
Scenario Based P Systems

Gabriel Ciobanu1 and Dragoş Sburlan2

1 Romanian Academy, Institute of Computer Science
Blvd. Carol I no. 8, 700505 Iasi, Romania
E-mail: gabriel@info.uaic.ro

2 Faculty of Mathematics and Informatics
Ovidius University of Constanta, Romania
E-mail: dsburlan@univ-ovidius.ro

Summary. In this paper we define and study Scenario Based P Systems, a model of
computation inspired by the metabolic pathways and networks. Starting from the classical
definition of P systems with symbol objects and multiset rewriting rules, we define regular
expressions able to capture the causal dependencies among different executions of the
rules. The results show the computational power of this model.

1 Motivation

Metabolic pathways are sequences of biochemical reactions occurring inside the
living cell which are involved in cell’s energy management and in the synthesis of
structural components. Because in such sequences participate many biochemicals
(the metabolites), metabolic pathways are usually very complex. Moreover, many
distinct pathways co-exist inside the cell and they form what is called the metabolic
network. A metabolic pathway illustrate all the changes in time by which an ini-
tial molecule is transformed into another product. Usually, the products of one
biochemical reaction constitute the substrate for the next biochemical reaction.
The resulting product can be used by the cell to start another metabolic pathway,
or it can be stored for a later use. Depending on the needs of the cell and on the
availability of the substrate, these metabolic pathways are started.

In a broader perspective, the principle of causality plays the main role in find-
ing/expressing metabolic pathways which connect parts of a metabolic network
(our understanding of phenomena happening inside the cells is based on the causal
relations existing among cell’s ”observable” events). In this context, one can con-
sider the biochemical reactions as causal consequences where the input metabolites
can cause the output metabolites. Moreover, there might be a certain temporal
order by which any later event is determined by the earlier one, and which is not
necessarily related with the involved metabolites.

This paper explores the concept of causality in the P system framework having
as inspiration the biochemical dynamics expressed by the metabolic pathways. Its

68 G. Ciobanu, D. Sburlan

goal is to capture the causal dependencies existing among the executions of rules,
while abstracting away other aspects. In the membrane computing literature there
were several attempts to formalize causal semantics [3], [4], [2], and [8], most of
them proposing a notion of causality based on the temporal order of single rule
application. Our new approach introduces regular expressions to define the causal
relation between the executions of rules; the time between the moments when
these rules compete for objects can be also specified in the definition of regular
expressions. Therefore, we define scenarios as a method to model different possible
evolutions in the metabolic networks, and their causal relationships.

2 Preliminaries

We recall some notions and results from the classical theory of formal languages
[5].

An ET0L system is a construct H = (V, T, ω,∆), where V is an alphabet,
T = {T1, . . . Tm}, m ≥ 1, such that Ti, 1 ≤ i ≤ m, are finite complete sets of
rules (tables) of non-cooperative rules over V , ω ∈ V ∗ is the axiom, and ∆ is
the terminal alphabet. In a derivation step, all the symbols present in the current
sentential form are rewritten using one (nondeterministically chosen) table. The
language generated by H consists of all the strings over ∆ which can be generated
in this way by starting from ω.

Lemma 1. For each L ∈ ET0L there is an extended tabled Lindemayer system
H = (V, T, ω,∆) with two tables (T = {T1, T2}) generating L, such that for each
a ∈ ∆ if a→ α ∈ T1 ∪ T2 then α = a.

A register machine is a formal construct M = (n,P, l0, lh) where n ≥ 1 is
the number of registers, P is a finite set (card(P = k) of instructions bijectively
labeled by elements from the set B = {l0, . . . , lk−1}, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M are of the following types:

• l1 : (add(r), l2, l3 where l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ r ≤ n, increments the value
stored by the register r and non-deterministically proceeds to the instruction
labeled by l2 or l3;

• l1 : (sub(r), l2, l3) where l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ n, if the value
stored by register r is 0 then proceeds to the instruction labeled by l3, other-
wise decrements the value stored by register r and proceeds to the instruction
labeled by l2;

• lh : halt stops the machine.

A register machine is deterministic if l2 = l3 in all its add instructions.
A non-deterministic register machine M starts with all registers being empty

and runs the program P, starting from the instruction with the label l0. Consid-
ering the content of register 1 for all possible computations of M which are ended

Scenario Based P Systems 69

by the execution of the instruction labeled lh, one gets the set N(M) ⊆ IN – the
set generated by M .

