∈ V there is a rule a→ u in the table. The derivation
starts from w; in a derivation step w =⇒ w′ we use a table in P , and this means
rewriting in parallel all symbols from w using the rules in the table. The generated
language, L(γ), consists of all strings in T ∗ generated in this way. The families of
languages of this form is denoted by ET0L. It is known that using or not λ-rules in
ET0L systems makes no difference in the generative power, the same family ET0L
is obtained, and that ET0L ⊂ RE and NET0L ⊂ NRE. If the terminal alphabet
T is not present, we have a (non-extended) tabled interactionless Lindenmayer
system, in short, a T0L system; then all strings generated are accepted in the
language L(γ) (hence each step of a derivation produces a string). It is known
that T0L ⊂ ET0L and NREG ⊂ NT0L ⊆ NET0L (see [8]).

In what concerns the classes of P systems we consider in this paper,
they are the cell-like transition P systems (in short, P systems), specifically,
with non-cooperating and with catalytic rules. Such a system is a tuple Π =
(O,C, µ,w1, . . . , wm, R1, . . . , Rm) where O is the alphabet of objects, C ⊆ O is
the set of catalysts (this component is present only in the catalytic systems and
it is omitted in non-cooperating P systems), µ is the membrane structure, with m
membranes, wi is the multiset of objects present in region i of µ in the initial con-
figuration, and Ri is the set of rules present in region i of µ; these rules are of the
forms a → u and ca → cu, where a ∈ O, c ∈ C, u ∈ ({bhere, bout | b ∈ O} ∪ {binj

|
b ∈ O, 1 ≤ j ≤ m})∗; the target indication here is omitted. If C = ∅, hence all
rules are of the form a → u, then Π is called non-cooperating. The computation
proceeds in a maximally parallel way and it provides an output only if it halts, a
configuration is reached where no rule can be applied. The result of a computation
is the number of objects which are sent out of the system during the computation
(objects b which appear in the form bout in the right hand side of rules used in the
skin region are sent out of the system, into the environment). The number m of
membranes in µ is called the degree of the system.

The set of numbers generated by a P system Π is denoted by N(Π). The family
of setsN(Π) generated by P systems of degree at mostm is denoted byNPm(ncoo)
when using non-cooperating rules and NPm(cati) when using catalytic rules, with
at most i catalysts present in the system. If the number of membranes is not
bounded, then the subscript m is replaced by ∗. The following results are known:
NP∗(ncoo) = NREG, NP1(cat2) = NRE, but the size of the family NP∗(cat1)
is not known (it is believed that it is strictly included in NRE). As only the case
of one catalyst is of interest, in what follows we will investigate only this case.
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3 Label Restricted P Systems

Consider a catalytic P system Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm) (of course,
if C = ∅, then we have a non-cooperating system) and associate with each rule
in sets R1, . . . , Rm a label, which can be either a symbol from an alphabet H
or it can be λ; thus, the rules are written in the form r : u → v, with r ∈ H,
or λ : u → v. We add then the alphabet of labels to the system, in the form
Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, H) and we say that Π is labeled. (Note that
this time the labeling is not necessarily one-to-one like in controlled context-free
grammars.)

A computation in a labeled P system Π is label restricted if in each step one
uses (in the maximally parallel manner) only rules with the empty label and rules
labeled with the same label in H. A step where only rules λ : u → v are used is
called a λ-step.

The computations proceed exactly as in a usual P system: we start from the
initial configuration, we proceed through maximally parallel steps (which are label
restricted), and we get a result (in the environment) after the computation halts.
Only halting computations provide a result.

Two cases can be distinguished: using only labels in H (indicated by
lr) or also allowing empty labels (indicated by lrλ). Correspondingly, we
obtain four families of sets of numbers: NP∗(ncoo, lr), NP∗(cat1, lr), and
NP∗(ncoo, lrλ), NP∗(cat1, lrλ), respectively. (Of course, when the number of mem-
branes is bounded, the subscript of NP specifies the bound.)

Note the important detail that lrλ indicates that rules λ : u → v are allowed
and, moreover, λ-steps are allowed. A possible case of interest would be to allow
rules with the empty label, but not λ-steps (i.e., to ask that in each step at least
a rule with a non-empty label to be used); this case remains as a research topic.

We will mention now, in the form of lemmas, a series of relations about families
defined up to now, and later we will synthesize all of them (as well as some results
from the literature) in a diagram theorem.

Lemma 1. NP∗(α) = NP1(α) and NP∗(α, β) = NP1(α, β), α ∈ {ncoo, cat1}, β ∈
{lr, lrλ}.

Proof. The first equality is known, the second one can be proved in the same way:
objects in a membrane i are indexed with i, and then all membranes different from
the skin membrane can be omitted, the rules are handling indexed objects in the
same way as in the compartments of the initial membrane structure. The target
indications in the right hand side of rules are easily implemented by changing the
subscripts of objects.

According to this lemma, from now on we will use only P systems with only
one membrane, and the subscript ∗ in the notation of the generated families is
omitted.

Lemma 2. NP (ncoo, α) ⊆ NP (cat1, α), α ∈ {lr, lrλ}.
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Proof. Directly from the definition.

Lemma 3. NP (α, lr) ⊆ NP (α, lrλ), α ∈ {ncoo, cat1}.

Proof. Directly from the definition.

Lemma 4. NP (α) ⊆ NP (α, lr), α ∈ {ncoo, cat1}.

Proof. Consider a system Π = (O,C, µ,w1, R1) and add to it the set H = {r},
with the same label r associated with all rules in R1. Denote by Π ′ the obtained
labeled P system. Clearly, no restriction is imposed on using the rules of Π ′, hence
N(Π) = N(Π ′).

Lemma 5. NET0L ⊆ NP (ncoo, lr).

Proof. Let γ = (V, T,w, P ) be an ET0L system with n tables. Label all rules in
table i with ri, 1 ≤ i ≤ n, and let P1 be the union of all these tables. We construct
the labeled P system

Π = (O, [ ]
1
, w,R1, H),

where

O = V ∪ {#},
R1 = P1 ∪ {f : A→ # | A ∈ V − T} ∪ {f : #→ #} ∪ {f : a→ (a, out) | a ∈ T},
H = {ri | 1 ≤ i ≤ n} ∪ {f}.

In each step of a computation in Π we use either only rules from a table of γ or
rules with the label f . If these latter rules are used before completing a terminal
derivation in γ, then the trap object # is introduced, and the computation never
halts. In the end of the computation, if the derivation in γ is not terminal, the rules
with the label f must be used – in this way we check whether the derivation in γ
was terminal; simultaneously, all terminal symbols of γ are sent to the environment,
hence the computation halts. Thus, we have, length(L(γ)) = N(Π).

Somewhat surprisingly, we also have the following result.

Lemma 6. NRE = NP (cat1, lr).

Proof. We only have to prove the inclusion ⊆, the opposite one is a consequence
of the Turing-Church thesis (it can also be proved by a direct, straightforward
but cumbersome construction of a Turing machine simulating a label restricted P
system).

Let us consider a regularly controlled context-free grammar G =
(N,T, S, P,K, F ), with K ⊆ Lab∗, where Lab is an alphabet of labels asso-
ciated in a one-to-one manner with rules in P . Consider a regular grammar
GK = (NK , Lab, SK , PK) generating the language K; assume the rules in PK
to be labeled in a one-to-one manner with symbols in a set LabK . We construct
the labeled catalytic P system
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Π = (O, {c}, [ ]
1
, cSKSE,R1, H),

where:

O = N ∪ T ∪NK ∪ {c, E, t,#},
H = {(s, r) | s ∈ LabK , r ∈ Lab} ∪ {f},

and the set R1 is constructed as follows:

1. For s : XK → rYK ∈ PK and r : A→ u ∈ P such that r /∈ F , we introduce in
R1 the following rules:

(s, r) : XK → YK ,

(s, r) : ZK → #, ZK ∈ NK , ZK 6= XK ,

(s, r) : cA→ cuhereuout, uhere contains all nonterminal

symbols of u and uout contains all terminal symbols of u,

with the subscript out,

(s, r) : cE → c#,

(s, r) : t→ #;

2. For s : XK → rYK ∈ PK and r : A→ u ∈ P such that r ∈ F , we introduce in
R1 the following rules:

(s, r) : XK → YK ,

(s, r) : ZK → #, ZK ∈ NK , ZK 6= XK ,

(s, r) : cA→ cuhereuout, uhere contains all nonterminal

symbols of u and uout contains all terminal symbols of u,

with the subscript out,

(s, r) : t→ #;

3. For s : XK → r ∈ PK and r : A→ u ∈ P such that r /∈ F , we introduce in R1

the following rules:

(s, r) : XK → t,

(s, r) : ZK → #, ZK ∈ NK , ZK 6= XK ,

(s, r) : cA→ cuhereuout, uhere contains all nonterminal

symbols of u and uout contains all terminal symbols of u,

with the subscript out,

(s, r) : cE → c#,

(s, r) : t→ #;

4. For s : XK → r ∈ PK and r : A→ u ∈ P such that r ∈ F , we introduce in R1

the following rules:
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(s, r) : XK → t,

(s, r) : ZK → #, ZK ∈ NK , ZK 6= XK ,

(s, r) : cA→ cuhereuout, uhere contains all nonterminal

symbols of u and uout contains all terminal symbols of u,

with the subscript out,

(s, r) : t→ #;

5. We also consider the following rules:

f : E → λ,

f : t→ λ,

f : ZK → #, ZK ∈ NK ,
f : A→ #, A ∈ N,
f : #→ #.

We start by introducing both the axiom S of G and the axiom SK of GK in the
initial configuration of Π, together with the catalyst c and the auxiliary object
E. The catalyst has the role of ensuring that the rules of P are simulated in a
sequential way, not in a parallel one.

The objects XK ensure the fact that the computation in Π follows the same
sequence of rules in P as requested by a control word from K. Together with
simulating a derivation step in GK (performed by a rule s : XK → rYK or s :
XK → r) we also simulate the rule r : A → u from P , and this is done by the
rules of Π with the label (s, r).

Consider a rule (s, r) : cA → cuhereuout in Π, corresponding to the rule r :
A→ u in P . If the object A is present and we use the rule (s, r) : cA→ cuhereuout,
this corresponds to a derivation step in G. If the object A is present and, instead of
(s, r) : cA→ cuhereuout we use the rule (s, r) : cE → c#, then no result is obtained,
the computation never halts. If the object A is not present and r : A→ u is a rule
from F (remember that the rules of P are labeled in a one-to-one manner with
symbols in Lab), then the rule cannot be applied, hence nothing is changed (the
rule (s, r) : cE → c# is not present in this case). If the object A is not present and
the rule r is not from F , then the trap-object # is introduced by means of the rule
(s, r) : cE → c#. This object will evolve forever by means of the rule f : #→ #,
hence the computation will never halt. In any moment, in between steps which
use rules (s, r), also rules f : A → #, A ∈ N, can be used, but this will lead to a
non-halting computation.

After ending the simulation of a computation in G, we can use an f -rule – and
this must be done, as otherwise the computation is not completed (not halted). In
this way, we check whether the derivation in G was a terminal one; if not, a rule
f : A→ # can be effectively used and the computation in Π will never halt.

If the derivation in GK is not correctly simulated, then again the trap object #
is introduced; this is ensured by the rules of the form (s, r) : ZK → # introduced
for each s and r.
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In the end of the derivation, if the symbol # was introduced, then the rule
f : #→ # can be used forever, hence the computation in Π will never stop.

If the derivation in GK is terminal, hence the object t is introduced, but the
derivation in G is not terminal, then for each rule (s, r) : cA → z which is used
from now on we have to also use (s, r) : t → # and the computation never halts.
Conversely, if the derivation in G ends first, then rules (s, r)XK → z can be used
only if r ∈ F , otherwise also the rule (s, r) : cE → c# must be used, but this does
not change the multiset generated by G. Thus, the derivations in GK and G end
in the right way.

Therefore, only (and all) terminal derivations in G which follow control words
in the language K can be simulated by halting computations in Π, that is, N(Π) =
length(L(G)).

4 Controlled P Systems

In the previous label restricted computations in a labeled P system all sequences
of labels are allowed, which corresponds to using H∗ as a control language. The
control language can be a particular one, and this leads to controlled P systems.

Such a system is of the form Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, H,K)
where (O,C, µ,w1, . . . , wm, R1, . . . , Rm, H) is a labeled P system and K ⊆ H∗

is a language in a given family FL. A computation in Π has to follow a control
word in K. If the empty label is not used, then the computation stops in the
moment when the control word ends, irrespective of the fact whether there are
rules which can be applied to the reached configuration. Of course, if rules with
the empty label (and hence λ-steps) are allowed, then arbitrarily many λ-steps
can be performed in between steps where rules with the labels indicated by the
word in K are used. This makes necessary the returning to the halting condition
in the case lrλ: after the last step where rules with a label in H is used, we have no
control about the end of the computation, arbitrarily many λ-steps can be done.
That is why we again impose the restriction that after a λ-step where no rule can
be applied we cannot continue with another λ-step (note that such a restriction
is not imposed for steps which correspond to non-empty labels: after a step when
rules with a label in H should be used, even if no rule is applicable, we pass to the
next label in the control word and again it may happen that no rule is applicable,
but the control word is “consumed” symbol by symbol).

The computation is done in the maximally parallel manner, in the label re-
striction framework. This means that when rules with a label r have to applied,
a maximal multiset of applicable rules with this label is used. In particular, such
a maximal multiset may be empty: no rule with label r can be applied. This is a
powerful feature, as it works in a way similar to the appearance checking feature
in regulated rewriting (in particular, in controlled context-free grammars).

We denote byNCPm(α, β, FL) the family of setsN(Π) generated by controlled
P systems Π of degree at most m, with rules of types α ∈ {ncoo, cat1}, with the
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rules labeled in the sense of β ∈ {lr, lrλ}, and with the control language in the
family FL. As usual, m is replaced with ∗ when no bound on the number of
membranes is considered.

Lemma 7. NCP∗(α, β, FL) = NCP1(α, β, FL) for all α ∈ {ncoo, cat1}, β ∈
{lr, lrλ}, and any family FL.

Proof. The same ideas as in the proof of Lemma 1 can be used.

Thus, from now on only P systems with only one membrane will be consid-
ered and no subscript is used in the notations of the generated families of sets of
numbers.

Lemma 8. NCP (ncoo, α, FL) ⊆ NCP (cat1, α, FL) for α ∈ {lr, lrλ},
NCP (α, lr, FL) ⊆ NCP (α, lrλ, FL), for α ∈ {ncoo, cat1} and all FL, and
NCP (α, β, FL) ⊆ NCP (α, β, FL′) for α ∈ {ncoo, cat1}, β ∈ {lr, lrλ}, for all
families FL ⊆ FL′.

Proof. Directly from the definitions.

Lemma 9. NFL ⊆ NCP (ncoo, lr, FL) for all families FL.

Proof. Let L ⊆ V ∗ be a language in a family FL. We construct the controlled P
system

ΠL = ({b} ∪ V, [ ]
1
, b, {a : b→ baout | a ∈ V }, V, L).

Taking a string w ∈ L as a control word, the rules of ΠL produce symbol by symbol
the string w and halts when the string ends (no λ-step is possible). Therefore,
N(ΠL) = length(L).

In what follows, we consider only control languages in the families FIN and
REG.

Lemma 10. NCP (α, lr, FIN) = NFIN,α ∈ {ncoo, cat1}.

Proof. All computations in a controlled P system where no rule has the empty
label and the control language is finite are finite, hence the inclusion ⊆ follows.
The opposite inclusion follows from Lemma 9.

Lemma 11. NCP (ncoo, lrλ, F IN) contains non-semilinear sets.

Proof. Consider the system

Π = ({a}, [ ]1, a, {λ : a→ aa, r : a→ aout}, {r}, {r}).

After n ≥ 0 λ-steps (during this time we produce 2n copies of object a), if we use
the rule r : a → aout (as requested by the control language), then all copies of a
should be sent out (hence the rule λ : a → aa should not be used at this step),
otherwise the computation will never halt (the rule r : a → aout cannot be used
for a second time). Therefore, N(Π) = {2n | n ≥ 0}, which is not a semilinear set.
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Lemma 12. NCP (ncoo, lr, REG) contains non-semilinear sets.

Proof. Consider the system

Π = ({a}, [ ]
1
, a, {r : a→ aa, r′ : a→ aout}, {r, r′}, {r∗r′}).

After n ≥ 0 steps when we produce 2n copies of object a by means of rule r, we
have to also use rule r′, which sends all objects to the environment, hence the
computation halts. Therefore, N(Π) = {2n | n ≥ 0}.

Lemma 13. NP (α) ⊆ NCP (α, lrλ, F IN), α ∈ {ncoo, cat1}.

Proof. Take a P system Π = (O,C, [ ]
1
, w1, R1) and construct the controlled

system

Π ′ = ({a} ∪O,C, [ ]
1
, a, {r : a→ w1} ∪ {λ : u→ v | u→ v ∈ R1}, {r}, {r}).

After one initial step, when producing the initial multiset of Π, the system Π ′

continues exactly as in Π, with arbitrarily many λ-steps. The computation in
Π ′ halts if and only if the corresponding computation in Π halts, hence we get
N(Π) = N(Π ′).

Lemma 14. NCP (ncoo, lrλ, REG) ⊆ NET0L.

Proof. Consider a controlled P system Π = (O, [ ]1, w1, R1, H,K) with K ∈
REG. Let G = (N,H, S, P ) be a regular grammar for the language K. We con-
struct the following ET0L system:

γ = (V, {b}, Sw1, U), where

V = N ∪H ∪O ∪ {rt | X → r ∈ P,X ∈ N, r ∈ H} ∪ {b,#},

and U contains the following tables (in each case, so-called completion rules are
added, i.e., rules of the form a → a for all symbols a ∈ V for which no rule was
already specified in the table; we do not explicitly specify these completion rules;
remember that in each rule a→ u of Π, the string u is composed of symbols a ∈ O
and aout, a ∈ O; in the rules of the tables below, b(u) denotes the string obtained
by replacing each aout from u ∈ (O ∪ {aout | a ∈ O})∗ by b):

1. {X → rY }
∪ {Z → # | Z ∈ N,Z 6= X}
∪ {rt → #}
∪ {a→ b(u) | r : a→ u ∈ R1}
∪ {a→ b(u) | λ : a→ u ∈ R1},
for each rule X → rY ∈ P, X, Y ∈ N, r ∈ H;

2. {X → rt}
∪ {Z → # | Z ∈ N,Z 6= X}
∪ {rt → #}
∪ {a→ b(u) | r : a→ u ∈ R1}
∪ {a→ b(u) | λ : a→ u ∈ R1},
for each rule X → r ∈ P,X ∈ N, r ∈ H;
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3. {X → X | X ∈ N} ∪ {rt → rt}
∪ {a→ b(u) | λ : a→ u ∈ R1};

4. {rt → λ}
∪ {Z → # | Z ∈ N}
∪ {a→ # | there is a rule λ : a→ u ∈ R1}
∪ {a→ λ | there is no rule λ : a→ u ∈ R1}
∪ {r → λ | r ∈ H}.

In each derivation step of γ one both generates a label r ∈ H, according to the rules
of the regular grammar G, and one simulates all rules with that label or rules with
the empty label (tables of type 1). λ-steps can be intercalated in-between steps
which use at least one rule with a label in H (tables of type 3). In the end of
the derivation in G one introduces the symbol rt and one simulates rules with the
label r and rules with label λ (tables of type 2).

After introducing a label rt, one can continue by simulating arbitrarily many
λ-steps (tables of type 3). The string can become a terminal one only by using the
table of type 4. This table checks whether the control word is completed, that is,
the derivation in G is terminal (if this is not the case, then a rule Z → #, Z ∈ N ,
has to be used), whether the computation in Π halted (if not, then rules a → #
can be used), erases all symbols a ∈ O for which there is no rule λ : a→ u ∈ R1,
all r ∈ H, as well as rt for r ∈ H. Note that all objects aout were replaced by b,
which is the terminal symbol of γ.

The tables cannot be used in the wrong moment, because of the rules of the
form Z → #.

Consequently, N(Π) = length(L(γ)), and this completes the proof.

5 A Synthesis Theorem

Putting together all previous lemmas as well as known relations between families
in Chomsky and Lindenmayer hierarchies, we obtain the following result.

Theorem 1. The relations from Figure 1 hold. The arrows indicate inclusions
while the dotted arrows correspond to strict inclusions.

We have not mentioned in this diagram the position of the family NT0L. For
it we have the following relations: NREG ⊂ NT0L ⊆ NCP (ncoo, lr, REG) ⊆
NET0L. The inclusion NT0L ⊆ NCP (ncoo, lr, REG) can be proved in a way
similar to the proof of Lemma 5.

Lemma 15. NT0L ⊆ NCP (ncoo, lr, REG).

Proof. Let γ = (V,w, P ) be a T0L system with n tables. Label all rules in table i
with ri, 1 ≤ i ≤ n, let H be the set of all these labels, and let P1 be the union of
all the tables (with labeled rules). Consider the labeled P system
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NFIN = NCP (ncoo, lr, F IN) = NCP (cat1, lr, F IN)

NREG = NP (ncoo)
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Fig. 1. The hierarchy of families of sets of numbers generated by controlled transition P
systems

Π = (V, [ ]
1
, w,R1, H ∪ {f}, H∗{f}),

R1 = P1 ∪ {f : a→ (a, out) | a ∈ V }.

In each step of a computation in Π we use only rules from a table of γ, chosen
according to a control word in H∗. When the control word ends, we sent all ob-
jects to the environment, and the computation stops. As H∗ contains all possible
sequences of tables, we have length(L(γ)) = N(Π).

Note that a similar language H∗ cannot be used in the ET0L case, because
we have to check whether the computation in Π ends when the ET0L system has
generated a terminal string.
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6 Further Research Topics

First of all, it is an open problem whether or not the inclusions in Figure 1
which were not shown to be proper are strict and whether the families not linked
by a path in this diagram are comparable. Note the difference between families
NCP (α, lr, FL) and NP (α, lrλ): the halting is different in the two cases and this
makes difficult their comparison (when we do not have λ-steps and we use a con-
trol word, the computation halts when the control word ends, without checking
whether further rules could be applied to the obtained configuration).

Then, besides the lr and lrλ cases considered here, further possibilities seem
to be of interest. First, we may impose that in each step when a nonempty label
r is indicated by the control word, at least one rule with this label is used (hence
we do not allow steps where the maximal multiset of applicable rules is empty –
or it contains only rules with the empty label). Also, in the lrλ case, we may not
allow λ-steps after ending the control word.

Besides considering sets of numbers computed by P systems, we can also con-
sider vectors of numbers, counting the multiplicity of different objects in the out-
put (this corresponds to Parikh sets of languages). Whether or not results different
from those in Figure 1 are obtained for vectors remains to be checked. (The ques-
tion is not trivial, in view of the fact that it is an open problem which of the
next inclusions is proper: NREG ⊆ NP (cat1) ⊆ NRE). Another direction of
research is to consider other classes of P systems instead of transition P systems.
For symport/antiport systems we cannot obtain too much, as these systems are
universal even with severe restrictions on the complexity of the systems in terms
of the number of membranes and the size of rules. Still, the idea of label restricted
computations is useful in the case of small symport/antiport systems: the following
example was given in [4]:

Π = ({a, b}, [ ]1, a, {a, b}, {r1 : (a, out; aa, in), r2 : (a, out; b, in)}, 1).

After using for some n ≥ 0 steps rule r1 (2n copies of a are obtained in the
system), the second rule should be used – otherwise the computation cannot stop.
The output is obtained in membrane 1 and we have N(Π) = {2n | n ≥ 0}, which
is not semilinear. The same result is obtained if the control language r∗1r2 is added
to the system Π.

Similarly, one has to consider the case of spiking neural P systems – the class
of P systems where the idea of control words (and hence of label restricted com-
putations) was introduced, [6].
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Summary. The P colonies were introduced in [6] as a variant of the bio-inspired com-
putational models called membrane systems or P systems. In [2] we divided agents into
the groups according the function they provide; we introduced the modularity on the
P colonies. PCol automata are an extension of the P colonies by the tape (see [1]).
This is an accepting computational device based on the very simple computational units.
In this paper we combine the approach of the modules in the P colonies and of the PCol
automata and we introduce the PCol automaton driven robot.

1 Introduction

Recently, the robotics has been more and more expanding and intervening in
various branches of science like biology, psychology, genetics, engineering, cogni-
tive science, neurology etc. An effort to create robots with an artificial intelligence
which are able to cogitate or solve various types of problems refers to hardware
and software limits. Many of these limits are managed to be eliminated by the in-
terdisciplinary approach which allows creating new concepts and technics suitable
for the robot control and facture of the new hardware.

Very robot control is often realised by the classical procedures known from the
control theory (see [9]), concepts inspired by the biology, evolution concepts (see
[5]) or with use of the decentralized approaches (see [8]).

The autonomous robot’s behaviour and its control are realized by the control
unit. Robots are equipped with the various types of sensors, cameras, gyroscopes
and further hardware which all together represents the robots perception. These
hardware components provide to the control unit the information about the actual
state of the environment in which the robot is present and also the information
about the internal states of the robot. After the transformation of these inputs
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there are generated a new data which are forwarded to the actuators like the
wheels, robotic arm etc. Thus the robot can pass the obstacle by using the sensors
and adjusting the speed of the particular wheels. So the objective of the control
unit is to transform input signals to the output signals which consequently affect
the behaviour of the robot. These changes in the behaviour cause that the robot
interacts with the environment and in the sight of the observer the robot seems
to be intelligent. Transformation of these signals can be done computationally
in various ways with use of the knowledge or fuzzy knowledge systems, artificial
neural networks, or just with use of the membrane systems or the P systems as it
will be shown in this paper.

The development, design and the realization of the new approaches and tech-
niques through which is possible to realize function of the control unit is one of
the key subject of the development of the artificial intelligence and the robotics.

P colonies were introduced in 2004 as abstract computing devices composed
from independent single membrane agents, reactively acting and evolving in
a shared environment. P colonies reflect motivation from colonies of grammar
systems, i.e. the idea of the devices composed from as simple as possible agents
placed in a common environment; the system, which produce nontrivial emergent
behaviour, using the environment only as the communication medium with no in-
ternal rules. P colonies consist of single cells “floating” in a common environment.
Sets of rules of cells are structured to simple programs in P colonies. Rules in
a program have to act in parallel in order to change all objects placed into the
cell, in one derivation step. Objects are grouped into cells or they can appear in
their completely passive environment in which these cells act. We assume that the
environment contains several copies of the basic environmental objects (denoted
in the formal definition of P colonies by e), as many as needed to perform a com-
putation. Moreover the environment can contain also finite number of non-basic
objects, and each entity contains a fixed (intuitively small) number of (possibly
identical) objects.

Cells as basic computing agents of P colonies are of as much as possible re-
stricted complexity and the capability. Each agent is associated with a small num-
ber of objects present inside it and with a set of rules forming programs for pro-
cessing these objects.

Two types of rules are considered, namely the evolution rules acting inside
agents, and the communication rules providing elementary interactions between
the agents and the environment.

Each of the evolution rules is able to rewrite one object in the agent into an-
other object which will remain inside this agent. Evolution rule is denoted by
a → b. The communication rules consist in the mutual exchanging of one object
inside the agent, and one object in its environment. We denote communication
rule by c↔ d, where the object appearing in the agent is written in the left side of
the relation ↔. Moreover checking rules are considered to extend the abilities of
agents follows: assume that communication rule can be chosen from two possibil-
ities with the first one having higher priority. The rule associated with the agent
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with greater priority has to be active. The agent checks the possibility to execute
the communication rule having higher priority. Otherwise, the second communi-
cation rule can be treated. We denote a checking rule being a pair c↔ d/c

′ ↔ d
′
.

A P colony with checking rules will be called also a P colony with priority.
The program of an agent allows changing all objects in the cell simultaneously

and deterministically by different rules, so the number of objects in an agent is
identical with the number of rules in each of its programs.

P colony starts a computation with given objects in the environment and in
each agent. We associate a result with a halting computation, in the form of the
number of copies of a distinguished object in the environment. Both parallel as
well as sequential computational mode of P colonies is discussed depending on the
amount of agents acting in one derivation step. In the first case, each agent which
can apply any of its programs has to choose one non-deterministically, and apply
it; in the sequential case one agent, non-deterministically chosen, is allowed to act.
P colonies are computationally complete, i.e. all the number sets computable by
Turing machines are computable also by P colonies. This gives the interpretation
that the environment is essential as a medium for communication and for storing
information during the computation, even with no structure and no information in
the environment at the beginning of the computation. The power of cooperating
agents of a very restricted form can be dramatically different from the power of
individual agents. For overview on P colonies we refer to [7], [3], [4].

Pcol automaton was introduced in order to describe the situation, when
P colonies behave according to the direct signals from the environment (see [1]).
This modification of the P colony is constructed in order to recognize input strings.
In addition to the writing and communicating rules usual for a P colony cells in
Pcol automata have also tape rules. Tape rules are used for reading next symbol on
the input tape and changing an object in cell(s) to the read symbol. Depending on
the way how tape rules and other rules can take a part in derivation process several
computation modes are treated. After reading the whole input word, computation
ends with success if the Pcol automaton reaches one of its accepting configura-
tions. So, in accordance with finite automata, Pcol automata are string accepting
devices based on the P colony computing mechanisms.

Agents can be grouped to different modules specified for some activities as
illustrated in [2] for P colonies. This approach will be used in the present paper
for Pcol automata illustrated in the case of robot control.
Throughout the paper we assume that the reader is familiar with the basics of the
formal language theory.

2 Preliminaries on the P colonies

P colony is a computing device composed from the environment and the indepen-
dent organisms called agents or cells. The agents live in the environment. Each
agent is represented by a collection of objects embedded in a membrane, which
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is constant during the computation. A set of programs, which are composed from
the rules, is associated with each agent. The rule can be either evolution rule or
communication rule. The evolution rules are of the form a → b. It means that the
object a inside the agent is rewritten (evolved) to the object b. The communication
rules are of the form c↔ d. When the communication rule is performed, the object
c inside the agent and the object d in the environment swap their places. Thus
after execution of the rule, the object d appears inside the agent and the object c
is placed in the environment.

In [6] the set of programs was extended by the checking rules. These rules give
an opportunity to the agents to opt between two possibilities. The rules are in the
form r1/r2. If the checking rule is performed, then the rule r1 has higher priority
to be executed over the rule r2. It means that the agent checks whether the rule
r1 is applicable. If the rule can be executed, then the agent is compulsory to use
it. If the rule r1 cannot be applied, then the agent uses the rule r2.

The environment contains several copies of the basic environmental object de-
noted by e. The number of the copies of e in the environment is sufficient, it means
that each agent which wants to receive the symbol e from the environment using
the communication rule will receive it.

We will handle parallel model of P colonies with checking rules (denoted by
NPCOLparK) in this paper. At each step of the parallel computation each agent
tries to apply one usable program. If the number of applicable programs is higher
than one, then the agent chooses one of the rules nondeterministically and the
maximal possible number of agents is active at each step of the computation. Each
P colony is characterised by three characteristics; the capacity k, the degree n and
the height h; denoted by NPCOLparK(k, n, h). The capacity k is the number of
the objects inside each agent, the degree n is the number of agents in the P colony,
the height h is the maximal number of programs associated with the agent of the
P colony.

2.1 Modularity in the therms of P colonies

The research of the P colonies suggested that particular agents are providing the
same function during the computation. This served as the inspiration to introduce
the modules in the P colonies. In the [2] we grouped agents of the P colony simu-
lating computation of the register machine into the modules. The agents providing
subtraction were classified into the subtraction module, agents providing addition
were sorted into the addition module, agents controlling the computation were
grouped into the control module, etc. The program of simulated register machine
is stored in the control module, so changing the program of the register machine
does not mean reprograming all the agents of the P colony but the change of the
control module.

