
Universal P Systems:
One Catalyst Can Be Sufficient

Rudolf Freund1 and Gheorghe Păun2

1 Technische Universität Wien, Institut für Computersprachen
Favoritenstr. 9, A-1040 Wien, Austria
rudi@emcc.at

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

and

Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, ghpaun@gmail.com

Summary. Whether P systems with only one catalyst can already be universal, is still
an open problem. Here we establish universality (computational completeness) by using
specific variants of additional control mechanisms. At each step using only multiset rules
from one set of a finite number of sets of rules allows for obtaining computational com-
pleteness with one catalyst and only one membrane. If the targets are used for choosing
the multiset of rules to be applied, for getting computational completeness with only
one catalyst more than one membrane is needed. If the available sets of rules change
periodically with time, computational completeness can be obtained with one catalyst in
one membrane. Moreover, we also improve existing computational completeness results
for P systems with mobile catalysts and for P systems with membrane creation.

1 Introduction

P systems with catalytic rules were already considered in the originating papers
for membrane systems, see [9]. In [3] two catalysts were shown to be sufficient
for getting universality/computational completeness (throughout this paper, with
these notions we will indicate that all recursively enumerable sets of (vectors of)
non-negative integers can be generated). Since then, it has become one of the most
challenging open problems in the area of P systems, whether or not one catalyst
might already be enough to obtain computational completeness.

Using additional control mechanisms as, for example, priorities or promot-
ers/inhibitors, P systems with only one catalyst can be shown to be computation-
ally completene, e.g., see Chapter 4 of [11]. On the other hand, additional features

82 R. Freund, Gh. Păun

for the catalyst may be taken into account; for example, we may use bi-stable cat-
alysts (catalysts switching between two different states) or mobile catalysts (cat-
alysts able to cross membranes). Moreover, additional membrane features may be
used, for example, membrane creation or controlling the membrane permeability
by means of the operations δ and τ .

P systems with membrane creation were introduced in [8], showing both their
universality and efficiency (the Hamiltonian path problem is solved in linear time
in a semi-uniform way; this result was improved in [4], where a polynomial solution
to the Subset Sum problem in a uniform way is provided). For proving universality,
in [8] (Theorem 2) P systems starting with one membrane, having four membranes
at some time during the computation, using one catalyst, and also controlling the
membrane permeability by means of the operations δ (deleting the surrounding
membrane) and τ (increasing the thicknes of the surrounding membrane, i.e., mak-
ing it impermeable for objects to pass through) are needed. However, as already
shown in [10], P systems with one catalyst and using the operations δ and τ are
universal, i.e., the membrane creation facility is not necessary for getting univer-
sality in this framework. Here we improve the result shown in [8] from two points
of view: (i) the control of membrane permeability is not used, and (ii) the maximal
number of membranes used during a computation is two.

P systems with mobile catalysts were introduced in [5], and their universality
was proved with using three membranes and target indications of the forms here,
out, and inj . We here improve this result by replacing the target indications inj
with the weaker one in.

Recently, several variants of P systems using only one catalyst together with
control mechanisms for choosing the rules applicable in a computation step have
been considered: for example, in [6] the rules are labeled with elements from an
alphabetH and in each step a maximal multiset of rules having the same label from
H is applied. In this paper, we will give a short proof for the universality of these
P systems with label selection with only one catalyst in a single membrane. As a
specific variant, for each membrane we can choose the rules according to the target
indications, and we will prove universality for these P systems with target selection
with only one catalyst, but needing more than one membrane (such systems with
only one membrane lead to the still open problem of catalytic P systems with one
catalyst).

Regular control languages were considered already in [6] for the maximally
parallel derivation mode, whereas in [1] universality was proved for the sequential
mode: there even only non-cooperative rules were needed in one membrane for
time-varying P systems to obtain universality (in time-varying systems, the set of
available rules varies periodically with time, i.e., the regular control language is of
the very specific form W = (U1 . . . Up)

∗
, allowing to apply rules from a set Ui in

the computation step pn+ i, n ≥ 0; p is called the period), but a bounded number
of steps without applying any rule had to be allowed. We here prove that time-
varying P systems using the maximally parallel derivation mode in one membrane

Universal P Systems: One Catalyst Can Be Sufficient 83

with only one catalyst are computationally complete with a period of six and the
usual halting when no rule can be applied.

