
A GPU Simulation for Evolution-Communication
P Systems with Energy Having no Antiport Rules

Zylynn F. Bangalan1, Krizia Ann N. Soriano1, Richelle Ann B. Juayong1,
Francis George C. Cabarle1, Henry N. Adorna1, Miguel A. Mart́ınez–del–Amor2

1 Algorithms & Complexity Lab
Department of Computer Science
University of the Philippines Diliman
Diliman 1101 Quezon City, Philippines
E-mail: zfbangalan@up.edu.ph, knsoriano1@up.edu.ph, rbjuayong@up.edu.ph,
fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es

Summary. Evolution-Communication P system with energy (ECPe systems) is a cell-
like variant P system which establishes a dependence between evolution and communi-
cation through special objects, called ‘energy,’ produced during evolution and utilized
during communication. This paper presents our initial progress and efforts on the im-
plementation and simulation of ECPe systems using Graphics Processing Units (GPUs).
Our implementation uses matrix representation and operations presented in a previous
work. Specifically, an implementation of computations on ECPe systems without antiport
rules is discussed.

1 Introduction

Evolution-Communication P system with energy (ECPe systems) is a modifica-
tion to Evolution-Communication P system (ECP system). Objects evolve through
evolution rules while communication of objects to other regions bounded by mem-
branes is done through symport/antiport rules. The unique features of an ECPe
system not present for Evolution-Communication P system are listed below.

• A communication rule must require at least one quantum of energy, referred
to as e, to be triggered.

• This quantum of energy, e, is produced by evolution rules and consumed by
communication rules only i.e. it can never be present at the initial configuration.

26 Z.F. Bangalan et al.

ECPe systems are actually presented to provide a measure for communication over
Evolution-Communication P systems [1].

Other important characteristics of ECPe systems which are common to other
variants of P systems are also worth mentioning. Objects in each membrane are
considered as multisets since there can be multiple instances and type of objects
present within membranes. Evolution rules and communication rules within each
membrane are applied in a nondeterministic maximally parallel manner. Maximal
parallelism ensures that all rules that can be applied must be applied given the
multiset of objects in each membrane while nondeterministic application of rules
arises because it is possible that more than one rule is applicable at the same time.
Further definition and discussion about ECPe systems is found in section 2.

Computations in ECPe system have been represented using vectors, matrices
and linear algebra in [6]. As suggested in [8], we can make these vectors and matrix
representations local to regions to avoid dealing with sparse vectors and matrices
and to make computations in the system suitable for parallel processing.

Many works have been made for simulating P systems. Efforts for simulation
is motivated by the fact that simulations help in the analysis of P systems. Since
P systems are highly parallel in nature, many of the works are focused on its par-
allel implementation. One example is the parallel implementation of Transition P
systems on a cluster of computers presented in [5]. Another is that in [3] wherein
Spiking Neural P systems are simulated in parallel using GPUs. Though there
are already a number of parallel implementations for P systems, none of these is
directly applicable to ECPe systems. We are interested in a parallel implementa-
tion of ECPe systems in GPUs to contribute on researches implementing cell-like
variant of P systems on GPUs. We also aim to spark interest and aid in further
researchers in the field of Membrane computing, particularly ECPe systems, and
parallel computing paradigms in general.

Just like the work in [3], we will make use of NVIDIA GPUs for this parallel
simulation and implementation. NVIDIA, a manufacturer of GPUs, introduced
Compute Unified Device Architecture (CUDA). CUDA is a software and hardware
architecture that permits programmers to have a control over NVIDIA’s GPU
hardware and use them for parallel computations.

Our parallel implementation of ECPe systems is a continuation on an earlier
study [8]. Algorithms for the methodology presented in [8] are developed and are
implemented in CUDA C. It is important to emphasize that the implementation
done only involves methodology for forward computing of Evolution Communica-
tion P system without antiport rules only

2 ECPe system

2.1 Definitions and notations

ECPe system is introduced in [1] as a model where special objects are used to
establish dependence of communication on evolution. The goal of [1] is mainly to

A GPU Simulation for ECPe Systems Having no Antiport Rules 27

initiate communication complexity analysis for P systems. In order to evaluate
communication complexity for computations in ECPe systems, a cost of using a
communication rule is considered. This cost is in the form of a quantity of “energy”.
A single object can be transported by a communication rule with the help of one
or more quantum of energy, e. This quantum of energy is a special object, e 6∈ O,
which can be produced by evolution rules and consumed through communication
rules only. No communication rules can be applied without consuming an amount
of “energy”. When objects are transported, the quanta of energy consumed are
lost. They do not pass across membranes.

Following the definition in [1], an EC P System with energy is a construct of
the form

Π = (O, e, µ, ω1, ..., ωm, R1, R
′
1, ..., Rm, R

′
m, iout)

where:

1. O is the alphabet of objects;
2. m is the total number of membranes;
3. µ is the membrane structure

Membrane i is called the parent membrane of a membrane j, denoted parent(j),
if the paired-labelled square brackets corresponding to membrane j is inside the
paired-labelled square brackets corresponding to membrane i, i.e., [i . . . [j]j]i.
Conversely, membrane j is called a child membrane of membrane i, denoted
j ∈ children(i) where children(i) is referring to the set of membranes inside
membrane i.

4. ω1, ..., ωm are multisets of objects present in the regions bounded by mem-
branes;

5. R1, ..., Rm are sets of evolution rules, each associated with a region delimited
by a membrane;
An evolution rule is of the form a→ v where a ∈ O, v ∈ (O∪{e})∗ i.e e should
never be in the initial configuration and cannot be evolved.