The inspiration to introduce modularity was found in living organisms where
group of cells providing one function evolved into the organs and whole organism
is composed by these organs.
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In this paper, this approach to define modules will be used for the robot control.
One module for each module of the robot (sensors, actuators) will be defined. For
planning the robots action will be used the tape; PCol automaton.

2.2 PCol automata

By extending the P colony by the input tape we obtain a string accepting/ rec-
ognizing device; the PCol automaton (see [1]). The input tape contains the input
string which can be read by the agents. The input string is the sequence of the
symbols. To access the tape the agents use special tape rules (T-rules). The rules
not accessing the tape are called non-tape rules (N-rules). The computation and
use of the T-rules is very similar to the use of the rules in the P colonies. Once
any of the agents uses its T-rule, the actual symbol on the tape is considered as
read. The only difference between the tape and the environmental symbol is that
the tape symbol can access arbitrary many agents at the same time.

Definition 1. PCol automaton of the capacity k and with n agents, k, n ≥ 1 is
a construct

Π = (A, e, VE , (O1, P1) , . . . (On, Pn) , F ), where

• A is a finite set, an alphabet of the PCol automaton, its elements are called
objects;

• e is an environmental object, e ∈ A;
• VE is a multiset over A− {e} defining the initial content of the environment;
• (Oi, Pi), 1 ≤ i ≤ n is an i-th agent

– Oi is a multiset over A defining the initial content of the agent, |Oi| = k,
– Pi is a finite set of the programs,Pi = Ti ∪ Ni, Ti ∩ Ni = ∅, where every

program is formed from k rules of the following types:
· the tape rules (T-rules for short)
· a

T→ b are called the rewriting T-rules;
· a

T↔ b are called the communicating T-rules;
· the non-tape rules (N-rules for short)
· a→ b are called the rewriting N-rules;
· c↔ d are called the communicating N-rules;

· Ti is a set of tape programs (T-programs for short) consisting from one
T-rule and k − 1 N-rules.

· Ni is a set of non-tape programs (N-programs for short) consisting only
from N-rules.

• F is a set of accepting configurations of the PCol automaton, each state is
a (n+ 1)-tuple (vE ; v1, . . . , vn), where:
– vE ⊆ (A−{e})∗ is a multiset of the objects different from the object e placed

in the environment;
– vi, 1 ≤ i ≤ n is a content of the i-th agent;
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The configuration of the PCol automaton is (n+2)-tuple (wT ;wE ;w1, . . . , wn),
where wT ∈ A∗ the unprocessed (unread) part of the input string, wE ∈ (A− {e})∗
is a multiset of the objects different from the object e placed in the environment
of the PCol automaton and wi, 1 ≤ i ≤ n is a content of the i-th agent.

The computation starts in the starting configuration defined by the input string
on the tape the initial content of the environment and the initial content of the
agents. Actual symbol on the input tape we consider as read iff at least one agent
uses its T-program in the particular derivation step.

We define the rule r in following way:

r =
(
a

T/−→ b

)
⇒


left (r) = a
right (r) = b
export (r) = ε
import (r) = ε

r = (c
T/←→ d)⇒


left (r) = ε
right (r) = ε
export (r) = c
import (r) = d

For each configuration (wE , w1, . . . , wn) we define set of applicable programs
P(wE ,w1,...,wn):

• ∀p, p′ ∈ P, p 6= p′, p ∈ Pi, p
′ ∈ Pj ⇒ i 6= j

• for each p ∈ P and p ∈ Pi left(p) ∪ export(p) = wi

•
⋃

p∈P

import(p) ⊆ wE

For each configuration (wE , w1, . . . , wn) we define set of all sets of applicable
programs P(wE ,w1,...,wn)

For the configuration (wE , w1, . . . , wn) and the input symbol a we define:

• t-transition, ⇒a
t : If there is at least one set of applicable programs P ∈ P

such that each p ∈ P is the T-program with T-rule of the form x
T→ a or

x
T↔ a, x ∈ A and P is the maximal set (there does not exists other set P ′ ∈ P

where |P ′| > |P | fulfilling stated conditions).
• n-transition, ⇒n: If there is at least one set of applicable programs P ∈ P

such that each pi ∈ P is the N-program and P is the maximal set.
• tmin-transition ⇒a

tmin: If there is at least one set of applicable programs
P ∈ P such that there exists at least one program P is the T-program and it
is in the form x

T→ a or x T↔ a, x ∈ A, it can contain also the N-programs and
P is the maximal set.

• tmax-transition ⇒a
tmax: If there is at least one set of applicable programs

P ∈ P such that P = PN ∪PT where PN is a set of nontape programs and PT is
a maximal set of applicable tape programs of the form x

T→ a or x T↔ a, x ∈ A,
and P = PN ∪ PT is maximal;

We denote
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(wE , w1, . . . , wn)⇒a/
trans (w′E , w

′
1, . . . , w

′
n),

trans = {t, n, tmin, tmax}
where: for each j, 1 ≤ j ≤ n for which there exists p ∈ P ∧ p ∈ Pj , w′j =
right(p) ∪ import(p), if there does not exists p ∈ P ∧ p ∈ Pj so w′j = wj ; w′E =
wE −

⋃
p∈P

import(p) ∪
⋃

p∈P

export(p).

PCol automaton works in the t(tmax, tmin) mode of computation if it uses only
t- (tmax-, tmin-) transitions. PCol automaton works in the nt (ntmax or ntmin)
mode of computation if at any computation step it may use a t- (tmax- or tmin-)
transition or an n-transition. A special case of the nt mode is called initial, denoted
by init, if the computation of the automaton is divided in two phases: first it reads
the input strings using t-transitions and after reading all the input symbols it uses
n-transitions to finish the computation.

The computation ends by (types of acceptance):

halting (halt) - there does not exist an applicable set of programs corresponding
to the computation mode. Computation is successful if it ends and the whole
input tape is read.

reading the last input symbol (lastsym) - the computation (successfully)
ends if the last input symbol is read and there does not exist set of appli-
cable programs corresponding to the computation mode. The computation is
unsuccessful if it ends before reading the last symbol from the input tape.

final state reached (finstate) - the computation ends whenever the last symbol is
read as far as the automaton would not stop further. The computation is suc-
cessful if the input tape is read and PCol automaton reaches the configuration
from the set of the final states F .

The language accepted by the PCol automaton Π is defined as a set of the
words for which there exist successful computation in particular mode and type of
acceptance.

Definition 2. L(Π,mod, acc) = {w ∈ A∗|w is accepted by the computation in the
mode mod with type of acceptance acc },

where mod ∈ {t, nt, tmax, ntmax, tmin, ntmin, init} and acc ∈ {halt,
lastsym, finstate}.

3 Robot control using the PCol automaton

Main advantage of using PCol automaton in the controlling robot behaviour is the
parallel proceeding of the data done by very primitive computational units using
very simple rules.

By conjunction modularity and PCol automaton we obtain a powerful tool to
control robot behaviour. PCol automaton is parallel computation device. Collat-
erally working autonomous units sharing common environment provide fast com-
putation device. Dividing agents into the modules allows us to compound agents
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controlling single robot sensors and actuators. All the modules are controlled by
the main controlling unit. Input tape gives us an opportunity to plan robot ac-
tions. Each input symbol represents a single instruction which has to be done by
the robot, so the input string is the sequence of the actions which guides the robot
to reach his goal; performing all the actions.

We construct a PCol automaton with four modules: Control unit, Left actua-
tor controller, Right actuator controller and Infra-red receptor. Entire automaton
is amended by the input and output filter. The input filter codes signals from the
robots receptors and spread the coded signal into the environment. In the environ-
ment there is the coded signal used by the agents. The output filter decodes the
signal from the environment which the actuator controllers sent into it. Decoded
signal is forwarded to the robots actuators.

The control unit is the main module which controls the computation. It reads
the sequence of the actions from the input tape. According to the type of the action
read from the tape it asks the data from the sensors modules by sending particular
objects into the environment. If the answer from the sensors allows to perform
the action, the control unit sends the command to the actuator controllers to
perform demanded action. After sending the command to the actuator controllers
the control unit waits for the announcement of the successful or the unsuccessful
performance of the demanded action from the actuator controllers. If the action
was fulfilled then the control unit continues in reading the input tape and performs
following action.

The infra-red receptors consume all the symbols released into the environment
by the input filter. It releases actual information from the sensors on demand of the
control unit. The infra-red receptors remove unused data from the environment.

The left and right actuator controllers wait for the activating signal from the
control unit. After obtaining the activating signal the controllers try to provide
demanded action by sending special objects - coded signal for the output filter
into the environment. When the action is performed successfully the actuators
send the announcement of the successful end of the action to the control unit, the
announcement of the unsuccessful end of the action otherwise.

Let us introduce the formal definition of the mentioned PCol automaton: Π =
(A, e, VE , (O1, P1) , . . . (O7, P7) , ∅), where
A = {0L, 0R, 1L, 1R, e, FF , FF , FL, FL, FR, FR, GF , GL, GR, IF , IL, IR,MF ,

ML,MR, NF , NF , NL, NL, NR, NR, R,RT ,WF ,WL,WR,WT },
VE = {e},

Control Unit:
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O1 = { T, e},
P1 = { < RT

T→MF ; e→ e >; < GFMF →MFMF >; < MFMF → ee >;
< e↔ GF /e↔ R;MF →MF >; < RMF → eWT >;
< RT

T→ML; e→ e >; < GLML →MLML >; < MLML → ee >;
< e↔ GL/e↔ R;ML →ML >; < RML → eWT >;
< RT

T→MR; e→ e >; < GRMR →MRMR >; < MRMR → ee >;
< e↔ GR/e↔ R;MR →MR >; < RMR → eWT >;
< ee→ eWT >; < WT → e; e↔ RT > }

O2 = { T, e},
P2 = { < RT

T→MF ; e→ IF >; < IF ↔ e;MF →WF >;
< WF → e; e↔ FF /e↔ NF >; < FF → GF ; e→ e >;
< GF ↔ e; e→WT >; < RT

T→ML; e→ IL >;
< IL ↔ e;ML →WL >; < WL → e; e↔ FL/e↔ NL >;
< FL → GL; e→ e >; < GL ↔ e; e→WT >; < RT

T→MR; e→ IR >;
< IR ↔ e;MR →WR >; < WR → e; e↔ FR/e↔ NR >;
< FR → GR; e→ e >; < GR ↔ e; e→WT >; < R↔ e; e→WT >;
< WT → e; e↔ RT > }

Infra-red module:
O3 = { e, e},
P3 = { < e↔ FF ; e→ FF >; < FF ↔ IF /FF → e;FF → e >;

< e↔ NF ; e→ NF >; < NF ↔ IF /NF → e;NF → e >;
< IF e→ ee;>}

O4 = { e, e},
P4 = { < e↔ FL; e→ FL >;

< FL ↔ IL/FL → e;FL → e >; < e↔ NL; e→ NL >;
< NL ↔ IL/NL → e;NL → e >; < ILe→ ee;>}

O5 = { e, e},
P5 = { < e↔ FR; e→ FR >;

< FR ↔ IR/FR → e;FR → e >; < e↔ NR; e→ NR >;
< NR ↔ IR/NR → e;NR → e >; < IRe→ ee;>}

Left Actuator controller:
O6 = { e, e},
P6 = { < e↔MF ; e→ 1L >; < MF → RT ; 1L ↔ e >;

< e↔MR; e→ 1L >; < MR → RT ; 1L ↔ e >;
< e↔ML; e→ 0L >; < ML → RT ; 0L ↔ e >;
< RT ↔ e; e→ e >}

Right Actuator controller:
O7 = { e, e},
P7 = { < e↔MF ; e→ 1R >; < MF → RT ; 1R ↔ e >;

< e↔MR; e→ 0R >; < MR → RT ; 0R ↔ e >;
< e↔ML; e→ 1R >; < ML → RT ; 1R ↔ e >;
< RT ↔ e; e→ e >}



162 M. Langer et al.

Fig. 1. Simulator

Fig. 2. Starting position

Fig. 3. Ending position
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The robot driven by this very simple PCol automaton is able to follow the
instruction on the tape safely without crashing into any obstacle. If the instruction
cannot be proceeded, the robot stops. This solution is suitable for known robots
environment. Following the instructions on the tape (picture 1) the robot can
move from its starting position (picture 2) to the final destination (picture 3). If
the environment is changed before or during the journey, the robot cannot reach
the final place but it also will not crash.

4 Conclusion

We have shown the basic possibilities of controlling the robot using the PCol
automaton and modular approach. With respect to the fact that P colonies are
computationally complete device (see [2]) the further research will be dedicated to
the more precise control and the possibilities of processing the information from
other sensors, especially from the camera. Fulfilling more complex tasks and more
autonomous behaviour (e.g. attempt go round the obstacle if it is not possible to
go in demanded direction, skipping unrealizable tasks, etc.) is also direction of the
further research.

By extending the robot by the acting modules like e.g. mechanic tongs the
robot can fulfil more complicated tasks. To control such a device by the PCol
automaton we just need to add a new control module and extend set of programs
of the main control unit. Such an extension is thanks to the modularity very easy.
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This work was partially supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by
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Summary. We prove that asynchronous P systems with active membranes without divi-
sion rules can be simulated by place/transition Petri nets, and hence are computationally
weaker than Turing machines. This result holds even if the synchronisation mechanisms
provided by electrical charges and membrane dissolution are exploited.

1 Introduction

P systems with active membranes [5] are parallel computation devices inspired by
the structure and functioning of biological cells. A tree-like hierarchical structure of
membranes divides the space into regions, where multisets of objects (representing
chemical substances) are located. The system evolves by means of rules rewriting or
moving objects, and possibly changing the membrane structure itself, by dissolving
or dividing membranes.

Under the maximally parallel updating policy, whereby all components of the
system that can evolve concurrently during a given computation step are required
to do so, these devices are known to be computationally universal. Alternative up-
dating policies have also been investigated. In particular, asynchronous P systems
with active membranes [3], where any, not necessarily maximal, number of non-
conflicting rules may be applied in each computation step, have been proved able
to simulate partially blind register machines [4], computation devices equivalent
under certain acceptance conditions to place/transition Petri nets and vector ad-
dition systems [6]. This simulation only requires object evolution (rewriting) rules
and communication rules (moving objects between regions).

In an effort to further characterise the effect of asynchronicity on the computa-
tional power of P systems, we prove that asynchronous P systems can be simulated
by place/transition Petri nets, and as such they are not computationally equivalent
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to Turing machines: indeed, the reachability of configurations and the deadlock-
freeness (i.e., the halting problem) of Petri nets are decidable [1]. This holds even
when membrane dissolution, which provides an additional synchronisation mech-
anism (besides electrical charges) whereby all objects are released simultaneously
from the dissolving membrane, is employed by the P system being simulated. Un-
fortunately, this result does not seem to immediately imply the equivalence with
partially blind register machines, as the notion of acceptance for Petri nets em-
ployed here is by halting and not by placing a token into a “final” place [4].

The paper is organised as follows: in Section 2 we recall the relevant definitions;
in Section 3 we prove that asynchronous P systems are computationally equivalent
to sequential P systems, where a single rule is applied during each computation
step; in Section 4 we show that dissolution rules in sequential P systems can be
replaced by a form of generalised communication rule; finally, in Section 5 we show
how P systems using generalised communication rules can be simulated by Petri
nets, thus proving our main result. Section 6 contains our conclusions and open
problems.

2 Definitions

We recall the definition of P systems with active membranes and its various oper-
ating modes.

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a tuple
Π = (Γ,Λ, µ, wh1 , . . . , whd

, R), where:

• Γ is an alphabet, i.e., a finite nonempty set of objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree) consisting of d mem-

branes injectively labelled by elements of Λ;
• wh1 , . . . , whd

, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial
multisets of objects located in the d regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or negative (−)
and is always neutral before the beginning of the computation.

The following four kinds of rules are employed in this paper.

• Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).
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• Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β.

• Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and contain-
ing an occurrence of the object a; the membrane h is dissolved and its contents
are released in the surrounding region unaltered, except that an occurrence of
a becomes b.

The most general form of P systems with active membranes [5] also includes mem-
brane division rules, which duplicate a membrane and its contents; however, divi-
sion rules are not used in this paper.

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane several evolution rules having
the same left-hand side, or the same evolution rule can be applied simultane-
ously; this includes the application of the same rule with multiplicity).

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• In each computation step, all the chosen rules are applied simultaneously (in
an atomic way). However, in order to clarify the operational semantics, each
computation step is conventionally described as a sequence of micro-steps as
follows. First, all evolution rules are applied inside the elementary membranes,
followed by all communication and dissolution rules involving the membranes
themselves; this process is then repeated to the membranes containing them,
and so on towards the root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has been updated. For
instance, before a membrane dissolution occurs, all chosen object evolution
rules must be applied inside it; this way, the objects that are released outside
during the dissolution are already the final ones.

• The outermost membrane cannot be dissolved, and any object sent out from
it cannot re-enter the system again.

In the maximally parallel mode, the multiset of rules to be applied must be max-
imal (i.e., no further rule can be added without creating conflicts) during each
step. In the asynchronous mode, any nonempty multiset of applicable rules can be
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chosen. Finally, in the sequential mode, exactly one rule per computation step is
applied. In the following, only the latter two modes will be considered.

A halting computation of the P system Π is a finite sequence of configura-
tions C = (C0, . . . , Cn), where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rule can be applied in Cn. A non-
halting computation C = (Ci : i ∈ N) consists of infinitely many configurations,
again starting from the initial one and generated by successive computation steps,
where the applicable rules are never exhausted.

The other model of computation we will employ is Petri nets. In particular, with
this term we denote place/transition Petri nets with weighted arcs, self-loops and
places of unbounded capacity [2]. A Petri net N is a triple (P, T, F ) where P is the
set of places, T the set of transitions (disjoint from P ) and F ⊆ (P ×T )∪ (T ×P )
is the flow relation. The arcs are weighted by a function w : F → (N − {0}). A
marking (i.e., a configuration) is a function M : P → N. Given two markings M ,
M ′ of N and a transition t ∈ T we say that M ′ is reachable from M via the firing
of t, in symbols M →t M

′, if and only if:

• for all places p ∈ P , if (p, t) ∈ F and (t, p) /∈ F then M(p) ≥ w(p, t)
and M ′(p) = M(p)− w(p, t);

• for all p ∈ P , if (t, p) ∈ F and (p, t) /∈ F then M ′(p) = M(p) + w(t, p);
• for all p ∈ P , if both (p, t) ∈ F and (t, p) ∈ F then M(p) ≥ w(p, t) and M ′(p) =

M(p)− w(p, t) + w(t, p).

Petri nets are nondeterministic devices, hence multiple markings may be reachable
from a given configuration. We call halting computation a sequence of markings
(M0, . . .Mn) where M0 →t1 M1 →t2 · · · →tn Mn for some t1, . . . , tn, and no
transition may fire in Mn. Several problems related to the reachability of markings
and halting configurations (or deadlocks) are decidable [1].

3 Asynchronicity and Sequentiality

In this section we show how it is possible to find, for every asynchronous P system,
a sequential P system that is equivalent to the original one in the sense that they
both halt on the same inputs and produce the same outputs.

The main idea is that each asynchronous step where more than one rule is
applied can be substituted by a sequence of asynchronous steps where the rules
are reordered and applied one at a time.

Proposition 1. Let Π be a P system with active membranes using object evo-
lution, communication, and dissolution rules. Then, the asynchronous and the
sequential updating policies of Π are equivalent in the following sense: for each
asynchronous (resp., sequential) computation step C → D we have a series of
sequential (resp., asynchronous) steps C = C0 → · · · → Cn = D for some n ∈ N.
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Proof. Every asynchronous computation step C → D consists in the application
of a finite multiset of rules {e1, . . . , ep, c1, . . . , cq, d1, . . . , dr}, where e1, . . . , ep are
object evolution rules, c1, . . . , cq are communication rules (either send-in or send-
out), and d1, . . . , dr are dissolution rules.

Since evolution rules do not change any charge nor the membrane structure
itself, the computation step C → D can be decomposed into two asynchronous
computation steps C → E → D, where the step C → E consists in the application
of the evolution rules {e1, . . . , ep}, and the step E → D in the application of the
remaining rules {c1, . . . , cq, d1, . . . , dr}. Notice that in E there still exist enough
objects to apply these communication and dissolution rules, since by hypothe-
sis C → D is a valid computation step.

Furthermore, notice how there is no conflict between object evolution rules
(once they have been assigned to the objects they transform). Therefore, the ap-
plication of the rules {e1, . . . , ep} can be implemented as a series of sequential steps
C = C0 → · · · → Cp = E .

Each membrane can be subject to at most a single rule of communication or
dissolution type in the computation step C → D; hence, applying one of these
rules does not interfere with any other. Thus, these rules can also be serialised
into sequential computation steps E → Cp+1 → · · · → Cp+q+r = D. Once again,
all rules remain applicable since they were in the original computation step.

By letting n = p + q + r, the first half of the proposition follows. The second
part is due to the fact that every sequential computation step is already an asyn-
chronous computation step. ut

4 Generalised Communication Rules

In this section we define a variant of P systems with active membranes that we call
generalised communication P systems, where every evolution, communication, and
dissolution rule is replaced by a generalised communication rule, in which an object
can at the same time be rewritten and move between membranes while changing
their charges. This requires the introduction of an extra membrane charge. Gener-
alised communication rules are introduced in order to simplify the simulation by
means of Petri nets, as shown in the next section.

To maintain uniformity in the structure of the rules, we define the external
environment as a membrane having label 0 containing all the other membranes
and having constant charge.

Definition 2 (Generalised communication rules). A generalised communi-
cation rule is a rule of the form

[· · · [a[· · · [ ]αn

hn
· · · ]αi+1

hi+1
]αi

hi
· · · ]α1

h1
→ [· · · [w[· · · [ ]βn

hn
· · · ]βj+1

hj+1
]βj

hj
· · · ]β1

h1

On the left-hand side of the rule we have a path in µ (a sequence of nested mem-
branes) consisting of membranes h1, . . . , hn with charges α1, . . . , αn, and a single
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object a contained in membrane hi (for some 1 ≤ i ≤ n). On the right-hand side
the same path appears, with charges β1, . . . , βn, and a multiset w appears in mem-
brane hj (for some 1 ≤ j ≤ n). The rule can be applied when membranes h1, . . . , hn
have charges α1, . . . , αn and a copy of a exists inside hi; the rule removes that copy
of a from hi, adds w to the region hj, and changes the charges to β1, . . . , βn.

As a special case, h1 = 0 denotes the external environment of the P system; in
that case, the charge of h1 can never be changed.

Definition 3 (Generalised communication P systems). A generalised com-
munication P system of degree d ≥ 1 is a structure

Π = (Γ,Λ, Ψ, µ, wh1 , . . . , whd
, R)

where the elements Γ , Λ, µ, wh1 , . . . , whd
are the same as in standard P systems

with active membranes, Ψ is a finite, nonempty set of electrical charges (replacing
the standard set of charges {+, 0,−}), and R consists only of generalised commu-
nication rules.

We can now show that generalised communication P systems are equivalent to
standard P systems with active membranes (without division rules) when operating
under the sequential semantics.

Proposition 2. Let Π = (Γ,Λ, µ, wh1 , . . . , whd
, R) be a P system with active

membranes working in sequential mode and using object evolution, communica-
tion, and dissolution rules. Then, there exists a generalised communication P sys-
tem with active membranes Π ′ =

(
Γ,Λ, {+, 0,−, •}, µ, wh1 , . . . , whd

, R′
)

working
in sequential mode, having the same initial configuration C0 as Π, and such that

(i) If C = (C0, C1, . . . , Cm) is a halting computation of Π, then there exists a
halting computation D = (C0,D1, . . . ,Dn) of Π ′ such that each membrane
appearing in both Cm and Dn contains the same objects and has the same
charge in both configurations; if a membrane has dissolved during the compu-
tation C, then the corresponding membrane in Dn is empty and with charge •.

(ii) If D = (C0,D1, . . . ,Dn) is a halting computation of Π ′, then there exists
a halting computation C = (C0, C1, . . . , Cm) of Π such that each membrane
appearing in both Cm and Dn contains the same objects and has the same
charge in both configurations; if a membrane has charge • in Dn, then the
corresponding membrane dissolves during the computation C.

(iii) Π admits a non-halting computation (C0, C1, . . .) if and only if Π ′ admits a
non-halting computation (C0,D1, . . .).

Proof. The main idea is to replace every dissolution rule in R with a generalised
communication rule setting the charge of the membrane h that would be dissolved
with a new charge •. After setting the charge of h, the objects inside it must be
moved to the nearest surrounding membrane having charge different from •, in
order to ensure that membranes with the same label contain the same objects in
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Π and Π ′. Send-in communication rules must also be adapted, since the object to
be brought in might be not immediately outside the membrane, as a number of
membranes with charge • might be interposed.

Let [a]αh1
→ b be a dissolution rule in R. Then, R′ contains the following

generalised communication rules:

[[a]αh1
]βh2
→ [[ ]•h1

b]βh2
for β ∈ {+,−, 0, •}, (1)

where h2 is the parent membrane of h1 in µ. The remaining objects are sent out
from h1 by means of the following rules:

[[a]•h1
]βh2
→ [[ ]•h1

a]βh2
for a ∈ Γ , β ∈ {+, 0,−, •}. (2)

Notice that, if β = •, then membrane h2 has been dissolved during a previous
computation step; this means that there exists another rule of type (2) sending
all the objects out from h2. Hence, the objects never remain stuck in a membrane
with charge •, and eventually reach a membrane having a different charge.

An object evolution rule [a → w]αh is simulated by the following generalised
communication rule:

[a]αh → [w]αh . (3)

A send-out communication rule [a]αh1
→ [ ]βh1

b is replaced by the following rules:

[[a]αh1
]γh2
→ [[ ]βh1

b]γh2
for γ ∈ {+, 0,−, •}. (4)

where h2 is the parent membrane of h1 in µ. As mentioned before, if γ = •, then
a rule of type (2) will move b out of h2.

Finally, a send-in communication rule a [ ]αh1
→ [b]βh1

is simulated as follows.
Let (hn, hn−1, . . . , h2, h1) be a sequence of nested membranes surrounding h1, i.e.,
a descending path in the membrane tree µ. For every such sequence, we add the
following rules to R′:

[a [· · · [[ ]αh1
]•h2
· · · ]•hn−1

]γhn
→ [[· · · [[b]βh1

]•h2
· · · ]•hn−1

]γhn
for γ ∈ {+, 0,−}. (5)

This rule moves the object a into h1 from the nearest membrane outside h1 having
charge in {+, 0,−}, ignoring any interposed membrane with charge • (correspond-
ing to a dissolved membrane in Π). Observe that the number of descending paths
leading to h1 is bounded above by the depth of µ.

Notice how every rule of R′ is exactly of one type among (1)–(5); in particular,
given a rule in R′ of type (1), (3), (4), or (5), it always possible to reconstruct the
original rule in R.

Each computation step of Π consisting in the application of an evolution or
send-in communication rule is simulated by a single computation step of Π ′ by
means of a rule of type (3) or (5) respectively.

The dissolution of a membrane h1 in Π requires a variable number of steps
of Π ′: first, a rule of type (1) is applied, then each object located inside h1 is
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sent out to the nearest membrane surrounding h1 having a charge different from •
by using rules of type (2). The exact number of steps depends on the number of
objects located inside h1 and the number of membranes with charge • they have to
traverse. The reasoning is analogous for send-out communication rules, simulated
by means of rules of type (4) and (2).

Part (i) of the proposition follows from the semantics of generalised communi-
cation rules.

Now let D = (D0 = C0,D1, . . . ,Dn) be a halting computation of Π ′. Then
there exists a sequence of rules r = (r1, . . . , rn) in R′ such that

D0 →r1 D1 →r2 · · · →rn−1 Dn−1 →rn Dn
where the notation X →r Y indicates that configuration Y is reached from X by
applying the rule r. Let f : N→ N be defined as

f(t) =
∣∣{ri : 1 ≤ i ≤ t and ri is not of type (2)}

∣∣.
We claim that there exists a sequence of rules s = (s1, . . . , sm) such that the
computation C = (C0, . . . , Cm) of Π generated by applying the rules of s, i.e.,

C0 →s1 C1 →s2 · · · →sm−1 Cm−1 →sm
Cm

has the following property P (t) for each t ∈ {0, . . . , n}:
For all h ∈ Λ and a ∈ Γ , if h has a charge among {+, 0,−} in configura-
tion Dt of Π ′, then the number of copies of a contained in the membrane
substructure rooted in h is equal in Dt and Cf(t), and h has the same charge
in both configurations. If h has charge • in Dt, then it does not appear in
Cf(t) (having dissolved before).

We prove this property by induction on t. The case t = 0 clearly holds, since Π
and Π ′ have the same initial configuration: Cf(0) = C0 = D0, as f(0) = |∅|.

Now suppose P (t) holds for some t < n. If rt+1 is a rule of type (2) then an
object is sent out from a membrane with charge •; therefore, for each object a ∈ Γ ,
the number of copies of a does not change from Dt to Dt+1 in any subtree rooted
in a membrane having charge in {+, 0,−}; furthermore, no membrane changes its
charge. Since rt+1 is of type (2), we have f(t + 1) = f(t) hence Cf(t+1) = Cf(t),
and property P (t+ 1) holds.

On the other hand, if rt+1 is not of type (2), then f(t + 1) = f(t) + 1 by
definition. Let sf(t)+1 = sf(t+1) be the rule corresponding to the generalised com-
munication rule rt+1 as described above (an object evolution rule if rt+1 is of
type (3), a dissolution rule if rt+1 is of type (1), and so on). Observe that if rt+1

is applicable in Dt, then sf(t)+1 is applicable in Cf(t) by induction hypothesis:

• identically labelled membranes have the same charge in Dt and Cf(t);
• if rt+1 is of type (1), (3), or (4) and uses an object a located inside a membrane

h having charge +, 0, or − in Dt, then a copy of a also appears in membrane
h in Cf(t) for the membrane substructure property;
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• if rt+1 is of type (5) and uses an object a located inside a membrane h having
charge • in Dt, then the object a appears in Cf(t) inside the membrane having
the same label as the nearest membrane outside h in Dt with charge different
from •.

The configuration Cf(t)+1 such that Cf(t) →sf(t)+1 Cf(t)+1, due to the semantics of
the corresponding rules applied by Π and Π ′, is such that the property P (t + 1)
holds: objects are moved to identically labelled membranes, charges in {+, 0,−}
are changed in both systems in the same way, and membranes that are set to • by
Π ′ are dissolved by Π.

In particular, P (n) holds: configurations Dn and Cf(n) have the following prop-
erties: membrane substructures rooted in identically labelled membranes contain
the same multisets, identically labelled membranes have the same charge if it is in
{+, 0,−}, and membranes having charge • in Dn do not appear in Cf(n). Notice
that Cf(n) is a halting configuration, since otherwise any rule applicable from it
could be simulated from Dn as in statement (i). Furthermore, membranes having
charge • in Dn are empty, otherwise further rules of type (2) could be applied,
contradicting the hypothesis that Dn is a halting configuration. As a consequence,
not just the membrane substructures, but the individual membranes contain the
same multisets in Dn and Cf(n), and statement (ii) follows.

Finally, let us consider a non-halting computations of Π. Each time a com-
putation of Π can be extended by one step by applying a rule, that rule can be
simulated by Π ′ using the same argument employed to prove statement (i), thus
yielding a non-halting computation of Π ′. Vice versa, in a non-halting computa-
tion of Π ′ it is never the case that infinitely many rules of type (2) are applied
sequentially, as only finitely many objects exist at any given time, and eventu-
ally they reach a membrane having charge different from •. As soon as a rule of
type (1), (3), (4), or (5) is applied, the corresponding rule can also be applied by
Π, thus yielding a non-halting computation. ut

5 Simulation with Petri Nets

The generalised communication P systems we introduced in the last section can
be straightforwardly simulated by Petri nets.