2 Prerequisites

The set of integers is denoted by Z, the set of non-negative integers by N. An
alphabet V is a finite non-empty set of abstract symbols. Given V , the free monoid
generated by V under the operation of concatenation is denoted by V ∗; the ele-
ments of V ∗ are called strings, and the empty string is denoted by λ; V ∗ \ {λ} is
denoted by V +. Let {a1, · · · , an} be an arbitrary alphabet; the number of occur-
rences of a symbol ai in a string x is denoted by |x|ai

; the Parikh vector associated

with x with respect to a1, · · · , an is
(
|x|a1

, · · · , |x|an

)
. The Parikh image of a lan-

guage L over {a1, · · · , an} is the set of all Parikh vectors of strings in L, and we
denote it by Ps (L). For a family of languages FL, the family of Parikh images
of languages in FL is denoted by PsFL; for families of languages of a one-letter
alphabet, the corresponding sets of non-negative integers are denoted by NFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(
|x|a1

, · · · , |x|an

)
= (m1, · · · ,mn). Fixing the sequence

of symbols a1, · · · , an in the alphabet V in advance, the representation of the mul-
tiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1 · · · amn
n is unique. The set of all finite

multisets over an alphabet V is denoted by V ◦.
The family of regular and recursively enumerable string languages is denoted

by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [2] and [12].

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, P is the set of instructions bijectively labeled by elements of B, l0 ∈ B
is the initial label, and lh ∈ B is the final label. The instructions of M can be of
the following forms:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to in-
struction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of this
instruction are usually called zero-test and decrement, respectively.

• lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruction

84 R. Freund, Gh. Păun

to be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching the HALT -instruction.

Register machines provide a simple universal computational model [7]. In the
generative case as we need it later, we start with empty registers, use the first two
registers for the necessary computations and take as results the contents of the k
registers 3 to k + 2 in all possible halting computations; during a computation of
M , only the registers 1 and 2 can be decremented. In the following, we shall call
a specific model of P systems computationally complete or universal if and only if
for any (generating) register machine M we can effectively construct an equivalent
P system Π of that type simulating each step of M in a bounded number of steps
and yielding the same results.

2.1 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the
objects placed in the membrane regions, and the evolution rules. The membrane
structure is a hierarchical arrangement of membranes. Each membrane defines a
region/compartment, the space between the membrane and the immediately inner
membranes; the outermost membrane is called the skin membrane, the region out-
side is the environment, also indicated by (the label) 0. Each membrane can be
labeled, and the label (from a set Lab) will identify both the membrane and its re-
gion. The membrane structure can be represented by a rooted tree (with the label
of a membrane in each node and the skin in the root), but also by an expression of
correctly nested labeled parentheses. The objects (multisets) are placed in the com-
partments of the membrane structure and usually represented by strings, with the
multiplicity of a symbol corresponding to the number of occurrences of that symbol
in the string. The evolution rules are multiset rewriting rules of the form u → v,
where u is a multiset of objects from a given set O and v = (b1, tar1) . . . (bk, tark)
with bi ∈ O and tari ∈ {here, out, in} or tari ∈ {here, out} ∪ {inj | j ∈ Lab},
1 ≤ i ≤ k. Using such a rule means “consuming” the objects of u and “producing”
the objects b1, . . . , bk of v; the target indications here, out, and in mean that an
object with the target here remains in the same region where the rule is applied,
an object with the target out is sent out of the respective membrane (in this way,
objects can also be sent to the environment, when the rule is applied in the skin
region), while an object with the target in is sent to one of the immediately inner
membranes, non-deterministically chosen, wheras with inj this inner membrane
can be specified directly. In general, we omit the target indication here.

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, f)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at the
beginning of a computation , R1, . . . , Rm are finite sets of evolution rules, asso-
ciated with the regions of µ, and f is the label of the membrane region from

Universal P Systems: One Catalyst Can Be Sufficient 85

which the outputs are taken (f = 0 indicates that the output is taken from the
environment).

If a rule u → v has at least two objects in u, then it is called cooperative,
otherwise it is called non-cooperative. In catalytic P systems we use non-cooperative
as well as catalytic rules which are of the form ca→ cv, where c is a special object
which never evolves and never passes through a membrane (both these restrictions
can be relaxed), but it just assists object a to evolve to the multiset v. In a purely
catalytic P system we only allow catalytic rules. In both catalytic and purely
catalytic P systems, we replace O by O,C in order to specify those objects from
O which are the catalysts in the set C.

The evolution rules are used in the non-deterministic maximally parallel way,
i.e., in any computation step of Π we choose a multiset of rules from the sets
R1, . . . , Rm in such a way that no further rule can be added to it so that the
obtained multiset would still be applicable to the existing objects in the membrane
regions 1, . . . ,m.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation. A computation is halting if it reaches
a configuration where no rule can be applied. With a halting computation we
associate a result, in the form of the number of objects present in membrane
f in the halting configuration. The set of vectors of non-negative integers and
the set of (Parikh) vectors of non-negative integers obtained as results of halting
computations in Π are denoted by N (Π) and Ps (Π), respectively.

The family of sets Y (Π), Y ∈ {N,Ps}, computed by P systems with at most
m membranes and cooperative rules and with non-cooperative rules is denoted by
Y OPm (coop) and Y OPm (ncoo), respectively. It is well known that for any m ≥ 1,
Y REG = Y OPm (ncoo) ⊂ NOPm (coop) = Y RE, see [9].