6. R′1, ..., R
′
m are sets of symport/antiport rules each associated with a membrane;

A symport rule is of the form (aei, in) or (aei, out), where a ∈ O, i ≥ 1.
The number i is called the energy of the rule. An antiport rule is of the form
(aei, out; bej , in) where i, j ≥ 1. The number i + j is called the energy of the
rule.

7. iout ∈ {0, 1, ...,m} is the output region where i0 is the environment;

As in classical cell-like variants, rules must be applied in a nondeterministic and
maximally parallel manner. A configuration at any time i is denoted by Ci while
a transition from Ci to Ci+1 through nondeterministic and maximally parallel
manner of rule application can be denoted as Ci ⇒ Ci+1. A series of transition
is said to be a computation and can be denoted as Ci ⇒∗ Cj where i < j.
Computation succeeds when the system halts; this occurs when the system reaches
a configuration wherein none of the rules can be applied. This configuration is
called a halting configuration. If the system doesn’t halt, this implication failure
of computation because the system did not produce any output.

28 Z.F. Bangalan et al.

Fig. 1. An ECPe system with a construct of Π =
({a,#, e}, e, [1[2]2]1, ω1, ω2, R1, R2, R

′
1, R

′
2, 2) where ω1 = {a2,#}, ω2 = ∅, R1 =

{r11 : a→ aa, r12 : a→ ee}, R2 = {#→ #}, R′
1 = ∅, R′

2 = {r
′
21(ae, in), r

′
22 : (#e, in)}

2.2 Matrix Representations

In [6], a matrix representation for ECPe system is obtained. With this representa-
tion, matrix operations can be used to model computations in ECPe system. The
work is motivated by the fact that an algebraic representation helps in simulating
P system. An implementation can help in easier or faster analysis of ECPe system.
To obtain a matrix representation, a total order over the objects and over the rules
are defined so that the elements can be identified by their positions. The following
are also defined:

• Configuration vector Ci is a vector with length |(O ∪ {e}) × {1, ...,m}| and
whose elements are numbers representing the multiplicity of objects in each
region at time i.

• Application vector ai is a vector with length |
⋃

1≤k≤mRk ∪ R′k| and whose
elements are the number of times each rule is applied during a transition
Ci−1 ⇒ Ci.

• Transition matrix MΠ is an n by r matrix (n = |
⋃

1≤k≤mRk ∪ R′k| and r =
|(O ∪ {e}) × {1, ...,m}|) that shows the effect of the application of each rule.
The matrix MΠ(r, (α, k)) gives the number of consumed or produced object
α in region k when the rule r is applied once. Elements with negative value
represent the number of objects consumed or moved out of a given region
while elements with positive value represent the number of objects that will be
produced or moved in a given region. Elements with zero value represent the
objects that are either not involved in the rule or involved but the total effect
of their production and consumption is zero.

• Trigger matrix is an r×n matrix that represents all the needed objects in order
to activate the rule. The elements are the number of objects required for a rule
to be applied.

A GPU Simulation for ECPe Systems Having no Antiport Rules 29

(Formal definitions of the vectors and matrices above are presented in [6]).
Forward computing is the process of finding all possible next configuration

given an input configuration. Equation 1 shows that given a configuration vector
for a certain time Ck−1, transition matrix MΠ and an application vector for a
transition Ck−1 ⇒ Ck, the next configuration vector Ck can be computed:

(Ck = Ck−1 + ak ·MΠ) (1)

The equation above implies that in order to compute all next configurations
for forward computing, there is a need to find all valid application vectors ak. [7]
shows that this problem can be reduced into solving a system of linear equations.

2.3 Localization of Computations

In [7], the localization of rules in ECPe system are taken into consideration, divid-
ing equation (1) into multiple equations (one for every local region) making them
suitable for parallel processing. Localization also provides a hint to unreachability
based on rules and initial multiset of objects. The following notations are defined
over an ECPe system Π without antiport rules.

• Let IO(r, k) be the set of objects in region k involved in a rule r.
• Let TO(r, k) be the set of objects in region k that trigger a rule r.

The following definitions and theorems taken from [7].

Definition 1 Involved Rules in Region k

IR(k) = Rk ∪R′k ∪ (
⋃
k′∈children(k)R

′
k′)

Definition 2 Possible Objects in Region k

PO(k) = {α|α appeared in wk} ∪ (
⋃
r∈IR(k) IO(r, k))

Definition 3 Effect Rules in Region k

ER(k) = {r|r ∈ Rk} ∪ (IR(k)− {r′|r′ ∈ IR(k) and TO(r′, k) 6= ∅})

Definition 4 Trigger Rules in Region k

TR(k) = {r|TO(r, k) 6= ∅}

Definition 5 Configuration Vector for each Region k
A configuration vector Ci,k is a vector whose length is |PO(k)|. The vector Ci,k(α)

refers to the multiplicity of object α in region k at configuration Ci.

Definition 6 Application Vector for each Region k
An application vector ai,k is a vector whose length is |IR(k)|. The vector ai,k(r)

refers to the number of application of rule r specifically in region k during the
transition Ci−1 ⇒ Ci.