Proposition 3. Let Π = (Γ,Λ, Ψ, µ, wh1 , . . . , whd
, R) be a generalised communica-

tion P system working in sequential mode. Then, there exists a Petri net N , having(
(Λ ∪ {0}) × Γ

)
∪ (Λ × Ψ) among its places, such that C → C′ is a computation

step of Π if and only if M → M ′ is a computation step of N , where

• M(h, a) is the number of instances of a in membrane h in C;
• M(0, a) is the number of instances of a in the environment in C;
• M(h, α) = 1 if h has charge α in C, and M(h, α) = 0 otherwise;
• M ′(h, a) is the number of instances of a in membrane h in C′;
• M ′(0, a) is the number of instances of a in the environment in C′;
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• M ′(h, α) = 1 if h has charge α in C′, and M ′(h, α) = 0 otherwise.

Proof. The set of places of N is defined as
(
(Λ ∪ {0}) × Γ

)
∪ (Λ × Ψ) ∪ {lock},

where lock is a place always containing a single token that is employed in order to
ensure the firing of at most one transition per step.

For every generalised communication rule

r = [· · · [a[· · · [ ]αn

hn
· · · ]αi+1

hi+1
]αi

hi
· · · ]α1

h1
→ [· · · [w[· · · [ ]βn

hn
· · · ]βj+1

hj+1
]βj

hj
· · · ]β1

h1

with w = w1w2 · · ·wm, the net has a transition defined as follows:

(hi, a) (h1, α1) (hn, αn)

· · ·

· · · · · ·

(hj , w1) (hj , wm) (h1, β1) (hn, βn)

lock

r

Notice that the output places need not be distinct, as the multiset w may contain
multiple occurrences of the same symbol; in that case, a weighted arc is used. The
output places need not be distinct from the input places either, as w may contain
a, or the charge of a membrane may not change. In that case, the net contains a
loop.

The initial marking M0 of N is given by

M0(h, a) = |wh|a M0(0, a) = 0
M0(h, 0) = 1 M0(h, α) = 0 M0(lock) = 1

for all h ∈ Λ, a ∈ Γ , and α ∈ Ψ − {0}, where |wh|a is the multiplicity of a in wh.
Notice that a transition r in N is enabled exactly when the corresponding

rule r ∈ R is applicable, producing a transition M →r M
′ corresponding to a

computation step C →r C′ of Π as required. ut

By combining Propositions 1, 2, and 3, we can finally prove our main theorem.

Theorem 1. For every asynchronous P system with active membranes Π using
evolution, communication, and dissolution rules there exists a Petri net N such
that every halting configuration of Π corresponds to a halting configuration of N
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and vice versa (under the encoding of Proposition 3, the charge • denoting dissolved
membranes), and every non-halting computation of Π corresponds to a non-halting
computation of N and vice versa. ut

Notice that, given the strict correspondence of computations and their halting
configurations (if any) between the two devices, this result holds both for P systems
computing functions over multisets (or their Parikh vectors) and those recognising
or generating families of multisets (or their Parikh vectors), since the only differ-
ence between these various computing modes is the initial configuration and the
acceptance condition; these are translated directly into the simulating Petri net.

6 Conclusions

We have proved that asynchronous P systems with active membranes (without
division rules) can be simulated by place/transition Petri nets, and hence are
not computationally universal. In order to achieve this result, we proved that
the asynchronous and the sequential parallelism policies are equivalent, and that
membrane dissolution can be replaced by a generalised form of communication,
together with an extra membrane charge.

However, the conjectured equivalence of asynchronous P systems and Petri nets
does not seem to follow immediately from our result and the previous simulation
of partially blind register machines by means of P systems [3]. Indeed, an explicit
signalling (putting a token into a specified place) instead of accepting by halting
seems to be required in order to simulate Petri nets with partially blind register
machines [4]. Directly simulating Petri nets with asynchronous P systems is also
nontrivial, since transitions provide a stronger synchronisation mechanism than
the limited context-sensitivity of the rules of a P system with active membranes.
This equivalence is thus left as an open problem.

We also conjecture that asynchronous P systems with active membrane remain
non-universal even when membrane division rules are allowed. However, if this is
the case, a different proof technique than that of Section 3 is required, as our
current simulation by Petri nets does not support the creation of new membranes.
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Summary. We improve previously known universality results on enzymatic numerical
P systems (EN P systems, for short) working in all-parallel and one-parallel modes. By
using a flattening technique, we first show that any EN P system working in one of these
modes can be simulated by an equivalent one-membrane EN P system working in the
same mode. Then we show that linear production functions, each depending upon at most
one variable, suffice to reach universality for both computing modes. As a byproduct, we
propose some small deterministic universal enzymatic numerical P systems.

1 Introduction

Numerical P systems have been introduced in [10] as a model of membrane systems
inspired both from the structure of living cells and from economics. Each region of
a numerical P system contains some numerical variables, that evolve from initial
values by means of programs. Each program consists of a production function and
a repartition protocol ; the production function computes an output value from
the values of some variables occuring in the same region in which the function
is located, while the repartition protocol distributes this output value among the
variables in the same region as well as in the neighbouring (parent and children)
ones.

In [10], and also in Chapter 23.6 of [11], some results concerning the computa-
tional power of numerical P systems are reported. In particular, it is proved that
nondeterministic numerical P systems with polynomial production functions char-
acterize the recursively enumerable sets of natural numbers, while deterministic
numerical P systems, with polynomial production functions having non-negative
coefficients, compute strictly more than semilinear sets of natural numbers.

Enzymatic Numerical P systems (EN P systems, for short) have been intro-
duced in [13] as an extension of numerical P systems in which some variables,
named the enzymes, control the application of the rules, similarly to what hap-
pens in P systems with promoters and inhibitors [1]. Although in [10] it is claimed
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that numerical P systems have been inspired by economic and business processes,
the most promising application of their enzymatic version seems to be the simu-
lation of control mechanisms of mobile and autonomous robots [12, 2, 14, 15].

In [17, 16] some results concerning the computational power of enzymatic P
systems are reported. In particular, in [17] it is shown that EN P systems with
7 membranes and polynomial production functions of degree 5 involving at most
5 variables, working in the sequential mode (at each step, only one of the active
programs is applied in each membrane) are universal. The computational power of
EN P systems working in the so called one-parallel mode — programs are applied
in parallel in each membrane, but each variable can appear only in one of the
production functions — is also investigated, showing universality of these systems
with an unlimited number of membranes and linear production functions (that is,
polynomial functions of degree 1), each involving at most 2 variables. Finally, the
universality of (deterministic) EN P systems working in the all-parallel mode —
in each membrane all programs which can be applied are applied, possibly using
the same variable in many production functions — having 254 membranes and
polynomial production functions of degree 2 involving at most 253 variables, is
established. A considerable improvement of the last result has subsequently been
presented in [16], where it is proved that 4 membranes and linear production
functions involving at most 6 variables suffice to obtain universal deterministic
EN P systems working in the all-parallel mode.

In this paper we continue the study of the computational power of enzymatic
numerical P systems. In particular we first show that, given any EN P system Π
working either in the one-parallel or in the all-parallel mode, it is possible to build
an equivalent EN P system Π ′ whose structure consists of a single membrane.
This flattening technique already improves some of the above mentioned results,
reducing to 1 the number of membranes required by all-parallel or one-parallel
EN P systems to reach universality — albeit, despite this transformation, one-
parallel EN P systems still require an unbounded number of variables. Then, we
prove that for EN P systems working either in the all-parallel or in the one-parallel
mode one membrane and linear production functions — each involving at most 1
variable — suffice to reach universality. These results are all obtained by simulating
deterministic and/or nondeterministic register machines; by considering a small
deterministic universal register machine described in [6], we obtain as byproducts
some small deterministic universal EN P systems, working in the all-parallel mode.

A point to be considered is that the output of our EN P systems is defined as
the value of some specified variables in a final configuration, that is, a configuration
which is not changed by further applying programs. This allows us to simplify some
of our constructions, but it is a bit different from the way EN P systems produce
their output in most existing papers, where some specified output variables are
considered, and the output of the system is the set of all values assumed by these
variables during the entire computation. However, we prove that each of our EN
P systems can be easily modified in order to produce its output according to the
latter mode.
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The rest of the paper is organized as follows. In section 2 we recall the defi-
nitions of EN P systems and register machines, along with the terms, tools and
notation that will be used in the following. In section 3 we first show that any
EN P system working either in the all-parallel or in the one-parallel mode can
be “flattened” to one membrane, and then we prove our universality results on
one-membrane EN P systems working in all-parallel or in one-parallel modes. In
section 4 we show that the EN P systems used to obtain these results can be
modified in order to produce their output into separate variables, as it is usually
done in the literature. The conclusions and some directions for further work are
given in section 5.

2 Definitions and Mathematical Preliminaries

We denote by N the set of non-negative integers. An alphabet A is a finite non-
empty set of abstract symbols. Given A, the free monoid generated by A under
the operation of concatenation is denoted by A∗; the empty string is denoted by
λ, and A∗ − {λ} is denoted by A+. By |w| we denote the length of the word w
over A. If A = {a1, . . . , an}, then the number of occurrences of symbol ai in w is
denoted by |w|ai

; the Parikh vector associated with w with respect to a1, . . . , an is
(|w|a1 , . . . , |w|an

). The Parikh image of a language L over {a1, . . . , an} is the set
of all Parikh vectors of strings in L. For a family of languages FL, the family of
Parikh images of languages in FL is denoted by PsFL. The family of recursively
enumerable languages is denoted by RE; the family of all recursively enumerable
sets of k-dimensional vectors of non-negative integers can thus be denoted by
Ps(k)RE. Since numbers can be seen as one-dimensional vectors, we can replace
Ps(1) by N in the notation, thus obtaining NRE.

2.1 Enzymatic Numerical P Systems

An enzymatic numerical P system (EN P system, for short) is a construct of the
form:

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)))

where m ≥ 1 is the degree of the system (the number of membranes), H is an al-
phabet of labels, µ is a tree-like membrane structure with m membranes injectively
labeled with elements of H, V ari and Pri are respectively the set of variables and
the set of programs that reside in region i, and V ari(0) is the vector of initial
values for the variables of V ari. All sets V ari and Pri are finite. In the original
definition of EN P systems [13] the values assumed by the variables may be real,
rational or integer numbers; in what follows we will allow instead only integer
numbers. The variables from V ari are written in the form xj,i, for j running from
1 to |V ari|, the cardinality of V ari; the value assumed by xj,i at time t ∈ N is
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denoted by xj,i(t). Similarly, the programs from Pri are written in the form Pl,i,
for l running from 1 to |Pri|.

The programs allow the system to evolve the values of variables during com-
putations. Each program is composed of two parts: a production function and a
repartition protocol. The former can be any function using variables from the region
that contains the program. Usually only polynomial functions are considered, since
these are sufficient to reach the computational power of Turing machines, as proved
in [17]. Using the production function, the system computes a production value,
from the values of its variables at that time. This value is distributed to variables
from the region where the program resides, and to variables in its upper (parent)
and lower (children) compartments, as specified by the repartition protocol. For-
mally, for a given region i, let v1, . . . , vni

be all these variables; let x1,i, . . . , xki,i be
some variables from V ari, let Fl,i(x1,i, . . . , xki,i) be the production function of a
given program Pl,i ∈ Pri, and let cl,1, . . . , cl,ni be natural numbers. The program
Pl,i is written in the following form:

Fl,i(x1,i, . . . , xki,i)→ cl,1|v1 + cl,2|v2 + · · ·+ cl,ni
|vni

(1)

where the arrow separates the production function from the repartition protocol.
Let Cl,i =

∑ni

s=1 cl,s be the sum of all the coefficients that occur in the repartition
protocol. If the system applies program Pl,i at time t ≥ 0, it computes the value

q =
Fl,i(x1,i(t), . . . , xki,i(t))

Cl,i

that represents the “unitary portion” to be distributed to variables v1, . . . , vni

proportionally with coefficients cl,1, . . . , cl,ni
. So each of the variables vs, for 1 ≤

s ≤ ni, will receive the amount q · cl,s. An important observation is that variables
x1,i, . . . , xki,i involved in the production function are reset to zero after computing
the production value, while the other variables from V ari retain their value. The
quantities assigned to each variable from the repartition protocol are added to the
current value of these variables, starting with 0 for the variables which were reset
by a production function. As pointed out in [17], a delicate problem concerns the
issue whether the production value is divisible by the total sum of coefficients Cl,i.
As it is done in [17], in this paper we assume that this is the case, and we deal
only with such systems; see [10] for other possible approaches.

Besides programs (1), EN P systems may also have programs of the form

Fl,i(x1,i, . . . , xki,i)|ej,i
→ cl,1|v1 + cl,2|v2 + · · ·+ cl,ni

|vni

where ej,i is a variable from V ari different from x1,i, . . . , xki,i and from v1, . . . , vni
.

Such a program can be applied at time t only if ej,i(t) > min(x1,i(t), . . . , xki,i(t)).
Stated otherwise, variable ej,i operates like an enzyme, that enables the execu-
tion of the program, but — like it happens also with catalysts — it is neither
consumed nor modified by the execution of the program. However, in EN P sys-
tems enzymes can evolve by means of other programs, that is, enzymes can receive
“contributions” from other programs and regions.
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A configuration of Π at time t ∈ N is given by the values of all the vari-
ables of Π at that time; in a compact notation, we can write it as the sequence
(V ar1(t), . . . , V arm(t)), where m is the degree of Π. The initial configuration can
thus be described as the sequence (V ar1(0), . . . , V arm(0)). The system Π evolves
from an initial configuration to other configurations by means of computation
steps, in which one or more programs of Π (depending upon the mode of compu-
tation) are executed. In [17], at each computation step the programs to be executed
are chosen in the so called sequential mode: one program is nondeterministically
chosen in each region, among the programs that can be executed at that time.
Another possibility is to select the programs in the so called all-parallel mode: in
each region, all the programs that can be executed are selected, with each variable
participating in all programs where it appears. Note that in this case EN P systems
become deterministic, since nondeterministic choices between programs never oc-
cur. A variant of parallelism, analogous to the maximal one which is often used
in membrane computing, is the so called one-parallel mode: in each region, all the
programs which can be executed can be selected, but the actual selection is made
in such a way that each variable participates in only one of the chosen programs.
We say that the system reaches a final configuration if and when it happens that
no applicable set of programs produces a change in the current configuration. In
such a case, a specified set of variables contains the output of the computation.
Of course, a computation may never reach a final configuration. Note that in the
usual definition of EN P systems the output of a computation is instead defined
as the collection of values taken by a specified set of variables during the whole
computation. In what follows we prove our results both by considering outputs in
the final configurations, and by the latter notion of producing the output.

EN P systems can be used to compute functions, in the so called computing
mode, by considering some input variables and output variables. The initial values
of the input variables are considered the actual arguments of the function, while the
value of the output variables in the final configuration (provided that the system
reaches it) is viewed as the output of the computed function. If the system never
reaches a final configuration, then the computed function is undefined for the spec-
ified input values. By neglecting input variables, (nondeterministic) EN P systems
can also be used in the generating mode, whereas by neglecting output variables we
can use (deterministic or nondeterministic) EN P systems in the accepting mode,
where the input is accepted if the system reaches a final configuration.

A technical detail to take care of is the fact that normally we would like to
characterize families of sets of natural numbers (sometimes including and some-
times excluding zero), while the input and output variables of EN P systems may
also assume negative values. The systems we will propose are designed to produce
only non-negative numbers in the output variables when the input variables (if
present) are assigned with non-negative numbers. So if the systems are used in
the intended way, they always produce meaningful (and correct) results. Another
possibility, mentioned in [17] but not considered here, is to filter the output values
so that only the positive ones are considered as output.
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When using EN P systems in the generating or accepting modes, we denote
by ENPm(polyn(r), app mode) the family of sets of (possibly vectors of) non-
negative integer numbers which are computed by EN P systems of degree m ≥ 1,
using polynomials of degree at most n ≥ 0 with at most r ≥ 0 arguments as
production functions; the fact that the programs are applied in the sequential,
one-parallel or all-parallel mode is denoted by assigning the value seq, oneP or
allP to the app mode parameter, respectively. When app mode ∈ {seq, oneP} and
the P system is deterministic, we write det after the app mode parameter; this
specification is not needed for all-parallel EN P systems, since they are always
deterministic. If one of the parameters m, n, r is not bounded by a constant value,
we replace it by ∗.

With this notation, we can summarize the characterizations of NRE proved in
[17] as follows:

NRE = ENP7(poly5(5), seq) = ENP∗(poly1(2), oneP )

= ENP254(poly2(253), allP )

whereas the improvement of the last equality given in [16] can be written as NRE =
ENP4(poly1(6), allP ).

In section 3 we further improve the results concerning EN P systems working
in the all-parallel and in the one-parallel modes: in both cases, we will obtain
characterizations of NRE by using just one membrane, and linear production
functions that use each at most one variable.

2.2 Register Machines

In what follows we will simulate register machines, so we briefly recall their defi-
nition and some of their computational properties.

An n–register machine is a construct M = (n, P,m), where n > 0 is the
number of registers, P is a finite sequence of instructions bijectively labelled with
the elements of the set {0, 1, . . . ,m − 1}, 0 is the label of the first instruction to
be executed, and m− 1 is the label of the last instruction of P . Registers contain
non-negative integer values. The instructions of P have the following forms:

• j : (inc(r), k, l), with 0 ≤ j < m, 0 ≤ k, l ≤ m and 1 ≤ r ≤ n.
This instruction, labelled with j, increments the value contained in register r,
then nondeterministically jumps either to instruction k or to instruction l.

• j : (dec(r), k, l), with 0 ≤ j < m, 0 ≤ k, l ≤ m and 1 ≤ r ≤ n.
If the value contained in register r is positive then decrement it and jump
to instruction k. If the value of r is zero then jump to instruction l (without
altering the contents of the register).

A deterministic n-register machine is an n-register machine in which all inc
instructions have the form j : (inc(r), k, k); in what follows, we will write these
instructions simply as j : (inc(r), k).
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A configuration of an n-register machine M is described by the contents of each
of its registers and by the program counter, that indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labelled
with 0), and possibly terminate when the instruction currently executed jumps to
label m (we may equivalently assume that P includes the instruction m : halt,
explicitly stating that the computation must halt).

It is well known that register machines provide a simple universal computa-
tional model, and that machines with three registers suffice to characterize NRE
[8]. More precisely, we can use register machines in the computing, generating or
accepting mode, obtaining the following results [3, 4, 5]. For the computing mode,
we have:

Proposition 1. For any partial recursive function f : Nα → Nβ (α, β > 0), there
exists a deterministic register machine M with (max{α, β}+ 2) registers comput-
ing f in such a way that, when starting with n1 to nα in registers 1 to α, M has
computed f (n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label m with registers
1 to β containing r1 to rβ , and all other registers being empty; if f(n1, . . . , nα) is
undefined then the final label of M is never reached.

In accepting register machines, a vector of non-negative integers is accepted if
and only if the register machine halts:

Proposition 2. For any recursively enumerable set L ⊆ Ps(α)RE of vectors of
non-negative integers there exists a deterministic register machine M with (α+ 2)
registers accepting L in such a way that, when starting with n1 to nα in registers
1 to α, M has accepted (n1, . . . , nα) ∈ L if and only if it halts in the final label m
with all registers being empty.

To generate vectors of non-negative integers, we need nondeterministic register
machines:

Proposition 3. For any recursively enumerable set L ⊆ Ps(β)RE of vectors of
non-negative integers there exists a non-deterministic register machine M with
(β + 2) registers generating L, i.e., when starting with all registers being empty,
M generates (r1, . . . , rβ) ∈ L if it halts in the final label m with registers 1 to β
containing r1 to rβ , and all other registers being empty.

3 Universality of EN P Systems

As stated above, our aim is to improve the universality results shown in [17, 16],
concerning all-parallel and one-parallel EN P systems. We first prove that these P
systems can be “flattened”.

Theorem 1. Let Π be any computing (or generating, or accepting) EN P system
of degree m ≥ 1, working in the all-parallel or in the one-parallel mode. Then there
exists an EN P system Π ′ of degree 1 that computes (resp., generates, accepts) the
same function (resp., family of sets) using the same rule application mode.
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Proof. Let Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0))) be an
EN P system, computing a function f : Nα → Nβ (α, β ≥ 0) and working in
the all-parallel mode. All the other cases (one-parallel, generating and accepting
modes) can be simply deduced from the following argumentation.

Note that each variable xj,i ∈ V ari and each program Pl,i ∈ Pri already
indicates in one of its indexes the region that contains it. We build a new EN
P system Π ′ of degree 1, by putting all the variables and all the programs of Π
— keeping both indexes, also in the variables occurring in programs — in the
membrane of Π ′. Clearly, this establishes a bijection between the variables (resp.,
programs) of Π and the corresponding variables (resp., programs) of Π ′, since the
presence of both indexes in Π ′ allows one to keep track of the region of Π from
which each variable and each program comes from. So any program Pl,i of Π still
operates on the correct variables when transformed and put into Π ′, regardless of
whether or not it uses an enzyme. Also input and output variables are preserved,
and so the only issue is related with the mode used to select the programs to be
applied. If Π works in the sequential mode, then at each computation step only (at
most) one program is selected in each region; this means that globally Π executes
a set of programs which cannot be captured in Π ′ by any of the sequential, one-
parallel and all-parallel modes. Instead, if Π works in the all-parallel mode then at
each computation step all the programs that can be executed are selected, and the
same happens in Π ′ by letting it work in the all-parallel mode. The same applies
when Π and Π ′ work in the one-parallel mode, and so the claim of the theorem
follows. ut

This result already allows to improve the universality results shown in [17, 16]
for all-parallel and one-parallel EN P systems, obtaining the following characteri-
zations of NRE:

NRE = ENP1(poly1(6), allP ) = ENP1(poly1(2), oneP )

However — as stated in the Introduction — despite this simplification, one-parallel
EN P systems still require an unbounded number of variables, since each “new”
variable in Π ′ is indexed with the region of Π it comes from.

Anyhow, we can improve both results. We start with the first equality, con-
cerning all-parallel EN P systems.

Theorem 2. Each partial recursive function f : Nα → Nβ (α > 0, β ≥ 0) can
be computed by a one-membrane EN P system working in the all-parallel mode,
having linear production functions that use each at most one variable.

Proof. Since all-parallel EN P systems are deterministic, we prove the statement by
simulating deterministic register machines. Let M = (n, P,m) be such a machine
with n registers, computing f by means of program P . The initial instruction
of P has the label 0 and the machine halts if and when the program counter
assumes the value m. Observe that according to the result stated in Proposition 1,
n = max{α, β}+2 is enough. The input values x1, . . . , xα are expected to be in the
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first α registers before the computation starts, and the values of f(x1, . . . , xα) —
if any — are expected to be in registers 1 to β at the end of a halting computation.
Moreover, without loss of generality, we may assume that at the beginning of a
computation all the registers except possibly the registers 1 to α contain zero.

We construct the EN P system ΠM = (1, H, µ, (V ar1, P r1, V ar1(0))) of degree
1, where:

• H = {s} is the label of the only membrane (the skin) of ΠM ;
• µ = [ ]s is the membrane structure;
• V ar1 = {r1, . . . , rn} ∪ {p0, . . . , pm};
• Pr1 = {2pj → 1|ri + 1|pk for all instructions j : (inc(i), k) ∈ P} ∪ {−pj →

1|ri, ri + 2|pj → 1|ri + 1|pl, pj → 1|pk, ri − 1|pj → 1|pk for all instructions
j : (dec(i), k, l) ∈ P};

• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by
putting:
– ri = xi for all 1 ≤ i ≤ α;
– ri = 0 for all α+ 1 ≤ i ≤ n;
– p0 = 1;
– pj = 0 for all 1 ≤ j ≤ m.

The value of register i, for 1 ≤ i ≤ m, is contained in variable ri. The input
values x1, . . . , xα are introduced into the P system as the initial values of vari-
ables r1, . . . , rα. Variables p0, . . . , pm are used to indicate the value of the program
counter; at the beginning of each computation step, the variable corresponding to
the value of the program counter of M will assume value 1, while all the others
will be equal to zero.

The simulation of M by ΠM works as follows. Each increment instruction
j : (inc(i), k) is simulated in one step by the execution of the program

2pj → 1|ri + 1|pk

This program is executed at every computation step of ΠM ; however, when pj = 0
it has no effect: pj is once again set to zero, and a contribution of zero is distributed
among variables ri and pk. All variables are thus unaffected in this case. When
pj = 1, the production value 2pj = 2 is distributed among ri and pk, giving a
contribution of 1 to each of them. Hence the value of ri is incremented, the value
of pk passes from 0 to 1, while the value of pj is zeroed. All the other variables are
unaffected, and the system is now ready to simulate the next instruction of M .

Each decrement instruction j : (dec(i), k, l) is simulated in one step by the
parallel execution of the following programs:

− pj → 1|ri (2)
ri + 2|pj → 1|ri + 1|pl (3)
pj → 1|pk (4)
ri − 1|pj → 1|pk (5)
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If pj = 0, programs (3) and (5) are not enabled (since by construction ri ≥ 0 and
thus pj ≤ ri), while programs (2) and (4) distribute a contribution of zero to ri
and pk; before doing so, variable pj is set to zero, thus leaving its value unchanged.
Hence, the case in which pj = 0 causes no problems to the overall simulation.

Now assume that pj = 1 and ri > 0. In this case, the value of ri should be
decremented and the computation should continue with instruction k. Program
(2) correctly decrements ri, and program (4) passes the value of pj = 1 to pk, thus
correctly pointing at the next istruction of M to be simulated. The execution of
both programs sets the value of pj to zero, which is also correct. Programs (3) and
(5) have no effect since to be executed it should be pj > ri, that is, ri < 1 (which
means ri = 0, since ri ≥ 0 by construction).

Now assume that pj = 1 and ri = 0. In this case, the value of ri should be kept
equal to zero, and the computation should continue with instruction l. Program
(2) sends a contribution of −1 to ri, while program (4) sets — incorrectly — pk to
1; both programs set pj to zero. This time, however, programs (3) and (5) are also
executed. Both set the value of ri to zero. After that, program (3) adds 1 to ri, thus
canceling the effect of program (2); as a result, the value assumed by ri after the
execution of the two programs is zero. Program (3) also makes pl assume the value
1, thus correctly pointing to the next instruction of M to be simulated. Finally,
program (5) gives a contribution of −1 to pk, canceling the effect of program (4);
the resulting value of pk will thus be 0.

It follows from the description given above that after the simulation of each
instruction of M the value of every variable ri equals the contents of register i, for
1 ≤ i ≤ n, while the only variable among p0, . . . , pm equal to 1 indicates the next
instruction of M to be simulated. When the program counter of M reaches the
value m, the corresponding variable pm assumes value 1. Since no program contains
the variable pm either in the production function or among the enzymes that
enable or disable the execution of the program, ΠM reaches a final configuration;
the result of the computation is contained in variables r1, . . . , rβ . ut

By taking β = 0 in the previous proof, we get the following result concerning
the accepting variant of EN P systems working in the all-parallel mode.

Corollary 1. For any L ∈ Ps(α)RE there exists a one-membrane EN P system,
having linear production functions each depending upon at most one variable, that
accepts L by working in the all-parallel mode.

Proof. We consider a register machine M with (α + 2) registers accepting L ac-
cording to Proposition 2, and we construct the one-membrane EN P system ΠM

that accepts L following the construction given in the proof of Theorem 2. The
input values x1, . . . , xα expected to be in the first α registers in M are assigned as
initial values to variables r1 to rα in ΠM , whereas the initial values of variables
rα+1 to rn are 0. The P system ΠM accepts this input if and only if it reaches a
final configuration. ut

By putting α = 1 in Corollary 1, we obtain the following characterization:
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0 : (dec(2), 1, 2) 1 : (inc(8), 0)

2 : (inc(7), 3) 3 : (dec(6), 2, 4)

4 : (dec(7), 5, 3) 5 : (inc(6), 6)

6 : (dec(8), 7, 8) 7 : (inc(2), 4)

8 : (dec(7), 9, 0) 9 : (inc(7), 10)

10 : (dec(5), 0, 11) 11 : (dec(6), 12, 13)

12 : (dec(6), 14, 15) 13 : (dec(3), 18, 19)

14 : (dec(6), 16, 17) 15 : (dec(4), 18, 20)

16 : (inc(5), 11) 17 : (inc(3), 21)

18 : (dec(5), 0, 22) 19 : (dec(1), 0, 18)

20 : (inc(1), 0) 21 : (inc(4), 18)

Fig. 1. The small universal deterministic register machine defined in [6]

NRE = ENP1(poly1(1), allP )

A direct consequence of Theorem 2 is that there exists a small universal all-
parallel EN P system that computes every possible partial recursive function.

Theorem 3. There exists a universal all-parallel EN P system of degree 1, having
31 variables and 61 programs.

Proof. We consider the small universal deterministic register machine Mu de-
scribed in [6], and illustrated in Figure 1. This machine has n = 8 registers and
m = 22 instructions, and can be used to compute any unary partial recursive
function f : N→ N as follows. Let (ϕ0, ϕ1, . . .) be a fixed admissible enumeration
of the unary partial recursive functions. Since Mu is universal, there exists a recur-
sive function g such that for all natural numbers y, z it holds ϕy(z) = Mu(g(y), z).
Hence, to compute f(x) we first consider the index y of f in the above enumera-
tion of unary recursive functions. Then we put g(y) and x in registers 2 and 3 of
Mu, respectively, and we start the computation; the value of f(x) will be found in
register 1 if and when Mu halts.

By following the arguments given in the proof of Theorem 2 we construct the
all-parallel EN P system ΠMu

= (1, H, µ, (V ar1, P r1, V ar1(0))) of degree 1, where:

• H = {s} is the label of the only membrane (the skin) of Π;
• µ = [ ]s is the membrane structure;
• V ar1 = {r1, . . . , r8} ∪ {p0, . . . , p22};
• Pr1 = {2pj → 1|ri + 1|pk for all instructions j : (inc(i), k) listed in Figure

1} ∪ {−pj → 1|ri, ri + 2|pj → 1|ri + 1|pl, pj → 1|pk, ri − 1|pj → 1|pk for all
instructions j : (dec(i), k, l) listed in Figure 1};
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• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by
putting:
– r2 = g(y), the “code” associated to function f ;
– r3 = x, the input of f ;
– r1 = r4 = r5 = r6 = r7 = r8 = 0;
– p0 = 1;
– pi = 0 for all 1 ≤ i ≤ 22.

This system simulates the operation of Mu, as described in the proof of Theo-
rem 2. Hence, if and when the computation reaches a final configuration, variable
r1 contains the value of f(x).

The number of increment and decrement instructions of Mu are 9 and 13,
respectively. Each increment instruction is translated to 1 program of ΠMu while
each decrement instruction produces 4 programs, for a total of 61 programs. The
variables are n+m+ 1 = 31. ut

We now turn to EN P systems working in the one-parallel mode. We start
proving the following theorem.

Theorem 4. Each partial recursive function f : Nα → Nβ (α, β ≥ 0) can be
computed by a one-membrane EN P system working in the one-parallel mode,
having linear production functions that use each at most two variables.

Proof. We proceed like in the proof of Theorem 2, with the difference that here
we simulate both deterministic and nondeterministic register machines. Let M =
(n, P,m) be a nondeterministic register machine with n = max{α, β}+2 registers,
that computes f by means of program P . As usual, the input values x1, . . . , xα
are expected to be in the first α registers before the computation starts, all the
other registers being empty. If and when the computation of M halts, the values
of f(x1, . . . , xα) will be found in registers 1 to β.