A deterministic register machine M accepts a natural number by starting with
the number as input in register 1, with all other registers being empty. M runs
the program P, starting from the instruction with the label l0, and if it reaches
the instruction lh then it halts, accepting the number.

It is known the following result ([6]).

Theorem 1. For any recursively enumerable set Q ⊆ IN there exists a non-
deterministic register machine with 3-registers generating Q such that when start-
ing with all registers being empty, M non-deterministically computes and halts
with n in register 1, and registers 2 and 3 being empty iff n ∈ Q.

If FL is a family of languages, then by NFL we denote the family of length
sets of languages in FL. We denote by REG, CF , ET0L, and RE the family of
regular, context-free, extended tabled interactionless Lindemayer, and recursive
enumerable languages, respectively. It is know that

NREG = NCF ⊂ NET0L ⊂ NRE.
The non-semilinear set {2n | n ≥ 0} ∈ NETOL \NCF .

3 Scenario Based P Systems

The principle of causality implies a certain temporal order between some events
and by which any later event is determined by the earlier one. However, the actual
time elapsed between the occurrence of consecutive events that are in a given
causality relation is not important. Based on these considerations we introduce a
new model of P systems that use regular expressions to express a certain causal
dependence relation between the execution of the rules.

The reader is assumed to be familiar with the basic notions, notations, and
functioning of P Systems.

A Scenario Based P System (a SBP system, for short) of degree m ≥ 1 is a
construct Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, E1, . . . Em, i0), where
• O is an alphabet of objects;
• C ⊆ O is the set of catalysts;
• µ is a tree structure of m ≥ 1 uniquely labelled membranes (which delimit

the regions of Π); usually, the set of labels is {1, . . . ,m};
• wi ∈ O∗, for 1 ≤ i ≤ m, are multisets of objects which are initially present

in the regions of µ (as indicated by the index);
• Ri, 1 ≤ i ≤ m, is a finite set of labelled multiset rewriting rules. The set

of labels is denoted by Li and each label in Li uniquely identifies a rule from
Ri; in addition, Li ∩ Lj = ∅ for all i 6= j, 1 ≤ i, j ≤ m. A rule from Ri is
written as l : α → β where l ∈ Li and α, β ∈ O∗. In particular, a rule can be
non-cooperative l : a → v or catalytic l : ca → cv, where l ∈ Li, a ∈ O \ C,
v ∈ ((O \ C)× {here, out, in})∗, and c ∈ C;

70 G. Ciobanu, D. Sburlan

• Ei, 1 ≤ i ≤ m, is a finite set of regular expressions over Li ∪ {d}, where

d is a special symbol (the “delay” symbol), d 6∈
m⋃

i=0

Li; moreover, if e ∈ Ei then

L(e) ⊆ (Li ∪ {d})∗Li(Li ∪ {d})∗ (that is, any word in L(e) contains at least one
symbol from Li);
• i0 ∈ {1, . . . ,m} is the label of the output region of Π.

A configuration of Π is a vector (α1, . . . , αm), where αi ∈ O∗, 1 ≤ i ≤ m, is
the multiset of objects present in the region i of Π. The initial configuration of Π
is the vector C0 = (w1, . . . , wm).

Let Ei = {e(i,1), . . . , e(i,si)}, where 1 ≤ i ≤ m and such that si ≥ 1; in addition,
let L(i,1), . . . , L(i,si) be the corresponding regular languages. A word l0 . . . lt ∈
L(i,j), 1 ≤ i ≤ m, 1 ≤ j ≤ si (a finite sequence of symbols from Li ∪ {d}) is called
a scenario and illustrates the fact that the corresponding rules (if there exists such
corresponding rules; recall that d is not associated with any rule) will be applied
(if possible) in the implicit order of symbols. Given a multiset of objects w, a
scenario l0 . . . lt is applicable to w if the rule having the label l0 is applicable to w
or l0 = d; similarly, a scenario is started if the rule labeled with l0 is applied to w
or l0 = d.

As usually in the P system framework, a computation of Π is a sequence
of configurations (possibly infinite) C0, C1, . . . , Ck, Ck+1, Given a configura-
tion Ck = (w(k,1), . . . , w(k,m)), then one gets the next configuration Ck+1 =
(w(k+1,1), . . . , w(k+1,m)) by applying on each multiset w(k,i), 1 ≤ i ≤ m, some
rules from Ri in a nondeterministic, maximal parallel manner and with competi-
tion on objects; these rules are selected according with the conditions described
below.

