
Energy-based Models of P Systems

Giancarlo Mauri, Alberto Leporati, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{mauri,leporati,zandron}@disco.unimib.it

Summary. Energy plays an important role in many theoretical computational models.
In this paper we review some results we have obtained in the last few years concern-
ing the computational power of two variants of P systems that manipulate energy while
performing their computations: energy-based and UREM P systems. In the former, a
fixed amount of energy is associated to each object, and the rules transform objects
by manipulating their energy. We show that if we assign local priorities to the rules,
then energy–based P systems are as powerful as Turing machines, otherwise they can be
simulated by vector addition systems and hence are not universal. We also discuss the
simulation of conservative and reversible circuits of Fredkin gates by means of (self)–
reversible energy–based P systems. On the other side, UREM P systems are membrane
systems in which a given amount of energy is associated to each membrane. The rules
transform and move single objects among the regions. When an object crosses a mem-
brane, it may modify the associated energy value. Also in this case, we show that UREM
P systems reach the power of Turing machines if we assign a sort of local priorities to
the rules, whereas without priorities they characterize the class PsMAT λ, and hence are
not universal.

1 Introduction

Membrane systems (also known as P systems) have been introduced in [13] as
a parallel, nondeterministic, synchronous and distributed model of computation
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a main
membrane called the skin. Membranes divide the Euclidean space into regions,
that contain multisets of objects (represented by symbols of an alphabet) and
evolution rules. Using these rules, the objects may evolve and/or move from a
region to a neighboring one. Usually, the rules are applied in a nondeterministic
and maximally parallel way. A computation starts from an initial configuration of
the system and terminates when no evolution rule can be applied. The result of
a computation is the multiset of objects contained into an output membrane, or

Energy-based Models of P Systems 61

emitted from the skin of the system. For a systematic introduction to P systems
we refer the reader to [14], whereas the latest information can be found in [17].

Since the introduction of P systems, many investigations have been performed
on their computational properties: in particular, many variants have been pro-
posed in order to study the contribution of various ingredients (associated with
the membranes and/or with the rules of the system) to the achievement of the
computational power of these systems. In this paper we review some computa-
tional features of two models of membrane systems that manipulate energy while
performing their computations: energy-based P systems and UREM P systems.

In energy–based P systems, a given amount of energy is associated to each
object. Moreover, instances of a special symbol are used to denote free energy units
occurring inside the system. These energy units can be used to transform objects,
through appropriate rules that manipulate energy, while satisfying the principle of
energy conservation. In particular, if the object to which the rule is applied contains
less (more) energy than the one which has to be produced, then the necessary free
energy units can be taken from (released to) the region where the rule is applied.
We assume that the application of rules consumes no energy: in particular, objects
can be moved between adjacent regions of the system without energy consumption.
Rules are applied in a sequential manner: at each computation step, one of the
enabled rules is nondeterministically selected and applied. We show that, if a
potentially infinite amount of free energy units is available, then energy–based P
systems are able to simulate register machines (hence, the model is universal).
This is done by assigning a form of local priorities to the rules: if two or more
rules can be applied in a given region, then the one which consumes or releases the
largest amount of free energy units is applied (if two or more of the enabled rules
manipulate exactly the same maximal amount of free energy, then one of them
is nondeterministically chosen). Instead, if we disregard priorities, then energy–
based P systems can be simulated by vector addition systems, and hence are not
universal. On the other hand, if we do not allow the presence of an infinite amount
of energy, then the power of energy–based P systems reduces to that of finite state
automata, both when considering priorities associated with the rules and when
disregarding them. We also show that energy–based P systems can be used to
simulate reversible and conservative (that is, energy–preserving) boolean circuits
composed of Fredkin gates; the simulating P systems are themselves reversible and
logically complete, and so we have the possibility to compute any boolean function
by energy–based P systems in a reversible way.