We construct the one-membrane EN P system ΠM = (1, H, µ, (V ar1, P r1,
V ar1(0))), where:

• H = {s} is the label of the only membrane (the skin) of ΠM ;
• µ = [ ]s is the membrane structure;
• V ar1 = {r1, . . . , rn} ∪ {p0, . . . , pm} ∪ {q0, . . . , qm} ∪ {zj,1, zj,2, zj,3 for all in-

structions j : (inc(i), k, l) ∈ P} ∪ {zj,1, zj,2, zj,3, zj,4, zj,5 for all instructions
j : (dec(i), k, l) ∈ P};

• Pr1 = {zj,1+3|pj
→ 1|ri+1|pk+1|qk, zj,1+3|pj

→ 1|ri+1|pl+1|ql, zj,2−1|pj
→

1|qj , zj,3−1|qj
→ 1|pj for all instructions j : (inc(i), k, l) ∈ P}∪{zj,1−1|pj

→
1|ri, ri + 3|pj → 1|ri + 1|pl + 1|ql, zj,2 + 2pj |ri → 1|pj + 1|pk, zj,3 + 2qj |ri →
1|qj + 1|qk, zj,4 − 1|pj → 1|qj , zj,5 − 1|qj → 1|pj} for all instructions j :
(dec(i), k, l) ∈ P};

• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by
putting:
– ri = xi for all 1 ≤ i ≤ α;
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– ri = 0 for all α+ 1 ≤ i ≤ n;
– p0 = q0 = 1;
– pj = qj = 0 for all 1 ≤ j ≤ m;
– zj,1 = zj,2 = zj,3 = 0 for all 0 ≤ j < m such that j : (inc(i), k, l) ∈ P ;
– zj,1 = zj,2 = zj,3 = zj,4 = zj,5 = 0 for all 0 ≤ j < m such that j :

(dec(i), k, l) ∈ P .

Just like in the proof of Theorem 2, the value of register i, for 1 ≤ i ≤ n, is
contained in variable ri, and the input values x1, . . . , xα are introduced into the P
system as the initial values of variables r1, . . . , rα. This time, however, the system
uses both variables p0, . . . , pm and q0, . . . , qm to indicate the value of the program
counter of M , so that when simulating the j-th instruction of P variables pj and
qj are both set to 1, while all the others are zero. This double representation of
the program counter will allow us to set its value while also using it as an enzyme:
precisely, variable pj will be used as an enzyme to update the value of qj , and
vice versa. The auxiliary variables zj,1, . . . , zj,5, when defined, are used during the
simulation of inc and dec instructions, and are always set to zero.

The simulation of M by ΠM works as follows. Each increment instruction
j : (inc(i), k, l) is simulated in one step by the execution of the following programs:

zj,1 + 3|pj → 1|ri + 1|pk + 1|qk (6)
zj,1 + 3|pj → 1|ri + 1|pl + 1|ql (7)
zj,2 − 1|pj → 1|qj (8)
zj,3 − 1|qj → 1|pj (9)

These programs are not executed when pj = qj = 0, since variables zj,1, zj,2 and
zj,3 are zero, hence in this case they have no effect. When pj = qj = 1, instead,
programs (8) and (9) as well as one among programs (6) and (7) are executed,
since variable zj,1 makes these latter programs compete in the one-parallel mode
of application. Assume that program (6) wins the competition (a similar argument
holds if (7) wins instead): its effect is incrementing ri and setting pk and qk to 1,
thus correctly pointing to the next instruction of M to be simulated. The effect of
programs (8) and (9) is giving a contribution of −1 to both pj and qj , whose final
value will thus be zero. All the other variables are unaffected. If M is deterministic,
then the simulation of the instruction j : (inc(i), k) is performed by using the same
programs without (7). In this case no competition occurs between the programs,
and so the simulation is deterministic.

Each decrement instruction j : (dec(i), k, l) is simulated in one step by the
execution of the following programs:
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zj,1 − 1|pj
→ 1|ri (10)

ri + 3|pj
→ 1|ri + 1|pl + 1|ql (11)

zj,2 + 2pj |ri
→ 1|pj + 1|pk (12)

zj,3 + 2qj |ri
→ 1|qj + 1|qk (13)

zj,4 − 1|pj
→ 1|qj (14)

zj,5 − 1|qj
→ 1|pj (15)

If pj = qj = 0 then programs (10), (11), (14) and (15) are not enabled, while
programs (12) and (13) are enabled only if ri > 0. However, in this case they
set to 0 variables pj and qj (thus leaving their value unaltered), and distribute a
contribution of zero to pj , qj , pk and qk, thus producing no effect. All the other
variables are left unchanged, so no problems occur to the overall simulation.

Now assume that pj = qj = 1 and ri > 0. In this case, the value of ri should
be decremented and the computation should continue with instruction k. Program
(10) correctly decrements ri, whereas program (11) is not executed since ri ≥ pj .
Programs (12) and (13) set to 1 variables pk and qk (thus pointing at the next
instruction of M to be simulated), and send a contribution of 1 to variables pj and
qj , after setting their value to zero. On the other hand, programs (14) and (15)
send a contribution of −1 to pj and qj , so that their final value will be zero.

Now assume that pj = qj = 1 and ri = 0. In this case, the value of ri should
be kept equal to zero, and the computation should continue with instruction l.
Program (10) sends a contribution of −1 to ri. This time, however, program (11)
is also executed; its effect is sending a contribution of 1 to ri, after setting it to
zero (so that its final value will be zero), and setting to 1 the value of variables pl
and ql. Programs (12) and (13) are inactive, and hence are not executed. Finally,
programs (14) and (15) send a contribution of −1 to pj and qj , so that their final
value will be zero.

It follows from the description given above that after the simulation of each
instruction of M the value of every variable ri equals the contents of register i,
for 1 ≤ i ≤ n, while variables p0, . . . , pm and q0, . . . , qm correctly indicate the
next instruction of M to be simulated. When the program counter of M reaches
the value m, the corresponding variables pm and qm assume value 1. Since no
program contains these variables either in the production function or among the
enzymes, the simulation reaches a final configuration; the result of the computation
is contained in variables r1, . . . , rβ . ut

By taking β = 0 and α ≥ 1 in the previous proof, we obtain the following result
concerning the accepting variant of EN P systems working in the one-parallel mode.

Corollary 2. For any L ∈ Ps(α)RE there exists a one-membrane EN P system,
having linear production functions each depending upon at most two variables, that
accepts L by working in the one-parallel mode.

On the other hand, by taking α = 0 and β ≥ 1 we get the following charac-
terization of Ps(β)RE by the generating variant of EN P systems working in the
one-parallel mode.
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Corollary 3. For any L ∈ Ps(β)RE there exists a one-membrane (nondetermin-
istic) EN P system, having linear production functions each depending upon at
most two variables, that generates L by working in the one-parallel mode.

By putting α = 1 and β = 0 in Corollary 2, and α = 0 and β = 1 in Corollary
3, we obtain the following characterization:

NRE = ENP1(poly1(2), oneP )

Another consequence of Theorem 4 is that there exists the small universal
deterministic one-parallel EN P system mentioned in the following theorem.

Theorem 5. There exists a universal one-parallel deterministic EN P system of
degree 1, having 146 variables and 105 programs.

Proof. The system mentioned in the statement simulates the small universal de-
terministic register machine Mu reported in Figure 1, and is built according to
the description given in the proof of Theorem 4, as we have done in the proof of
Theorem 3. The number of increment and decrement instructions of Mu are 9 and
13, respectively. Each increment and each decrement instruction is translated to
3 and 6 programs of the small universal EN P system, respectively, for a total of
105 programs. As for variables, 8 are used to simulate the registers of Mu, and
46 are used to denote the value of its program counter; moreover, there are 3 and
5 auxiliary variables for each increment and each decrement instruction, respec-
tively, for a total of 146 variables. ut

Let us note that, since the EN P system mentioned in the statement of Theorem
5 is deterministic, it also works in the all-parallel mode, albeit in this case the
system described in Theorem 3 is smaller.

By looking at the operation of the EN P system described in the proof of
Theorem 4, we can see that the only programs whose production functions depend
upon two variables are programs (12) and (13). Further, if we remove variables zj,2
and zj,3 from these programs the simulation of register machine M continues to
work correctly, except in the case when ri = 1 and pj = qj = 1. Hence if ri could
only assume even values (so that the value 2v denotes the fact that the contents of
the i-th register of M is v) we could get rid of variables zj,2 and zj,3 in programs
(12) and (13), thus obtaining a one-parallel EN P system whose linear production
functions each depend on just one variable. This is exactly what we do in the next
theorem, where 2N denotes the set of even natural numbers.

Theorem 6. Each partial recursive function f : (2N)α → (2N)β (α, β ≥ 0) can
be computed by a one-membrane EN P system working in the one-parallel mode,
having linear production functions that use each at most one variable.

Proof. The proof is similar to the one given for Theorem 4. The one-parallel EN
P system ΠM that simulates the nondeterministic register machine M = (n, P,m)
is now defined as follows:
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ΠM = (1, H, µ, (V ar1, P r1, V ar1(0)))

where:

• H = {s} is the label of the only membrane (the skin) of ΠM ;
• µ = [ ]s is the membrane structure;
• V ar1 = {r1, . . . , rn} ∪ {p0, . . . , pm} ∪ {q0, . . . , qm} ∪ {zj,1, zj,2, zj,3 for all 0 ≤

j < m};
• Pr1 = {zj,1+4|pj

→ 2|ri+1|pk+1|qk, zj,1+4|pj
→ 2|ri+1|pl+1|ql, zj,2−1|pj

→
1|qj , zj,3−1|qj → 1|pj for all instructions j : (inc(i), k, l) ∈ P}∪{zj,1−2|pj →
1|ri, ri+4|pj → 2|ri+1|pl+1|ql, 2pj |ri → 1|pj+1|pk, 2qj |ri → 1|qj+1|qk, zj,2−
1|pj
→ 1|qj , zj,3 − 1|qj

→ 1|pj} for all instructions j : (dec(i), k, l) ∈ P};
• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by

putting:
– ri = 2xi for all 1 ≤ i ≤ α;
– ri = 0 for all α+ 1 ≤ i ≤ n;
– p0 = q0 = 1;
– pj = qj = 0 for all 1 ≤ j ≤ m;
– zj,1 = zj,2 = zj,3 = 0 for all 0 ≤ j < m.

As stated above, now the value of ri is the double of the value of register i,
for 1 ≤ i ≤ n. So, in particular, the double of the input values x1, . . . , xα are
introduced into the P system as the initial values of variables r1, . . . , rα. Once
again, like in the proof of Theorem 4, the system uses both variables p0, . . . , pm
and q0, . . . , qm to indicate the value of the program counter of M , so that when
simulating the j-th instruction of P variables pj and qj are both equal to 1, while
all the others are zero. The value of variables zj,1, zj,2, zj,3 is always zero during
the entire computation.

Each increment instruction j : (inc(i), k, l) of M is simulated in one step by
the execution of the following programs:

zj,1 + 4|pj
→ 2|ri + 1|pk + 1|qk (16)

zj,1 + 4|pj
→ 2|ri + 1|pl + 1|ql (17)

zj,2 − 1|pj
→ 1|qj (18)

zj,3 − 1|qj
→ 1|pj (19)

The simulation is analogous to the one described in the proof of Theorem 4, with
the difference that instead of incrementing ri the system now adds 2 to it; to do so,
the production value computed by the first two programs must be 4 instead of 3.
Nondeterminism is given by the fact that, when pj = qj = 1, variable zj,1 makes
programs (16) and (17) compete in the one-parallel mode. If the machine M to be
simulated is deterministic, then program (17) disappears, and so the simulation
becomes deterministic.

Each decrement instruction j : (dec(i), k, l) is simulated in one step by the
execution of the following programs:
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zj,1 − 2|pj
→ 1|ri (20)

ri + 4|pj
→ 2|ri + 1|pl + 1|ql (21)

2pj |ri
→ 1|pj + 1|pk (22)

2qj |ri
→ 1|qj + 1|qk (23)

zj,2 − 1|pj
→ 1|qj (24)

zj,3 − 1|qj
→ 1|pj (25)

The simulation is analogous to the one described in the proof of Theorem 4, with
small differences.

The case when pj = qj = 0 operates just like in the proof of Theorem 4:
programs (20), (21), (24) and (25) are not active, while programs (22) and (23) are
executed only if ri > 0; however, in such a case, a contribution of 0 is distributed
to variables pj , qj , pk, qk after setting pj and qj to zero.

Now assume that pj = qj = 1 and ri > 0. Program (20) correctly decrements ri
(subtracting 2 from its value), whereas program (21) is not executed since ri > pj .
Programs (22) and (23) set to 1 variables pk and qk (thus pointing at the next
instruction of M to be simulated), and send a contribution of 1 to variables pj and
qj , after setting their value to zero. On the other hand, programs (24) and (25)
send a contribution of −1 to pj and qj , so that their final value will be zero.

Now assume that pj = qj = 1 and ri = 0. In this case, the value of ri should
be kept equal to zero, and the computation should continue with instruction l.
Program (20) sends a contribution of −2 to ri. This time, however, program (21)
is also executed; its effect is sending a contribution of 2 to ri, after setting it to
zero (so that its final value will be zero), and setting to 1 the value of variables pl
and ql. Programs (22) and (23) are inactive, and hence are not executed. Finally,
programs (24) and (25) send a contribution of −1 to pj and qj , so that their final
value will be zero.

It follows from the description given above that the simulation is correct, and
that after the simulation of each instruction the value of variable ri is exactly the
double of the contents of register i, for 1 ≤ i ≤ n. If and when the program counter
of M reaches the value m, the corresponding variables pm and qm assume value 1
and the computation reaches a final configuration; the result of the computation
is then contained in variables r1, . . . , rβ . ut

Let 2NRE denote the family of recursively enumerable sets of even natural
numbers: 2NRE = {{2x | x ∈ X} | X ∈ NRE}. By taking β = 0 and α ≥ 1
(resp., α = 0 and β ≥ 1) in the previous proof one obtains a characterization of
the recursively enumerable sets of vectors of even natural numbers by accepting
(resp., generating) one-parallel EN P systems. In particular, by putting β = 0 and
α = 1 or α = 0 and β = 1, we obtain:

2NRE = ENP1(poly1(1), oneP )

As a byproduct of Theorem 6 we also obtain a small universal deterministic EN
P system that computes any partial recursive function f : 2N→ 2N, by simulating
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the universal deterministic register machine illustrated in Figure 1. With respect to
the small EN P system described in the proof of Theorem 5 we have removed two
auxiliary variables from the programs that simulate each decrement instruction,
hence the new system consists of 105 programs and 120 variables. As discussed
after the proof of Theorem 5, this small EN P system is deterministic too and
hence it also works in the all-parallel mode; however, it works only with even
natural numbers as inputs and outputs.

Of course one would desire a characterization of NRE (instead of 2NRE)
by one-parallel EN P systems having linear production functions, each depending
upon just one variable. We can actually obtain such a characterization by using the
EN P system ΠM described in the proof of the previous theorem as a subroutine.
The idea is to produce a new one-parallel EN P system Π ′M that, given a vector
from Nα as input, prepares a corresponding input vector for ΠM by doubling its
components. Then ΠM is used to compute the output vector from Nβ , if it exists.
At this point Π ′M should take this output and halve each component, to produce its
output. To avoid this further step, we proceed as follows: while preparing the input
for ΠM , Π ′M also makes a copy of its input into additional variables si, for 1 ≤
i ≤ n. Then we modify the programs of ΠM in such a way that, while simulating a
(possibly nondeterministic) register machine M , it keeps in si the contents of the
registers, and in ri the doubles of such contents. So the programs use variables ri
to correctly perform the simulation, while at the end of the computation the result
will be immediately available in variables si. The details are given in the proof of
the following theorem, where the systems ΠM and Π ′M are combined together.

Theorem 7. Each partial recursive function f : Nα → Nβ (α ≥ 0, β ≥ 0) can
be computed by a one-membrane EN P system working in the one-parallel mode,
having linear production functions that use each at most one variable.

Proof. Like in the proofs of Theorems 4 and 6, we build a one-parallel EN P
system ΠM = (1, H, µ, (V ar1, P r1, V ar1(0))) that simulates a nondeterministic
register machine M = (n, P,m) that computes f , as follows:

• H = {s} is the label of the only membrane (the skin) of ΠM ;
• µ = [ ]s is the membrane structure;
• V ar1 = {r1, . . . , rn}∪ {s1, . . . , sn}∪ {t1, . . . , tn}∪ {p}∪ {p0, . . . , pm}∪ {q0, . . .,

qm} ∪ {zj,1, zj,2, zj,3 for all 0 ≤ j < m};
• Pr1 = {3ti → 2|ri+1|si for all 1 ≤ i ≤ α}∪{2p→ 1|p0 +1|q0}∪{zj,1 +5|pj →

2|ri + 1|si + 1|pk + 1|qk, zj,1 + 5|pj
→ 2|ri + 1|si + 1|pl + 1|ql, zj,2 − 1|pj

→
1|qj , zj,3−1|qj

→ 1|pj for all instructions j : (inc(i), k, l) ∈ P}∪{zj,1−3|pj
→

2|ri + 1|si, ri + 5|pj
→ 2|ri + 1|si + 1|pl + 1|ql, 2pj |ri

→ 1|pj + 1|pk, 2qj |ri
→

1|qj + 1|qk, zj,2 − 1|pj → 1|qj , zj,3 − 1|qj → 1|pj} for all instructions j :
(dec(i), k, l) ∈ P};

• V ar1(0) is the vector of initial values of the variables of V ar1, obtained by
putting:
– ti = xi (the input values of f) for all 1 ≤ i ≤ α;
– ti = 0 for all α+ 1 ≤ i ≤ n;
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– ri = si = 0 for all 1 ≤ i ≤ n;
– p = 1;
– pj = qj = 0 for all 0 ≤ j ≤ m;
– zj,1 = zj,2 = zj,3 = 0 for all 0 ≤ j < m.

The input values x1, . . . , xα of f are introduced into the P system as the initial
values of variables t1, . . . , tα. Moreover, the value of variable p is set to 1. In the
first step of its computation, the P system will copy the values of t1, . . . , tα to
s1, . . . , sα, and the double of these values to variables r1, . . . , rα. So doing, after
the simulation of each instruction of M variables s1, . . . , sn will contain the values
of the registers of M , while r1, . . . , rn will contain their doubles. While making
these copies, the value of variable p is copied to both p0 and q0, in order to start
the simulation of M . The simulation proceeds much like in the way described
in the proof of Theorem 6; the programs there illustrated are here modified in
order to deal with the new variables. If and when the simulation reaches a final
configuration, variables s1, . . . , sβ contain the result of the computation.

The initialization step is performed by executing the following programs:

3ti → 2|ri + 1|si for all 1 ≤ i ≤ α
2p→ 1|p0 + 1|q0

Each increment instruction j : (inc(i), k, l) of M is simulated in one step by
the execution of the following programs:

zj,1 + 5|pj
→ 2|ri + 1|si + 1|pk + 1|qk (26)

zj,1 + 5|pj
→ 2|ri + 1|si + 1|pl + 1|ql (27)

zj,2 − 1|pj
→ 1|qj (28)

zj,3 − 1|qj
→ 1|pj (29)

The simulation is analogous to the one described in the proof of Theorem 6, with
the difference that when adding 2 to ri the system now also increments si; to do
so, the production value computed by the first two programs must be 5 instead
of 4. Once again, if the machine M to be simulated is deterministic then program
(27) disappears and the simulation itself becomes deterministic.

Each decrement instruction j : (dec(i), k, l) is simulated in one step by the
execution of the following programs:

zj,1 − 3|pj → 2|ri + 1|si (30)
ri + 5|pj → 2|ri + 1|si + 1|pl + 1|ql (31)
2pj |ri → 1|pj + 1|pk (32)
2qj |ri → 1|qj + 1|qk (33)
zj,2 − 1|pj → 1|qj (34)
zj,3 − 1|qj → 1|pj (35)
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The simulation is analogous to the one described in the proof of Theorem 6, with
the only difference that when subtracting or adding 2 to ri by programs (30) and
(31), respectively, the system now also decrements or increments si, respectively.

It can be easily checked that the simulation is correct, and that after simulating
each instruction of M the values of variable si (resp., ri) is equal to the contents
(resp., the double of the contents) of register i, for 1 ≤ i ≤ n. If and when the
program counter of M reaches the value m, the corresponding variables pm and
qm assume value 1 and the computation reaches a final configuration; the result
of the computation can then be recovered from variables s1, . . . , sβ . ut

By taking β = 0 and α ≥ 1 in the previous proof, we obtain the following result
concerning the accepting variant of EN P systems working in the one-parallel mode.

Corollary 4. For any L ∈ Ps(α)RE there exists a one-membrane EN P system,
having linear production functions each depending upon at most one variable, that
accepts L by working in the one-parallel mode.

On the other hand, by taking α = 0 and β ≥ 1 we get the following charac-
terization of Ps(β)RE by the generating variant of EN P systems working in the
one-parallel mode.

Corollary 5. For any L ∈ Ps(β)RE there exists a one-membrane (nondetermin-
istic) EN P system, having linear production functions each depending upon at
most one variable, that generates L by working in the one-parallel mode.

By putting α = 1 and β = 0 in Corollary 4, and α = 0 and β = 1 in Corollary
5, we obtain the following characterization:

NRE = ENP1(poly1(1), oneP )

Moreover, it can be easily checked that when the register machine M simulated
in Theorem 7 and in Corollary 4 is deterministic, the simulating EN P system
ΠM works in the all-parallel mode. This means that the above construction leads
to a further characterization of NRE by all-parallel recognizing EN P systems
having linear production functions of one variable, alternative to the one obtained
by Theorem 2.

Another consequence of Theorem 7 is that there exists a further small universal
one-parallel deterministic EN P system, as stated in the following theorem.

Theorem 8. There exists a universal one-parallel deterministic EN P system of
degree 1, having 137 variables and 108 programs.

Proof. The system mentioned in the statement simulates the small universal de-
terministic register machine Mu reported in Figure 1, and is built according to
the description given in the proof of Theorem 7, as we have done in the proofs of
Theorems 3 and 5. The number of increment and decrement instructions of Mu

are 9 and 13, respectively, and each of them is translated to 3 and 6 programs
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of the small universal EN P system, respectively. The initialization step requires
further α+1 = 3 programs, since Mu is fed with two input values: the “code” of f
and its input. We thus obtain a total of 108 programs. As for variables, 8 · 3 = 24
are used to simulate the registers of Mu, and 46 are used to denote the value of
its program counter; moreover, there are 3 auxiliary variables for each instruction
of M , and one variable (p) which used to trigger the start of the simulation, for a
total of 137 variables. ut

Since the universal register machine Mu simulated in Theorem 8 is determin-
istic, the simulating small EN P system is deterministic too, and works both in
the all-parallel as well as in the one-parallel mode. By comparing the number of
variables and programs in all “small” EN P systems described in this paper, we see
that the smallest is the one described in Theorem 3, containing only 31 variables
and 61 programs. However such a small EN P system is not able to work in the
one-parallel mode, hence in case we are forced to do so we must resort to one of the
others described in this paper; the choice will depend upon the parameter (number
of variables or number of programs) we want to minimize, as well as whether we
are willing to work with even inputs and outputs. It is left as an open problem
to prove that these are the smallest possible universal EN P systems, or finding
instead smaller ones. Designing sets of programs that simulate consecutive inc and
dec instructions of Mu, as it has already been done in [9] and several other times
in the literature, could be a hint for finding smaller systems.

4 Producing Output in Separate Variables

In all EN P systems described above, the output is considered to be the value
of some specified variables in the final configuration, if and when this is reached.
This is different from how EN P systems produce their output in most existing
papers: usually, some separate output variables are considered, and the output of
the system is defined as the set of all values assumed by these variables during the
entire computation. In this section we prove that each of our EN P systems can
be easily modified in order to produce its output according to this latter way.

Theorem 9. The EN P systems used in Theorems 2, 4, 6 and 7 can be modified
so that their output is produced into separate variables.

Proof. Let ΠM = (1, H, µ, (V ar1, P r1, V ar1(0)) be one of the EN P systems men-
tioned in the statement, simulating a register machine M computing the partial
recursive function f : Nα → Nβ . Let x1, . . . , xβ denote the output variables of
ΠM , that is, variables r1, . . . , rβ for Theorems 2, 4, 6 and variables s1, . . . , sβ in
Theorem 7. Note that, by construction, these variables contain the value of f if
and when a final configuration is reached, and this happens if and only if pm (the
variable indicating label m of the program of M) assumes value 1.

We modify ΠM by introducing the following new variables:
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• {y1, . . . , yβ}, whose values are kept identical to x1, . . . , xβ until pm becomes 1
(if this happens);

• {z1, . . . , zβ}, as the new output variables;
• {u1, . . . , uβ}, as flags;

and programs:

βpm → 1|u1 + . . .+ 1|uβ (36)
ui → 1|yi for all 1 ≤ i ≤ β (37)
xi|yi → zi for all 1 ≤ i ≤ β (38)

Moreover, each program already present in ΠM that changes the value of an output
variable xi is modified in order to also apply the same change to the new variable
yi, as done in the proof of Theorem 7. So doing, after simulating each instruction
of M the values of variables xi and yi will be the same for all 1 ≤ i ≤ β. Since
y1, . . . , yβ never appear in the production functions of these modified programs,
no change is caused to the behavior of ΠM .

All new variables are initialized to zero before the computation starts. Dur-
ing the first computation step variables y1, . . . , yα are initialized to the values of
x1, . . . , xα, as in the initialization step of Theorem 7. The computation then pro-
ceeds as prescribed by the programs of ΠM . If and when the computation reaches
a final configuration then program (36) is executed, with the effect of zeroing pm
and setting u1, . . . , uβ to 1. When this happens, by programs (37) the values of
y1, . . . , yβ are incremented, thus becoming larger than the values of x1, . . . , xβ .
This means that programs (38) can now be applied, with the effect of copying
the values of the original output variables x1, . . . , xβ to the new output variables
z1, . . . , zβ .

On the other hand, note that before and after reaching a final configuration
of ΠM the value of variables z1, . . . , zβ is never affected. In fact, when pm = 0
program (36) has no effect, since it distributes a contribution of 0 to u1, . . . , uβ ,
leaving their value unaltered. This happens both before pm becomes 1, and after
executing program (36). Programs (37) increment the values of y1, . . . , yβ only
once, when u1 = . . . = uβ = 1, otherwise they produce no effect. Finally, programs
(38) are first executed as soon as the values of y1, . . . , yβ become larger than that
of x1, . . . , xβ , after which they distribute a contribution of zero to z1, . . . , zβ .

So the only value assumed by the new output variables z1, . . . , zβ , besides zero,
is the output value of M . ut

5 Conclusions and Directions for Further Work

In this paper we have studied the computational power of enzymatic numerical P
systems working in the all-parallel and one-parallel modes.

We have improved some previously known universality results, in terms of
number of membranes and number of variables used in the production functions.
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So, by using a flattening technique, we have first shown that every EN P system
working either in the all-parallel or in the one-parallel mode can be simulated by
an equivalent one-membrane EN P system working in the same mode. Then we
have shown that linear production functions, each depending upon at most one
variable, suffice to reach universality for both computing modes. As a byproduct
we have obtained several small universal deterministic EN P systems, the smallest
one having only 31 variables and 61 programs.

It is left open whether smaller universal EN P systems exist. It is also left open
whether the known universality result on sequential EN P systems contained in
[17] — a characterization of NRE by sequential EN P systems of degree 7, whose
production functions are polynomials of degree at most 5, each depending upon
at most 5 variables — can be improved.
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Summary. In order to provide efficient software tools to deal with large membrane
systems, high-throughput simulators are required. Parallel computing platforms are good
candidates, since they are capable of partially implementing the inherently parallel nature
of the model. In this concern, today GPUs (Graphics Processing Unit) are considered as
highly parallel processors, and they are being consolidated as accelerators for scientific
applications. In fact, previous attempts to design P systems simulators on GPUs have
shown that a parallel architecture is better suited in performance than traditional single
CPUs.

In 2010, a GPU-based simulator was introduced for a family of P systems with active
membranes solving SAT in linear time. This is the starting point of this paper, which
presents a new GPU simulator for another polynomial-time solution to SAT by means of
tissue P systems with cell division, trading space for time. The aim of this simulator is
to further study which ingredients of different P systems models are well suited to be
managed by the GPU.

Keywords: Membrane Computing, tissue P systems, SAT, GPU Computing

1 Introduction

Membrane Computing [15] is a recent branch of Natural Computing, which defines
massively parallel and non-deterministic computing devices abstracted from living
eukaryotic cells. These devices are called membrane systems, or simply, P systems
(named after its creator, Gheorghe Păun) [12]. Today, researchers have only one
method to work with P systems, which is the usage of simulators running on
conventional electronic computers. However, these simulators are normally unfit
for very large P systems models. The main reason is that they are not throughput-
oriented, so they consume large amounts of time and memory resources on a
computer. Therefore, the necessity of efficient simulators arises [15].
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In the last years, the trend has been oriented to implement P systems
parallelism on parallel platforms, such as accelerators (special parallel devices).
In fact, the advent of the accelerators in High Performance Computing offers
fresh avenues for developing new and efficient simulators [2]. One of the most
important accelerators nowadays is the GPU (Graphics Processing Unit). It is the
core of graphics cards and, thanks to the fast growth of video and game market,
typically contains hundreds of slight processors. Their evolution has also led to a
new programming model based on data parallelism. This permits to use GPUs for
general purpose applications (GPGPU or GPU computing) [8].

So far, many GPU-based simulators have been developed for several P systems
models: active membranes [2], PDP systems [9], Spiking Neural P systems [1],
among others. These simulators are flexible for the corresponding P system model,
supporting a wide variety of P systems. However, this feature causes a negative
effect on performance [10]. An alternative line was initiated in 2010 with the
introduction of a specific (ad-hoc) simulator for a P system based efficient solution
to SAT by using GPUs [3, 4]. The solution is based on P systems with active
membranes, and the simulator achieves speedups of up to 90x, compared to the
CPU counterpart. The obtained results lead to a new open question, related with
the efficiency of P system simulators: fixed a problem (e.g. SAT), which is the
fastest P system based solution simulated on the GPU? In order to answer this
question, we first need to analyze which elements of P systems are better suited
to be handled by the GPU. In fact, this can help to define new methods to design
more efficient simulators.

In this paper, we consider another efficient solution to SAT based on tissue P
systems with cell division. A simulator based on GPUs for this solution is presented.
We provide an analysis of performance of the new simulator, together with a
performance comparison between the cell-like and the tissue-like simulators.

The paper is structured as follows: Section 2 introduces the model of tissue P
systems with cell division and the solution to SAT; Section 3 surveys the typical
GPU architecture and the peculiarities of GPU computing; Section 4 depicts the
design of the new simulator; Section 5 provides the performance analysis of the
developed simulator and the mentioned comparisons; and finally, Section 6 ends
the paper with conclusions and open research lines.

2 Tissue-like P systems

In this paper, we work on computational devices inspired by the cell inter–
communication in tissues, and adding the ingredient of cell division rules. Cell
division is an elegant process that enables organisms to grow and reproduce by
means of the production of two daughter cells from a single parent cell.

Tissue P systems with cell division are inspired by the cell-like model of P
systems with active membranes [13]. In these models, the cells are not polarized;
cells obtained by division have the same labels as the original cell, and if a cell is
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divided, its interaction with other cells or with the environment is locked during
the division process.

First, we recall some preliminaries. An alphabet Γ is a non–empty set whose
elements are called symbols. A multiset m over an alphabet Γ is a pair m = (Γ, f)
where f is a mapping from Γ into N. If m = (Γ, f) is a multiset then its
support is defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its
support is a finite set. If supp(m) = {a1, . . . , ak} then the multiset m will be
denoted as m = a

f(a1)
1 . . . a

f(ak)
k (here the order is irrelevant), and we say that

f(a1) + · · · + f(ak) is the cardinal of m, denoted by |m|. The empty multiset is
denoted by λ.