For a scenario l0 . . . lt that is started in configuration Ck, the rule labeled li,
1 ≤ i ≤ t, li 6= d, compete for objects in configuration Ck+i iff the rules labeled
li−j , 1 ≤ j ≤ i, li−j 6= d were applied (won the competitions) in the correspond-
ing configurations Ck+i−j . A started scenario is said to be entirely applied if the
rules corresponding to all labels were applied in the given order, in consecutive
configurations; in case there exists a rule labeled li, 1 ≤ i ≤ t, li 6= d, that lost the
competition on objects or if the rule cannot be applied then the started scenario
is said to be interrupted ; the executions of the remaining rules (in case they exist,
that is, not all the remaining symbols in the scenario are d) in the subsequent
configurations are dropped.

In any configuration, new scenarios from each L(i,j), 1 ≤ i ≤ m, 1 ≤ j ≤
si, are nondeterministically selected for applications.Given such a scenario and a
configuration Ck, if the first label of rule appears in the scenario on position l ≥ 0
(the first symbols being all d) then the corresponding rule will compete for objects
with other rules (from the scenarios in progress) after l computational steps. For
each multiset w(k,i) from Ck, 1 ≤ i ≤ m, there might exist new scenarios, scenarios
in progress, and interrupted scenarios, which determine the rules to be applied in
order to obtain the next configuration Ck+1.

Scenario Based P Systems 71

A computation of Π is a halting one if no rule can be applied (all the started
scenarios are interrupted and no matter how a new scenario is selected for appli-
cation it becomes interrupted at the first symbol corresponding to a rule) in the
last configuration (the halting configuration). The result of a halting computation
is the number of objects from O contained in the output region i0, in the halting
configuration. A non-halting computation yields no result. By collecting the re-
sults of all possible halting computations of a given P system Π, one gets N(Π)
– the set of all natural numbers generated by Π.

The family of all sets of numbers computed by SBP systems with at most m
membranes and with a list of features f is denoted by NOSBPm(f). The features
considered in this paper are ncoo (P systems using only non-cooperative rules)
and catk (P systems using non-cooperative rules and catalytic rules with at most
k catalysts).

The above definition can be relaxed such that in a halting configuration one
counts only the symbols from a given alphabet Σ ⊆ O.

Given a scenario based P system Π with m > 1 membranes and using the
features f , it is easy to construct an equivalent scenario based P system with
the same features but having only one region. This can be accomplished by a
simple encoding of the region labels into the objects and expressing the rules
accordingly [1].

Theorem 2. NOSBPm(cat1) = NRE, k ≥ 1.

Proof. The inclusion NOSBPm(cat) ⊆ NRE is supposed to be true by invoking
the Church-Turing thesis. The opposite inclusion can be shown to be true by
simulating the computation of an arbitrary register machine M = (n,P, l0, lh)
with a scenario based P system Π = (O,C, µ,w1, R1, E1) where

O = {ai | 1 ≤ i ≤ n}
∪ {l1, l2 | l1 : (add(r), l2) ∈ P}

∪ {l1, l2, l3, l1, l2, S, S, S,X | l1 : (sub(r), l2, l3)}
C = {c}, µ = []1, w1 = l0.

The set of rules R1 and the set of regular expressions E1 are defined as follows:

• for each register machine instruction l1 : (add(r), l2), the rule rl1 : l1 → arl2 is
added to R1 and the regular expression rl1 is added to E1.

• for each register machine instruction l1 : (sub(r), l2, l3), the next rules are added
to R1:

r(l1,1) : l1 → l1S , r(l1,2) : car → cX

r(l1,3) : X → λ , r(l1,4) : l1 → l2

r(l1,5) : S → S , r(l1,6) : S → S

r(l1,7) : S → λ , r(l1,8) : l1 → l3

r(l1,9) : l2 → l2 .

72 G. Ciobanu, D. Sburlan

The regular expressions r(l1,1)r(l1,2), r(l1,3)r(l1,4), r(l1,5)r(l1,6),
r(l1,7)r(l1,8), r(l1,9) are added to E1.

• for the register machine instruction l1 : halt, the rule rl1 : l1 → λ is added to
R1 and the regular expression rl1 is added to E1.