30 Z.F. Bangalan et al.

Definition 7 Transition Matrix for each Region k
A transition matrix MΠ,k is a matrix whose dimension is |IR(k)|× |PO(k)|. The

matrix MΠ,k(r, α) returns the number of consumed or produced object α in region k
upon single application of rule r. The consumed objects have negative values while
the produced objects are positive. If object α in region k is not used in rule r, then
its value is zero.

Theorem 1 (from [7]) The effect of Equation (1) is the same as the effect of
performing

Ci,k = Ci−1,k + ai,k ·MΠ,k (2)

for each region k provided that if k and k
′

are the sender and receiver regions cor-
responding to a communication rule r

′ ∈ IR(k)∩ IR(k′), then ai,k(r
′
) = ai,k′(r

′
).

Corollary 1 (from [7]) The formula for computing backward is

Ci−1,k = Ci,k − ai,k ·MΠ,k (3)

for each region k provided that if k and k
′

are the sender and receiver regions cor-
responding to a communication rule r

′ ∈ IR(k)∩ IR(k′), then ai,k(r
′
) = ai,k′(r

′
).

The above definitions and theorems are used to make vectors and matrices local
to regions to exploit independence between regions for parallel computations.

2.4 Methodology for Forward Computing

Given Ci,k, we determine Ci+1,k by forward computing using the methodology
presented in [8].
1. Categorize all possible objects in PO(k) for all region k. First, categorize
all α ∈ PO(k) for a certain region k. The categories are:

• Category 1: Evolution Trigger
Object α is in this category if there exists r ∈ Rk such that TO(r, k) = {α}.

• Category 2: Communication Trigger Only
Object α belongs in this category if there does not exist r ∈ Rk such that
TO(r, k) = {α} but there exists r′ ∈ IR(k) such that α ∈ TO(r′, k).

• Category 3: Not a Trigger
Object α is not in Category 1 and is not in Category 2.

2. Construct identity rules for objects in Category 2 and 3 for all region
k. For each α ∈ PO(k) that belongs to one of Category 2 and Category 3, include
an identity rule α→ α. Place all these rules in a set labelled Radd,k. Also, keep a
list of α′ ∈ PO(k)− {e} that fall under Category 2. Call this list as Listcat2 and
sort it in increasing order of transport energy requirement.
3. Construct Trigger Matrix TMΠ,k for all region k The defined rules as-
sociated with the rows of TMΠ,k must be the rules that lessen the multiplicity
of objects in region k. These rules are represented in the set TR(k). Again, let

A GPU Simulation for ECPe Systems Having no Antiport Rules 31

the additional rules from Radd,k be represented in the rows as well. The set of ob-
jects represented in the columns of TMΠ,k remains PO(k). TMΠ,k has dimensions
|TR(k) ∪ Radd,k| × |PO(k)|. TMΠ,k(r, α) gives the multiplicity of α in region k
that is required to apply rule r once.
4.Set the length of the vector of unknowns (extended application vec-
tor) a′

i,k for all region k The length of a′
i,k is |TR(k) ∪Radd,k|.

5. Solve system of linear equation Find all solutions to the equation

a′
i,k · TMΠ,k = Ci−1,k (4)

Again, because the application vector’s (a′
i,k) elements represent the number

of application of rules, it must not contain negative numbers i.e. the elements
must always be natural numbers. The value a′

i,k(r) returns either the number of
application of each rule r ∈ TR(k) or how many object α is unevolved or unmoved
(if (r : α→ α) ∈ Radd,k). TR(k) and Radd,k are disjoint sets.
6. Filter solutions in step 5 For each region k, if Listcat2 6= ∅, scan the sorted
Listcat2 and find out the first object, labelled αcat2,min, falling under Category
2 whose corresponding identity rule application is non-zero, i.e. a′

i,k(αcat2,min →
αcat2,min) > 0. Since Listcat2 is sorted in increasing order of energy requirement
for transport, αcat2,min has the least energy required for communication. Label its
corresponding energy as energy(αcat2,min). Filter solutions in step 5 by adding,
for each region k with a non-empty Listcat2 , the inequality below:

a′
i,k(e→ e) < energy(αcat2,min) (5)

7. For each solution in step 6, find ai,k When values for a′
i,k in all region k

are found, disregard all identity rules r′ ∈ Radd,k. Fill the values of an application
vector ai,k through the equation

ai,k(r) = a′
i,k(r), r ∈ Rk. (6)

For every communication rule r ∈ IR(r, k′) ∩ IR(r, k′′),

ai,k′(r) = ai,k′′(r) = a′
i,k′(r) (7)

for all communication rule r ∈ IR(k′) ∩ IR(k′′) where region k′ is the sending
region.

Theorem 2 (from [7]) All possible ai,k generated through the above methodology
leads to a valid Ci,k yielded from Ci−1,k in one computational step.

3 Graphics Processing Unit (GPU)

3.1 On Using GPUs

Although GPUs are initially used for image processing, it is actually designed to
handle computationally demanding applications. Thus, its use is extended to ac-
commodate different applications. GPU has been widely used to work with highly

32 Z.F. Bangalan et al.

Fig. 2. NVIDIA CUDA automatic scaling(More cores, faster execution), from [3]

parallel applications due to its parallel nature as compared to setting-up multiple
CPUs that will harness the same power by that of a GPU [3]. Another reason is
that they provide not only the hardware but also application programming inter-
faces (APIs) for computation. As mentioned in [11], the GPU is designed to cater
to a class of applications with the following characteristics,

• Computational requirements are large.
• Parallelism is substantial.
• Throughput is more important than latency.