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ . The union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g = f1 + f2, that is,
g(x) = f1(x)+f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted
by m1 \m2 is the multiset (Γ, g), where g(x) = f1(x)− f2(x) if f1(x) ≥ f2(x) and
g(x) = 0 otherwise.

Definition 1. A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

1. Γ,Σ and E are finite alphabets such that Σ ( Γ and E ⊆ Γ .
2. Γ has two distinguished objects yes and no, and {yes, no} ∩ E = ∅.
3.M1, . . . ,Mq are finite multisets over Γ \Σ.
4. At least one copy of objects yes and no are present in some initial multisets
M1, . . . , Mq, but none of them are present in E.

5. R is a finite set of rules of the following forms:
(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v finite

multisets over Γ , and |u+ v| 6= 0;
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, i 6= iout and

a, b, c ∈ Γ .
6. iin ∈ {1, 2, . . . , q}, and iout ∈ {0, 1, . . . , q}.

A tissue P system with cell division Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout) of
degree q ≥ 1 can be viewed as a set of q cells, labeled by 1, . . . , q, with an
environment labeled by 0 such that: (a) M1, . . . ,Mq are finite multisets over Γ
representing the objects (elements in Γ ) initially placed in the q cells of the system;
(b) E is the set of objects located initially in the environment of the system, all
of them appearing in an arbitrary number of copies; and (c) iin represents the
input cell, and iout ∈ {0, 1, . . . , q} represents the region (a distinguished cell when
iout ∈ {1, . . . , q}, or the environment when iout = 0) which will encode the output
of the system.

When applying a rule (i, u/v, j), the objects of the multiset u are sent from
region i to region j and, simultaneously, the objects of multiset v are sent from
region j to region i. When applying a division rule [a]i → [b]i[c]i, under the
influence of object a, the cell with label i is divided into two cells with the same
label. In the first copy, object a is replaced by object b, and in the second one,
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object a is replaced by object c; all the other objects are replicated and copies of
them are placed in the two new cells. The output cell iout cannot be divided.

The rules of a tissue P system with cell division are applied in a non-
deterministic maximally parallel manner. At each step, all the cells which can
evolve must evolve in a maximally parallel way (at each step, we apply a multiset of
rules which is maximal, no further rule can be added), with the following important
remark: if a cell divides, only the division rule is applied to that cell at that step;
the objects inside that cell do not evolve by means of communication rules.

A configuration at any instant of Π is described by all multisets of objects over
Γ associated with all the cells present in the system, and the multiset of objects
over Γ \E associated with the environment at that moment. Given a finite multiset
m over Σ, the initial configuration with input m is (M1, . . . ,Miin

+m, . . . ,Mq; ∅).
A configuration is a halting configuration if no rule of the system is applicable to
it.

We say that configuration C1 yields configuration C2 in one transition step if
we can pass from C1 to C2 by applying the rules from R following the previous
remarks. A computation of Π is a sequence of configurations such that: (a) the first
term of the sequence is an initial configuration of the system; (b) each remaining
term of the sequence is obtained from the previous one by applying the rules of the
system in a maximally parallel manner with the restrictions previously mentioned;
and (c) if the sequence is finite (called halting computation), then the last term of
the sequence is a halting configuration.

A tissue P system with cell division is a recognizer system if all computations
halt, and if C is a computation of Π, then either object yes or object no (but
not both) must have been released into the environment, and only at the last
step of the computation. We say that C is an accepting (respectively, rejecting)
computation if object yes (respectively, object no) appears in the environment
associated with the corresponding halting configuration of C.

2.1 An efficient solution to SAT by means of tissue P systems with
cell division

This section presents an efficient solution to the SAT problem by means of family
of recognizer tissue P systems with cell division (see [14] for details).

For each pair of natural numbers m,n ∈ N, we will consider the recognizer
tissue P system with cellular division Π(〈m,n〉) = (Γ,Σ, µ,M1,M2, R, 2) of
degree 2, defined as follows:

• The input alphabet is Σ = {xi,j , xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
• The working alphabet is

Γ = Σ ∪ {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m} ∪
∪ {Ti, Fi | 1 ≤ i ≤ n} ∪ {Ti,j , Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m+ 1} ∪
∪ {bi | 1 ≤ i ≤ 2n+m+ 1} ∪ {ci | 1 ≤ i ≤ n+ 1} ∪
∪ {di | 1 ≤ i ≤ 2n+ 2m+ nm+ 1}∪
∪ {ei | 1 ≤ i ≤ 2n+ 2m+ nm+ 3} ∪ {f, g, yes, no}
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• The environment alphabet is E = Γ − {yes, no}.
• The set of labels is {1, 2}.
• The initial multisets associated with the cells areM1 = {yes, no, b1, c1, d1, e1}

and M2 = {f, g, a1, a2, . . . , an}.
• The input cell is the one labeled by 2, and the output region is the environment.
• The set R is formed by the following rules:

1. Division rule:

(a) [ ai ]2 → [ Ti ]2[ Fi ]
2
, for i = 1, 2, . . . , n.

2. Communication rules:

(b) (1, bi/b2i+1, 0), for i = 1, . . . , n.
(c) (1, ci/c2i+1, 0), for i = 1, . . . , n.
(d) (1, di/d

2
i+1, 0), for i = 1, . . . , n.

(e) (1, ei/ei+1, 0), for i = 1, . . . , 2n+ 2m+ nm+ 2.
(f) (1, bn+1cn+1/f, 2).
(g) (1, dn+1/g, 2).
(h∗) (1, f2/f, 0).
(h) (2, cn+1Ti/cn+1 Ti,1, 0), for i = 1, . . . , n.
(i) (2, cn+1Fi/cn+1 Fi,1, 0), for i = 1, . . . , n.
(j) (2, Ti,j/ti Ti,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m.
(k) (2, Fi,j/fi Fi,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m.
(l) (2, bi/bi+1, 0).
(m) (2, di/di+1, 0), for i = n+ 1, . . . , 2n+m.
(n) (2, b2n+m+1 ti xi,j/b2n+m+1 rj , 0).
(o) (2, b2n+m+1 fi xi,j/b2n+m+1 rj , 0), for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
(p) (2, di/di+1, 0), for i = 2n+m+ 1, . . . , 2n+m+ nm.
(q) (2, d2n+m+nm+j rj/d2n+m+nm+j+1, 0), for j = 1, . . . ,m.
(r) (2, d2n+2m+nm+1/f yes, 1).
(s) (2, yes/λ, 0).
(t) (1, e2n+2m+nm+3 f no/λ, 0).

Let ϕ = C1 ∧ · · · ∧ Cm be a propositional formula in CNF1 such that the set
of variables of the formula is V ar(ϕ) = {x1, . . . , xn}, and consists of m clauses
Cj = yj,1∨· · ·∨yj,kj

, 1 ≤ i ≤ m, where yj,j′ ∈ {xi,¬xi : 1 ≤ i ≤ n} are the literals
of ϕ. Without loss of generality, we can assume that the formula is in simplified
expression.

Next, we consider a polynomial encoding (cod, s) of the SAT problem in the
family Π = {Π(t) | t ∈ IN}. The function cod associates to the previously described
propositional formula ϕ, that is an instance of SAT with parameters n (number of
variables) and m (number of clauses), the following multiset of objects

1 Conjunctive Normal Form
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cod(ϕ) =
m⋃

i=1

{xi,j : xi ∈ Cj} ∪ {xi,j : ¬xi ∈ Cj}

In this case, object xi,j represents that variable xi belongs to clause Cj .
The size function, s, is defined as follows s(ϕ) = 〈m,n〉 = (m+n)·(m+n+1)

2 +m.
The system of the family Π to process the instance ϕ will be the tissue P system
Π(s(ϕ)) with input multiset cod(ϕ).

The execution of the system Π(s(ϕ)) with input cod(ϕ) is structured in six
phases:

• Valuations generation phase: in this phase all the possible relevant truth
valuations are generated for the set of variables of the formula {x1, . . . , xn}. It
is implemented by using division rules (a), whereby each object xi produces
two new cells, one having the object Ti, that codifies the true value of the
variable xi, y and the other having the object Ti, that codifies the false value
of the variable xi. Thus, 2n cells are obtained in n computation steps. These
cells are labeled by 2, and each one codifies each possible truth valuation of
the set of variables {x1, . . . , xn}. Meanwhile, the objects f, g are replicated in
each created cell. This phase spends n computation steps.

• Counters generation phase: simultaneously, and using the rules (b), (c),
(d) and (e), the counters bi, ci, di, ei of the cell labeled by 1, are evolving such
that in each computation step the number of objects in each one are doubling.
Thereby, through this process and after n steps, we get 2n copies of the objects
bn+1, cn+1, and dn+1. Objects b′s will be used to check which clauses are
satisfied for each truth valuation. Objects c′s are used to obtain a sufficient
number of copies of ti, fi (namely, m). Objects d′s will be used to check if there
is at least one valuation satisfying all clauses. Finally, objects e′s will be used
to produced, in its case, the object no at the end of the computation.

• Checking preparation phase: this phase aims at preparing the system for
checking clauses. For this, at step n + 1 of the computation, and by the
application of the rules (f) and (g), the counters bn+1, cn+1, dn+1 of the
cell 1 is exchanged for the objects f and g of the 2n cells 2. Thus, after this
step, each cell labeled by two has a copy of the objects bn+1, cn+1, dn+1, while
the cell 1 has 2 copies of the objects f and g.
Subsequently, the presence of an object cn+1 in each one of the 2n cells labeled
by 2 allows to generate the objects Ti,1 and Fi,1. By the application of rules (j)
and (k), these objects allows the emergence of m copies of ti and m copies of
fi, according to the values of truth or falsity that a cell 2 assigns to a variable
xi. This process spends n+m steps since there is only one object cn+1 in each
cell 2 and, moreover, for each i = 1, . . . , n, the rules (j) and (k) are applied
exactly m consecutively times. Simultaneously, in the first steps of this process,
the application of the rule (h∗) makes the cell labeled by 1 to appear only one
copy of the object yes.
Simultaneously in this phase, the counters bi, di and ei are evolving by the
applications of the corresponding rules.
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• Checking clauses phase: in this phase, the clauses that are true for every truth
valuation are determined, and encoded by a cell labeled by 2. This phase starts
at the computation step (n+ 1) + (n+m) + 1 = 2n+m+ 2. Using the rules
(n) and (o), the true clauses are checked for each valuation encoded by a cell.,
so that the appearance of an object rj in a cell 2 means that the corresponding
valuation makes true the clause Cj . Bearing in mind that a single copy of the
object b2n+m+1 is in each cell, the phase takes nm computation steps.
Thus, the configuration C2n+m+nm+1 is characterized by the following:
– It contains exactly 2n cells labeled by 2. Each one contains the object

d2n+m+nm+1, and copies of objects rj for each clause Cj made true by the
encoded valuation in the cell.

– It contains a unique cell labeled by 1, containing a copy of objects
yes, no, f, g and the counter e2n+m+nm+2.

This phase consumes m computation steps.
• Formula checking phase: in this phase it is determined if there exists any

valuation making true the m clauses of the formula. For this, the rules of
type (q) are used, analyzing in an ordered way (first the clause C1, after that
clause C2, and so on) if the clauses of the formula are being satisfied by the
represented valuation in the corresponding cell labeled by 2. For example, from
counter d2n+m+nm+1 appearing in every cell 2, the appearance of the object r1
(the valuation makes true clause C1) permits to generate in that cell the object
d2n+m+nm+2. This object, in turn, permits to evolve object d2n+m+nm+3 if in
that cell appears the object r2. In this manner, a valuation represented by a cell
labeled by 2 makes true the formula ϕ if and only if the object d2n+m+nm+m+1

appears in the content of that cell in the configuration C2n+m+nm+m+1.
• Output phase: in this phase the system will provide the corresponding output,

depending on the analysis in the formula checking phase.
If the formula ϕ is satisfiable, then there is some cell in the configuration
C2n+m+nm+m+1 that contains an object d2n+m+nm+m+1. In this case, the
application of rule (r) sends an object f and the object yes to the cell 1.
The object yes therefore disappears from cell 1, and consequently, rule (t) can
not be applied. In the next computation step, the application of the rule (s)
produces an object yes in the environment (for the first time during the whole
computation) and the process ends.
If the formula ϕ is not satisfiable, then there no exist any cell in the
configuration C2n+m+nm+m+1 containing an object d2n+m+nm+m+1. In this
case, the rule (r) is not applicable, and in the next computation step, the
counter ei evolves, providing an object e2n+m+nm+m+3 in the cell 1. This object
permits the application of rule (t), since the objects no and f remains in the
cell 1. In this way, the object no is sent in the next computation step, and the
computation finalizes.

It can be easily proved that the family Π = {Π(〈m,n〉) : n,m ∈ N}, defined
above, is polynomially uniform by deterministic Turing machines. For this, it is
enough to keep in mind that the systems of the family have benn defined through
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recursive expressions, and the amount of resources needed to describe the system
Π(〈m,n〉) is quadratic in max{m,n}. Indeed:

1. Size of the alphabet: 6nm+ 12n+ 7m+ 12 ∈ Θ(nm).
2. Number of initial cells: 2 ∈ Θ(1).
3. Number of initial objects: n+ 8 ∈ Θ(n).
4. Number of rules: 4nm+ 10n+ 3m+ 16 ∈ Θ(nm).
5. Upper limit of rule length: 5 ∈ Θ(1)

3 GPU computing

The GPU (Graphics Processor Unit) is a specialized chip designed to manipulate
computer graphics efficiently. In fact, it is an essential part of most current
computers. Their highly parallel structure is based on hundreds of simple
computing cores, making them more effective than common CPUs for processing
large blocks of data in parallel [8]. Thus, the GPU is being consolidated as a
device suitable for High Performance Computing, as it was foreseen by Elster [5]
and other authors [8].

3.1 CUDA programming model

In 2007, NVIDIA announced CUDA (Compute Unified Device Architecture) [17],
a programming model totally abstracted from the hardware of the GPU. Based on
C, the programmer only has to think on threads and arrays, together with some
performance aspects. This easy way to build large applications has led to a rapidly
evolution of GPU computing [11]. As a result, CUDA has been successfully utilized
for developing P systems simulators [1, 2, 3, 4, 9].

CUDA provides an heterogeneous computing system, consisting of a host (the
CPU) and several devices (GPUs) [7]. The idea is to execute on device program
sections with large amount of data parallelism. These sections are written in
separated C functions called kernel. Each kernel is executed on the GPU by a
grid of threads. As shown in Figure 1, threads are grouped in blocks. Threads
belonging to the same block are easily synchronized by barrier operations (when
a thread reaches the barrier, wait for the rest to continue).

The memory model is also an aspect to consider in the CUDA programming
model. This memory hierarchy is explicitly and manually managed. The global
memory is the largest (but slowest) in the GPU. It is accessed by the host, and
also by any thread, as it is the communication channel between the host and the
device. The smallest (but fastest) memory is the shared memory. It is local to each
block, but the content is volatile through kernels calls, and the CPU cannot read
it. Finally, there is a variety of atomic operations to update single data elements
in any memory in a concurrently and synchronously way.

An efficient way to structure an algorithm in CUDA is by maximizing the usage
of the memory hierarchy, as follows:
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Fig. 1: Overview of CUDA programming model.

1. The threads of each block read its corresponding data portion from global
memory to shared memory (which is inevitable because the host only can put
the data in global memory).

2. Threads work with the data directly on shared memory.
3. Threads copy these data back to global memory (so the host can retrieve the

result).

3.2 A modern GPU architecture

The GPU used in our work is the NVIDIA Tesla C1060. We use this model since
it was used in our previous work, and the aim is to compare results. The Tesla
C1060 is based on a scalable processor array which has 240 SPs (streaming-
processor) cores organized as 30 SMs (streaming multiprocessor) and 4 GB of
off-chip GDDR3 memory called device memory. The applications start at the host
side which communicates with the device side through a bus, which is a PCI
Express x16 bus standard.

The SM is the processing unit and an unified graphics and computing
multiprocessor. Every SM contains the following units: eight SPs arithmetic cores,
one double precision unit, an instruction cache, a read only constant cache, 16-
Kbyte on-chip read/write shared memory, a set of 16384 32-bit registers, and access
to the off-chip memory (device/local memory). The SM also has two SFUs that
execute more complex floating point operations such as reciprocal square root,
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sine or cosine with low latency. The arithmetic units are capable to execute three
instructions per clock cycle, and they are fully pipelined, running at 1,296 GHz,
yielding a peak theoretical 933 GFLOPS2 (240 SP * 3 instructions * 1,296 GHz).

The local and global (device) memory spaces are not cached, which means
that every memory access to global memory (or local memory) generates an
explicit memory access. A multiprocessor takes 4 clock cycles to issue one memory
instruction. Accessing local or global memory incurs an additional 400 to 600 clock
cycles of memory latency [7], that is more expensive than accessing share memory
and registers (only the mentioned 4 cycles).

A SM is a hardware device specifically designed with multithreaded capabilities.
Each SM manages and executes up to 1024 threads in hardware with zero
scheduling overhead. Each thread has its own thread execution state and can
execute an independent code path. The SMs execute threads in a SIMT (Single-
Instruction Multiple-Thread) fashion [7]. Basically, in the SIMT model all the
threads execute the same instruction on different piece of data. SMs create,
manage, schedule and execute threads in groups of 32 threads (which is the
branching granularity of NVIDIA GPUs). This set of 32 threads is called warp.
Each SM can handle up to 32 warps. Individual threads of the same warp must
be of the same type and start together at the same program address, but they are
free to branch and execute independently at cost of performance.

4 Parallel simulator on the GPU

In this section we describe the developed CUDA simulator. We first explain the
data structures and the phases that compound the simulation algorithm. Secondly,
the parallel simulator based on CUDA is depicted.

This simulation framework is named TSPCUDASAT and published under
GNU GPLv3 license. It is enclosed to the software project PMCGPU (Parallel
simulators for Membrane Computing on the GPU) [18], where the source code of
the simulators is available for download.

4.1 Sequential simulation and data structures

For an easier implementation, the simulation algorithm has been divided into five
(simulation) phases. Note that they are different in number than the denoted
phases of the theoretical model (Section 4 and [14]). This is done to unify phases
in the software design. Each of these simulation phases are implemented in code
as separated functions whenever is possible. They correspond to the application
of certain rules, as explained below:

• Generation phase: it performs the application of rules from (a) to (e) of
the systems (Section 2.1). Therefore, it comprises the two first phases of the
theoretical model: valuations generation phase and counters generation phase.

2 FLOPS stands for FLoating-point Operations Per Second. GFLOPS are giga FLOPS.
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• Exchange phase: it simulates the application of rules (f) and (g). It comprises
the first part of the checking preparation phase.

• Synchronization phase: it applies the rules from (h) to (m), so comprising the
second part of the checking preparation phase.

• Checking phase: it performs the application of rules from (n) to (p). Thus, it
is the checking clauses phase we identified in the theoretical model.

• Output phase: it applies rules from (q) to (t). It then performs both the formula
checking phase and the output phase identified in the theoretical model.

The sequential simulator implements these five simulation phases directly in
source code, which is in C++. Each one works directly with the data structures
depicted below. The input of the simulator is the same than the one used in the
simulator for the cell-like solution [3, 4]. A DIMACS CNF file3 is provided, and the
simulator outputs the response of the computation. Therefore, it acts merely as a
SAT solver, but the implementation follows the computation of the systems from
the family of tissue P systems. Recall that the aim is not to provide a SAT solver,
but to study P system simulations on the GPU by comparing different solutions
to the same problem.

Furthermore, we have adopted a set of enhancements to improve the
performance of the sequential simulator. After several tests, we have shown that
the best optimizations are:

• As the Exchange phase is very simple, it is then implemented after the
Generation phase loop, within the same function.

• We apply the full Synchronization phase to one cell before going to the next
one. This allows us to exploit data locality in cache memories.

• In the Checking phase, we orderly insert the objects rj , for 1 ≤ j ≤ m, in
the corresponding array whenever they are created. Thus, the Output phase
can be easily performed, in such a way that it is not necessary to loop all the
objects coming from the input multiset (literals). Now it is enough to check if
there exists the m objects rj .

4.2 Data structures

For this solution, the representation of a tissue P system Π(〈m,n〉) is twofold. As
the model differentiates between cells labeled by 1 and 2, the design decision was
to also have a different data structure representing each cell type in the system.
The elements of the cells are encoded within 32-bit integers.

First, cell 1 is represented as an array having a constant dimension of 5
elements. That is, the multiset for cell 1 has the maximum amount of 5 objects:
the three counters, b, c and d (which are initially in this cell), and the two objects
yes and no (the final answer to the problem).

Second, the cells labeled by 2 are also represented by a one-dimensional array.
All of them are stored inside this large array, since it is initially allocated to store
3 One of the most adopted input formats by SAT solvers.
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the maximum amount of cells (2n). By studying the computation, we conclude
that the maximum number of objects appearing in a cell 2 is (2n) + 4 + |cod(ϕ)|,
where:

• |cod(ϕ)| elements for the initial multiset,
• n elements for objects Ti,j and Fi,j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
• n elements for objects ti and fi, for 1 ≤ i ≤ n.
• 4 elements for counter objects a, b, c and d. They will be replaced for counter

objects f and g.

The objects are represented similarly to the previous simulator for the cell-
like based solution [3]. They are encoded at bit-level within integers of 32 bits,
that store the following (8 bits for each field): the name of the object (x or x),
multiplicity of the object (as the multiplicity can exceed 28, this field can eventually
be joined to the next one), variable (index i) and clause (index j).

1. The name of the object (x or x)
2. Multiplicity of the object. As there are objects whose multiplicity can exceed

28, this field can eventually be joined to the next one (variable).
3. Variable (index i).
4. Clause (index j).

4.3 Design of the parallel simulator

The parallel simulator is designed to also fully reproduce a computation of the
systems from the family of tissue P systems. That is, there is no a hybrid4 solution
providing simulation shortcuts to the computation as in [3]. The design of this
parallel simulator is driven by the structure of phases explained above, using
separate CUDA kernels to speedup the execution of each one.

A similar CUDA work distribution used in other simulators for cell-like
solutions [2, 3] is applied. This general assignment is summarized in Figure 2.
Each thread block corresponds to each cell labeled by 2 created in the system (up
to 2n cells). However, unlike the previous simulator for the cell-like solution, we
do not assign a thread per literal. The assignment of each thread, this time, is
different for each simulation phase. The work mapping per phase is therefore as
follows:

• Generation phase: the number of thread blocks is iteratively increased together
with the amount of cells created in each computation step. We distribute cells
along the two-dimensional grid through successive kernel calls. Each thread
block contains (2n) + 4 + |cod(ϕ)| threads. That is, the amount of elements
assigned to each cell in the global array storing multisets. Threads are then
used to copy each individual elements of the corresponding cell when it is
divided.

4 A hybrid simulator does not perform exactly the same computational steps as the
theoretical P system, but achieves the same answer.
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Fig. 2: General design of the parallel simulator.

• Exchange phase: it is executed at the kernel for Generation phase, using the
same amount of thread blocks, but only the corresponding threads perform the
exchange.

• Synchronization phase: the thread blocks are assigned to the cells labeled by
2, and the number of threads is n (number of variables). If we use the same
amount of threads than in Generation phase, most of them will be idle: it
is preferred to launch less threads, but performing effective work. We have
experimentally corroborated this fact.

• Checking phase: the number of thread blocks is again assigned to be the number
of cells labeled by 2. However, for this phase we use a block size of |cod(ϕ)|.
That is, each thread is used to execute, in parallel, rules of type (n) and
(o). The result at the SAT problem resolution level, each thread checks if the
corresponding literal makes true its clause, depending on the truth assignment
encoded by the cell assigned to the thread block.

• Output phase: rules of type (q) are sequentially executed in a separate kernel,
again using |cod(ϕ)| threads per block, and 2n thread blocks.

For this solution, we have applied a small set of improvements, focused on
the GPU implementation, to improve the performance of the parallel simulator.
We have identified that the simulator runs twice faster than the non-enhanced
simulator. We will use the enhanced version of the parallel simulator to perform
the comparisons. These improvements are oriented to two performance aspects of
GPU computing [11]:



214 M.A. Mart́ınez-del-Amor, J. Pérez-Carrasco, M.J. Pérez-Jiménez

1. The first enhancement type is to emphasize the parallelism, which aims to
increase the number of threads per block (to the recommended amount from
64 to 1024).

2. The second enhancement type is to exploit streaming bandwidth. To do this,
the data is first loaded into shared memory and operated there, avoiding global
memory (expensive) accesses.

Next, we show the specific enhancement we have carried out for each phase:

• Generation phase: no enhancement were implemented here, since the imple-
mentation already satisfies the first optimization type. The second type will
require a more sophisticated implementation, like the one presented in [4].

• Exchange phase: this phase is joined with the generation phase, but has no
further enhancements.

• Synchronization phase: the two enhancement types are implemented here. The
second enhancement type is carried out by using shared memory to avoid
global memory accesses. The first type is performed by increasing the number
of threads per block. For our simulator, we can assume that n (number of
variables, and the number of threads per block) is a small number, since the
number of cells grows exponentially with respect to it. For example, let be
n = 32. Then, 232 cells will be created, what require 232(68 + |cod(ϕ)|) bytes
(in gigabytes: 272 + 4|cod(ϕ)|). This number obviously exceeds the amount of
available device memory. We therefore need to increase the number of threads
per block, since n < 32 means to not fulfilling a CUDA warp. A solution here
is to assign more than one cell to each thread block. This amount is 256

n , being
256 the optimum number of threads per block. It allows us to reach a number
of threads close to the optimum one. However, we have to take care also of
having enough shared memory to load the data of every assigned cell.

• Checking phase: since |cod(ϕ)| can be greater than 32, we then keep this number
as the number of threads per block. However, we use shared memory to speedup
the accesses to the elements of the array.

• Output phase: as in the previous phase, we also use shared memory, and the
number of threads per block is kept to |cod(ϕ)|.

5 Performance analysis

In this section we show the performance tests carried out for the introduced
simulator and for the cell-like based simulator [3]. All experiments are run on
a Linux 64-bit server, with a 4-core (2 GHz) dual socket Intel i5 Xeon Nehalem
processor, 12 GBytes of RAM, and two NVIDIA Tesla C1060 (240 cores at 1.30
GHz, 4 GBytes of memory).

We have developed two benchmarks (called test 1 and test 2, respectively) to
analyze the performance behavior of our simulators in two ways: increasing the
number of threads per thread block, and increasing the number of thread blocks
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per grid. They are the same than the two used for the cell-like simulators [3].
Both benchmarks have been generated by WinSAT program [16]. WinSAT is able
to generate random SAT instances in DIMACS CNF format file by configuring
several parameters: the number of variables (n), the number of clauses (m) and
the number of literals per clause (we fix k for our experiments).

5.1 Tissue-like simulator

In this subsection, we will see the comparisons of performance between the two
simulators developed for the family of tissue-like P systems under study: the
sequential simulator (from now on, tsp-sat-seq), and the parallel simulator on the
GPU (tsp-sat-gpu). For this analysis we will use one of the two tests mentioned
above: the first one increasing the number of objects (fixing membranes to 2048),
and the second increasing the number of variables (and so number of cells) and
fixing the number of literals (and so input objects) to 256.

In the first case we can see that, even for small number of objects per membrane,
tsp-sat-gpu runs faster than tsp-sat-seq. A different number of objects does not
produce a great impact into the performance of the parallel simulator.

In the second case, we can observe that the kernels of tsp-sat-gpu runs faster
than tsp-sat-seq. However, the performance gain is increased with the amount of
cells 2 created by the system. For 64 membranes, the speedup is of 2x, but for 2
M cells it is of 8.3x.

Figure 3 shows the performance behavior of the tissue-like simulators for test
1. Only the time employed by kernels are considered for tsp-sat-gpu. We can see
that, even for small number of objects per membrane, tsp-sat-gpu runs faster than
tsp-sat-seq. A different number of objects does not produce a great impact into the
performance of the parallel simulator. Note that in Section 4, we have introduced
a different CUDA design for each phase. In this sense, the synchronization phase
has been optimized to assign more cells to a thread block in order to increase the
number of threads. However, the speedup is increased together with the number
of objects per membrane. This means that the resources of the GPU are better
utilized (e.g. 4 objects/threads does not fulfill a warp). We report the maximum
speedup for 32 objects (a warp), which is of 11.6x. For 2 objects is 4x, and for 256,
6.1x.

Figure 4 shows the results for test 2, considering only kernel runtime for tsp-sat-
gpu. For this case, we can observe that again, the kernels of tsp-sat-gpu runs faster
than tsp-sat-seq. However, the performance gain is increased with the amount of
cells 2 created by the system. For 64 membranes, the speedup is of 2x, but for 2
M cells it is of 8.3x.

Finally, Figure 5 shows the speedup achieved by the simulator tsp-sat-gpu,
taking into account also the amount of time consumed by the data management
(allocation and transfer). It is observed that, since the data management time
is fixed for all the sizes, the speedup exceeds 1 only after 128 K cells. Systems
with smaller number of cells are executed slower in the GPU because of the data
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Fig. 3: Simulation performance for tsp-sat-seq and tsp-sat-gpu: Test 1 (2048
membranes)
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Fig. 4: Simulation performance for tsp-sat-seq and tsp-sat-gpu: Test 2 (256
Objects/Membrane)

management. However, for very large systems, the speedup is as large as only
considering kernels. The maximum speedup is given for 4 M cells, up to 10x.

5.2 Cell-like vs tissue-like

Next, we compare the two simulators developed for the two solutions to SAT using
P systems with active membranes (let call it am-sat-gpu) and tissue P systems
with cell division (tsp-sat-gpu). Here we study which model is better suited to be
simulated on the GPU.



Simulating a Family of Tissue P Systems Solving SAT on the GPU 217

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
0

2

4

6

8

10

12

Number of membranes

S
p

e
e

d
u

p

Fig. 5: Speedup achieved running test (256 Objects/Cell) for tsp-sat-gpu and tsp-
sat-seq. GPU data management is also considered.

First of all, we should analyze the differences between them to better
understand the different behaviors. We highlight the following:

• Computational steps: given m,n ∈ N, representing the number of clauses and
variables respectively, the cell-like P systems take 5n+ 2m+ 3 steps, and the
tissue P systems require 2n + 2m + nm + 1. Thus, the computation of the
tissue-like solution is longer (in number of steps), if m > 3 + 2

n ' 3.
• Phases: am-sat-gpu is based on 4 phases (implemented in 3 kernels), whereas

tsp-sat-gpu uses 5 phases (implemented in 4 kernels).
• Memory requirements: each membrane in am-sat-gpu is represented by a

number of 32-bit integers equals to |cod(ϕ)|, but the tissue-like simulators use
for them 2n + 4 + |cod(ϕ)|. Thus, tsp-sat-gpu uses, in total, (2n + 4)2n bytes
more.

Figure 6 compares both solutions using Test 2. It can be observed that the
kernels of am-sat-gpu outperforms tsp-sat-gpu, even using optimizations for the last
one. This improvement implies a speedup of 2.9x. However, if we take into account
the data management in the GPU, we can see that the behavior of them is almost
similar. The simulator am-sat-gpu runs just a bit faster, but for 2 M membranes,
the speedup is almost 2x. This makes us to think that the data implementation of
am-sat-gpu can be improved, since it requires an inferior amount of data. Recall
that am-sat-gpu has not any GPU oriented enhancements, as in tsp-sat-gpu.

We finish this comparison by reporting their corresponding maximum speed-
up with their sequential counterparts, which is of 63x and 10x for the cell-like
and tissue-like simulators, respectively. Therefore, using the GPU for the cell-like
solutions allows to get better performance gain.
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Fig. 6: Achieved speedup for both tsp-sat-gpu and am-sat-gpu simulators,
considering (w/ data) or not considering (w/o data) the time for data management.