The simulation of the register machine M by the scenario based P system Π
proceeds as follows. At a certain moment during the computation of M the values
stored by the registers are t1, . . . , tr, . . . tn, and the label of the instruction that has
to be executed is l1. Correspondingly, the multiset contained in the region of Π is
at1
1 . . . atr

r . . . atn
n l1c (that is, the value tr stored by the register r of M is modeled

in this simulation as the multiplicity of the object ar in a configuration of Π).
If l1 is the label of an addition instruction l1 : (add(r), l2), then Π is executing

the scenario described by rl1 , that is the rule l1 → arl2 is applied. As a consequence
the next configuration of Π will be at1

1 . . . atr+1
r . . . atn

n l2c (which indicates that the
addition instruction was simulated correctly).

If l1 is the label of a subtraction instruction l1 : (sub(r), l2, l3), then Π is
executing the scenario described by r(l1,1)r(l1,2). Consequently, because in this
scenario the rule r(l1,1) : l1 → l1S is executed firstly, the next configuration of Π is
described by the multiset at1

1 . . . atr
r . . . atn

n l1Sc. Because the object S appeared in
the multiset, then the scenario r(l1,5)r(l1,6) will be started. Next, two cases might
happen:

• if tr > 0 then the rule r(l1,2) : car → cX is executed (the second rule
from the already started scenario r(l1,1)r(l1,2)) in the same moment with the
rule r(l1,5) : S → S (from scenario r(l1,5)r(l1,6)). The configuration of Π
becomes at1

1 . . . atr−1
r . . . atn

n l1XSc. Next, the scenario r(l1,3)r(l1,4) is started.

It follows that the rules r(l1,6) : S → S (from scenario r(l1,5)r(l1,6)) and
r(l1,3) : X → λ (from scenario r(l1,3)r(l1,4)) are simultaneously executed;

the configuration of Π becomes at1
1 . . . atr−1

r . . . atn
n l1 Sc. Finally, the scenario

r(l1,7)r(l1,8) is started. Accordingly, the rules r(l1,4) : l1 → l2 (from scenario

r(l1,3)r(l1,4)) and r(l1,7) : S → λ (from scenario r(l1,7)r(l1,8)) are executed in
the same time; the configuration of Π becomes at1

1 . . . atr−1
r . . . atn

n l2c. Next,
the scenario r(l1,7)r(l1,8) interrupts its execution (the object l1 is not anymore
present in the current configuration of Π, hence the rule r(l1,8) cannot be exe-
cuted); the scenario r(l1,9) starts its execution and this yields to the configura-
tion at1

1 . . . atr−1
r . . . atn

n l2c (which indicates a correct simulation of the register
machine subtraction instruction in the case when register r is not empty);

• if tr = 0 then the rule r(l1,2) : car → cX cannot be executed and consequently
the object X (which triggered the execution of the scenario r(l1,3)r(l1,4)) is not
produced anymore. However, in this case the scenario r(l1,5)r(l1,6) is started

and the rules r(l1,5) : S → S and r(l1,6) : S → S are executed in consecutive

configurations of Π. The resulting configuration becomes at1
1 . . . atr

r . . . atn
n l1 Sc.

Next, the scenario r(l1,7)r(l1,8) starts its execution and after two computational

Scenario Based P Systems 73

steps the resulting multiset becomes at1
1 . . . atr

r . . . atn
n l3c (which indicates a cor-

rect simulation of the register machine subtraction instruction in the case when
register r is empty).

In case the configuration of Π is at1
1 . . . atn

n l1c where the object l1 corresponds
to the label of the register machine halting instruction, then the scenario rl1 is
started (the rule rl1 : l1 → λ is executed). The next configuration of Π becomes
at1
1 . . . atn

n c and the computation stops.
Consequently, since the computation of M was correctly simulated by Π and

the register machines are computational universal, we have NOSBPm(cat) ⊇
NRE.

4 A More Realistic Scenario

A particular case, interesting from a biological point of view, is when all
possible scenarios used by a SBP system Π in any region i are of type
dl1w1d

l2w2d
l3 . . . dlkwkd

lk+1 , where wi ∈ L+
i , li ∈ IN , 1 ≤ i ≤ k + 1. We will

consider that the regular expressions from each Ei, 1 ≤ i ≤ m, are of type
d∗α1d

∗α2d
∗ . . . d∗αkd

∗ where each αj , 1 ≤ j ≤ k, are regular expressions over
Li which use only the grouping and the Boolean OR operations in their defini-
tions (consequently, each αi indicates a finite language). Such regular expressions
and their corresponding scenarios suggest that one knows the application order of
the rules but does not know when their executions will actually happen.