3.2 Compute Unified Device Architecture (CUDA)

The Compute Unified Device Architecture (CUDA) programming model is intro-
duced by NVIDIA, a manufacturer of GPUs. CUDA is a hardware and software
architecture that runs highly parallel computations on the family of GPUs manu-
factured by NVIDIA [3]. With this feature and compatibility with today’s leading
GPU devices, CUDA became popular and progress has been made to make pro-
gramming in CUDA easier. Though CUDA is an extension of the C programming
language for parallel computations, programmers can also access CUDA APIs with
FORTRAN, Haskell, Perl, Python, Ruby, and etc.

The parallel code written in extensions of the C programming language is
executed in multiple threads within multiple blocks which are in turn parts of a
grid of blocks. These blocks belong to the GPU. Each GPU consists of multiple
cores having their own block of threads [3]. This feature is illustrated in Figure 2.

A GPU Simulation for ECPe Systems Having no Antiport Rules 33

Fig. 3. NVIDIA CUDA showing execution of sequential code in the host and parallel
execution of the kernel function in the device, from [3]

CUDA distinguishes CPU (host part) from the GPU (device part). Typically,
initial operations and preparations are done before proceeding to the demandingly
parallel computations. CUDA deals with this by performing preparations in the
host and moving the prepared data to the GPU for fast parallel computation
then, moving the results of the parallel computation back to the host for further
interpretation of output. The entity that connects the CPU and GPU, or makes the
data movement possible, is the kernel function. This function is called in the host
but is executed in the device [13] as illustrated in Figure 3. Usually, preparations
for the data are done to maximize parallelism. Operationally, the CPU controls
the flow of the application program while the GPU acts as a co-processor to the
host where demanding computations are held.

4 CUDA GPU Computing and ECPe systems

4.1 Generating all possible configuration vectors

The process of finding all possible configurations for all regions of an ECPe sys-
tem is illustrated by Figure 4. Input files contain information regarding the ECPe
system to be simulated. Some of the necessary information regarding the ECPe
system are the current configuration, membrane structure, number of possible
objects, number of involved rules and Transition matrix for each region k. Con-
figuration vectors, the initial configuration and the generated configurations, are

34 Z.F. Bangalan et al.

Fig. 4. Flow chart of finding all possible configurations of an ECPe system until a halting
configuration is reached or until the maximum number of iterations set by the user is
reached.

written to a file. Thus, to explore each configuration, each configuration vector
must be read first from a file. This vector will be labelled as the current configu-
ration and will undergo computations, as illustrated by Figure 5 to determine all
valid application vectors and to produce possible next configurations. Results are
appended at the bottom of this file.

The process illustrated in Figure 4 will generate all possible next configurations
until a maximum number of explored configurations have been reached, or no
further configurations needs to be explored (the case of halting configuration).

A GPU Simulation for ECPe Systems Having no Antiport Rules 35

Fig. 5. Flow chart of finding all possible application vectors for all region(s) of an ECPe
system. A subprocess of finding all possible configuration vectors illustrated in Figure 4,
highlighted in red.

4.2 Generating all possible application vectors

The generation of all possible application vectors is guided by the methodology for
forward computing as discussed in Section 2.4. It is further illustrated in Figure 5.
Steps 1-4: Preparation of input We can notice that steps 1 through 4 are done
to prepare the values needed for generating application vectors. It is in Step 5 that
computation starts to generate all possible application vectors. Thus, to simulate
steps 1 through 4, we read from a file the necessary values needed for generating
all possible application vectors.
Step 5: Finding extended application vectors through solving a system
of linear equations Finding extended valid applications involves finding solu-
tions to a system of equations. Forward computing step 5 in Section 2.4 details
the system of linear equations to be solved. This can be implemented in paral-
lel. We extend the sequential implementation of computation on ECPe systems
without antiport rules and adapt ideas on parallelizing some of the processes of
the implementation presented in [8]. The implementation uses localized matrix
representation discussed in Section 2.4.

The following observations on the system of linear equations used in finding
extended valid application vectors are helpful in solving the system in parallel.
Let us take as an example the ECPe system Π illustrated in Figure 1. If we let
Ci−1,1 be the initial configuration, the system of linear equations produced upon
performing a′

i,1 · TMΠ,1 = Ci−1,1 is,

a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
a′i,1(r′22) + a′i,1(Add11) = 1

a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

36 Z.F. Bangalan et al.

• Each variable’s value in the resulting system of linear equations can
only be a natural number since these variables correspond to the number
of applications of a rule.

• Every equation in the system corresponds to an object condition.
Since the dimension of the Trigger matrix TMΠ,k is |IR(k)∪Radd,k|×|PO(k)|,
each equation resulting upon performing a′

i,1 · TMΠ,1 = Ci−1,1, will give us
the equation for the application of each rules (i.e. the variables in the left hand
side of the equation) whose available triggering objects is in the right hand side
of the equation.

a: a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
#: a′i,1(r′22) + a′i,1(Add11) = 1
e: a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

• If k is a sending region for at least one (1) communication rule, an
energy condition must be in the resulting system of equations for
that region. In our example, the resulting system of linear equations of the
two regions are,
Region 1:

a: a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
#: a′i,1(r′22) + a′i,1(Add11) = 1
e: a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

Region 2:

a: a′i,2(r′21) + a′i,2(Add21) = 0
#: a′i,2(r21) + a′i,2(r′22) = 0

Since region 2 is a receiving region only for both symport rules, it does not
have an energy condition unlike region 1 which is a sending region for both
symport rules.