5.3 Characterizing the simulation on the GPU

Next, we characterize the simulations carried out in this work. From the
comparison of the simulators for the cell-like and the tissue-like solutions, we have
observed that the cell-like simulations are better carried out by the GPU. Thus,
we have identified two properties that have helped to improve the performance of
these GPU simulators:

• Charges: the model of P systems with active membranes associates charges to
the membranes. They can be used to store information over the computation
as well. If they are considered (and effectively used) for a given solution (e.g. to
encode the truth assignment for SAT), less memory would be required (remind
that the tissue-like simulator requires 2n(2n + 4) bytes more). In fact, the
information encoded by charges can save objects that may or not may appear
simultaneously in membranes, what saves also memory, and so, the number of
threads to launch, working with much less objects.

• Rules with no cooperation: the model of P systems with active membranes
defines rules with no cooperation, that is, the number of objects appearing in
their left-hand sides is always 1. This property helps threads to be assigned
to each rule, what also means to work with each object in parallel. Rules
permitting cooperation (as in tissue P systems) require to take care of which
objects are accessed by rules (and threads). It would be also interesting to study
each type of rule (i.e., division, communication for tissue-like, and division,
dissolution, send-in, send-out and evolution for cell-like) separately. Recall that
a more flexible and general simulator for active membranes [2], the constraints
of send-in, send-out, division and dissolution rules have to be considered for
each membrane, what degrades parallelism on the GPU (it implies using local
locks). However, in the model of tissue P systems these restrictions are not
presented. A flexible simulator for tissue models can be implemented in a future
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to study what is better: usage of charges but restricting types of rules, or not
using charges (i.e. more objects per membrane) and more (but less restrictive)
parallel rules.

6 Conclusions

In this paper we have presented a recent result on the parallel simulation with
GPUs of an efficient solution to SAT by tissue P systems with cell division. The
CUDA simulator design is similar to the one used in the previous simulator for a
solution based on P systems with active membranes. Each thread block is assigned
to each cell labeled by 2. However, the number of objects to be placed inside each
cell in the memory representation is increased.

Experiments show that the CUDA simulator outperforms the sequential one
by 10x. It can be seen that solving the same problem (SAT) under different P
system variants leads to different speedups on the GPU (up to 2.9x for the cell-
like simulator against the tissue-like). Indeed, we show that the usage of charges
can help to save space devoted to objects, and rules without cooperation to increase
thread parallelism.

Future work will be focused on developing new GPU-based simulators for other
P systems models, and on improving the existing ones. In addition, further research
can be carried out concerning the parallel simulation of particular P systems
features, identifying which of them can be easily combined and efficiently simulated
by the GPU. In this way, novel approximations for parallel simulators development
can be performed also at the P systems area. An approach is to define a P system
model combining all the good features for GPU simulators (let call it GP systems,
or GPU oriented P systems). Then, the creation of a GPU based simulator for GP
systems would be straightforward, considering the corresponding GPU oriented
optimizations. However, it would be important to define a translation protocol
from other P systems models to GP systems.
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Jiménez, M. Ujaldón. The GPU on the simulation of cellular computing models,
Soft Computing, 16, 2 (2012), 231–246.

5. A. C. Elster. High-performance computing: Past, present and future, LNCS, 2367
(2002), 433–444.
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Summary. Some questions and open problems are formulated in the context of a
dilemma continuous approach versus discrete approach to the investigations of dynamics
of complex biological and physical systems with a regard to membrane computing [11].

1 A question about an extent of discretization programs of
physics

Fredkin–Sorkin–Wolfram discretization programs of physics via E. Fredkin’s digi-
talization [5], R. D. Sorkin’s causal sets [15], and S. Wolfram’s cellular automata
approach [18] give rise to a question:

Does the discretization mean a lost (or eventually how to find or establish
counterparts) of classical qualitative properties of continuously (with respect to
time among others) treated processes like the properties:

• a property of reaching equilibrium and its stability [16],
• asymptotic behaviour (i.e. tending of process trajectories—the solutions of

some differential equations to some possibly regular curves like limiting cy-
cles [16]),

• irregular behaviour:
– chaos [6], [7], [16], [13], [14], [1], [2],
– perturbations and noise approached by stochastic treatment of system dy-

namics.

One should notice that the status of the concepts of an equilibrium and its
stability varies from biomedical physist’s critique that these concepts are not ade-
quate to capture creative forces of nature—“a system that reached equilibrium is
‘dead’”, cf. [7], to their importance, for instance, for the methods (due to G. Gross-
berg and J. J. Hopfield) of modelling (associative) memory and learning (training)
in neural networks, reviewed, e.g., in [9].
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The varying status of the concepts of an equilibrium and its stability accompa-
nied the emergence of a new research area, called nonlinear science (cf. [13], [14]),
comprising nonlinear dynamics (cf. Box1 in [17] and the book [16]), where chaos
is an important issue.

Nonlinear science requires new mathematical tools beyond calculus and the
discretization mentioned above provided some of these new tools, e.g. cellular
automata.

The discretization does not diminish the role of continuous-time approach to
system dynamics. The review [4] and the papers [1], [2] confirm that the continu-
ous-time approach is still alive.

2 Answer

Some (partial) answer to the main question of Section 1 is contained in:

• characterization of irregular behaviour of processes represented by large graphs
(like causal sets and their Hasse diagrams) and networks in terms of dimensions
[10], in particular fractal dimension [12], like chaos in continuous dynamics is
approached in terms of fractals [16];

• the attempts of making the discrete constructs continuous one, like K. Martin
and P. Panangaden work [8] of building back space-time manifold from Sorkin
like causal order;

• the embeddings of discrete-time system behaviour in continuous-time dynam-
ics, cf. [4], where an embedding of a Turing machine behaviour in continuous-
time dynamics is presented.

Concerning membrane computing [11] one could:

• represent processes generated by P systems by causal sets like T. Bolognesi [3]
represents computational processes of various mechanisms,

then

• approach the causal sets representing processes generated by P systems like in
the answer to the main question given above.

One could also investigate P system behaviour by its embedding in contin-
uous-time dynamics, like in [4], to approach the irregularities, like chaos, of the
resulting continuous-time dynamics of P systems in the manner of [1], [2].
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2. Banasiak J., Lachowicz M., Moszyński M., Chaotic behavior of semigroups related to
the processes of gene amplification-deamplification with cell proliferation, Mathemat-
ical Biosciences 206 (2007), pp. 200–215.

3. Bolognesi T., Causal sets from simple models of computation, Int. Journal of Uncon-
ventional Computing 6 (2010), pp. 489–524.

4. Bournez O., Campagnolo M.L., A survey of continuous time computations, in: New
Computational Paradigms. Changing Conception of what is Computable, Springer,
2008, pp. 383–423.

5. Fredkin E., An introduction to digital philosophy, Int. Journal of Theoretical Physics
42 (2003), pp. 189–247.

6. Hill A., Chaotic chaos, Math. Intelligencer 22:3 (2000), p. 5.
7. Klonowski W., The metaphor of “Chaos”, in: System Biology: Principles, Methods

and Concepts, ed. A. K. Konopka, CRC Press, 2006, pp. 115–138.
8. Martin K., Panangaden P.A., Domain of spacetime intervals for General Relativity,

Comm. Math. Phys. 267 (2006), pp. 563–586.
9. McEliece R., et al., The capacity of the Hopfield associative memory, IEEE Transac-

tions on Information Theory 33 (1987), pp. 461–482.
10. Nowotny T., Requardt M., Dimension theory of graphs and networks, J. Phys. A

Math. Gen. 31 (1998), pp. 2447–2463.
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Summary. P systems are computing models inspired by the structure and the function-
ing of the living cells; they are the basic computing devices of membrane computing, a
branch of natural computing. The present note is an overview of results and open prob-
lems related to the borderline between the computationally universal and non-universal
catalytic P systems. A short introduction to membrane computing is provided, to the
use of the reader not familiar with this research area.

1 A Glimpse to Membrane Computing

Along its evolution, computer science has continuously looked to biology in order
to find ideas (data structures, operations with them, ways to control these op-
erations, architectures for computing devices, etc.) useful for improving the use
of the existing electronic computers and for developing new computing tools. In
the last decades, this tendency became a well defined branch of computer science,
called natural computing. Besides the goal sketched above, a complementary one
is to understand and investigate the processes taking place in nature – especially
in biology – as computations.

Membrane computing is one of the research areas of natural computing, hav-
ing as the starting point the living cell, considered alone or as a part of more
complex structures, such as tissues and organs, including the brain. This direc-
tion of research was initiated in 1998 ([12]) and it developed rapidly: already in
2003, the Thompson Institute for Scientific Research, ISI, mentioned membrane
computing as a fast emerging research front in computer science, with [12] consid-
ered a “fast breaking paper” (see http://esi-topics.com). The literature of the
domain is now very large, including monographs, collective volumes, PhD theses,
research projects. An introduction to membrane computing can be found in [14],
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with a comprehensive presentation (at the level of year 2009) in [15]. Up-to-date
information (including information about the two yearly meetings in this area, the
February Brainstorming Week on Membrane Computing and the summer Confer-
ence on Membrane Computing) can be found at the domain website [16].

Very generally speaking, membrane computing deals with processing objects,
by means of bio-inspired operations, in the compartments of a cell-like or tissue-
like arrangement of membranes. Basically, (i) the objects are symbols from a given
alphabet (but they can also be strings or can have a more complex structure), (ii)
like in biochemistry, the objects are present in the multiset sense (each object has a
precise multiplicity in a given compartment), (iii) the operations are abstractions
of biochemical reactions or other types of operations inspired from the biology
of the cell (e.g., symport and antiport, for passing objects across membranes, or
operations with membranes – division, separation, phagocytosis, and so on); (iv)
the arrangement of membranes is either hierarchical, like in a cell, or “horizontal”,
like in tissues and other populations of cells (e.g., of bacteria). The operations
(reactions) are also called evolution rules, or, shortly, rules. Like in biochemistry,
in the basic model, the operations take place in a non-deterministic way (the rules
to apply and the objects to react are chosen non-deterministically), in parallel (si-
multaneously in all compartments, with the objects in each compartment evolving
in parallel, according to the local rules). Many variants were investigated, with re-
spect to the types of rules, the ways to use them, the arrangement of membranes.
Using the rules, we can pass from a configuration of the system to the next con-
figuration – and in this way we can define computations. What is obtained, called
a P system, was not initially meant as a model of the biological cell, to the use of
biologists, but a computing model, of interest for computability.

There are two basic theoretical issues to be addressed for any new computing
model, including the P systems: the computing power (competence), and the com-
puting efficiency (performance). Accordingly, two are the reference frameworks:
the Turing machines and their restrictions in what concerns the power, and the
complexity classes (in particular, the theoretical borderline between tractability
and intractability, between polynomial complexity and exponential complexity) in
what concerns the efficiency.

From both these two points of view, membrane computing proved to be suc-
cessful: many classes of P systems are equivalent in power with Turing machines
(hence, according to Turing-Church thesis, they can compute whatever an algo-
rithm can compute; we also call this property computational completeness or Tur-
ing universality), while many classes of P systems (especially those equipped with
the possibility of producing an exponential working space in polynomial time, e.g.,
by means of membrane division or string replication) can solve computationally
hard problems (typically, NP-complete problems, but also harder problems) in a
feasible time (typically, polynomial, but often even linear).

A basic question in both these research directions (power and efficiency) is to
find the borderline between universality and non-universality, in what concerns
the power, and between efficiency and non-efficiency. In this paper we recall some



The “Catalytic Borderline” 227

results about the first issue, namely, considering borderline results concerning the
universality of catalytic P systems – definitions will be given in the next section.

In parallel with the theoretical investigations, mainly dealing with the previ-
ously mentioned questions, power and efficiency, P systems proved to be useful
tools for several applications, starting with the very field where they originated –
biology and biomedicine. This is now one of the main trends of research in this area.
For the biologist, membrane computing has several attractive features: the models
are directly inspired from biology, they are easy to be understood, P systems deal
with discrete mathematical structures (as encountered in many situations in biol-
ogy, where traditional differential equations are not appropriate), they are easily
scalable and programmable, and have an emergent behavior (the evolution cannot
be predicted by examining the initial configuration and the evolution rules). For
other areas of application (computer graphics, approximate optimization, robot
control, etc.) the inherent parallelism, hence computational efficiency, is the cen-
tral attractive feature. We here do not give details about applications; the reader
is referred to the Handbook [15] and to the website mentioned above.

2 Catalytic P Systems

We now introduce the model we consider in this paper, the cell-like P systems,
in the catalytic form, stressing once again that, from the biological reality, we
abstract a mathematical model suitable for computability investigations, thus ig-
noring many biological details.

The basic ingredients of a (cell-like) P system are the following ones:

1. The membrane structure is a hierarchical arrangement of membranes, under-
stood as 3D vesicles; a membrane without any other membrane inside is said
to be elementary; each membrane defines a region/compartment, the space be-
tween the membrane and the immediately inner membranes, if any; the space
outside the “skin” membrane is called the environment. Each membrane can
be labeled, and the label will identify both the membrane and its region. The
membrane structure can be represented by a rooted tree (with a membrane in
each node and the skin in the root), hence also by an expression of correctly
nested labeled parentheses. Sometimes we also use Euler-Venn diagrams (dis-
joint sets included in a unique external set, the skin one).

2. The objects are placed in the compartments of the membrane structure, in
the form of multisets (sets with multiplicities associated with the elements).
In membrane computing, the multisets are usually represented by strings, like
in formal language theory, with the multiplicity of a symbol corresponding to
the number of occurrences of that symbol in the string; thus, a string and all
its permutations represent the same multiset. For instance, a2bc4ab represents
the multiset which contains 3 copies of a, 2 copies of b, and 4 copies of c.

3. The evolution rules are multiset rewriting rules similar to reactions in chem-
istry/biochemistry. The basic form is u → v, where u and v are multisets
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of objects from a given set O. The use of such a rule means “consuming”
the objects of u and “producing” the objects of v. (Note that we do not pay
attention to conservation lows, we work with arbitrary multisets, the only re-
striction is that u is not empty.) In order to link the regions of a system, the
objects produced by a rule u → v can have associated target indications, of
the forms here, out, in, with the meaning that an object with the target here
remains in the same region where the rule is applied, an object with the target
out is sent out of the respective membrane (in this way, objects can also be
sent to the environment, when the rule is applied in the skin region), while an
object with the target in is sent to one of the immediately inner membranes,
non-deterministically chosen (if there is no such membrane, i.e., if the rule is
associated with an elementary membrane, then the rule u → v with v con-
taining an object (a, in) cannot be applied). The indication here in general is
omitted when writing the rules.

Both the objects and the rules are associated with compartments of the system;
the rules in a given region (“reactor”) can be applied only to the objects from the
same region.

The way of using the rules which we consider here is the non-deterministic
maximally parallel one: the rules to be applied are chosen non-deterministically,
but in such a way that the choice is maximal, i.e., we apply a multiset of rules
(each rule can be applied several times) which is maximal, no further rule can be
added to it so that the obtained multiset is still applicable to the existing objects.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation. A computation is halting if it reaches
a configuration where no rule can be applied. With a halting computation we
associate a result, in the form of the number of objects present in a specified
elementary membrane in the halting configuration.

Thus, a (cell-like) P system can be formalized as a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, io)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at the
beginning of a computation, R1, . . . , Rm are finite sets of evolution rules, associ-
ated with the regions of µ, and io is the label of an elementary membrane, used
as the output membrane.

There are many variations of this basic model. For instance, if a rule u→ v has
at least two objects in u, then it is called cooperative; if u is a single object, then the
rule is non-cooperative; an intermediate case is that of catalytic P systems, whose
rules are of the form ca→ cv, where c is a special object which never evolves and
never passes through a membrane (both these restrictions can be relaxed), but it
just assists object a to become the multiset v. A catalytic P system is written in
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the form Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, io), where all components are as
above and C ⊂ O is the set of catalysts.

We end this section with a simple example, illustrating the architecture and
the functioning of a (cell-like) P system, as well as the usual way of graphically
representing a P system. Figure 1 indicates the initial configuration (including the
rules) of a system which computes the function n −→ n2, for any natural number
n ≥ 1: we introduce the number n in the initial configuration, in the form of n
copies of the object a present in the skin region, and we get the result as the
number of copies of object f present in membrane 2 when the computation halts.
Besides catalytic and non-cooperating rules, the system also contains a rule with
promoters, e → e(f, in)|b: the object e evolves to ef only if at least one copy of
object b is present in the same region.

'
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2
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a → be

cb → cd

e → e(f, in)|b

Fig. 1. A P system with catalysts and promoters

Formally, the system is given as follows:

Π = (O,C, µ,w1, w2, R1, R2, io) where
O = {a, b, d, e, c, f} (the set of objects),
C = {c} (the set of catalysts),
µ = [ [ ]

2
]
1

(membrane structure),
w1 = can (initial objects in region 1),
w2 = ∅ (initial objects in region 2),
R1 = {a→ be, cb→ cd, e→ e(f, in)|b} (rules in region 1),
R2 = ∅ (rules in region 2),
io = 2 (the output region).

The system starts working by using the rule a → be, which has to be applied
in parallel to all copies of a; hence, in one step, all objects a are replaced by n
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copies of b and n copies of e. From now on, the other two rules from region 1 can
be used. The catalytic rule cb → cd can be used only once in each step, because
the catalyst is present in only one copy. This means that in each step one copy
of b is replaced by d. Simultaneously (because of the maximal parallelism), the
rule e → e(f, in)|b should be applied as many times as possible and this means
n times, because we have n copies of e. Note the important difference between
the promoter b, which allows using the rule e → e(f, in)|b, and the catalyst c:
the catalyst is involved in the rule, it is counted when applying the rule, while
the promoter makes possible the use of the rule, but it is not counted; the same
(copy of one) object can promote any number of rules. Moreover, the promoter can
evolve at the same time by means of another rule (the catalyst is never changed).

In this way, in each step we change one b to d and we produce n copies of f
(one for each copy of e); the copies of f are sent to membrane 2 (the indication in
from the rule e → e(f, in)|b). The computation should continue as long as there
are applicable rules. This means exactly n steps: in n steps, the rule cb → cd
will exhaust the objects b and in this way neither this rule can be applied, nor
e → e(f, in)|b, because its promoter does no longer exist. The computation halts
and in membrane 2, considered as the output membrane, we get n2 copies of object
f .

3 The Power of Catalytic P Systems

We start now to recall results about the computing power of catalytic P systems.
Let us denote by NPm(catr) the family of sets of numbers computed (gener-

ated, in the above sense) by P systems with at most m membranes, using catalytic
or non-cooperative rules, containing at most r catalysts. We also denote by NRE
the family of Turing computable sets of natural numbers (“recursively enumer-
able”, hence the abbreviation), and by NREG the family of semilinear sets of
numbers (recognized by finite automata). When all the rules of a system are cat-
alytic, we say that the system is purely catalytic, and the corresponding families
of sets of numbers are denoted by NPm(pcatr). When the number of membranes
is not bounded by a specified m (it can be arbitrarily large), then the subscript m
is replaced with ∗.

The following fundamental results are known:

Theorem 1. (i) NP2(cat2) = NRE, [5];
(ii) NREG = NP∗(pcat1) ⊆ NP∗(pcat2) ⊆ NP2(pcat3) = NRE, [7], [8].

Two intriguing open problems appear here, related to the borderline between
universality and non-universality: (1) are catalytic P systems with only one catalyst
universal? (2) are purely catalytic P systems with two catalysts universal?

We here consider only the first question. In the membrane computing com-
munity, the belief is that the answer is negative, one catalyst is not enough in
order to equal the power of Turing machines. Preliminary results, supporting this
conjecture, can be found, e.g., in [3].



The “Catalytic Borderline” 231

On the other hand, in the membrane computing literature there are many
results which show that P systems with only one catalyst are universal if further
ingredients are added. Many results of this type can be found in [4], while recent
developments can be found in [6] and [10]. We now recall several of these results,
without always giving the place where they were reported first; such information
can be found in the bibliography of [4]. The overall impression is that “one catalyst
is almost universal”: features which look “innocent” at the first sight are enough
to lead P systems with one catalyst to universality.

4 Universality for P Systems with One Catalyst

Inspired from biochemistry and/or from computability theory, we may add various
ingredients to P systems as defined above.

For instance, we may assume that some rules are “more active” than other
rules, hence they have priority in being applied. This corresponds to considering a
partial order relation among the rules in each compartment of a P system. It was
proved already in [12] that NP2(cat1, pri) = NRE, where pri indicates the use of
priorities.

In the example considered in Section 2 we have also used another feature, the
promoters: rules can have associated objects which act as promoters, the rule can
be applied only if at least one copy of each of the associated promoters is present.
The promoters can evolve at the same time, but by other rules than those they
promote. Similarly, rules can have associated inhibitors, objects whose presence
forbids the application of the rule. Catalytic P systems with only one catalyst,
using either promoters or inhibitors (one object only associated with a rule, not
larger multisets), are universal.

Slightly more sophisticated is the control of the evolution of a P system by
means of controlling the membrane permeability, [13]. This is achieved by using
two operations, associated with usual multiset processing rules: decreasing the
thickness (hence increasing the permeability) and increasing the thickness (hence
decreasing the permeability) of membranes. Specifically, rules of the forms u→ vδ
and u→ vτ are used. Initially, each membrane is supposed to be of thickness one.
A membrane of thickness one behaves as a usual membrane, objects can be moved
across it by means of target indications in and out. A membrane of thickness 0
is dissolved, its objects are left free into the surrounding region and its rules are
“lost” (specific biochemistry is active in each membrane, hence, by dissolving a
membrane, the respective “reactor” disappears). If a membrane has thickness 2,
then it is impermeable, no object can pass across it (hence the rules which ask
for such a passage cannot be used). The symbols δ, τ indicate the decrease and
the increase, respectively, of the thickness by one. The thickness cannot be greater
than 2, a rule u→ vτ used in such a membrane will lead to a membrane with the
same thickness. As already expected, the use of the operations δ, τ (the control
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of membrane permeability) again leads to the universality of P systems with one
catalyst.

The previous idea actually is part of a larger research area in membrane com-
puting, dealing with the possibility to also evolve the membrane structure during
a computation. There are many biologically inspired operations of this type. Here
we mention only one, the membrane creation, [11]. Besides usual non-cooperating
and catalytic rules, we also use rules of the form ca → c[ v ]

i
, with the meaning

that object a, with the help of catalyst c, produces a new membrane, with the
label i, having inside the multiset v; of course, the catalyst is reproduced. Also
this feature leads to universality in the case of P systems with only one catalyst.

If instead of “standard” catalysts we use catalysts with additional features,
then again we obtain universality. Two such extensions were considered: bistable
catalysts and mobile catalysts, [9]. In the first case, the catalyst can oscillate
between two states (and this is the only possible transformation the catalysts can
have), in the latter case the catalyst can pass through membranes like any other
object, by means of target indications in and out.

Several similar results were recently obtained in [6] and [10].

One of them is the target restriction. This restriction has two components, one
at the syntactic level (in each rule u→ v, all target indications which appear in v
are identical), and one at the semantic level (in each step of a computation, in each
membrane one uses rules with the same target indication in their right hand mem-
ber; in different membranes, different target indications may be used, while the
choice of rules to apply is done as in general P systems, in the non-deterministic
maximally parallel way). Interesting enough, the universality of target restricted
one catalyst P systems is obtained in [6] by means of P systems with 7 mem-
branes (it is an open problem whether or not the number of membranes can be
diminished).

Another restriction considered in [6] is the time-varying: a sequence U1, . . . , Up

of sets of rules is given, the computation starts with a step when rules from the
set U1 are used, then we use rules from U2, and so on; after step p, when rules
from Up are used, we return to U1 and continue (in step pn + i, n ≥ 0, one uses
rules from set Ui). The universality of time-varying P systems is obtained for one
catalyst P systems with only one membrane, having the period p equal to 6.

In [10], so-called label restricted P systems are considered: each rule has a
label, which can be a symbol from a given alphabet, or it can be the empty label;
a computation is label restricted if in each transition one applies only rules with
the same label, possibly also rules with the empty label. Although this restriction
does not look too strong, it is sufficient to get universality of P systems with only
one catalyst.



The “Catalytic Borderline” 233

5 Final Remarks

This paper is only a hint to one of the research directions in membrane comput-
ing. After a brief introduction to membrane computing, we have recalled several
cases where P systems with only one catalyst are computationally equivalent with
Turing machines. Various ingredients were considered: a priority relation among
rules, promoters, inhibitors, the control of membrane permeability, mobile cata-
lysts, bistable catalysts, membrane creation, label restricted transitions, selection
of rules by the target indications, time varying sets of rules. Such results are of
interest in view of the conjecture that P systems with only one catalyst are not
universal (two catalysts are known to lead to universality).

Several problems remain open. For instance, because the conjecture is that
purely catalytic P systems with two catalysts are not universal, all the results
mentioned above for the one catalyst case should also be examined for the purely
catalytic P systems with two catalysts.

Furthermore, other additional features remain to be considered, with the aim
of increasing the power of P systems with one catalyst – for instance, inspired
from the regulated rewriting area [2] or the grammar systems area [1] in formal
language theory.
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6. R. Freund, Gh. Păun: Universal P Systems: One Catalyst Can Be Sufficient. Proc.
11th Brainstorming Week on Membrane Computing, Sevilla, 4-8 February 2013, Fénix
Editora, Sevilla, 2013, to appear.

7. O.H. Ibarra, Z. Dang, O. Egecioglu: Catalytic P systems, semilinear sets, and vector
addition systems. Th. Computer Sci., 312 (2004), 379–399.

8. O.H. Ibarra, Z. Dang, O. Egecioglu, G. Saxena: Characterizations of catalytic mem-
brane computing systems. 28th Intern. Symp. Math. Found. Computer Sci., 2003 (B.
Rovan, P. Vojtás, eds.), LNCS 2747, Springer, 2003, 480–489.



234 Gh. Păun
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Summary. Some open problems and research topics related to numerical P systems are
formulated – also recalling the problems from the corresponding section of the “mega-
paper” [2] produced for the previous BWMC.

1 Introduction

Although introduced already in 2006, [8] (see also Section 8.1 of Chapter 23 of
[10]) – and being an alternative to multiset or string processing P systems, meant
to compute using numerical variables – the numerical P systems have received
more attention only in the last years, especially in the framework of devising and
implementing controllers for mobile robots.

In short, numerical P systems are a class of computing models inspired by both
the cell structure and economics: numerical variables evolve in the compartments
of a cell-like structure by means of so-called production–repartition programs. The
variables have a given initial value and the production function is usually a polyno-
mial whose values for the current values of variables is distributed among variables
in the neighboring compartments according to the “repartition protocol”. In this
way, the values of variables evolve; all positive values taken by a specified variable
are said to be computed by the P system.

In a natural way, these systems can also be used for computing mappings:
specified variables of the system are considered as being the function variables
and specified variables provide the results (hence functions from vectors to vectors
of numbers can be computed – this is the case also in the robot control; of course,
a suitable way to define the end of the computation should be found – halting, for
instance, although in the basic computing model the computation is not supposed
to halt).

In what follows, in order to help the reader (however, (s)he is supposed to
be familiar with basic elements of membrane computing), I will first recall the
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definition of numerical P systems, as given in [10] (Section 23.8.1), with two simple
examples, then I will briefly discuss, following [15], the enzymatic numerical P
systems as used in robot control; finally, further research suggestions are given.

2 Definitions

We consider usual cell-like membrane structures (with the standard 1, 2, . . . ,m
labeling of membranes). The regions delimited by these membranes contain nu-
merical variables. The variables in region i are written in the form xj,i, j ≥ 1. The
value of xj,i at time t ∈ N is denoted by xj,i(t). These values can be of various
types – in what follows we consider integers as values of variables (although in
many applications one would most probably use real numbers – this is the case for
robot control).

In order to evolve the values of variables, we use programs, composed of two
components, a production function and a repartition protocol. The former can be
any function with variables from a given region – here we are interested in com-
putability issues, hence we consider only polynomials with integer coefficients.
Using such a function (chosen non-deterministically if there are several programs
in a given region), we compute a production value of the region at a given step.
This value is distributed to variables from the region where the program resides,
and to variables in its upper and lower neighbors according to the repartition
protocol associated with the used production function. For a given region i, let
v1, . . . , vni

be all these variables. Following [8], here we consider as repartition
protocols expressions of the form

c1|v1 + c2|v2 + . . .+ cni
|vni

,

where c1, . . . , cni
are natural numbers. The idea is that the coefficients c1, . . . , cni

specify the proportion of the current production distributed to each variable
v1, . . . , vni .

This is precisely defined as follows. Consider a program

(Fl,i(x1,i, . . . , xki,i), cl,1|v1 + cl,2|v2 + . . .+ cl,ni
|vni

)

and let

Cl,i =
ni∑
s=1

cl,s.

At a time instant t ≥ 0 we compute Fl,i(x1,i(t), . . . , xki,i(t)). The value q =
Fl,i(x1,i(t), . . . ,xki,i(t))/Cl,i represents the “unitary portion” to be distributed
according to the repartition expression to variables v1, . . . , vni . Thus, vl,s will re-
ceive q · cl,s, 1 ≤ s ≤ ni.

A program as above is also written in the form

Fl,i(x1,i, . . . , xki,i)→ cl,1|v1 + cl,2|v2 + . . .+ cl,ni
|vni

.
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A production function may use only part of the variables from a region. Those
variables “consume” their values when the production function is used (they be-
come zero) – the other variables retain their values. To these values – zero in the
case of variables contributing to the region production – one adds all “contribu-
tions” received from the neighboring regions.

Thus, a numerical P system is a construct of the form

Π = (µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)), xj0,i0),

where µ is a membrane structure with m membranes labeled injectively by
1, 2, . . . ,m, V ari is the set of variables from region i, Pri is the set of programs
from region i (all sets V ari, P ri are finite), V ari(0) is the vector of initial values for
the variables in region i, and xj0,i0 is a distinguished variable (from a distinguished
region i0), which provides the result of a computation.

Each program is of the form specified above: prl,i = (Fl,i(x1,i, . . . , xki,i),
cl,1|v1 + cl,2|v2 + . . . + cl,ni

|vni
) denotes the lth program from region i, where

{x1,i, . . . , xki,i} ⊆ V ari (not all variables from region i should appear in Fl,i).
Such a system evolves in the way informally described before. Initially, the

variables have the values specified by V ari(0), 1 ≤ i ≤ m. A transition from a
configuration at time instant t to a configuration at time instant t+ 1 is made by
(i) choosing non-deterministically one program from each region, (ii) computing
the value of the respective production function for the values of local variables at
time t, and then (iii) computing the values of variables at time t + 1 as directed
by repartition protocols. A sequence of such transitions forms a computation,
with which we associate a set of numbers, namely, the numbers which occur as
positive values of the variable xj0,i0 ; this set of numbers is denoted by N+(Π).
If all numbers, positive or negative, are taken into consideration, then we write
N(Π).

3 Examples

I illustrate the previous definition with the numerical system Π1 given in Figure 1
with the distinguished variable x1,1. One can easily see that variable x1,3 increases
by 1 at each step, also transmitting its value to x1,2. In turn, region 2 transmits
the value 2x1,2 + 1 to x1,1, which is never consumed, hence its value increases
continuously. In the initial configuration all variables are set to 0. Thus, x1,1 starts
from 0 and continuously receives 2i + 1, for i = 0, 1, 2, 3, . . ., which implies that
in n ≥ 1 steps the value of x1,1 becomes

∑n−1
i=0 (2i + 1) = n2, and consequently

N+(Π1) = {n2 | n ≥ 0}.
The system Π1 was deterministic; let us consider also a non-deterministic sys-

tem:
Π2 = ([ ]

1
, ({x1,1}, {(2x1,1, 1|x1,1), (3x1,1, 1|x1,1)}, 1), x1,1).