Let Ei = {e(i,1), . . . , e(i,si)}, where 1 ≤ i ≤ m, si ≥ 1, and consider the
corresponding regular languages L(i,j), 1 ≤ i ≤ m, 1 ≤ j ≤ si. In the above
conditions, for a scenario x = dl1w1d

l2w2d
l3 . . . dlkwkd

lk+1 ∈ L(i,j) we define
deg(x) = max

1≤i≤k
{|wi|}.

For a given SBP system Π we define the degree of synchronization
deg(Π) = max{deg(s) | (∃)1 ≤ i ≤ m, 1 ≤ j ≤ si such that s ∈ L(i,j)}.

In this case, the family of all sets of numbers computed by such SBP systems
with the feature f ∈ {ncoo, cat} and of synchronization degree at most n will be
denoted by NOSBP dn

m (f).
The following example shows how to generate a non-semilinear set of num-

bers with a SBP systems with non-cooperative rules and with a synchronization
degree 1.
Example 1. Let Π1 = (O,C, µ,w1, R1, E1, i0) such that

O = {a, b}; C = ∅; µ = []1; w1 = ab;
R1 = {r1 : b→ b, r2 : a→ aa, r3 : b→ λ};
E1 = {d∗r1d∗r2d∗r3d∗}; i0 = 1.

The system Π1 computes the set {a2n | n ≥ 1}, the well know non–semilinear
set from NET0L \NCF . The regular expression used in the definition of Π can

74 G. Ciobanu, D. Sburlan

be simplified such that E1 = {r1d∗r2d∗r3}.Using this simplification, the system
performs the computation as follows. In the first configuration C0 = (ab), a sce-
nario r1dn1r2d

n2r3, n1, n2 ≥ 0, is selected for application. This means that the rule
labeled r1 is applied in the configuration C0 because there exists an object b; the
rule labeled r2 will compete for objects after n1 computational steps (where n1 can
be any natural number) and if it is applied, it will double the objects a. Finally,
after the next n2 computational steps the rule r3 compete for the object b, and if
it is applied then it will delete the objects b (and consequently the selection of a
scenario for an application is blocked). I all these computational steps (between
the starting of the first scenario and the application of its last rule labeled r3)
new scenarios are selected for applications. Each of them will double the number
of symbols a. Consequently, the system computes the set {a2n | n ≥ 1}.

Theorem 3. For any n ≥ 2,

NOSBPm(f) ⊇ NOSBP dn
m (f) ⊇ NOSBP dn−1

m (f), f ∈ {ncoo, catk}, k ≥ 1.

The following result shows the relation between the family of all sets of num-
bers computed by SBP systems with at most m membranes and using only non-
cooperative rules and the family of length sets of context-free languages.

Proposition 1. NOSBP d1
m (ncoo) ⊃ NCF = NREG.

Proof. From the above observation one knows that NOSBPm(ncoo) =
NOSBP1(ncoo), hence in our proof we will use a scenario based P system with one
region. Let G = (N,T, P, S) be a context-free grammar and let P = {r1, . . . , rk}
be the set of labeled productions. Then one can construct an equivalent scenario
based P system Π = (O,C, []1, R1, E1, i0 = 1) defined by:

O = N ∪ T, C = ∅,
R1 = P ∪ {rA : A→ A | A ∈ N},
E1 = {d∗rd∗ | r ∈ P} ∪ {d∗rXd∗ | X ∈ N}.

At any moment during the computation of Π scenarios from the languages indi-
cated by the regular expressions from E1 can be started. A scenario of type dkrdp,
r = A→ α ∈ R1, k, p ≥ 0, simulates the application of the context-free production
A→ α ∈ P . In order to prevent the maximal parallel rewriting of the object A in
a given configuration of Π, scenario of type dkrAd

p, rA = A → A ∈ R1 are em-
ployed. It follows that there exist a computation of Π where for any configuration
exactly one object A ∈ N is rewritten.

Thus, Π correctly simulates G, and so we conclude that NOSBP d1
m (ncoo) ⊇

NCF = NREG. The strict inclusion follows easily from Example 1.

The length set of any language generated by an ET0L system can be generated
by a SBP systems with non-cooperative rules and synchronization degree 2.

Theorem 4. NOSBP d2
m (ncoo) ⊇ NET0L.