The family of sets Y (Π), Y ∈ {N,Ps}, computed by (purely) catalytic
P systems with at most m membranes and at most k catalysts is denoted by
Y OPm (catk) (Y OPm (pcatk)); from [3] we know that, with the results being sent
to the environment in order to avoid the discussion how to count the catalysts in
the skin membrane, we have Y OP1 (cat2) = Y OP1 (pcat3) = Y RE.

If we allow catalysts to move from one membrane region to another one, then we
speak of P systems with mobile catalysts. The families of sets N (Π) and Ps (Π)
computed by P systems with at most m membranes and k mobile catalysts is
denoted by NOPm (mcatk) and PsOPm (mcatk), respectively.

For all the variants of P systems using rules of some type X as defined above,
we may consider systems containing only rules of the form u → v where u ∈ O
and v = (b1, tar) . . . (bk, tar) with bi ∈ O and tar ∈ {here, out, in} or tar ∈
{here, out} ∪ {inj | j ∈ H}, 1 ≤ i ≤ k, i.e., in each rule there is only one target
for all objects bi; if catalytic rules are considered, then we request the rules to be
of the form ca → c (b1, tar) . . . (bk, tar). P systems with target selection contain
only these forms of rules; moreover, in each computation step, for each membrane

86 R. Freund, Gh. Păun

region i we choose a maximal non-empty (if it exists) multiset of rules from Ri

having the same target indication tar (for different membranes these targets may
be different). The families of sets N (Π) and Ps (Π) computed by P systems with
target selection with at most m membranes and rules of type X are denoted by
NOPm (X, ts) and PsOPm (X, ts), respectively.

For all the variants of P systems of type X, we may consider to label all the
rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H and
to take a set W containing subsets of H. Then a P system with label selection is
a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H is
a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any transition
step in Π we first select a set of labels U ∈ W and then apply a non-empty
multiset R of rules such that all the labels of these rules in R are in U and the set
R cannot be extended by any further rule with a label from U so that the obtained
multiset of rules would still be applicable to the existing objects in the membrane
regions 1, . . . ,m. The family of sets N (Π) and Ps (Π) computed by P systems
with label selection with at most m membranes and rules of type X is denoted by
NOPm (X, ls) and PsOPm (X, ls), respectively.

Another method to control the application of the labeled rules is to use control
languages (see [6] and [1]). A controlled P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H
is a set of labels for the rules in the sets R1, . . . , Rm, and W is a string language
over 2H from a family FL. Every successful computation in Π has to follow a
control word U1 . . . Un ∈ W : in transition step i, only rules with labels in Ui are
allowed to be applied, and after the n-th transition, the computation halts; we may
relax this end condition, and then we speak of weakly controlled P systems. If W =
(U1 . . . Up)

∗
, Π is called a (weakly) time-varying P system: in the computation step

pn+ i, n ≥ 0, rules from the set Ui have to be applied; p is called the period. The
family of sets Y (Π), Y ∈ {N,Ps}, computed by (weakly) controlled P systems and
(weakly) time-varying P systems with period p, with at most m membranes and
rules of typeX as well as control languages in FL is denoted by Y OPm (X,C (FL))
(Y OPm (X,wC (FL))) and Y OPm (X,TVp) (Y OPm (X,wTVp)), respectively.

In the P systems with membrane creation considered in this paper, besides the
catalytic rules ca → c (u, tar) and the non-cooperative rules a → (u, tar) we also
use catalytic membrane creation rules of the form ca → c[u]

i
(in the context

of c, from the object a a new membrane with label i containing the multiset u
is generated) and membrane dissolution rules a → uδ (we assume that no ob-
jects can be sent into a membrane which is going to be dissolved; with dissolving
the membrane i by applying δ, all objects contained inside this membrane are
collected in the region surrounding the dissolved membrane); in all cases, c is a

Universal P Systems: One Catalyst Can Be Sufficient 87

catalyst, a is an object, u is a multiset, and tar is a target indication of the form
here, out, and inj . The family of sets Y (Π), Y ∈ {N,Ps}, computed by such
P systems with membrane creation and using at most k catalysts, with m initial
membranes and having at most h membranes during its computations is denoted
by Y Pm,h (catk,mcre).

3 Computational Completeness of P Systems with Label
Selection

Theorem 1. Y OP1 (cat1, ls) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1 (cat1, ls). Let us consider
a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . We construct the
following P system:

Π = (O, {c} , []
1
, cdl0, R1, H,W, 0),

O = A ∪B ∪ {c, d,#} ,
H = {l, l′ | l ∈ B} ∪ {lx | x ∈ {1, 2, d,#}} ,

and the sets of labels in W and the rules for R1 are defined as follows:

A. Let li : (ADD (r) , lj , lk) be an ADD instruction in I. If r > 2, then the
(labeled) rules

li : li → lj (ar, out) , l′i : li → lk (ar, out) ,

are introduced, and for r ∈ {1, 2}, we introduce the rules

li : li → ljar, l′i : li → lkar.