• Each variable (representing application of a particular communica-
tion rule) in the energy equation occurs in exactly one other ob-
ject condition. Moreover, only variables associated with communica-
tion rules in energy equation can occur in other object conditions,
other variables occur exactly in one equation.

a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
a′i,1(r′22) + a′i,1(Add11) = 1

a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

• Coefficients of the terms for non-energy conditions is always one
because of non-cooperative form of the evolution rules and the restriction to
communication rules that only one object can be transported by a rule. Co-
efficients of the terms in energy equation can be any positive inte-
ger since communication rules must consume any amount of energy |e| ≥ 1.
The union of all rules in the non energy conditions not including the identity

A GPU Simulation for ECPe Systems Having no Antiport Rules 37

rules represents the set of trigger rules. For example, if (ae, in) is (ae2, in) and
(#e, in) is (#e3, in), the resulting system of linear equations becomes,

a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
a′i,1(r′22) + a′i,1(Add11) = 1

2a′i,1(r′21) + 3a′i,1(r′22) + a′i,1(Add12) = 2

With the above observations, all possible application vectors can be found by
solving first the energy condition. We can use each solution for solving non-energy
equations since each variable representing rule application of a certain communica-
tion rule in the energy equation occurs in one and only one other object condition.
For example in this equation,

a: a′i,1(r11) + a′i,1(r12) + a′i,1(r′21) = 2
#: a′i,1(r′22) + a′i,1(Add11) = 1
e: a′i,1(r′21) + a′i,1(r′22) + a′i,1(Add12) = 2

The possible solutions to the energy condition are,

a′i,1(r′21) a′i,1(r′22) a′i,1(Add12)
2 0 0
1 1 0
0 2 0
0 1 1
0 0 2
1 0 1

We substitute the rule application to its corresponding object to communicate.
Let’s take the first three solutions as an example. It will give us,

a′i,1(r11) + a′i,1(r12) + 2 = 2
0 + a′i,1(Add11) = 1

2 + 0 + 0 = 2
a′i,1(r11) + a′i,1(r12) + 1 = 2

1 + a′i,1(Add11) = 1
1 + 1 + 0 = 2

a′i,1(r11) + a′i,1(r12) + 0 = 2
2 + a′i,1(Add11) = 1

0 + 2 + 0 = 2

Then subtract it to the number in the right hand side of the equation which
corresponds to the current count of the associated communicated object.

38 Z.F. Bangalan et al.

a′i,1(r11) + a′i,1(r12) = 2− 2 = 0
a′i,1(Add11) = 1− 0 = 1

2 + 0 + 0 = 2
a′i,1(r11) + a′i,1(r12) = 2− 1 = 1

a′i,1(Add11) = 1− 1 = 0
2 + 0 + 0 = 2

a′i,1(r11) + a′i,1(r12) = 2− 0 = 2
a′i,1(Add11) = 1− 2 = −1

2 + 0 + 0 = 2

If this yields a negative number, then this solution for energy equation is not appli-
cable. If not, solutions for the objects constitute one extended application vector
[8]. In the above illustrations the solution 0 2 0 is not a valid solution. The new
linear systems of equation to solve are now,

a′i,1(r11) + a′i,1(r12) = 0
a′i,1(Add11) = 1

a′i,1(r11) + a′i,1(r12) = 1
a′i,1(Add11) = 0

a′i,1(r11) + a′i,1(r12) = 2
a′i,1(Add11) = 0

a′i,1(r11) + a′i,1(r12) = 2
a′i,1(Add11) = 2

a′i,1(r11) + a′i,1(r12) = 1
a′i,1(Add11) = 1

The new systems of linear equations are then solved independently of each other.

Solving Equations. As what has been observed, each equation in the system of
linear equations are not always independent nor dependent of each other. In case of
regions that has energy condition, each non-energy object condition are dependent
on it. However, each non-energy equation iscomputation independent of each other,
this is also true in regions that does not have energy condition. Thus, the approach
is to solve each equation independently of each other, except for energy conditions.
As discussed in the previous section, regions with energy condition solves the
equation for the energy condition first. After reflecting the solutions for the energy
condition to the equations for the non-energy condition, solutions to the equations
for the non-energy solutions are computed.

For regions without energy condition, the computation goes straight to the
independent computations for solutions to the equations for the non-energy equa-
tion. The computation for the solutions to each equation can be reduced to the
Integer Partition Problem as proposed in [8].

Solving Integer Partition Problem. Integer partitioning means finding a way of
writing r as a sum of positive integers which are called partitions. To use these
partitions in solving a non-energy equation, the number of partitions must be less
than or equal to the number of variables m in the left hand side of the equation.

A GPU Simulation for ECPe Systems Having no Antiport Rules 39

Fig. 6. Interpreting
(
5
3

)
as integer partitions through the sticks and pebbles analogy.

If the number of partitions is less than m, zeroes must be padded accordingly so
that it represents a vector with m elements. Then permutations of the partitions
must be obtained. The problem of partitioning r with m components and then
obtaining permutation of the partition can be reduced to solving combinations of(
n
s

)
where n = r +m− 1, s = m− 1.
Combinations can be interpreted or converted into integer partitions through

the sticks and pebbles analogy (see Figure 6). In a
(
n
s

)
combinations, there are

n positions, s sticks, and n − s pebbles. Elements in the combinations represent
the position of each sticks and the pebbles take the position where there is no
stick. The number of pebbles between each stick are the elements of the integer
partition.