The second model of membrane systems we consider are P systems with unit
rules and energy assigned to membranes (UREM P systems, for short). In these
systems, the rules are directly assigned to membranes (and not to the regions, as
it is usually done in membrane computing). Every membrane carries an energy
value that can be changed during a computation by objects passing through the
membrane. Also in this case, rules are applied in the sequential way. The input, as
well as the result of a successful computation, are considered to be the distribu-
tions of energy values carried by the membranes in the initial and in the halting

62 G. Mauri, A. Leporati, C. Zandron

configuration, respectively. We show that UREM P systems using a sort of local
priority relation on the rules are Turing–complete. On the contrary, by omitting
the priority relation we obtain a characterization of PsMATλ, the family of Parikh
sets generated by context–free matrix grammars (with λ-rules and without occur-
rence checking). Alternatively, we can obtain Turing–completeness without using
priorities, by applying rules in the maximally parallel mode.

The paper is organized as follows. In section 2 we recall the definition of three
computational models that will be used throughout the paper, to study the com-
putational power of energy–based and UREM P systems: register machines, vector
addition systems, and Fredkin circuits. In sections 3 and 4 we review the compu-
tational power of energy–based and of UREM P systems, respectively. Section 5
concludes the paper and gives some directions for further research.

2 Preliminaries

In the following subsections we briefly recall the definition of three computational
models that will be used in the rest of the paper to study the computational power
of UREM and energy–based P systems.

2.1 Deterministic register machines

A deterministic n–register machine is a construct M = (n, P, m), where n > 0
is the number of registers, P is a finite sequence of instructions (program) bijec-
tively labelled with the elements of the set {1, 2, . . . , m}, 1 is the label of the first
instruction to be executed, and m is the label of the last instruction of P . Regis-
ters contain non–negative integer values. The instructions of P have the following
forms:

• j : (INC(r), k), with j, k ∈ {1, 2, . . . , m} and r ∈ {1, 2, . . . , n}
This instruction, labelled with j, increments (by 1) the value contained in
register r, and then jumps to instruction k.

• j : (DEC(r), k, l), with j, k, l ∈ {1, 2, . . . , m} and r ∈ {1, 2, . . . , n}
If the value contained in register r is positive, then decrement it (by 1) and
jump to instruction k. If the value of r is zero, then jump to instruction l
(without altering the contents of the register).

• m : HALT
Stop the execution of the program. Note that, without loss of generality, we
may assume that this instruction always appears exactly once in P , with label
m.

Computations start by executing the first instruction of P (labelled with 1), and
terminate when they reach instruction m. Register machines provide a simple
universal computational model [12]. In particular, the results proved in [5] imme-
diately lead to the following proposition.

Energy-based Models of P Systems 63

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β} + 2)–register machine M computing f in such a way
that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed
f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label m with registers 1 to β
containing r1 to rβ, and all other registers being empty. If the final label cannot be
reached, then f(n1, . . . , nα) remains undefined.

2.2 Vector addition systems

Vector addition systems were introduced in [7] as a mathematical tool for analyzing
systems of parallel processes. It is known that they are not Turing–complete, as
they are equivalent to self–loop–free Petri nets [16]. Formally, a vector addition
system (VAS, for short) is a pair V = (B, s), where B = {b1, b2, . . . , bm} is a set
of m vectors, called basis or displacement vectors, and s is the start vector. All
vectors consist of n integer values. The elements of s are non–negative (in what
follows, we denote this as s ≥ 0). The reachability set R(V) for a VAS V is the
smallest set of vectors such that: (1) s ∈ R(V), and (2) if x ∈ R(V), bj ∈ B and
x+bj ≥ 0, then x+bj ∈ R(V). By considering a subset of β ≥ 1 components as the
output places, we can generate a set of vectors of β components by means of a VAS
as follows. The VAS is started in the initial configuration. At each computation
step the VAS, being in a configuration described by a vector x ∈ R(V), chooses
in a nondeterministic way a basis vector bj ∈ B such that x + bj ≥ 0 and goes
to the resulting configuration x + bj . The computation halts when no basis vector
bj satisfies the condition x + bj ≥ 0, for the current configuration x. In such a
case, the values occurring at the output places of x constitute the output of the
computation. Non–halting computations produce no output.