In both cases, we define {li, l′i} to be the corresponding set of labels in W . The
contents of each register r, r ∈ {1, 2}, is represented by the number of objects ar
present in the skin membrane; any object ar wit r > 2 is immediately sent out
into the environment.

B. The simulation of a SUB instruction li : (SUB (r) , lj , lk), for r ∈ {1, 2}, is
carried out by the following rules and the corresponding sets of labels in W : For
the case that the register r, r ∈ {1, 2}, is empty we take the (labeled) rules

li : li → lk, lr : car → c, ld : cd→ c#,

(if no symbol ar is present, i.e., if the register r is empty, then the trap symbol #
is introduced) and for the case that the register r is not empty, we introduce the
rules

l′i : li → lj , l′r : car → c#

88 R. Freund, Gh. Păun

(if at least one symbol ar is present, i.e., if the register r is not empty, then the
trap symbol # is introduced); the corresponding sets of labels to be taken into W
are {li, lr, ld} and {l′i, l′r}, respectively. In both cases, the simulation of the SUB
instruction works correctly, if we have made the right choice.

C. We also add the labeled rule l# : #→ # to R1 and {#} to W , hence, the
computation cannot halt once the trap symbol # has been generated.

In sum, we have the equality Ps (M) = Ps (Π), which completes the proof.

4 Computational Completeness of P Systems with Target
Selection

Theorem 2. Y OP7 (cat1, ts) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP7 (cat1, ts). Let us consider
a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . The set of labels
B \ {lh} is divided into three disjoint subsets:

B+ = {l | li : (ADD (r) , lj , lk) ∈ I} ,
B−r = {l | li : (SUB (r) , lj , lk) ∈ I} , r ∈ {1, 2} ;

moreover, we define B− = B−1 ∪ B−2, B′− = {l′ | l ∈ B−}, B′′− = {l′′ | l ∈ B−},
and B′ = B+ ∪ B− ∪ B′− ∪ B′′− as well as A = {a1, . . . , an+2}. We construct the
following P system:

Π = (O, {c} , [[]
2
. . . []

7
]
1
, w1, . . . , w7, R1, . . . , R7, 0),

O = A ∪ {a′1, a′2} ∪B′ ∪ {c, d,#} ,

with w1 = l0, w2 = c, and wi = λ for 3 ≤ i ≤ 7. In order to make argumentation
easier, in the following we refer to the membrane labels 1 to 7 according to the
following table:

1 2 3 4 5 6 7
skin − 01 02 −1 −2 +

The sets of rules now are constructed as follows:

A. The simulation of any instruction from I starts in the skin membrane with
moving all objects except the output symbols ar for r > 2 into an inner mem-
brane; according to the definition, taking the target in means non-deterministically
choosing one of the inner membranes, but the same membrane for all objects to
be moved in. The output symbols ar for r > 2 are sent out into the environment
by ar → (ar, out), thus yielding the result of a halting computation as the number
of symbols ar sent out into the environment during this computation. Hence, in
sum we get

Universal P Systems: One Catalyst Can Be Sufficient 89

R1 = {x→ (x, in) | x ∈ B+ ∪B− ∪ {a1, a2, a′1, a′2,#}} ∪
{
x→ (xd, in) | x ∈ B′−

}
∪ {ar → (ar, out) | 3 ≤ r ≤ n+ 2} .

B. For the simulation of an ADD instruction li : (ADD (r) , lj , lk) ∈ I all non-
terminal symbols (all symbols except ar for r > 2) are expected to have been sent
to membrane +:

R+ = {li → (ljar, out) , li → (lkar, out) | li : (ADD (r) , lj , lk) ∈ I}
∪ {l→ (#, out) | l ∈ B′ \B+}
∪ {x→ (x, out) | x ∈ {a1, a2,#}} .

If the symbols arrive in membrane + with a label l ∈ B′\B+, then the trap symbol
is generated and the computation will never halt. Sending out all terminal
symbols ar for r > 2 from the skin membrane can be done as a last step of
a successful computation, but we may also choose to send out all those present
there at a specific moment instead of immediately continuing the simulation of an
instruction of the register machine. Hence, the simulation of an ADD instruction
by Π takes at most three steps.

C. The simulation of a SUB instruction li : (SUB (r) , lj , lk) is carried out in
two steps for the zero test, i.e., when the register r is empty, using (the rules in)
membrane 0r, and in five steps for decrementing the number of symbols ar, first
using membrane −r to mark the corresponding symbols ar into a′r and then using
the catalyst c in membrane − to erase one of these primed objects; the marking
procedure is necessary to guarantee that the catalyst erases the correct object. For
r ∈ {1, 2}, we define the following sets of rules:

R0r = {li → (lk, out) , ar → (#, out) | li : (SUB (r) , lj , lk) ∈ I}
∪ {l→ (#, out) | l ∈ B′ \B−r}
∪ {x→ (x, out) | x ∈ {a3−r,#}} .