However, solutions to each equation in the system of linear equations does not
end on the generation of integer partitions. Since equations for the energy condition
can contain a coefficient greater than or equal to 1, the generated integer partitions
need to be further filtered to ensure that they are valid solutions to the equation for
the energy condition.Given an energy equation of the form c1a1+c2a2+...+cmak =
n, we first obtain a lexicographic order of the partitions, add zeroes to these
partitions accordingly, and get the permutations of the partitions. Equate these
permutated partitions to the equation to get the energy solutions. Let p1, p2, ..., pm
be the partitions of r with m components. a1 = c1

p1
, a2 = c2

p2
, ..., am = cm

pm
is an

energy solution if every ai, i ∈ 1, 2, ...,m is a natural number.
No similar filtering is needed for the solutions to the equations for the non-

energy condition since we have observed that the coefficient of the equations for
the non-energy condition is always equal to 1.

Parallel Implementation To solve the equation for energy condition, the process of
generation of combinations and its conversion to integer partitions (whose process
is described in the previous section), are given to the threads in the GPU device.

40 Z.F. Bangalan et al.

If the number of permuted integer partitions C (also equal to the number of
combinations of

(
n
s

)
) is less than or equal to the number of all available threads

T then each thread will produce one permuted integer partition only and equate
this to the energy equation to check if it is valid. If C > T , then each thread will
produce and check dCT e partitions except for the last thread. The last thread will

produce at most dCT e partitions. The number of blocks to be used is equal to d TM e,
where M is equal to maximum threads per block. Since the non-energy equations

Fig. 7. When C > T . If there are three (3) available threads, each thread, except for
the last thread, will generate four (4) integer partitions namely, Ci, ..., Ci+4and the last
thread will generate three (3) integer partitions.

are independent of one another (they depend only on the energy equation) their
solutions can be obtained in parallel. If there is an energy equation, the solutions
to non-energy equations can be obtained in parallel after the solutions of energy
equations are substituted in the system. For the implementation in GPU, a block is
responsible for generating solutions of a non-energy equation. At most M threads
will produce the partitions for the assigned non-energy equation to the block where
they belong. If the number of non-energy equations NC is less than or equal to
the number of blocks B then each block will produce solutions for one non-energy
equation only. If NC > B, then each block will produce solutions for dNCB e number
of non-energy equations except for the last block. The last block will produce
solutions for at most dCT e number of non-energy equations.
Step 6: Filter extended application vectors. If the system has an energy
equation, the extended application vectors must be filtered. Filtering is done in
parallel. If the number of extended application vectors E is less than or equal to
the number of all available threads T then each thread will filter one extended
application vector only. If E > T , then each thread will filter dET e extended appli-

cation vectors except for the last thread. The last thread will produce at most dET e
extended application vectors. The number of blocks to be used is equal to d EM e.
The analogy of job allocation to threads is similar to Figure 7.
Step 7: Finding all valid application vectors In this step other necessary
values are loaded from a file as well as the extended application vectors generated
from the previous steps (namely, Step 5 and 6) Identity rules at each region is
removed. Thereafter, the extended application vectors are merged with each other
to reflect the application of symport rules from sending regions to receiving regions

A GPU Simulation for ECPe Systems Having no Antiport Rules 41

Fig. 8. When NC ≤ B. If there are three (3) available blocks and equation for non-energy
conditions, each block will generate solutions to each equations utilizing the threads
allocated for each block to generate integer partitions similar to

since the computation done are local to each region only. This will give us all the
valid application vectors of region k at time i. This step is done in the host only,
using computing and memory resources of the host only.

5 Space and Communication Requirements

STEP HOST ALLO-
CATION

HOST TO
DEVICE

DEVICE AL-
LOCATION

DEVICE TO
HOST

Finding solutions 1 (C ×left) 1
for the energy equation solcount ×left 1 solcount ×left
in the system of linear equa-
tions

solcount ×left

Finding solutions for non-
energy equation in

TM rows
×TM cols

NEeqCount ×2 NEeqCount ×
TM rows × 2

the system of linear
equations NEeqCount ×

TM rows ×2
NEeqCount ×
validCount

NEeqCount

NEIPsize
Finding extended applica-
tion vectors

TM rows × ex-
tAppVecCount

TM rows × ex-
tAppVecCount

TM rows × ex-
tAppVecCount

1 1 1

Table 1. Memory allocations in Host and Device together with the communication
between them if there is an energy equation.

Tables 1 and 2 summarizes the space requirements and size of message com-
municated between host and device. Note that in case of allocation, the value one

42 Z.F. Bangalan et al.

STEP HOST ALLO-
CATION

HOST TO
DEVICE

DEVICE AL-
LOCATION

DEVICE TO
HOST

Finding solutions for non-
energy equation in the sys-
tem of linear equations

TM rows×
TM cols

NEeqCount×2 NEeqCount×
NEIPsize

Finding extended applica-
tion vectors

TM rows

Table 2. Memory allocations in Host and Device together with the communication
between them if no energy equation.