2.3 Fredkin gates and circuits

The Fredkin gate is a three–input/three–output boolean gate, whose input/output
map FG : {0, 1}3 → {0, 1}3 is logically reversible (that is, its inputs can always
be deduced from its outputs) and preserves the number of 1’s given as input. The
map FG associates any input triple (αi, βi, γi) with its corresponding output triple
(αo, βo, γo) according to the following relations: αo = αi, βo = (¬αi∧βi)∨(αi∧γi),
γo = (αi ∧ βi) ∨ (¬αi ∧ γi) (see the truth table in Figure 1). It is worth noting
that the Fredkin gate behaves as a conditional switch, since αi can be considered
as a control line whose value determines whether the input values βi and γi have
to be exchanged or not: FG(1, βi, γi) = (1, γi, βi) and FG(0, βi, γi) = (0, βi, γi) for
every βi, γi ∈ {0, 1}.

The Fredkin gate is functionally complete for boolean logic: by fixing γi = 0
we obtain γo = αi ∧ βi, whereas by fixing βi = 1 and γi = 0 we obtain βo = ¬αi.
By inspecting the truth table, we can see that the Fredkin gate is also logically
reversible, since the map FG is a bijection on {0, 1}3. Moreover, it is conservative:
for every input/output pair the number of 1’s in the input triple is the same as the

64 G. Mauri, A. Leporati, C. Zandron

αi βi γi 7→ αo βo γo

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Fig. 1. The Fredkin gate: its behavior as a conditional switch (left) and its truth table
(right)

number of 1’s in the output triple. In other words, the output triple is obtained
by applying an appropriate (input–dependent) permutation to the input triple.

The Fredkin gate is the basis of the model of conservative logic introduced in
[2], which describes computations by considering some notable properties of micro-
dynamical laws of physics, such as reversibility and the conservation of the inter-
nal energy of the physical system by which computations are performed. Within
that model, computations are performed by reversible Fredkin circuits, which are
acyclic and connected directed graphs made up of layers of Fredkin gates. Figure
2 depicts an example of Fredkin circuit having three gates arranged in two layers.
The evaluation of a Fredkin circuit in topological order (i.e. layer by layer) defines

x

x

x

x

2

3

4

5

x1 y1

y2

y3

y4

y5

FG x

x

x

x

2

3

4

5

x1

x6

x7

FG

FG

y6

y7

FG

FG

y1

y2

y3

y4

y5

FG

x6

x7

y6

y7

Fig. 2. A reversible Fredkin circuit (on the left) and its normalized version

the boolean function computed by the circuit, which is obtained as the composi-
tion of the functions computed by each layer. The conservativeness of the circuit
(preservation of the number of 1’s) is equivalent to the requirement that the output
n-tuple is obtained by applying an appropriate (input–dependent) permutation to
the corresponding input n-tuple.

A reversible n–input Fredkin circuit is a Fredkin circuit FCn which computes
a bijective map fFCn : {0, 1}n → {0, 1}n. Note that the function computed by
a reversible Fredkin circuit is also conservative: in fact, every layer of FCn is

Energy-based Models of P Systems 65

composed by Fredkin gates, which are conservative, and by wires, which obviously
preserve the number of 1’s given as input.

3 Energy–based P systems

In this section we consider energy–based P systems [11, 10], a model of mem-
brane systems whose computations occur by manipulating the energy associated
to the objects, as well as the free energy units occurring inside the regions of the
system. These energy units can be used to transform objects, using appropriate
rules, which are defined according to conservativeness considerations. Formally,
an energy–based P system of degree m ≥ 1, as defined in [10], is a construct
Π = (A, ε, µ, e, w1, . . . , wm, R1, . . . , Rm, iin, iout) where:

• A is an alphabet; its elements are called objects;
• ε : A → N is a mapping that associates to each object a ∈ A the value ε(a) (also

denoted by εa), which can be viewed as the “energy value of a”. If ε(a) = `,
we also say that object a embeds ` units of energy;

• µ is a hierarchical membrane structure consisting of m membranes, each la-
belled in a unique way with a number in the set {1, . . . , m};

• e 6∈ A is a special symbol that denotes one free energy unit, that is, one unit
of energy which is not embedded into any object;

• wi, with i ∈ {1, . . . , m}, specifies the multiset (over A∪{e}) of objects initially
present in region i. In what follows we will sometimes assume that the number
of e’s in some regions of the system is unbounded. In any case, the number of
objects from A will always be bounded;

• Ri, with i ∈ {1, . . . , m}, is a finite set of multiset rewriting rules over A ∪ {e}
associated with region i. Rules can be of the following types:

aek → (b, p) , a → (b, p)ek , e → (e, p) , a → (b, p)

where a, b ∈ A, p ∈ {here, in(name), out} and k is a non negative integer.
Rules satisfy the conservativeness condition, whereby the sum of all (free and
embedded) energy values appearing in the left hand side of each rule equals
the sum of all (free and embedded) energy values in the corresponding right
hand side;

• iin is an integer between 1 and m and specifies the input membrane of Π;
• iout is an integer between 0 and m and specifies the output membrane of Π. If

iout = 0 then the environment is used for the output, that is, the output value
is the multiset of objects over A ∪ {e} ejected from the skin.