If the number of objects ar is not zero, i.e., if the register r is not empty, the
introduction of the trap symbol # causes the computation to never halt. On the
other hand, if we want to decrement the register, we have to guarantee that exactly
one symbol ar is erased:

R−r
= {li → (l′i, out) | li ∈ B−r} ∪ {ar → (a′r, out)}
∪ {l→ (#, out) | l ∈ B′ \B−r}
∪ {x→ (x, out) | x ∈ {a3−r,#}} .

The whole multiset of objects, with the primed versions of li and the ar, via the skin
membrane now has to enter membrane −; here the dummy symbol d guarantees
that the catalyst cannot do nothing if no primed symbol a′r has arrived; again the
generation of # causes the computation to not halt anymore:

R− =
{
l′i → l′′j , ca

′
r → c, l′′i → #, l′′i → (lj , out) | li : (SUB (r) , lj , lk) ∈ I

}
∪ {cd→ c#, d→ (λ, out)} ∪ {a′r → (ar, out) | r ∈ {1, 2}} ,
∪
{
l→ (#, out) | l ∈ B′ \B′′−

}
∪ {x→ (x, out) | x ∈ {a3−r,#}} .

90 R. Freund, Gh. Păun

In R−, for correctly continuing the simulation of a SUB instruction, exactly two
steps have to be carried out:

In the first step, the target indication here has to be used with applying the two
rules l′i → l′′j and ca′r → c (eliminating exactly one copy of a′r, i.e., decrementing
register r) and leaving all other objects unchanged; if instead the target indication
out were chosen, the forced application of the rule l′i → (#, out) would yield the
trap symbol #. In the second step, the target indication out has to be chosen and
the rules l′′i → (lj , out), d → (λ, out), and a′r → (ar, out) are to be applied; if
instead the target indication here were chosen again, the forced application of the
rule l′′i → # would yield the trap symbol #.

Whenever a trap symbol is generated in one of the inner membranes, we get
an infinite computation, as in R1 we have the rule #→ (#, in) and in every inner
membrane we have the rule #→ (#, out).

We finally observe that a computation in Π halts if and only if the final label lh
appears (and then stays in the skin membrane) and no trap symbol # is present,
hence, we conclude Ps (M) = Ps (Π).

To eventually reduce the number of inner membranes remains as a challenging
task for future research.

5 Computational Completeness of Time-Varying P Systems

Theorem 3. NOP1 (cat1, αTV6) = NRE, Y ∈ {N,Ps}, α ∈ {λ,w}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1 (cat1, TV6). Let us consider a
register machine M = (n+ 2, B, l0, lh, I) with only the first and the second register
ever being decremented. Again, we define A = {a1, . . . , an+2} and divide the set
of labels B \ {lh} into three disjoint subsets:

B+ = {l | li : (ADD (r) , lj , lk) ∈ I} ,
B−r = {l | li : (SUB (r) , lj , lk) ∈ I} , r ∈ {1, 2} ;

moreover, we define B− = B−1 ∪B−2 as well as

B′ =
{
l, l̃, l̂ | l ∈ B \ {lh}

}
∪
{
l−, l0, l̄−, l̄0, | l ∈ B−

}
.

The main challenge in the construction for the time-varying P system Π is that
the catalyst has to fulfill its task to erase an object ar, r ∈ {1, 2}, for both objects
in the same membrane where all other computations are carried out, too; hence,
at a specific moment in the cycle of period six, parts of simulations of different
instructions have to be coordinated in parallel. The basic components of the time-
varying P system Π are defined as follows (we here do not distinguish between a
rule and its label):

Universal P Systems: One Catalyst Can Be Sufficient 91

Π = (O, {c} , []
1
, l0, R1 ∪ · · · ∪R6, R1 ∪ · · · ∪R6, (R1 . . . R6)

∗
, 0),

O = A ∪ {a′1, a′2} ∪B′ ∪ {c, h,#} .

We now list the rules in the sets of rules Ri to be applied in computation steps
6n+ i, n ≥ 0, 1 ≤ i ≤ 6:

R1: in this step, the ADD instructions are simulated, i.e., for each li :
(ADD (r) , lj , lk) ∈ I we take

cli → car l̃j , cli → car l̃k (only in the sixth step of the cycle, from l̃j and l̃k the
corresponding unmarked labels lj and lk will be generated); in order to obtain the
output in the environment, for r ≥ 3, ar has to be replaced by (ar, out);

cl → cl−, cl → cl0 initiate the simulation of a SUB instruction for register 1
labeled by l ∈ B−1;

cl → cl̂ marks a label l ∈ B−2 (the simulation of such a SUB instruction for
register 2 will start in step 4 of the cycle);

→ # keeps the trap symbol # alive guaranteeing an infinite loop once
has been generated;

h→ λ eliminates the auxiliary object h needed for simulating SUB instructions
and eventually generated two steps before.