(1) on the table implies that an extra variable is allocated to hold values for use
as counter or flag. A value 1 is also used as signal for communication between
host and device. In Tables 1 and 2, cells without values indicate no allocation or
communication. The variables used are defined as follows:

• membraneCount is the number of membranes in the system
• IR is the number of involved rules in the region
• TM rows is the number of rows of the trigger matrix
• TM cols is the number of columns in the trigger matrix
• NEeqCount is the number of non-energy equations. For sender regions, this is

equal to TM rows− 1.
• left is the number of terms(partitions) in the left-hand side of the energy

equation
• right is the multiplicity of an object at the right-hand side of the energy equa-

tion.
• C = (left+right−1)!

(right)!(left−1)!) is the number of integer partitions of right hand side of

the energy equation (multiplicity of energy in the system) with components
equal to the number of partitions in the left hand side.

• solcount = O(C) is the number of valid solutions for the energy equation
• validCount is the number of energy solutions for the system of linear equations.
• extAppV ecCount = O(CNEeqCount) is the number of extended application

vectors of the region
• NEIPsize is the summation of combinations of

(
i
j

)
of each non-energy equa-

tion, where i = m2+r2−1, j = m2, m2 being the new number of partitions in
the left-hand side of the equation, and r2 being the new right-hand side after
the energy solutions are substituted.

• validExtAppCount = O(CNEeqCount)

In the variables given, the first six items are variables that is only dependent on
rules and membrane structures for a given P system, while the rest are variables
that are also dependent on configuration. Consequently, this means that the rest
of the variables excluding the first six potentially changes every time a new con-
figuration is explored.

From these tables, it can be observed that the required variables for regions
without energy equations are significantly less than regions with energy equations.

A GPU Simulation for ECPe Systems Having no Antiport Rules 43

This is expected since regions without energy equations only act as receivers and
need not be concerned with the number of application of communication rules.
Thus, we only analyze the requirement for sending regions where energy equations
needs to be addressed.

Focusing on sender regions, Table 1 shows that the most expensive commu-
nication step occurs upon accomplishment of finding extended valid application
vectors where the set of all valid application vectors will be communicated from
host to device as a matrix with size at most CNEeqCount × TM cols.

The required memory space in host in finding all valid extended application
vectors (i.e. Steps 1-6 of the methodology for forward computing described section
2.4) when the region has energy is,

Eh = C × left+ TM rows× TM cols+ (NEeqCount× TM rows× 2)

+(TM rows× CNEeqCount × 2) + 3

The needed memory space in host when finding all valid application vectors(i.e.
Step 7 of the methodology for forward computing described section 2.4) is,

M = membraneCount× (membraneCount+ IR+ IR× validAppV ecCount)

From this, we can conclude that the upperbound of the memory needed in host is
O((Eh +M)).

On the other hand, the required memory space in device in finding all valid
extended application vectors (i.e. Steps 1-6 of the methodology for forward com-
puting described in Section 2.4) when the region has energy is,

Ed = C×left×2+(NEeqCount×TM rows×2)+NEeqCount×C+NEeqCount

+NEIPsize+ (TM rows× CNEeqCount × 2) + 3

Note that, when finding all valid application vectors (i.e. Step 7 of the methodol-
ogy for forward computing described in Section 2.4), there is no need to allocate
memory in device.

6 Conclusion and Future Works

In this paper, we were able to present a hybrid implementation of computation for
ECPe systems without antiport by employing GPUs. Our implementation makes
use of matrix representation and operations discussed in [6]. To improve our im-
plementation, the following are recommended for further study:

• Optimize memory usage
Some processes in the parallel simulation makes use of arrays that may become
large (depending on the number of rules and objects in a region, number of
regions, and etc). An example is the padding of energy and non-energy solutions

44 Z.F. Bangalan et al.

with 0s so that all generated solutions will have the same dimension and is
faithful to the size of extended application vector determined in Step 4 of the
methodology for forward computing described in Section 2.4. It is primarily
done to make merging easier when it comes to finding valid application vectors.
However, doing so might require a significant amount of memory.

• Accept input from P Lingua
It is a good characteristic of the program if it is P Lingua compatible. That
is, from the definition of an ECPe system, say Π. Its corresponding P Lingua
format is accepted as an input of the program. In this way, running any ECPe
system in the program would be easier. The number of input files used by the
program will also lessen.

• Concurrent processes for solving energy solutions of a region and
non-energy solutions of regions without energy equation
Our approach in solving system of linear equations is to solve first for the energy
solutions if there is an energy equation in the said system of linear equations.
Thus, in this way we cannot generate solutions for the non-energy equations
yet. However, it can be done that while energy solutions are being generated,
non-energy solutions for other regions are also being generated.

• Extend parallel simulation of ECPe system to include antiport rules
Since the current implementation is done without antiport rules and there is
still no existing parallel simulation of ECPe systems which include antiport
rules as of the writing of this paper, it is attractive to extend the work to
include antiport rules.

Acknowledgements

F.G.C. Cabarle and R.A. B. Juayong are supported by the Engineering Research
and Development (ERDT) Scholarship Program. H.N. Adorna is funded by a
DOST-ERDT research grant and the Semirara Mining Corporation professorial
chair of the UP Diliman, College of Engineering. M.A. Mart́ınez-del-Amor is sup-
ported by “Proyecto de Excelencia con Investigador de Reconocida Vaĺıa P08-TIC-
04200” from Junta de Andalućıa, and project TIN2012-37434 from “Ministerio de
Ciencia e Innovación” of Spain, both co-financed by FEDER funds.