The production is assigned to the unique variable, but in each step we can choose
either the first program or the second one; in the former case x1,1 is multiplied by
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'

&

$

%

'

&

$

%

'

&

$

%

1

2

3

x1,1[0]

x1,2[0]

2x1,2 + 1 → 1|x1,1

x1,3[0]

2(x1,3 + 1) → 1|x1,3 + 1|x1,2

Fig. 1. The system Π1

2, and in the latter case it is multiplied by 3. Thus, the values of x1,1 will be of
the form 2i3j , with i ≥ 0, j ≥ 0. Actually, all numbers of this form are values of
x1,1, where the value 2i3j is obtained in step i+ j.

In these two examples we have chosen the programs in such a way that the
production value is divisible by the total sum of coefficients cj from each region
(let us denote this case with div). When a current production is not divisible by
the given total value of coefficients, then we can take the following decisions: (i)
the remainder is lost (the production which is not immediately distributed is lost),
(ii) the remainder is added to the production obtained in the next step (the non-
distributed production is carried over to the next step), (iii) the system simply
stops and aborts, no result is associated with that computation. We denote these
three cases by lost, carry, stop, respectively.

4 Families of Numbers Computed

Thus, we can distinguish many types of systems, depending on the programs
and their use. The family of sets of numbers N(Π) computed by numerical
P systems with at most m membranes, production functions which are poly-
nomials of degree at most n, with at most r variables in each polynomial,
with nonnegative coefficients, and the distribution of type α is denoted by
NNPm(polyn(r), nneg, α), m ≥ 1, n ≥ 0, r ≥ 0, α ∈ {div, lost, carry, stop}. The
restriction to deterministic systems is indicated by adding the letter D in front of
NNP. If arbitrary coefficients are allowed, then the indication “nneg” is removed.
If one of the parameters m,n, r is not bounded, then it is replaced by ∗. The set of
positive numbers occurring as values of the output variable is denoted by N+(Π),
and NN gets the superscript + when considering the family of such sets. Let NRE
be the family of Turing computable sets of natural numbers.
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Here are some results concerning these families – mode details can be found in
[8].

Theorem 1. (i) DNN+P1(poly1(1), nneg, div)− SLIN+
1 6= ∅.

(ii) SLIN+
1 ⊂ DNN+P∗(poly1(1), nneg, div).

The main result of [8] shows that, surprisingly enough, numerical P systems of
a rather restricted type are Turing complete, even when using small numbers of
membranes and polynomials of low degrees with a small number of variables:

Theorem 2. NRE = NN+P8(pol5(5), div) = NN+P7(poly5(6), div).

The proof is based on the characterization of recursively enumerable sets of
numbers as positive values of polynomials with integer values, [3]. Latter (see
below) the register machines were used in universality proofs, and similar results
were obtained, in certain cases, also for deterministic numerical P systems.

Many research topics are open for numerical P systems, among others: a
throughout investigation of all classes of systems mentioned above, considering
also vectors of numbers, looking for non-universal classes (and decidability results
for those classes), hierarchies and normal forms.

5 Enzymatic Numerical P Systems

The numerical P systems were recently used in a series of papers (see references
in [1], [14]) for implementing controllers for mobile robots; in this framework the
P systems work in the computing mode: an input is introduced in the form of the
values of some variables and an output is produced, as the values of other variables.
Furthermore, in the robot control context, the so-called enzymatic numerical P
systems were introduced and used, [4], [5], [6]. Such systems correspond to catalytic
P systems in the “general” membrane computing: a program is applied only if
the value of the associated enzyme is strictly greater than the smallest value of
any variable involved in the production polynomial. Enzyme variables are not
consumed or produced by the rules which they catalyze, but can be changed by
the rules for which they do not act as catalysts. Therefore, their values can evolve
during the computational process.

More formally (we recall the definition from [12]), enzymatic numerical P sys-
tems (in short, EN P systems) use both evolution programs as introduced above
and programs of the form

Fl,i(x1,i, . . . , xki,i)|ej,i
→ cl,1|v1 + cl,2|v2 + . . .+ cl,ni

|vni
,

where ej,i is a variable from V ari different from x1,i, . . . , xki,i, and from v1, . . . , vni .
Such a program can be applied at a time t only if ej,i(t) > min(x1,i(t), . . . , xki,i(t)).
(A slightly more complex definition is considered in [5] and [6] where: ej,i(t) >
min(|x1,i(t)|, . . . , |xki,i(t)|). Considering the absolute value of the variables, instead
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of their real values, simplifies the design of the membrane structures used to com-
pute cos and sin functions as power series, but here we consider only the simpler
case defined above. We also use here a notation different from that in [5], writing
the enzyme in the same way as the promoters are written in multiset rewriting
rules.) Note that in order to apply the program it is sufficient that one variable
has the current value strictly smaller than the value of the enzyme variable. The
enzyme cannot evolve by means of the associated program, but it can evolve by
means of other programs, and can receive “contributions” from other programs
and regions.

Because the enzymes are usual variables, playing a different role only “locally”,
in specified programs, we do not consider their set separated, hence the general
writing of an enzymatic numerical P systems is the same as that of a numerical P
system – only the form of programs can be different.

Using enzymes introduces a checking possibility in our systems (we compare the
value of the enzyme with the values of variables from the associated program), and
this suggests the possibility of choosing the positive values of the output variable
“inside the system”.

Tissue numerical P systems are also considered in [12], with a parallel use of
programs. If in each membrane, at each step, we use a maximal set of programs
(programs are selected non-deterministically, and a set of programs is applied only
if it is maximal, i.e., no further program can be added to it in such a way that
the new set is still applicable). Clearly, two cases are possible: (i) a variable can
appear only in one production function, and this is the only restriction in choosing
(non-deterministically) the programs to apply in a step (we denote this variant
with oneP), and (ii) if two or more programs which are enabled at a computation
step (i.e., they satisfy the condition imposed by the associated enzymes), share
variables in their production functions, then they will all use the current values of
those variables (we denote this with allP).

A large variety of classes of numerical P systems is created in this way: (1)
enzymatic or non-enzymatic, (2) deterministic or non-deterministic, (3) sequential,
all-parallel, one-parallel, (4) used in the generating, computing, accepting mode,
etc. By combining these variants – also considering the cases div, lost, carry, stop
from the previous sections – a large variety of classes of numerical P systems can
be investigated.

In the notations of the families NNαPm(polyn(r), . . .) considered in the pre-
vious sections we add now the indication enz when enzymes are used, and one of
seq, oneP, allP, depending on the way (sequential or parallel) the rules are used.
When tissue systems are used, we write NNtPm(polyn(r), α, β, γ). However, in
what follows we do not mention div and nneg, as they are always present.

Here are the main results from [8] (written in the new notation) and [12].

Theorem 3. NRE = NN+P8(poly5(5), seq) = NN+P7(poly5(6), seq) =
NNP7(poly5(5), enz, seq) = NNtP∗(poly1(11), enz, oneP ) =
NNP254(poly2(253), enz, allP, det).

A considerable improvement of the last equality was proved in [13]:
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Theorem 4. NRE = NNP4(poly1(6), enz, allP, det).

Whether or not the parameters appearing in these results are optimal or not
is an open problem.

6 Open Problems

Only a few of the many cases mentioned above were so far investigated, the other
ones wait for further research efforts.

In particular, we have seen that enzymes improve the universality results in
terms of the complexity of used polynomials, both in the cell-like case and the
tissue-like case, provided that the evolution programs are used in a parallel manner.
However, two different types of parallelism were used in the two cases – hence the
question: can the one-parallel mode (used for tissue P systems) be used also in the
cell-like case?

Various extensions of “general” notions in membrane computing to numerical
P systems remain to be examined – this is a rich research topic. For instance, other
ways of using the programs can be considered: minimally parallel, with bounded
parallelism, asynchronously. Then, we can also consider rules for handling mem-
branes, such as membrane division and membrane creation. These operations are
the basic tools by which polynomial solutions to computationally hard problems,
typically, NP-complete problems, are obtained in the framework of P systems with
symbol objects. Is this possible also for numerical P systems? This is a particularly
interesting issue, both from the point of view of applications and because in this
way we can achieve “fypercomputations”, [7], in terms of numerical P systems.

Of course, a natural research topic is to further explore the use of numerical P
systems in controlling robots, and to look for further applications where functions
from Rk1 to Rk2 should be computed. In this framework an important question
is to develop a complexity theory based on numerical P systems: define specific
complexity classes, compare them with existing classes, look for ways to speed-up
computations (see also the previous suggestion: to bring to numerical P systems
further ideas investigated for symbol object P systems, in particular, tools to create
an exponential working space in polynomial time).

I end with another natural question: defining dP systems, as in [9], with the
components being numerical P systems. Can this be useful from the computation
efficiency (“parallelization”) point of view?
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Summary. This paper continues an investigation into bridging two research areas con-
cerned with natural computing: membrane computing and reaction systems. More specif-
ically, the paper considers a transfer of two assumptions/axioms of reaction systems, non-
permanency and the threshold assumption, into the framework of membrane computing.
It is proved that: (1) SN P systems with non-permanency of spikes assumption charac-
terize the semilinear sets of numbers, and (2) symport/antiport P systems with threshold
assumption (translated as ω multiplicity of objects) can solve SAT in polynomial time.
Also, several open research problems are stated.

1 Introduction

This paper continues research aimed at bridging two research areas concerned
with processes inspired by the functioning of living cells, membrane computing
(see, e.g., [10], [11], [14]) and reaction systems (see, e.g., [1], [3] – [6]). Membrane
computing (based on P systems) essentially deals with multisets, processed in the
compartments of a membrane structure according to rules of various types, such as,
e.g., multiset rewriting and symport/antiport rules. Thus, the objects are present
with specified multiplicity within the regions delimited by membranes, some of
them evolve by the rules associated with membranes while the objects which are
not involved in the rules used at a given step remain unchanged – thus they can
be used in the subsequent processing steps.

The situation is very different in reaction systems. First of all, because of the
assumed abstraction level this is a qualitative model, i.e., there is no counting: one
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deals with sets rather than with multisets. Consequently, it is assumed that if an
entity is present, then it is present in enough copies to be used by all reactions that
use this entity as a reactant. This is referred to as a threshold assumption. Secondly,
an entity is present in a successor state T ′ of a given state T only if it is produced
by a reaction enabled in T or it is put into T ′ by the environment/context. This
reflects the basic bioenergetics of the living cell, and it is referred to as the non-
permanency assumption.

In this paper we continue an investigation of bridging membrane computing
and reaction systems (see [12] and [13]) by transferring the threshold and the
non-permanency assumptions to the framework of P systems. In particular, we
investigate the resulting computing power and efficiency of some classes of P sys-
tems. We prove that:

(1) spiking neural (in short, SN) P systems with non-permanency of spikes
characterize/compute just semilinear sets of numbers, while traditional SN P sys-
tems are Turing complete,

(2) symport/antiport P systems with the threshold assumption can solve NP-
complete problems in polynomial time – this is illustrated with SAT, the satisfia-
bility of propositional formulas in the conjunctive normal form.

We conclude this paper by stating a number of research problems.

2 Prerequisites

We assume the reader to be familiar with basic elements of membrane computing
(e.g., from [11], [14], [17]) and of language theory (e.g., from [16]). Here we only
recall some general notions and notations.

The language of all strings over an alphabet V is denoted by V ∗, the empty
string is denoted by λ, and V + = V ∗ − {λ}.

We denote by SLIN1 the family of semilinear sets of numbers, and by NRE the
family of recursively enumerable (Turing computable) sets of numbers. Semilinear
sets are the length sets of regular languages, which are languages characterized
by regular expressions or generated by regular grammars. A regular grammar is
specified in the form G = (N,T, S, P ), where N is the nonterminal alphabet, T
is the terminal alphabet, S ∈ N is the axiom of the grammar, and P is a set of
rules, each of which is of the form A→ aB, A→ a, where A,B ∈ N, a ∈ T .

As customary in membrane computing, we represent the multisets over an
alphabet V by strings in V ∗ (hence a string and all its permutations represent
the same multiset). Thus, we speak interchangeably about strings and multisets
over V , and |w| represents both the length of the string w and the cardinality of
the multiset (represented by) w. We also write w ⊆ w′ for the inclusion between
multisets (represented by the strings) w and w′. Since a set M is a multiset where
all elements have multiplicity one, it is represented by a string containing each
symbol from M exactly once.
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2.1 Membrane Computing

We briefly recall here two classes of P systems which we investigate in this paper:
the symport/antiport P systems, [9], and the spiking neural (SN) P systems, [8].

A membrane structure is a cell-like hierarchical arrangement of labeled mem-
branes (understood as 3D vesicles); the external membrane is usually called the
skin membrane, and a membrane without any membrane inside is called elemen-
tary. With each membrane, one associates a region, which is the space delimited
by it and the inner membranes, if any. A membrane structure can be naturally
represented by a rooted tree or by an expression of labeled parentheses (with a
unique external parenthesis, associated with the skin).

A symport rule is either of the form (x, in) or of the form (x, out), and an
antiport rule is of the form (z, out;w, in), where x, z, and w are multisets of objects.
These rules formalize the biological operations of moving several objects at a time
across a membrane, either in the same direction, as is the case for symport rules
or in opposite directions, as is the case for antiport rules.

A P system with symport/antiport rules is a construct of the form

Π = (O,µ,w1, . . . , wm, E,R1, . . . , Rm, iin, iout),

where O is an alphabet of objects, µ is a membrane structure with m membranes
(here, labeled by 1, . . . ,m, but any set of labels associated in a one-to-one manner
to membranes can be used), w1, . . . , wm are the multisets present in the initial
configuration in the m regions of µ (delimited by membranes labeled by 1, . . . ,m,
respectively), E ⊆ O, R1, . . . , Rm are finite sets of symport/antiport rules associ-
ated with the m membranes of µ, and iin, iout are the input and the output regions
of the system (iin indicates a region of µ, while iout can also be the environment
of the system – we write then iout = env). The objects of E are supposed to be
present in the environment of the system with an arbitrary multiplicity.

Using an antiport rule (z, out;w, in) associated with a membrane i means send-
ing the multiset z out of region i and, simultaneously, bringing the multiset w into
membrane i from the outside region adjacent to membrane i. Similarly for symport
rules, where only one multiset of objects is moved across membrane i.

(Note that the symport/antiport rules do not change the number of objects,
but they only displace them – that is why we need a supply of objects in the
environment; this supply is inexhaustible, i.e., it does not matter how many ob-
jects are introduced into the system, still arbitrarily many objects remain in the
environment.)

The rules are used in the nondeterministic maximally parallel manner. In the
initial configuration, an input is introduced into region iin in the form of a multiset,
and the result of a computation is given in region iout, most typically at the end
of the computation (when no rule can be applied). If the system is used in the
generative mode, then iin is ignored/removed. If the system is used in the accepting
mode, then iout is ignored and the input is accepted if and only if the computation
halts. In the computing mode both iin and iout are used. In particular, the system
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can be used in the decidability mode: the code of an instance of a decision problem
is introduced in iin and the result is obtained in iout: an object yes is placed in iout
at a specified step of the computation if and only if the instance of the problem
has a positive answer.

More precise definitions of what it means to solve a decision problem in terms
of P systems (complexity classes, uniform versus semi-uniform solutions, frontiers
of efficiency etc.) can be found in many places – we mention here only [15] and the
corresponding chapter from [14]. Several results in this area say that P systems
able to produce an exponential workspace in a linear time (e.g., by membrane
division, membrane creation, string replication) can solve computationally hard
problems (typically, NP-problems) in polynomial time; the term fypercomputation
was proposed in [12] for this situation, a sort of analogy to an established term
hypercomputation, see, e.g., [2].

It is known that symport/antiport P systems (with a small number of mem-
branes and with rules of a low complexity) used in the generative or the accepting
mode characterize NRE (see, e.g., [14]).

Note that in the previous definitions multisets play a crucial role: objects ap-
pear with a finite multiplicity and the objects which do not evolve by a rule remain
unchanged. However, the objects from the set E are used according to the thresh-
old assumption (but they do not obey the non-permanency assumption).

The threshold assumption can be applied to some or to all membranes of a
symport/antiport P system. In such distinguished membranes (where the threshold
assumption applies), any object – even if it comes from a neighboring membrane
with a specified multiplicity, maybe in only one copy – is present in arbitrarily
many copies. A P system with such membranes is said to be an ωP system.

Another class of P systems investigated in this paper is that of spiking neural
P systems, in short, SN P systems. Such a system (with extended rules, without
delay, of degree m ≥ 1) is a construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of rules each of which is in one of the following two forms:

(1) E/ac → ap, where E is a regular expression over {a} and 1 ≤ p ≤ c;
(2) as → λ, for some s ≥ 1, with the restriction that as ∈ L(E) for no rule

E/ac → a of type (1) from Ri;
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
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4. out ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, ak ∈ L(E) and k ≥ c, then the rule
E/ac → ap can be applied, and this means that c spikes are consumed, only k− c
remain in the neuron, and p spikes are produced and submitted to all neurons σj
such that (i, j) ∈ syn (each σj receives p spikes). The rules of type (2) are forgetting
rules: if the neuron contains exactly s spikes, then the rule as → λ can be used,
and this means that all s spikes are removed. The rules are used in the sequential
manner within each neuron, and in parallel for all neurons of the system.

Using the rules as described above (see more detailed/precise definitions in the
literature), we can define transitions among configurations. With a computation
we can associate a result in several ways. The basic one associates a number to
each computation (halting or not), viz., as the number of steps elapsed between the
first and the second time when the output neuron spikes. The set of such numbers
“generated” by Π is denoted by N2(Π). Another possibility is to count all spikes
sent to the environment by the output neuron during halting computations. The
set of numbers computed by Π in this way is denoted by Nout(Π).

For both modes two types of results were obtained: Turing computability in
the case of neurons without any bound on the number of spikes present inside,
and a characterization of semilinear sets of numbers in the case of systems whose
neurons have a bound on the number of spikes (we also call such systems bounded).

Note that also for SN P systems the multisets (counting the spikes in each
neuron) and the permanency (spikes unused remain in the neurons) are essential.

3 The Effect of Non-Permanency

The non-permanency feature was considered in [13] for two classes of P systems:
cooperative transition P systems and symport/antiport P systems, and in both
cases the universality was proved. Hence there is no loss of power with respect to
the traditional membrane computing case, where the objects which do not evolve
survive. The case of catalytic P systems was stated as an open problem – recall that
under the permanence assumption catalytic P systems are universal, even with two
catalysts only, [7]. The effect of non-permanency was not investigated neither for
non-cooperative transition P systems nor for the spiking neural P systems.

Let us denote by NoutSNPm(np) the family of sets of numbers Nout(Π), for SN
P systems Π with at most m neurons having the non-permanency property. When
the generated numbers are taken as the number of steps between the first two
steps when spikes are emitted by the output neuron, then we replace the subscript
out by 2. The subscript m is replaced by ∗ if no bound on the number of neurons
is assumed.

Lemma 1. NαSNP∗(np) ⊆ SLIN1, for α ∈ {2, out}.
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Proof. If an SN P system Π (with m neurons) works in the non-permanency
mode, then after each computation step each neuron has a number of spikes which
is bounded by a constant depending on Π: each neuron emits a number of spikes,
bounded by the maximum number of spikes produced by any rule of the system –
denote this number by M . The spikes produced by a neuron σi can be replicated
and submitted to at most m− 1 other neurons (to which there is a synapse from
σi), hence in total we have at most m(m − 1)M spikes. We start with a given
initial number of spikes and at any moment we have in the system a bounded
number of spikes, distributed to m neurons, which means a finite number of pos-
sible configurations of the system. These configurations can be taken as states of
a finite automaton (or the nonterminals of a regular grammar) which simulates
the work of the system. Taking as a result of a computation (of the automaton or
of the grammar) either all spikes sent to the environment by the output neuron
of Π or the number of steps between the first two spikes sent to the environment
(e.g., we record in the configuration-nonterminal the fact that a spike was emitted,
then we “count” until a second spike is emitted, and in that moment we stop the
computation of the grammar), we obtain the inclusions of the lemma.

The above reasoning actually shows that an SN P system with non-permanency
cannot use rules of the form E/ac → ap where for the regular expression E its
language L(E) is infinite. Thus, we can assume that each neuron contains only
bounded rules, which then implies the semilinearity of the generated set of numbers
(see already [8]).

Also the converse of the previous lemma holds. It was proved in [8] for bounded
SN P systems, but the proof in [8] is rather complex (it starts from the characteri-
zation of semilinear sets of numbers as the union of a finite set with a finite number
of arithmetical progressions), and it does not provide a bound on the number of
neurons. Here we provide a direct proof (also bounding the number of neurons),
starting from the characterization of semilinear sets of numbers as the length sets
of regular languages. Of course, it is sufficient to consider regular languages over
the one-letter alphabet.

Lemma 2. SLIN1 ⊆ NoutSNP5(np).

Proof. Let us consider a regular grammar G = (N, {a}, S, P ) and assume that
N = {A1 = S,A2, A3, . . . , An}. We construct the following SN P system (its
initial configuration is given in a graphical form in Figure 1):

Π = ({a}, σ1, . . . , σ5, syn, 5), where

σ1 = (n+ 1, {an+i → an | 1 ≤ i ≤ n}),
σ2 = (0, {an+i → an | 1 ≤ i ≤ n}),
σ3 = (n+ 1, {an+i → aj | 1 ≤ i, j ≤ n,Ai → aAj ∈ P}
∪ {an+i → an+i | 1 ≤ i ≤ n,Ai → a ∈ P}),

σ4 = (0, {an+i → aj | 1 ≤ i, j ≤ n,Ai → aAj ∈ P}
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∪ {an+i → an+i | 1 ≤ i ≤ n,Ai → a ∈ P}),
σ5 = (0, {ai → a | 1 ≤ i ≤ 2n}),
syn = {(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (3, 2), (3, 4), (4, 3), (3, 5), (4, 5)}.

With each nonterminal Ai, 1 ≤ i ≤ n, we associate n + i spikes, in neurons
σ3 and σ4, where the rules in P are simulated. Initially, only neurons σ1 and σ3
spike, sending spikes to “partner neurons” σ2 and σ4; when these later neurons
spike, they send spikes to the former neurons. The computation consists of such
alternating steps. Neurons σ3 and σ4 also send spikes to the output neuron, σ5,
which sends a spike to the environment in each step. When a terminal rule Ai → a
in P is simulated, neurons σ3 and σ4 produce n+i spikes. The output neuron spikes
once again, but all other neurons stop working: there is no rule which processes
2n+ i spikes (these spikes are removed because of the non-permanency axiom, but
this is not important since the computation halts anyway).

Consequently, the system Π produces k spikes if and only if ak ∈ L(G), hence
SLIN1 ⊆ NoutSNP5(np).

Lemma 3. SLIN1 ⊆ N2SNP5(np).

Proof. We consider the SN P system from the proof of Lemma 2, but now we
replace the output neuron σ5 by the following neuron:

σ5 = (a2n+1, {a2n+1 → a} ∪ {an+i → a | 1 ≤ i ≤ n}).

The output neuron spikes in the first step and then it spikes only one step after
the moment when a rule Ai → a was simulated in one of the neurons σ3 or σ4.
In the steps for which ai, 1 ≤ i ≤ n, spikes are sent to neuron σ5; these spikes are
removed – this is implied by the non-permanency axiom, because there is no rule
to process them.

Consequently, the modified system spikes twice, at a distance of k steps if and
only if ak ∈ L(G), hence SLIN1 ⊆ N2SNP5(np).

Combining the previous three lemmas we obtain:

Theorem 1. SLIN1 = NαSNPβ(np), for all α ∈ {2, out} and β ∈ {5, 6, . . .} ∪
{∗}.

What about the SN P systems using less than five neurons? It is easy to see
that computations in one-neuron systems last only one step, hence they produce
only finite sets. SN P systems with two neurons can generate infinite sets – in the
out mode. Here is an example of such a system:

Π = ({a}, σ1, σ2, {(1, 2), (2, 1)}, 2), where

σ1 = (2, {a2 → a2, a2 → a}),
σ2 = (0, {a2 → a2}).
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Fig. 1. The SN P system in the proof of Lemma 2

The computation can continue until using the rule a2 → a in the first neuron –
at that moment no rule can be applied in any neuron and all spikes vanishes. We
have Nout(Π) = {2n | n ≥ 0}.

Interestingly enough, when the result is the distance between the first two
spikes, SN P systems with two neurons generate only singletons. If there is only
one synapse between the two neurons, then each computation lasts one or two
steps, hence only one of the numbers 0 and 1 can be generated. If the two neurons
can communicate with each other, this can be done simultaneously or at most in
alternate steps (after using a rule, no spikes remains in a neuron, because of the
non-permanency assumption, hence new spikes must be obtained from the partner
neuron); one of the neurons is the output neuron, hence it must spike twice in the
first four steps of the computation and so only numbers 1 and 2 can be computed.
One can easily see that the generated set is a singleton, containing one of the
numbers 1, 2.

However, SN P systems with three neurons can generate infinite sets also as
the distance between the first two spikes sent to the environment. This is the case
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for the system Π in Figure 2, for which we have N2(Π) = {n | n ≥ 1}. The output
neuron spikes in the first step of a computation and then only after the step when
neuron σ2 uses the rule a?2→ a; as long as both σ1 and σ2 use their rules a2 → a2,
neuron σ3 cannot use its rule, hence the four spikes it receives are lost, due to the
non-permanency assumption.
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Fig. 2. An SN P system with three neurons generating an infinite set.

It remains an open problem whether SN P systems with four neurons charac-
terize SLIN1.

4 The Effect of the Threshold Assumption

It was proved in [12] that cooperative P systems without permanency, with two
membranes where the inner one works under the threshold assumption (any object
present here is available in arbitrarily many copies), can solve SAT in a polynomial
time (actually, linear with respect to the number of clauses and independent of
the number of variables) in a uniform way.

This result can be extended to symport/antiport P systems, with one additional
feature: the system uses precomputed resources. More specifically, for a SAT(n,m)
problem (n variables and m clauses) we work with a number of objects of the order
of nm, i.e., all sets of at most m variables. These objects are given in advance,
available in the initial configuration of the system, but they are “precomputed”,
provided at no cost, although there are exponentially many of them (but without
containing other information than that provided by n and m). Of course, in this
case we do not work in the standard complexity framework, as the systems solving
a class of problems cannot be constructed in a polynomial time with respect to
the size of the problems (actually, up to now there is no definition of complexity
classes for the case of precomputed resources).
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The proof follows the same idea as that of the result in [12], implemented
for symport/antiport systems. Since in such systems the objects are only moved
across membranes and they cannot be changed during the computation, we see
no way to avoid using an exponential number of objects given in advance (in [12]
these objects are created during the computation by means of cooperative multiset
rewriting rules).

Theorem 2. SAT can be solved (in a uniform way) in a polynomial time by sym-
port/antiport ωP systems with precomputed resources.

Proof. Let us consider the SAT problem for n variables, x1, x2, . . . , xn, and m
clauses. We denote Lit = {xi,¬xi | 1 ≤ i ≤ n} and V al = {ti, fi | 1 ≤ i ≤ n}. Let
v(xi) = ti and v(¬xi) = fi, for all 1 ≤ i ≤ n. We have ¬ti = fi and ¬fi = ti, for
1 ≤ i ≤ n. (Note that ti, fi identify, by their subscripts, the variables with which
they are associated.)

An instance γ = C1∧C2∧. . .∧Cm of SAT(n,m), with Ci = yi,1∨yi,2∨. . .∨yi,ki ,
for yi,j ∈ Lit, 1 ≤ j ≤ ki, is encoded as

code(γ) = v(y1,1)(1) . . . v(y1,k1)(1)v(y2,1)(2) . . . v(y2,k2)(2) . . .

v(ym,1)(m) . . . v(ym,km)(m).

We now construct the following symport/antiport ωP system (the system works
under the non-permanency assumption, the three inner membranes are distin-
guished, and the objects are present in them with ω multiplicity):

Π = (O,µ,w1, . . . , wm+1, w0, w0′ , E,R1, R2, . . . , Rm+1, R0, R0′ ,m+ 1, env),

O = {α(j) | α ∈ V al, 1 ≤ j ≤ m} ∪ V al
∪ {a, 〈a〉, yes} ∪ {d(i) | 1 ≤ i ≤ m+ 1} ∪ {〈aw〉 | w ⊆ V al, |w| ≤ m},

µ = [ [ . . . [ [ [ [ ]
0′

]
0
]
1
]
2
. . . ]

m
]
m+1

,

w0′ = w0 = {yes} ∪ {〈aw〉 | w ⊆ V al, |w| ≤ m},
w1 = w2 = . . . = wm = λ, wm+1 = ad(m+1),

E = {d(i) | 1 ≤ i ≤ m} ∪ {d, 〈a〉} ∪ V al,
R0′ = {(yes, out; yes, in} ∪ {(〈aw〉, out; 〈aw〉, in) | w ⊆ V al, 0 ≤ |w| ≤ m},
R0 = {(〈aw〉, out; 〈aw〉α, in) | α ∈ V al, w ⊆ V al, 0 ≤ |w| ≤ m,α ∈ w}
∪ {(〈awα〉, out; 〈aw〉α, in) | α ∈ V al, w ⊆ V al, 0 ≤ |w| ≤ m,α /∈ w,¬α /∈ w}
∪ {(yes, out; 〈aw〉d, in) | w ⊆ V al, 1 ≤ |w| ≤ m},

Ri = {(α, in) | α ∈ V al} ∪ {(d, in), (yes, out), (〈a〉, in)}, 1 ≤ i ≤ m,
Rm+1 = {(d(1), out; d, in), (yes, out)} ∪ {(d(i+1), out; d(i), in) | 1 ≤ i ≤ m}

∪ {(α(j+1), out;α(j), in) | α ∈ V al, 1 ≤ j ≤ m− 1}
∪ {(α(1), out;α, in) | α ∈ V al} ∪ {(a, out; 〈a〉, in)}.

For an easier understanding, we also present this system in a graphical form,
in Figure 3. (We follow here the standard way of representing a P system with
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symport/antiport rules, i.e., indicating inside membranes the objects present in
the initial configuration of the system, and on the outside side of each membrane
the associated rules.)

(yes, out), (a, out; 〈a〉, in)

(α(1), out;α, in), α ∈ V al

(α(j+1), out;α(j), in), α ∈ V al, 1 ≤ j ≤ m− 1

(d(1), out; d, in)

(d(i+1), out; d(i), in), 1 ≤ i ≤ m

'

&

$

%

'

&

$

%

m+ 1

m

(α, in),

α ∈ V al

(d, in)

(yes, out)

(〈a〉, in)

. . .'

&

$

%

a d(m+1)

1

(α, in),

α ∈ V al

(d, in)

(yes, out)

(〈a〉, in)

(yes, out; 〈aw〉d, in), w 6= λ

(〈awα〉, out; 〈aw〉α, in), α /∈ w,¬α /∈ w

(〈aw〉, out; 〈aw〉α, in), α ∈ w

'

&

$

%

0
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〈aw〉, w ⊆ V al, |w| ≤ m'

&

$

%

0′
yes

〈aw〉,

w ⊆ V al, |w| ≤ m

Fig. 3. The symport/antiport ωP system from the proof of Theorem 2

The computation of Π starts after introducing the multiset code(γ) into the
skin membrane, for a given instance γ of the SAT(n,m) problem. The truth-values
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which satisfy the first clause bring from the environment the corresponding truth-
values without superscripts. Simultaneously, object a is replaced by 〈a〉, and all
other truth-values, corresponding to clauses C2, . . . , Cm, decrease by one their su-
perscripts. Also the “checker” object d decreases, step by step, its superscript –
but starting from m+1, hence by one greater than the superscripts of objects asso-
ciated with Cm. The truth-values without superscripts and object 〈a〉 “migrate”,
step by step, towards membrane 1. First, the truth-values which satisfy C1 (at the
same time with 〈a〉) reach membrane 1, then those which satisfy C2, and so on.