R2: in the second and the third step, the SUB instructions on register 1 are
simulated, i.e., for all l ∈ B−1 we start with

ca1 → ca′1 (if present, exactly one copy of a1 can be primed) and
l− → l̄−h, l− → l̄0h for all l ∈ B−1;
#→ #;
cl̃→ cl̃, l̃→ # for all l ∈ B+,
cl̂→ cl̂, l̂→ # for all l ∈ B−2.

R3: for all li : (SUB (1) , lj , lk) ∈ I we take

cl̄0i → cl̃k, a′1 → #, l̄0i → # (zero test; if a primed copy of a1 is present, then
the trap symbol # is generated);

l̄−i → l̃j , ca
′
1 → c, ch → c# (decrement; the auxiliary symbol h is needed to

keep the catalyst c busy with generating the trap symbol # if we have taken the
wrong guess when assuming the register 1 to be non-empty);

#→ #;
cl̃→ cl̃, l̃→ # for all l ∈ B+;
cl̂→ cl̂, l̂→ # for all l ∈ B−2.

R4: in the fourth step, the simulation of SUB instructions on register 2 is
initiated, i.e., we take

cl̂→ cl−, cl̂→ cl0 for all l ∈ B−2;
cl̃→ cl̃, l̃→ # for all l ∈ B+ ∪B−1;
#→ #,
h→ λ.

R5: in the fifth and the sixth step, the SUB instructions on register 2 are
simulated, i.e., for all l ∈ B−2 we start with

92 R. Freund, Gh. Păun

ca2 → ca′2 (if present, exactly one copy of a2 can be primed) and
l− → l̄−h, l− → l̄0h for all l ∈ B−2;
cl̃→ cl̃, l̃→ # for all l ∈ B+ ∪B−1;
#→ #.

R6: the simulation of SUB instructions li : (SUB (2) , lj , lk) ∈ I on register 2 is
finished by

cl̄0i → clk, a′2 → #, l̄0i → # (zero test; if a primed copy of a2 is present, then
the trap symbol # is generated);

l̄−i → lj , ca
′
2 → c, ch → c# (decrement; the auxiliary symbol h is needed to

keep the catalyst c busy with generating the trap symbol # if we have taken the
wrong guess when assuming the register 2 to be non-empty);

cl̃→ cl, l̃→ # for all l ∈ B+ ∪B−1.

Without loss of generality, we may assume that the final label lh in M is only
reached by using a zero test on register 2; then, at the beginning of a new cycle,
after a correct simulation of a computation from M in the time-varying P system
Π no rule will be applicable in R1 (another possibilty would be to take cl̄0i → c
instead of cl̄0i → clh in R6).

At the end of the cycle, in case all guesses have been correct, the requested
instruction of M has been simulated and the label of the next instruction to be
simulated is present in the skin membrane. Only in the case that M has reached
the final label lh, the computation in Π halts, too, but only if during the simulation
of the computation of M in Π no trap symbol # has been generated; hence, we
conclude Ps (M) = Ps (Π).

6 Computational Completeness of P Systems with
Membrane Creation

Theorem 4. Y OP1,2 (cat1,mcre) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1,2 (cat1,mcre). Let us consider
a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2}. We construct the
following P system:

Π =
(
O, {c} , []

1
, cdl0, R1, R2, R3, 0

)
,

O = A ∪ {l, l′, l′′ | l ∈ B} ∪ {c, d, d′, d′′,#} ,

and the sets of rules are constructed as follows.

A. For each ADD instruction li : (ADD (r) , lj , lk) in I, the rules

step 1: li → l′i, d→ d′,

step 2: l′i → arlj , l
′
i → arlk, d

′ → d.

Universal P Systems: One Catalyst Can Be Sufficient 93

are introduced in R1 and obviously simulate an ADD instruction in two steps.

B. For each SUB instruction li : (SUB (r) , lj , lk) in I, the following rules are
introduced in R1 and Rr+1, r ∈ {1, 2}:

Step R1 Rr+1

1 cli → c[li]
r+1

, d→ d′ –

2 car → c (ar, inr+1) , d′ → (d′, inr+1) li → l′i
3 – ar → λδ, l′i → l′′i , d

′ → d′′

4 cl′′i → clj , d
′′ → d l′′i → lk, d

′′ → dδ

A SUB instruction li : (SUB (r) , lj , lk) (with r ∈ {1, 2}) is simulated according to
the four steps suggested in the table given above:

In the first step, we create a membrane with the label r+ 1, where li is sent to,
and simultaneously d becomes d′. In the next step, if any ar exists, i.e., if register
r is not empty, then one copy of ar should enter the membrane r + 1 just having
been created in the preceding step. Note that the selection of the membrane (the
use of inr+1 instead of in) is important: ar has to go to the membrane created in
the previous step, when r+ 1 has been specified by the label li. At the same time,
d′ enters the membrane r + 1, and li becomes l′i in this membrane. If the register
r is empty, then the catalyst is doing nothing in this second step.