Scenario Based P Systems 75

Proof. To prove this result, we simulate the computation of a arbitrary ET0L
system using a SBP system with non-cooperative rules and having the synchro-
nization degree 2. Without loss of generality, let H = (V, T, ω,∆) be an ET0L
system, such that V = {a1, . . . , ak}, ∆ = {a1, . . . , ap}, p ≤ k, and T = {T1, T2},
where

T1 = {ai → α1,j | 1 ≤ i ≤ k, 1 ≤ j ≤ l1,i},
T2 = {ai → α2,j | 1 ≤ i ≤ k, 1 ≤ j ≤ l2,i}.

Then we construct the SBP system Π = (O,C, µ,w1, R1, E1, i0 = 1) that
simulates the computation of H as follows:

O = V ∪ {a | a ∈ V }
∪ {ti,j | i ∈ {1, 2}, 1 ≤ j ≤ 2k + 1}
∪ {t, f,#};

C = ∅; µ = []1; w1 = tω.

In order to simplify the notation and construction, we will present the regular
expressions from E1 by using directly the rules in their descriptions (and not the
labels of the rules). The set of rules R1 is composed by all the rules appearing
in these regular expressions. In addition, the regular expressions will be grouped
according to their usage in the simulation.

1. regular expressions/rules used to select a table to be simulated:
d∗ t→ t

max{l1,i|1≤i≤k}
1,1 X d∗

d∗ t→ t
max{l2,i|1≤i≤k}
2,1 X d∗

2. regular expressions/rules used to simulate an application of the table T1:
d∗ t1,1 → t1,1 a1 → α1,j d∗ where 1 ≤ j ≤ l1,1

d∗ t1,1 → t1,2 a1 → # d∗

d∗ t1,2 → t1,2 a2 → α1,j d∗ where 1 ≤ j ≤ l1,2

d∗ t1,2 → t1,3 a2 → # d∗

. . .
d∗ t1,k → t1,k ak → α1,j d∗ where 1 ≤ j ≤ l1,k

d∗ t1,k → t1,k+1 ak → # d∗

d∗ t1,k+1 → t1,k+2 a1 → a1 d∗

d∗ t1,k+2 → t1,k+3 a2 → a2 d∗

. . .
d∗ t1,2k → t1,2k+1 ak → ak d∗

3. regular expressions/rules used to simulate an application of the table T2:
d∗ t2,1 → t2,1 a1 → α2,j d∗ where 1 ≤ j ≤ l2,1

d∗ t2,1 → t2,2 a1 → # d∗

d∗ t2,2 → t2,2 a2 → α2,j d∗ where 1 ≤ j ≤ l2,2

d∗ t2,2 → t2,3 a2 → # d∗

. . .
d∗ t2,k → t2,k ak → α2,j d∗ where 1 ≤ j ≤ l2,k

76 G. Ciobanu, D. Sburlan

d∗ t2,k → t2,k+1 ak → # d∗

d∗ t2,k+1 → t2,k+2 a1 → a1 d∗

d∗ t2,k+2 → t2,k+3 a2 → a2 d∗

. . .
d∗ t2,2k → t2,2k+1 ak → ak d∗

4. starting over the simulation or ending the simulation:
d∗ t1,2k+1 → λ X → t d∗

d∗ t1,2k+1 → λ X → f d∗

5. checking if there are ”nonterminals” in the last configuration:
d∗ f → f1 a1 → # d∗

d∗ f1 → f2 a2 → # d∗

. . .
d∗ fp → λ ap → # d∗

d∗ #→ # d∗.

The SBP system constructed above simulates the computation of an ET0L system
as follows. At the beginning of simulation, scenarios from all the languages indi-
cated by the regular expressions from E1 are started. However, because there is an
object t in the initial configuration, only the rules that appear in scenarios from
the group 1 can be applied (that is it will be applied either t→ t

max{l1,i|1≤i≤k}
1,1 X

or t→ t
max{l2,i|1≤i≤k}
2,1 X). Let us assume that the rule t→ t

max{l1,i|1≤i≤k}
1,1 X was

executed, hence the table to be simulated is T1. The number max{l1,i | 1 ≤ i ≤ k}
of objects t1,1 guarantees that any combination of the rules from T1 which have
the same symbol on the left and which are executed at certain moment by H, can
be simulated by Π. Consequently, scenarios indicated by the regular expressions

d∗ t1,1 → t1,1 a1 → α1,j d∗ where 1 ≤ j ≤ l1,1

are started. In these scenarios the rules of type a1 → α1,j (which correspond to
the rules a1 → α1,j ∈ T1) are applied at a certain moment. However, also the
scenarios indicated by the regular expression

d∗ t1,1 → t1,2 a1 → # d∗

start their execution; in case the rule t1,1 → t1,2 is executed and there are objects
a1 in the region, then the symbol # will be produced and the system Π will never
stop (no output). This scenario is used to check if all objects a1 were rewritten.