In membrane 1, objects of the form 〈aw〉 grow, starting from the “seed” 〈a〉,
with w containing the truth-values which satisfy one by one the clauses. Specifi-
cally, if α satisfy clause Ci and it arrives in membrane 1, where we have the object
〈aw〉 (for i = 1 we have w = λ), with w containing the truth-values of the variables
which satisfy all clauses Cj , 1 ≤ j ≤ i− 1, then:

(1) if α is in w, then the object 〈aw〉 is not changed, and α is moved in
membrane 0, where it will not survive,

(2) if neither α nor ¬α is in w, then this new truth-value α is added to w, by
means of the rule (〈awα〉, out; 〈aw〉α, in) ∈ R0,

(3) if none of the previous cases holds (i.e., ¬α appears in w), then no reaction
takes place – hence both α and 〈aw〉 will disappear because of the non-permanency
condition.

Note the important fact that the threshold assumption is crucial in this oper-
ation: each object, whether of the form α or 〈aw〉, appears in membrane 1 (and in
membranes 0, 0′) in the ω way, sufficient for all rules which can be applied (there
is no competition for objects), hence all rules are applied simultaneously!

One step after the truth-values corresponding to the last clause, Cm, entered
membrane 1, also d moves to membrane 1. It finds here all truth-assignments w
which satisfy all clauses. If there is no such truth-assignment, then no reaction
takes place in membrane 1 at that time – thus object d disappears and object
yes is not released from membrane 0. If there is at least one non-empty truth-
assignment w, then the rule (yes, out; 〈aw〉d, in) ∈ R0 is used and yes is moved
out of membrane 0 and from here it starts its way out of the system.

The internal membranes 0, 0′ have the role of suppliers of objects: because of
the non-permanency assumption, only objects which are moved by a rule survive.

If the formula γ is satisfiable, then object yes exits the system, otherwise this
object remains inside. Let us count now the number of steps necessary to bring out
object yes. Objects d(i) decrease their superscript from m + 1 to 1 (hence m + 1
steps), then d(1) is replaced by d (one more step). In further m steps, d crosses
all membranes from region m+ 1 to region 1. Taking yes from membrane 0 needs
one more step. Crossing all membranes 1, 2, . . . ,m+ 1 requires m+ 1 steps. Thus,
provided that γ is satisfiable, object yes exits the system in 3m+ 4 steps.

Because of the rules associated with membrane 0′, the system never halts, but
the answer whether or not the formula γ is satisfiable is obtained in step 3m+ 4:
γ is satisfiable if and only if in this step we get yes out of the system.
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Note that we work with precomputed resources: the total alphabet of the sys-
tem as well as the contents (objects and rules) of membranes 0, 0′ are exponential
(of the order of nm), the computation of these objects and rules is done in ad-
vance, at no cost, but there is no information in the system at the beginning of
the computation related to γ different from n and m.

Finally, we notice that the construction is uniform (it starts from the problem
itself, SAT(n,m), not from a given instance of the problem), which concludes the
proof.

5 Concluding Remarks. Other Cases to Consider

In this paper we continued the study of the effect of transferring to membrane com-
puting the two basic axioms of reaction systems: the non-permanency assumption
(an object which does not evolve disappears) and the threshold assumption (an
object either does not appear, or it is present in arbitrarily many copies).

After recalling the results from [12] and [13], we established two new results:
in the non-permanency case, SN P systems characterize the semilinear sets of
numbers, and symport/antiport systems under the threshold assumption (imposed
in only two membranes) can solve SAT in a polynomial time. All these results and
the cases which were not yet investigated are displayed in Table 1.

coop cat ncoop S/A SN P

Non-permanency Univ. ? ? Univ. SLIN1

[13] [13] Theorem 1

Threshold assumption Fyper. ? ? Fyper. ?
[12] Theorem 2

Table 1. Cases studied – cases to be studied

Of course, there also are other open problems and research topics. Several
of them were also mentioned in the previous sections. Certainly, an interesting
question is whether the threshold assumption adds power to SN P systems working
under the non-permanency assumption.

A natural research topic is to avoid using precomputed resources in Theorem
2 and instead to construct the exponentially many components of the initial con-
figuration of the symport/antiport P system by using additional features of the
system, e.g., using membrane division.

A “dual” research area is a transfer of ideas from membrane computing to
reaction systems, but we do not address this issue here – some comments can be
found in [13].
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Summary. Gene Regulatory Networks (GRNs) are a useful tool for biologists to under-
stand the interactions among genes in living organisms. A special kind of GRNs known
as Logic Networks (LNs) has been recently introduced. These networks consider that
the state of one or more genes can influence another one. In a previous work, we pro-
posed a Membrane Computing model which simulates the dynamics of LNs by drawing
on the improved LAPP algorithm. In this paper we provide a case study for our LN
model on a network which regulates the circadian rhythms of long–term studied plant
Arabidopsis thaliana. We outline the software tools employed and propose a methodology
for analysing LNs on our Membrane Computing model. At the end of the paper, some
conclusions and future work are included.

Keywords: Bioinformatics, Genetics, Gene networks, Membrane Computing,
MeCoSim, Software engineering, Modelling, LAPP, Logic networks

1 Introduction

Since its very beginning, Membrane Computing [13] has been employed as a mod-
elling framework for biochemical phenomena. Although the current landscape is
more focused on metabolite–oriented dynamics, gene regulatory networks (GRNs)
have also been modelled by means of P systems as part of this framework. In a pre-
vious work, we followed this line of research by proposing a Membrane Computing
model for a specific type of gene networks known as Logic Networks (LN ) [16].
This model describes a P systems family known as LN Dynamic P systems (LN
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DP systems), within the framework of PDP systems [11]. LNs are a specific type
of GRNs in which the combination of states of several genes, rather than the single
state of any of them, influence another one. Bowers et al. [2] proposed a methodol-
ogy for the construction of logic networks out of statistical data, known as Logical
Analysis of Phylogenesis Profiles (LAPP). In our model, these combinations are
limited to at most two genes affecting a third one. The model, in conjunction
with DCBA algorithm[4], intends to capture the behaviour of the Improved LAPP
Method introduced by Wang et al. [18]. In their work, they propose a case study on
a gene network associated to Arabidopsis thaliana’s flowering process. We intend
to reproduce this case study by using our Membrane Computing model. We also
include a guide for generating custom simulators on MeCoSim for LN DP systems,
depicting a step–by–step guide on MeCoSim tool [12]. Finally, the data employed
in this case study is provided as an appendix, thus easing cross–checking of results.
This paper is structured as follows. Section 1.1 introduces the Logic Network to be
studied, a GRN associated to the flowering process of Arabidposis thaliana. Section
2 outlines the LN DP system model presented in [16], in order to make the current
work self contained, as it is used to analyse our case study. Section 3 consists of a
guide to simulate LNs from scratch on MeCoSim [14, 12]. This guide complements
the simulation methodology described in [16]. Section 4 describes a case study on
a real–world logic network on Arabidopsis Thaliana, in order to experimentally
verify the behaviour of the model on complex gene networks. Finally, section 5
lists the conclusions obtained and proposes some open problems.

1.1 A Logic Network on Arabidopsis thaliana flowering processes

Arabidopsis is a long–day plant. Zhang and Zuo [19] stated that long–day con-
ditions can promote reproductive growth and induce early flowering. However,
short–day conditions can promote vegetative growth and induce late flowering or
even no flowering. To understand the intrinsic mechanisms of Arabidopsis flower-
ing in different lighting conditions, it is required to compare the relationships of
related genes.

In the latest ten years, much work has been reported in the field about A.
thaliana flowering. Imaizumi et al. [8] found that FKF1 is a blue light recep-
tor which regulates flowering. Later, they also showed that FKF1 together with
Flavin–Binding and Kelch Repeat degrade Cycling Dof Factor1 (CDF1) to even-
tually control carbon monoxyde [7]. In the same year, Abe et al. [1] found that
Flowering Locus T (FT) together with FD activate Apetala1 (AP1) to initiate
floral development and promote floral transition at the shoot apex. Previous work
deal only with one or few genes related to flowering. However, the networks con-
sidered in this work focus on the relationships among a large number of genes
systematically. Bowers et al. [2] proposed the Logic Analysis of Phylogenetic Pro-
files (LAPP) [2]. This method helps researchers to know biological functions of
some genes or proteins on the basis of phylogenetic profiles, which has been devel-
oped both on theory and application ([3, 20, 17]). For example, Wang et al. [17]
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developed the improved LAPP method, and reversely constructed a logic network
of sixteen genes in shoot for Arabidopsis under salt stimuli.

2 Description of the model

This section summarizes both the P system family and the model (i.e., initial con-
figuration and rule patterns) employed in this case study. For a detailed description
of the model, see [16].

2.1 A family of P systems based on Logic Networks

The model depicted here is a P system of a family known as Logic Network Dy-
namic P systems (LN DP systems). An LN DP system is described within an
expansion of Population Dynamics P systems (PDP systems) [16].

An LN DP system ΠLN of degree (q,m) with q,m ≥ 1, taking T ≥ 1 time
units, is a tuple

ΠLN = (G,Γ,Σ, T,RE , µ, R, {fr,j : r ∈ R, 1 ≤ j ≤ m},
{Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m}, {Mj : 1 ≤ j ≤ m})

where:

• (G, Γ , Σ, T , RE , µ, R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})
is a PDP system.

• {fr,j = 1 : r ∈ R, 1 ≤ j ≤ m}.
• For each j (1 ≤ j ≤ m), Mj are multisets over Γ , describing the objects

initially placed in the m environments ej .

In this paper, in the description of an LN PDP System, functions fr,j are
omitted. They are all equal to 1, so it is not necessary to make them explicit.

2.2 The model

Here the model for the family of Logic Network Dynamic P systems is outlined.
This model covers any possible P system in this family, so the multisets, rules,
etc. depend on the P system which represent each specific instance of a logic net-
work. The definition of the general model requires the use of parameters in our
constructs, as explained at the end of this subsection.

Let LN be a logic network. Let ng, nu, nb be the number of genes, unary and
binary interactions of LN , respectively. Let n = ng+nu+nb. The model consists
of the following PDP system of degree (1, n),

ΠLN = (G,Γ,Σ, T,RE , µ, R, {Mij : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m}, {Mj : 1 ≤ j ≤ m})

where:
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• G is a directed graph containing a node (environment) for each gene, unary or
binary interaction, following this order.

• In the alphabet Γ , we represent gene states, interaction types, contribution
weights and targets.

Γ = {ai, bi, ci : 0 ≤ i ≤ 1} ∪ {go, d0} ∪ {unopj , binopj : 1 ≤ j ≤ 4} ∪
{auxDesti,gj,1,k : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb+ nu} ∪
{desti,gj,1,tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb} ∪
{desti,gj,1,untk−nb,1+ng+nb : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, nb+ 1 ≤ k ≤ nb+ nu} ∪
{etk,4∗i+(1−i)∗(1−tk,4),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{etk,6∗i+(1−i)∗(1−tk,6),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{euntk−nb,4∗i+(1−i)∗(1−untk−nb,4),untk−nb,1+ng+nb :

0 ≤ i ≤ 1, nb+ 1 ≤ k ≤ nb+ nu} ∪
{eFtk,8∗i+(1−i)∗(1−tk,8),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{eFi,(untk,1+ng+nb) : 0 ≤ i ≤ 1, 1 ≤ k ≤ nu} ∪
{clockj : 0 ≤ j ≤ cc+ 3}

• The environment alphabet is Σ = Γ \ {d0}
• Each cycle to evolve from a real network configuration to the next one involves

15 computational steps, so T = 15 · Cycles, where Cycles is the number of
cycles to simulate.

• µ = [ ]1 is the membrane structure.
• The initial multisets are:

– Mgk,1
= { a1gk,3 , a0

1−gk,3,go : 1 ≤ k ≤ ng}.
– Mng+ti,1 = { binopti,2 : 1 ≤ i ≤ nb}.
– Mng+nb+unti,1 = { unopunti,2 : 1 ≤ i ≤ nu}.

• The rules of R and RE to apply are showed below. They are put together to
follow the sequential order of execution. Environment rules start with re and
skeleton rules start with rs.

– rs1,i ≡ go ai[ ]1−−→ cibi
max∗ib0

thresholdclock0[ ]1 : 0 ≤ i ≤ 1

– For each source gene environment:
re2,i,j,k ≡ (ci−−→{auxDesti,gj,1,k : {1 ≤ k ≤ nb+ nu}})gj,1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng
re3,i,j,k ≡ (auxDesti,gj,1,k −−→ desti,gj,1,tk,1+ng)gj,1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb
re4,i,j,k ≡ (auxDesti,gj,1,k −−→ desti,gj,1,untk−nb,1+ng+nb)gj,1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, nb+ 1 ≤ k ≤ nb+ nu

re5,i,k ≡ (desti,tk,3,tk,1+ng −−→ etk,4∗i+(1−i)∗(1−tk,4),tk,1+ng)tk,3

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re6,i,k ≡ (desti,tk,5,tk,1+ng −−→ etk,6∗i+(1−i)∗(1−tk,6),tk,1+ng)tk,5

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re7,i,k ≡ (desti,untk−nb,3,untk−nb,1+ng+nb−−→

euntk−nb,4∗i+(1−i)∗(1−untk−nb,4),untk−nb,1+ng+nb)untk−nb,3

: 0 ≤ i ≤ 1, nb+ 1 ≤ k ≤ nb+ nu
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re8,i,k ≡ ( )tk,1+ng(ei,tk,1+ng)tk,3 −−→(ai)tk,1+ng( )tk,3

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re9,i,k ≡ ( )tk,1+ng(ei,tk,1+ng)tk,5 −−→(ai)tk,1+ng( )tk,5

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re10,i,k ≡ ( )untk−nb,1+ng+nb(ei,untk−nb,1+ng+nb)untk−nb,3 −−→

(ai)untk−nb,1+ng+nb( )untk−nb,3

: 0 ≤ i ≤ 1, nb+ 1 ≤ k ≤ nb+ nu

– Evaluation of the result of the interactions (1/2).
rs11 ≡ binop1 a0

2[ ]1−−→ binop1 c0[ ]1
rs12 ≡ binop1 a1

2[ ]1−−→ binop1 c1[ ]1
rs13 ≡ binop1 a1 a0[ ]1−−→ binop1 c1[ ]1

rs14 ≡ binop2 a1
2[ ]1−−→ binop2 c1[ ]1

rs15 ≡ binop2 a0
2[ ]1−−→ binop2 c0[ ]1

rs16 ≡ binop2 a1 a0[ ]1−−→ binop2 c0[ ]1

rs17 ≡ binop3 a1
2[ ]1−−→ binop3 c0[ ]1

rs18 ≡ binop3 a0
2[ ]1−−→ binop3 c0[ ]1

rs19 ≡ binop3 a1 a0[ ]1−−→ binop3 c1[ ]1

rs20,i ≡ unop1 ai[ ]1−−→unop1 ci[ ]1 : 0 ≤ i ≤ 1
rs21,i ≡ unop2 ai[ ]1−−→unop2 ci−1[ ]1 : 0 ≤ i ≤ 1
rs22,i ≡ unop3 ai[ ]1−−→unop3 ci

i[ ]1 : 0 ≤ i ≤ 1
rs23,i ≡ unop4 ai[ ]1−−→unop4 c1−i

i[ ]1 : 0 ≤ i ≤ 1

– Evaluation of the result of the interactions (2/2).
re24,i,k ≡ (ci)tk,1+ng( )tk,7 −−→

( )tk,1+ng(eFtk,8∗i+(1−i)∗(1−tk,8),tk,1+ng)tk,7

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb
re25,i,k ≡ (ci)untk,1+ng+nb( )untk,5 −−→

( )untk,1+ng+nb(eFi,(untk,1+ng+nb))untk,5

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nu
– Calculation of contributions.

rs26,i,k ≡ eFi,(tk,1+ng)[ ]1−−→ bi
tk,9 [ ]1 : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb

rs27,i,k ≡ eFi,(untk,1+ng+nb)[ ]1−−→ bi
untk,6 [ ]1 : 0 ≤ i ≤ 1, 1 ≤ k ≤ nu

– Elimination of different–signed contributions.
rs28 ≡ b1 b0[ ]1−−→[ ]1
rs29,i ≡ clocki−1[ ]1−−→ clocki[ ]1 : 1 ≤ i ≤ cc+ 3

– Calculation of the next gene state.
rs30 ≡ b0[ ]−1 −−→[d0]−1
rs31 ≡ b1[ ]−1 −−→[]−1

rs32,i,j,k ≡ desti,j,tk,1+ng[ ]−1 −−→[ ]−1 : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb
rs33,i,j,k ≡ desti,j,untk−nb,1+ng+nb[ ]−1 −−→[ ]−1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, nb+ 1 ≤ k ≤ nb+ nu
rs34 ≡ [d0]−1 −−→[ ]+1
rs35 ≡ clockcc+3[ ]+1 −−→ go a0[ ]01
rs36 ≡ clockcc+3[ ]−1 −−→ go a1[ ]01

In this section, only input parameters are described. This way, details about
the model dynamics are left aside. These parameters are described in table 1.
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Table 1. Parameters

Parameter Description

General parameters for the system

ng Number of genes in the network
nb Number of binary interactions
nu Number of unary interactions
threshold Maximum strength for an interaction
cc Clock control

Gene configuration parameters

gi,1 Gene number (id)
gi,3 Initial state of the gene

Binary interactions parameters

ti,1 Binary interaction number (id)
ti,2 Interaction type (or: 1, and: 2, xor: 3)
ti,3 1st source gene number (id)
ti,4 1st source gene contribution (positive: 1, negative: 0)

ti,5 2nd source gene number (id)

ti,6 2nd source gene contribution (positive: 1, negative: 0)
ti,7 Destination gene number (id)
ti,8 Influence over destination gene (positive: 1, negative: 0)
ti,9 Strength of the destination

Unary interactions parameters

unti,1 Unary interaction number (id)
unti,2 Interaction type (strong promotion: 1, inhibition: 2; weak ones: 3, 4)
unti,3 Source gene number (id)
unti,4 Source gene contribution (positive, negative)
unti,5 Destination gene number (id)
unti,6 Influence over destination gene (positive, negative)

2.3 Model output

The state of the network is encoded as the multiplicity of objects a1 and a0 in each
gene environment. The presence of objects a1 inside a gene environment represents
that its gene is active (a0 for inactive). Due to the nature of the system, membrane
genes cannot have objects a1 and a0 simultaneously. Therefore, to know the final
state of the network, it suffices to identify which environments contain object a1
and which ones a0 at configuration T .
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3 Modelling and simulation on MeCoSim

This section explains some relevant issues concerning the software environment,
putting the focus on the needed changes in P-Lingua framework and the config-
uration of MeCoSim. The P–Lingua definition used to analyse the PDP model
adheres to P–Lingua version 4 standard, available at [10].

3.1 Custom interface in MeCoSim

In our previous work [16], a P–Lingua model for the family of logic networks based
on PDP systems has been extensively described. This model contains a number of
parameters representing relevant information about each specific scenario. Thus,
although a general model has been presented, a mechanism to ease the task of intro-
ducing the specific data for each scenario is needed. This task is performed through
the software environment provided by MeCoSim [14, 12]. MeCoSim permits the
definition of a custom visual simulator. This simulator includes an interface with
the needed inputs, outputs, and a way to translate the input data into parameters
for the model. The simulation engine is provided by pLinguaCore, available at [10].
The most relevant facts of this process are listed below.

Definition of a custom visual simulator for Logic Networks

Here, the process for defining a custom simulator based on MeCoSim is pro-
vided. This process is very simple, and consists of the following steps:

Configuration file: The first step is to define a spreadsheet file containing the con-
figuration for the definition of visual tabs, input tables, output tables and
charts, and the mechanism to generate both model parameters from input ta-
bles and outputs from the simulation results. The contents of the simulation
parameters tab in the file is shown in figure 1. The configuration file is available
by contacting the authors.

Fig. 1. MeCoSim configuration file. Simulation params

Loading configuration file on MeCoSim: That file is loaded through the main win-
dow in MeCoSim by clicking the “Load config file” button, choosing the file,
selecting “Update all information” option and pressing “Update config info”
button. After these steps, the configuration file is loaded, so the custom simula-
tor is ready to use. Finally, the message “The Application has been successfully
initialized” is prompted in MeCoSim main display.
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Running custom simulator: The newly configured simulator is ready to use by
selecting “Gene network” application and pressing “Run Application” button.
Then, the custom interface is visualized, enabling the user to load the model
(.pli file) and enter the input data for a specific scenario, as shown in figure 2.

Fig. 2. MeCoSim window

3.2 Simulation methodology

In [16], we describe a methodology to simulate LN DP systems on MeCoSim. This
methodology can be summarized in the following steps:

• Load the model specification by clicking on Model > Set model.

• Fill in the input tables in tab Input. Optionally, it is possible to save this data
by clicking on Scenario > Save. This data can be loaded later by clicking on
Scenario > Open.

• Set the number of steps on Simulation > Number of steps.

• Click on Simulation > Simulate!.

• Visualize the results in tab Output.

A toy example on a 3–gene logic network is provided in [16]. This network is
taken from [15]. In this network, interactions have no associated weights. Hence,
we presume all interactions to have the same weight (say 100). Although interac-
tion scoring based on Pearson correlation coefficient is a rather widespread metric
for measuring gene interaction strength [9], there is little literature on LNs, thus
making it hard to find LN toy examples.



Analysing Gene Networks with PDP Systems 265

4 A case study on Arabidopsis thaliana

In order to experimentally verify our model, we have tested our algorithm by
using a logic network which regulates flowering processes associated to Arabidopsis
thaliana on a long day scenario. This relatively large network integrates gene
interaction samples from NCBI/EBI database [5]. This logic network has been
constructed according to the procedure described by Bowers et al. [2]. A. thaliana
is a species widely used in genetic and protein interaction networks. The total
number of genes in the network is 29, whereas the total number of interactions is
99. These interactions consist of 23 unary interactions and 76 binary interactions.
We notice that only a few different types of all possible interactions are present
in this network. In the case of unary interactions only strong promotions and
strong inhibitions are present. When it comes to binary interactions, only AND–
like and OR–like interactions are present. As regards to the distribution of the
present interactions, the vast majority of them are AND–like interactions with
both inputs in non–negated form (that is, G′j = Gj and G′k = Gk), as well as
non–negated result (G′l = Gl).
Gene network data is provided as an appendix in section 7. Specifically, gene initial
states are reflected in table 5. Unary gene interactions are reflected in figure 6.
Similarly, binary gene interactions are reflected in figures 7, and 8. Figure 3 displays
the MeCoSim input tables used in this case study.

Eventually, we have simulated the corresponding P system for the A. thaliana
network entered. The improved LAPP method (as presented in Wang et al. [18])
has been run for 30 steps on this data. Similarly, the LN DP model has been sim-
ulated for 30 cycles. As each cycle in an LN DP system consists of 15 computation
steps, the total number of steps simulated in the model is 30 × 15 = 450. The
results (see figure 4) match the ones obtained from the execution of the improved
LAPP method on the same input data. Therefore, it is verified that, on this gene
network and scenario, the P system model behaviour is analogous to that from
the improved LAPP method.
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General parameters (that is, number of
unary and binary interactions)

Initial state of each gene (active or inactive)

Unary interactions Binary interactions

Fig. 3. Arabidopsis - MeCoSim Interface - Input Data

Fig. 4. Final gene states used for the simulation on MeCoSim interface
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5 Conclusions

In this work, we have presented a case study on LN DP systems for a gene network
which regulates the flowering process of Arabidopsis thaliana. We suplement this
case study with a guide for generating a custom MeCoSim simulator for LN DP
systems. In the case study, we validate the model against the improved LAPP
method [18]. We conclude that our Membrane Computing model matches the
output data obtained by the latter algorithm.
As a future work, it would be interesting to apply this model to gene networks with
different biological functions, so as to test if the model matches the improved LAPP
algorithm for a sufficiently representative number and variety of cases. This task
can be complemented with a comparative study of the improved LAPP algorithm
and different biochemical simulation methods (such as the Gillespie algorithm [6])
by means of Membrane Computing models.
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Garćıa-Quismondo is also supported by the National FPU Grant Programme from
the Spanish Ministry of Education.

References

1. Mitsutomo Abe, Yasushi Kobayashi, Sumiko Yamamoto, Yasufumi Daimon, Ayako
Yamaguchi, Yoko Ikeda, Harutaka Ichinoki, Michitaka Notaguchi, Koji Goto, and
Takashi Araki. (2005). Fd, a bzip protein mediating signals from the floral pathway
integrator ft at the shoot apex. Science, 309(5737):1052–1056.

2. Peter M. Bowers, Shawn J. Cokus, Todd O. Yeates, and David Eisenberg. (2004).
Use of logic relationships to decipher protein network organization. Science,
5705(306):2246–2249.

3. Peter M. Bowers, Brian D. O’Connor, Shawn J. Cokus, Eniat Sprinzak, Todd O.
Yeates, and David Eisenberg. (2005). Utilizing logical relationships in genomic data
to decipher cellular processes. the FEBS journal, 272(1):5110–5118.

4. Miguel A. Mart́ınez del Amor, Ignacio Pérez-Hurtado, Manuel Garćıa-Quismondo,
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14. Ignacio Pérez-Hurtado, Luis Valencia-Cabrera, Mario J. Pérez-Jiménez, M. A.
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7 Appendix A: Gene Network Data

Gene number Initial state

1 0

2 0

3 1

4 0

5 0

6 1

7 0

8 1

9 1

10 1

11 0

12 0

13 0

14 1

15 1

Gene number Initial state

16 0

17 1

18 1

19 1

20 0

21 0

22 1

23 1

24 0

25 1

26 0

27 1

28 1

29 1

Fig. 5. Initial gene states in the Arabidosis thaliana gene network on the longday scenario
taken as case study

ID Logic Weight

1 g1 → g7 0.402

2 g2 → ¬g6 0.409

3 g2 → g7 0.878

4 g6 → g16 0.353

5 g6 → g21 0.353

6 g7 → g11 0.965

7 g7 → g16 0.802

8 g7 → g21 0.802

9 g10 → ¬g13 0.1000

10 g10 → g18 0.456

11 g10 → g27 0.544

12 g10 → g28 0.309

ID Logic Weight

13 g11 → ¬g26 0.273

14 g12 → g16 0.282

15 g12 → g21 0.282

16 g16 → ¬g29 0.713

17 g17 → g24 0.425

18 g17 → g26 0.389

19 g19 → g29 0.551

20 g20 → ¬g22 0.303

21 g21 → ¬g29 0.713

22 g22 → g26 0.439

23 g28 → g29 0.292

Fig. 6. Unary gene interactions present in the logic network associated to the behaviour
of Arabidosis thaliana taken as case study
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ID Logic Weight

1 g11 ∧ g27 → g7 0.708

2 g11 ∧ g28 → g7 1

3 g11 ∧ g29 → g7 0.814

4 g16 ∧ g27 → g7 0.708

5 g16 ∧ g28 → g7 1

6 g16 ∧ g29 → g7 0.814

7 g21 ∧ g27 → g7 0.708

8 g21 ∧ g28 → g7 1

9 g21 ∧ g29 → g7 0.814

10 g1 ∨ ¬g13 → g10 1

11 g6 ∧ g13 → ¬g10 1

12 g7 ∨ ¬g13 → g10 1

13 g9 ∧ g13 → ¬g10 0.829

14 g11 ∨ ¬g13 → g10 1

15 g12 ∨ ¬g13 → g10 0.829

16 ¬g13 ∨ g16 → g10 1

17 ¬g13 ∨ g18 → g10 0.728

18 g13 ∧ g19 → ¬g10 0.829

19 ¬g13 ∨ g21 → g10 1

20 ¬g13 ∨ g27 → g10 1

21 g27 ∨ ¬g28 → g10 0.728

22 g10 ∧ g16 → g11 0.741

23 g10 ∧ g21 → g11 0.741

24 g14 ∧ g16 → g11 0.741

25 g14 ∧ g21 → g11 0.741

26 g15 ∧ g16 → g11 0.741

27 g15 ∧ g21 → g11 0.741

28 g16 ∧ g17 → g11 0.741

29 g16 ∧ ¬g20 → g11 0.741

30 g16 ∧ g21 → g11 0.741

ID Logic Weight

31 g16 ∧ g22 → g11 0.741

32 g16 ∧ g23 → g11 0.741

33 g16 ∧ ¬g24 → g11 0.741

34 g16 ∧ g25 → g11 0.741

35 g16 ∧ ¬g26 → g11 0.741

36 g16 ∨ g29 → g11 0.741

37 g17 ∧ g21 → g11 0.741

38 ¬g20 ∧ g21 → g11 0.741

39 g21 ∧ g22 → g11 0.741

40 g21 ∧ g23 → g11 0.741

41 g21 ∧ ¬g24 → g11 0.741

42 g21 ∧ g25 → g11 0.741

43 g21 ∧ ¬g26 → g11 0.741

44 g21 ∨ ¬g29 → g11 0.741

45 g8 ∧ g21 → g16 0.801

46 g10 ∧ g21 → g16 1

47 g11 ∨ g21 → g16 1

48 g11 ∨ ¬g29 → g16 1

49 g14 ∧ ¬g19 → g16 0.801

50 g14 ∧ g21 → g16 1

51 g15 ∧ g21 → g16 1

52 g17 ∧ g21 → g16 1

53 ¬g19 ∧ g21 → g16 0.801

54 ¬g20 ∧ g21 → g16 1

55 g21 ∧ g22 → g16 1

56 g21 ∧ g23 → g16 1

57 g21 ∧ ¬g24 → g16 1

58 g21 ∧ g25 → g16 1

59 g21 ∧ ¬g26 → g16 1

60 g21 ∨ ¬g29 → g16 1

Fig. 7. Binary gene interactions present in the logic network associated to the behaviour
of Arabidosis thaliana taken as case study (1/2)
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ID Logic Weight

61 g8 ∧ g16 → g21 0.801

62 g10 ∧ g16 → g21 1

63 g11 ∨ g16 → g21 1

64 g11 ∨ ¬g29 → g21 1

65 g14 ∧ g16 → g21 1

66 g14 ∧ ¬g19 → g21 0.801

67 g15 ∧ g16 → g21 1

68 g16 ∧ g17 → g21 1

69 g16 ∧ ¬g19 → g21 0.801

70 g16 ∧ ¬g20 → g21 1

71 g16 ∧ g22 → g21 1

72 g16 ∧ g23 → g21 1

73 g16 ∧ ¬g24 → g21 1

74 g16 ∧ g25 → g21 1

75 g16 ∧ ¬g26 → g21 1

76 g16 ∨ ¬g29 → g21 1

Fig. 8. Binary gene interactions present in the logic network associated to the behaviour
of Arabidosis thaliana taken as case study (2/2)

Gene number Initial state

1 0

2 0

3 1

4 0

5 0

6 1

7 0

8 1

9 1

10 1

11 0

12 0

13 0

14 1

15 1

Gene number Initial state

16 0

17 1

18 1

19 1

20 0

21 0

22 1

23 1

24 0

25 1

26 1

27 1

28 1

29 1

Fig. 9. Final gene states in the Arabidosis thaliana gene network on the longday scenario
taken as case study
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Ciencialová, Lucie, 51, 153
Ciobanu, Gabriel, 1, 67

Dı́az-Pernil, Daniel, 9
Dragomir, Ciprian, 97

Freund, Rudolf, 81
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Soriano, Krizia Ann N., 25
Su, Yansen, 257

Valencia-Cabrera, Luis, 97, 257

Yu, Hui, 257

Zandron, Claudio, 177