In the third step, in membrane r + 1, l′i becomes l′′i and d′ becomes d′′. If ar
is not present in membrane r + 1, nothing else happens there in this step; if ar
is present, it dissolves the membrane and disappears. Observe that in both cases
car → c (ar, inr+1) will not be applicable (anymore) in R1. Thus, we either have
cl′′i d

′′ in the skin membrane (when the register has been non-empty), or we have
only c in the skin membrane and l′′i d

′′ in the inner membrane r + 1. In the first
case, in the fourth step we use the rules cl′′i → clj and d′′ → d from R1, which
is the correct continuation of the simulation of the SUB instruction; in the latter
case, we use l′′i → lk and d′′ → dδ in Rr+1. The inner membrane is dissolved, and
in the skin membrane we get the objects clkd. In both cases, the simulation of
the SUB instruction is correct and we return to a configuration as that we started
with, hence the simulation of another instruction can start.

C. We also add the rules ar → (ar, out) for 3 ≤ r ≤ n+ 2 and #→ # to R1.
In any moment, any copy of a terminal symbol ar in the skin membrane is

sent out to the environment. Once the trap symbol # has been introduced, the
computation continues forever.

There is one interference between the rules of Π simulating the ADD and the
SUB instructions of M . If in the second step of simulating a SUB instruction,
instead of d′ → (d′, inr+1) we use d′ → d, then the case when register r is non-
empty continues correctly, as the simulation lasts four steps, and in the end d is
present in the skin membrane (the dissolution of membrane r is done by ar). If
the register r has been empty, l′′i will become lk in membrane r + 1 and it will
remain there until d′ enters the membrane, changes to d′′, and then dissolves it (as
long as d, d′ switch to each other in the skin membrane, the computation cannot

94 R. Freund, Gh. Păun

halt). Thus, also in this case we return to the correct submultiset clkd in the skin
membrane.

Consequently, exactly the halting computations of M are simulated by the
halting computations in Π; hence, Ps (M) = Ps (Π). The observation that the
maximal number of membranes in any computation of Π is two completes the
proof.

It remains as an open problem whether it is possible to use the target indication
in only instead of the inj .

7 Computational Completeness of P Systems with Mobile
Catalysts

If the membrane creation rules are of the form ca → [cb]
i
, then this implic-

itly means that the catalyst is moving from one region to another one. However,
for mobile catalysts, the universality of such systems with only one catalyst has
already been proved in [5], using three membranes and target indications of the
forms here, out, and inj . In this paper, we improve this result from the last point
of view, making only use of the target indications here, out, and in. In fact, if
in the proof of Theorem 2 we let the catalyst c move with all the other objects,
then we immediately obtain a proof for NOP7 (mcat1) = NRE where even only
the target indications out and in are used (but instead of three we need seven
membranes).

Theorem 5. Y OP3 (mcat1) = Y RE, Y ∈ {N,Ps}.

Proof. We only prove the inclusion PsRE ⊆ PsOP1 (cat1, ls). Let us consider
a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . We construct the
following P system:

Π = (O, {c} , [[]
2
[]

3
]
1
, cl0, R1, R2, R3, 0),

O = A ∪ {l, l′, l′′, l′′′ | l ∈ B} ∪ {c,#} ,

and the sets of rules are constructed as follows:

A. Let li : (ADD (r) , lj , lk) be an ADD instruction in I. If r = 3, then the
rules li → lj (a3, out) , li → lk (a3, out) are introduced in R1; if r ∈ {1, 2}, in
R1 we introduce the rules li → lj (ar, in) , li → lk (ar, in) , as well as the rules
a4−j → # and # → # in Rj+1, j ∈ {1, 2}. The contents of each register r,
r ∈ {1, 2}, is represented by the number of objects ar present in membrane r + 1;
any object ar, 3 ≤ r ≤ n+2, is immediately sent out into the environment. If a4−j
is introduced in membrane j, j ∈ {1, 2}, then the trap object # is produced and
the computation never halts.

Universal P Systems: One Catalyst Can Be Sufficient 95

B. The simulation of a SUB instruction li : (SUB (r) , lj , lk) is carried out by the
following rules (the simulation again has four steps, as in the proof of Theorem 4):

For the first step, we introduce the rule cli → (c, in) (li, in) in R1 and the
rule li → # in both R2 and R3 (if c and li are not moved together into an inner
membrane, then the trap object # is produced and the computation never halts).