The computation continues in the same manner for all the objects from V .
After all objects from V were rewritten (i.e., in the current configuration there are
only objects from the set {a | a ∈ V } and object t1,k+1), the system Π rewrites
back all the objects from the set {a | a ∈ V } into their corresponding version from
V . Scenarios indicated by the following regular expressions are used to complete
the task:

d∗ t1,k+1 → t1,k+2 a1 → a1 d∗

d∗ t1,k+2 → t1,k+3 a2 → a2 d∗

. . .
d∗ t1,2k → t1,2k+1 ak → ak d∗

Scenario Based P Systems 77

Finally, scenarios from group 4 start, and object X is rewritten either into ob-
ject t (and Π restarts the computation by simulating the application of another
table of H) or into object f (which will be used to check whether the current
configuration of Π corresponds to a string computed by H which is formed only
by symbols from ∆). In case object f is generated, then scenarios indicated by
regular expressions

d∗ f → f1 ap+1 → # d∗

d∗ f1 → f2 ap+2 → # d∗

. . .
d∗ fp → λ ak → # d∗

d∗ #→ # d∗.

are applied and if in the current configuration there exists a symbol from V \∆,
then the symbol # is generated and the computation never stop. Otherwise, the
system stops generating a multiset that correspond to a string from L(H).
Consequently, it was proved that NOSBP d2

m (ncoo) ⊇ NET0L.

The following result shows the computation power of SBP systems using non-
cooperative and catalytic rules, and the degree of synchronization 3.

Theorem 5. NOSBP d3
m (cat1) = NRE.

Proof. For the inclusion NOSBP d3
m (cat1) ⊇ NRE we will simulate with a SBP

system with one region Π = (O,C, µ,w1, R1, E1, i0 = 1) a register machine M =
(n,P, l0, lh). The system Π is defined as follows:

O = {ai | 1 ≤ i ≤ n} ∪ {l1, l2 | l1 : (add(r), l2) ∈ P}
∪ {l1, l2, l3, l1, l2, X, Y | l1 : (sub(r), l2, l3)};

C = {c}, µ = []1, w1 = l0.

The sets R1 of rules and E1 of regular expressions are constructed as follows:

• for any instruction l1 : (add(r), l2) we add the rule r(l1,1) : l1 → arl2 to R1 and
the regular expression d∗r(l1,1)d

∗ to E1;
• for any instruction l1 : (sub(r), l2, l3) we add the following rules to R1 and the

regular expressions to E1

The rules added to R1 The regular expressions added to E1

r(l1,1) : l1 → l1X
r(l1,2) : car → c d∗r(l1,1)r(l1,2)r(l1,3)d

∗

r(l1,3) : l1 → l2
r(l1,4) : X → Y
r(l1,5) : Y → λ d∗r(l1,4)r(l1,5)r(l1,6)d

∗

r(l1,6) : l1 → l3
r(l1,7) : l2 → l2 d∗r(l1,7)d

∗

• for the instruction l1 : halt, the rule rl1 : l1 → λ is added to R1 and the regular
expression d∗rl1d

∗ is added to E1.

78 G. Ciobanu, D. Sburlan

Similarly as in the proof of Theorem 2, we model the value stored in the register
r of M as the multiplicity of the object ar in a configuration of Π.

Since the scenarios are nondeterministically selected from the languages indi-
cated by the regular expressions, and these scenarios may contain as a prefix a
string of an arbitrary length and which is composed only by symbols d, then we
don’t know when the first rules of the scenarios will be executed.