References

1. H. Adorna, Gh. Păun, M.J. Pérez-Jiménez: On Communication Complexity in
Evolution-Communication P Systems, Romanian Journal of Information Science
and Technology, Vol. 13 No. 2 pp. 113-130, 2010

2. S. G. Akl: Adaptive and optimal parallel algorithms for enumerating permutations
and combinations, The Computer Journal,30, 5 (1987), 433436

3. F. Cabarle, H. Adorna, M. A. Mart́ınez-del-Amor.: Simulating Spiking Neural P
Systems Without Delays Using GPUs, International Journal of Natural Computing
Research (IJNCR), Vol. 2 No. 2 pp. 19-31, 2011

A GPU Simulation for ECPe Systems Having no Antiport Rules 45

4. F. Cabarle, H. Adorna, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez: Improving
GPU Simulations of Spiking Neural P Systems, Romanian Journal of Information
Science and Technology Volume 15, Number 1, pp. 520, 2012.

5. G. Ciobanu, G. Wenyuan: P Systems Running on a Cluster of Computers, In
Workshop on Membrane Computing pp. 123-139, 2003.

6. R.A. Juayong, H. Adorna: A Matrix Representation for Computations in
Evolution-Communication P Systems with Energy, Proc. of Philippine Comput-
ing Science Congress, Naga, Camarines Sur, Philippines, March 3-4, 2011

7. R.A. Juayong, H. Adorna: Computing on Evolution-Communication P Systems
with Energy Using Symport Only, Workshop on Computation: Theory and Practice
2011 (WCTP 2011), UP Diliman NISMED auditorium

8. R.A. Juayong, F.G.C. Cabarle, H. Adorna, M. Mart́ınez-del-Amor: On the Sim-
ulations of Evolution-Communication P Systems with energy without Antiport
Rules for GPUs, Technical report of the 10th Brainstorming Week in Membrane
Computing, Seville, Spain, Feb 2012.

9. G. D. Knott: A Numbering System for Combinations. Comm. ACM, Vol. 17, No.
1, pp. 45-46, January 1974.

10. C. Mifsud, Algorithm 154: combination in lexicographical order,Communications
of the ACM, p. 103. Volume 6 Issue 3, March 1963.

11. J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips: GPU
Computing, Proceedings of the IEEE, Vol. 96 No. 5 pp. 879-899, 2008

12. Gh. Păun: Introduction to Membrane Computing. In: Gabriel Ciobanu, Mario J.
Pérez-Jiménez and Gheorghe Păun, eds: Applications of Membrane Computing,
Natural Computing Series. Springer, pp.142. (2006)

13. Gh. Păun, M.J. Pérez-Jiménez: Spiking Neural P Systems. Recent Results, Re-
search Topics. Algorithmic Bioprocesses, Natural Computing Series. Springer. pp.
273-291. (2009)

14. Gh. Păun, M.J. Pérez-Jiménez: Solving Problems in Distributed Way in Membrane
Computing: dP System, Int. J. of Computers, Communication and Control, Vol.
5 No. 2 pp. 238-250, 2010

15. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron: Introducing a space complexity
measure for P systems, Intern. J. Computers, Communications and Control, Vol.
4 No. 3 pp. 301310, 2009.

46 Z.F. Bangalan et al.

Appendix

Assumptions on input files

Figure 9 and 11 shows the file format for all the necessary input files. Given below
are the assumptions for the input files needed in our implementation.

• A total order for objects is assumed for all of the vectors and matrices used. For
example, if the correspondence of possible objects in the Transition matrix is
< a,#, e >, then the correspondence of possible objects in the Trigger matrix
must also be < a,#, e >.

• A total order for rules is assumed for all of the vectors and matrices used.
For example, if the correspondence of involved rules in the Transition matrix
is < r11, r12, r

′
21 >, then the correspondence of involved rules in the Trigger

matrix must also be < r11, r12, r
′
21 >.

• If a region involves symport rule(s), the correspondence of the rule(s) is as-
sumed to be at the latter part of the vectors and matrices defined for the
region. For example, if r11, r12, r′21, r′22 are the rules involved in region k, and
r′21, r′22 are symport rules, The total order should be < r11, r12, r

′
21, r

′
22 > or

< r11, r12, r
′
22, r

′
21 >.

• If a region contains symport rule(s) wherein it is a receiving region, the cor-
respondence of the said symport rules(s) is assumed to be at the last part of
the vector and matrices defined for the region. For example, if r11, r12, r′21,
r′22, r′23 are the involved rules in region k, and r′21 is the symport rules where
in region k is a sending region and r′22, r′23 are symport rules where in region
k is a receiving region. The total order should be, < r11, r12, r

′
21, r

′
22, r

′
23 > or

< r11, r12, r
′
21, r

′
23, r

′
22 >.

A GPU Simulation for ECPe Systems Having no Antiport Rules 47

Fig. 9. Input file for generating all possible next configuration (trans file.txt)

Fig. 10. Output file of all possible next configurations Left: list of all possible next
configurations(conf.txt), Right: label of all possible next configurations(conf index.txt)

48 Z.F. Bangalan et al.

Fig. 11. Input file for generating extended application vectors (find extended app.txt)

A GPU Simulation for ECPe Systems Having no Antiport Rules 49

Fig. 12. Flow and communication between host and device for Step 5: Finding extended
valid application vectors. (If region has an energy condition)

50 Z.F. Bangalan et al.

Fig. 13. Flow and communication between host and device for Step 5: Finding extended
valid application vectors. (If region does not have an energy condition)

Fig. 14. Flow and communication between host and device for Step 6: Filtering extended
valid application vectors.