In the second step, Rr+1 has to use the rule cli → cl′i. This checks whether c
and li have been moved together into the right membrane r + 1; if this is not the
case, then the rule cli → cl′i is not available and the rule li → # must be used,
which causes the computation to never halt.

Thus, after the second step, we know whether both c and li (l′i) are in the
correct membrane r + 1. The rules car → (c, out) and l′i → l′′i are introduced in
Rr+1 in order to perform the third step of the simulation. If there is any copy of
ar in membrane r+1 (i.e., if register r is not empty), then the catalyst exits, while
also removing a copy of ar. Simultaneously, l′i becomes l′′i . Hence, if the register
r has been non-empty, we now have c in the skin membrane and l′′i in membrane
r + 1; if register r has been empty, we have both c and l′′i in membrane r + 1. We
introduce the rules cl′′i → (c, out) (lk, out) , l′′i → (l′′′i , out) , in Rr+1 and the rules
cl′′′i → clj , l′′′i → #, #→ # in R1. If c is inside membrane r+1, we get clk in the
skin membrane, which is the correct continuation for the case when the register
is empty. If c is not in membrane r + 1, then l′′i exits alone thereby becoming l′′′i ,
and, together with c, which waits in the skin membrane, introduces lj , which is
a correct continuation, too. If the rule l′′i → (l′′′i , out) is used although c is inside
membrane r + 1, then in the skin membrane we have to use the rule l′′′i → # and
the computation never halts.

In all cases, the simulation of the SUB instruction works correctly, and we
return to a configuration with the catalyst and a label from H in the skin region.

In sum, we have the equality Ps (M) = Ps (Π), which completes the proof.

8 Final Remarks

Although we have exhibited several new universality results for P systems using
only one catalyst together with some additional control mechanism, the orignal
problem of characterizing the sets of non-negative integers generated by P systems
with only one catalyst still remains open. A similar challenging problem is to con-
sider purely catalytic P systems with only two catalysts: with only one catalyst,
we obtain the regular sets; as shown in [3], three catalysts are enough to obtain
universality. With two catalysts and some additional control mechanism, univer-
sality can be obtained, too; for example, the proof of Theorem 1 for P systems
with label selection for the rules can easily be adapted for purely catalytic P sys-
tems, i.e., NOP1 (pcat2, ls) = NRE. For the other variants of additional control
mechanisms, the case of purely catalytic P systems with two catalysts remains for
future research.

96 R. Freund, Gh. Păun

Acknowledgements. The work of Gheorghe Păun has been supported by
Proyecto de Excelencia con Investigador de Reconocida Vaĺıa, de la Junta de An-
dalućıa, grant P08 – TIC 04200, co-financed by FEDER funds.

References

1. A. Alhazov, R. Freund, H. Heikenwälder, M. Oswald, Yu. Rogozhin, S. Verlan,
Sequential P systems with regular control. In: E. Csuhaj-Varjú, M. Gheorghe, G.
Rozenberg, A. Salomaa, G. Vaszil (Eds.): Membrane Computing - 13th International
Conference, CMC 2012, Budapest, Hungary, August 28-31, 2012, Revised Selected
Papers, LNCS 7762, Springer, 2013, 112–127.

2. Jürgen Dassow, Gheorghe Păun: Regulated Rewriting in Formal Language Theory.
Springer, 1989.

3. Rudolf Freund, Lila Kari, Marion Oswald, Petr Sośık: Computationally universal P
systems without priorities: two catalysts are sufficient. Theoretical Computer Sci-
ence 330, 2005, 251–266.

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez: P systems with membrane creation
and rule input, to appear.

5. S.N. Krishna, A. Păun: Results on catalytic and ecolution-communication P systems.
New Generation Computing, 22 (2004), 377–394.

6. K. Krithivasan, Gh. Păun, A. Ramanujan: On controlled P systems. Fundamenta
Informaticae, to appear.

7. Marvin L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, En-
glewood Cliffs, New Jersey, USA, 1967.

8. M. Mutyam, K. Krithivasan: P systems with membrane creation: universality and
efficiency. In: M. Margenstern, Y. Rogozhin (Eds.): Proc. MCU 2001, LNCS 2055,
Springer, 2001, 276–287.

9. Gh. Păun: Computing with membranes. J. Comput. Syst. Sci., 61 (2000), 108–143
(see also TUCS Report 208, November 1998, www.tucs.fi).

10. Gh. Păun: Computing with membranes - a variant. Intern. J. Found. Computer Sci.,
11, 1 (2000), 167–182.

11. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

12. Grzegorz Rozenberg, Arto Salomaa (Eds.): Handbook of Formal Languages, 3 vol-
umes. Springer, 1997.

13. The P Systems Website: http://ppage.psystems.eu.