Let Π be in a configuration C1 = at1
1 . . . atr

r . . . atn
n l1c and let us assume that in

the configuration C1 a rule from R1 will be executed. In this configuration there
might exist scenarios already in execution and/or scenarios that can be started. No
matter which is the case, the single rule that can be applied in configuration C1 is
l1 → l1X which belongs to a scenario s1 from L(d∗ l1 → l1X car → c l1 → l2 d∗)
(a scenario started in a previous configuration). This rule will be applied once and
the resulting configuration will be C2 = at1

1 . . . atr
r . . . atn

n l1Xc. Next, we distinguish
two cases:

• if tr > 0 (that is, in C2 there exists objects ar) then the rule car → c from
scenario s will be executed. Moreover in this configuration will start new sce-
narios (apart from those already in execution). In particular, a scenario s2 from
L(d∗ X → Y Y → λ l1 → l3 d∗) will be executed (which means that the
rule X → Y will compete for objects, at a certain moment, in one subsequent
configuration). However, there might be the case that a scenario of the same
kind, started in a previous step, attempts to execute the rule X → Y in config-
uration C2. Consequently we have two possible cases: in configuration C2 will
be only executed the rule car → c (hence the next configuration will become
C(3,1) = at1

1 . . . atr−1
r . . . atn

n l1Xc) or the pair of rules car → c and X → Y

(hence the next configuration will become C(3,2) = at1
1 . . . atr−1

r . . . atn
n l1Y c).

In the first case (i.e., in configuration C(3,1)) we have again a branch in the
computation: either will be executed the rule l1 → l2 (which means that the
next configuration will be C(3,1,1) = at1

1 . . . atr−1
r . . . atn

n l2Xc) or the pair of
rules l1 → l2 and X → Y (which means that the next configuration will be
C(3,1,2) = at1

1 . . . atr−1
r . . . atn

n l2Y c).
It follows that for the configuration C(3,1,1) will be executed a scenario that, at
a certain moment, will rewrite firstly the object X into Y (by an application
of the rule X → Y) and then will delete the object Y (by an application of
the rule Y → λ). In the same time, a scenario that applies the rule l2 → l2
will be executed and the configuration reached will be at1

1 . . . atr−1
r . . . atn

n l2c
which corresponds to a correct simulation of the register machine subtraction
instruction.

• if tr = 0 then the rule car → c from scenario s cannot be executed anymore
and so, the execution of the scenario s will be interrupted (hence the rule
r(l1,3) : l1 → l2 is not executed anymore in this simulation of the subtraction
instruction). However the rule r(l1,4) : X → Y in a scenario from the set
L(d∗r(l1,4)r(l1,5)r(l1,6)d

∗) will be executed at a certain moment. Next, the object
Y will trigger the execution of the rule r(l1,5) : Y → λ. Finally the rule r(l1,6) :

Scenario Based P Systems 79

l1 → l3 is applied and the resulting multiset will become at1
1 . . . atn

n l3c which
again corresponds to a correct simulation of the register machine subtraction
instruction.

It follows that Π correctly simulates the computation of M , and so, taking into
account the Turing-Church thesis, NOSBP d3

m (cat1) = NRE.

5 Conclusion

Metabolic pathways are usually composed of chains of enzymatically catalyzed
chemical reactions. They are interconnected in a complex way in the framework
of a metabolic network. Inspired by this biological phenomenon, we have defined
and studied the scenario based P systems. In this computational model, regular
expressions are used to express the causal dependence relations existing between
various executions of the rules. In this way we intend to identify certain causalities
in the chains of reactions connecting different parts of the metabolic network.

References

1. Agrigoroaiei, O., Ciobanu, G., Flattening the Transition P Systems with Dissolution,
Lecture Notes in Computer Science vol.6501, pp.53–64, 2011.

2. Agrigoroaiei, O., Ciobanu, G., Quantitative Causality in Membrane Systems, Lecture
Notes in Computer Science vol.7184, pp.62–72, 2012.

3. Busi, N., Causality in Membrane Systems, Lecture Notes in Computer Science
vol.4860, pp.160–171, 2007.

4. Ciobanu, G., Lucanu, D., Events, Causality and Concurency in Membrane Systems,
Lecture Notes in Computer Science vol.4860, pp.209–227, 2007.

5. Rozenberg, G., Salomaa, A. (Eds.): Handbook of Formal Languages, Springer Verlag,
Berlin, 2004.

6. Minsky, M., Computation: Finite and Infinite Machines, Prentice-Hall, Englewood
Cliffs, 1967.

7. Păun, G.: Membrane Computing. An Introduction, Springer, 2002.
8. Sburlan, D., P Systems with Chained Rules, Lecture Notes in Computer Science

vol.7184, pp.359–370, 2012.