When a rule of the type aek → (b, p) is applied, the object a, in presence of k
free energy units, is allowed to be transformed into object b (note that εa +k = εb,
for the conservativeness condition). If p = here, then the new object b remains in
the same region; if p = out, then b exits from the current membrane. Finally, if
p = in(name), then b enters into the membrane labelled with name, which must

66 G. Mauri, A. Leporati, C. Zandron

be directly contained inside the current membrane in the membrane hierarchy.
The meaning of rule a → (b, p)ek, where k is a positive integer number, is similar:
the object a is allowed to be transformed into object b by releasing k units of free
energy (here, εa = εb + k). As above, the new object b may optionally move one
level up or down into the membrane structure. The k free energy units might then
be used by another rule to produce “more energetic” objects from “less energetic”
ones. When k = 0 the rule aek → (b, p), also written as a → (b, p), transforms the
object a into the object b (note that in this case εb = εa) and moves it (if p 6= here)
upward or downward into the membrane hierarchy, without acquiring or releasing
any free energy unit. Analogously, rules e → (e, p) simply move (if p 6= here) one
unit of free energy upward or downward into the membrane structure.

An important observation concerns the application of rules. In the original
definition of energy–based P systems, given in [11], the rules were applied in the
maximally parallel way, as it usually happens in membrane systems. In the next
section we will assume instead that the rules are applied in the sequential manner:
at each computation step (a global clock is assumed), exactly one among the
enabled rules is nondeterministically chosen and applied in the system. We will
return to the maximally parallel mode of application in the subsequent section,
where we will simulate Fredkin gates and circuits.

A configuration of Π is the tuple (M1, . . . , Mm) of multisets (over A ∪ {e}) of
objects contained in each region of the system; (w1, . . . , wm) is the initial config-
uration. A configuration where no rule can be further applied is said to be final.
A computation is a sequence of transitions between configurations of Π, starting
from the initial one. A computation is successful if and only if it reaches a final
configuration or, in other words, it halts. The multiset wiin of objects occurring
inside the input membrane is the input for the computation, whereas the multi-
set of objects occurring inside the output membrane (or ejected from the skin, if
iout = 0) in the final configuration is the output of the computation. A non–halting
computation produces no output. As an alternative, we can consider the Parikh
vectors associated with the multisets, and see energy–based P systems as com-
puting devices that transform (input) Parikh vectors to (output) Parikh vectors.
Optionally, we can disregard the number of free energy units that occur in the
input and in the output region of the system, when defining the input and the
output multisets (or Parikh vectors).

Since energy is an additive quantity, it is natural to define the energy of a
multiset as the sum of the amounts of energy associated to each instance of the
objects which occur into the multiset. Similarly, the energy of a configuration is
the sum of the amounts of energy associated to each multiset which occurs into
the configuration. A conservative computation is a computation where each con-
figuration has the same amount of energy. A conservative energy–based P system
is an energy–based P system that performs only conservative computations.

In what follows we will sometimes consider a slightly modified version of
energy–based P systems as defined above, in which there are α ≥ 1 input mem-
branes and β ≥ 1 output membranes. As it will become clear in the following,

Energy-based Models of P Systems 67

this modification does not increase the computational power of energy–based P
systems; this is due to the fact that, for any fixed value of α ≥ 1 (resp., β ≥ 1),
the set Nα (resp., Nβ) is isomorphic to N, as it is easily shown by using the Can-
tor mapping. Sometimes we will also use energy–based P systems as generating
devices: we will disregard the input membrane, and will consider the multisets
(or Parikh vectors) produced in the output membrane at the end of the (halting)
nondeterministic computations of the system.

3.1 Computational power

In this section we recall some results, taken from [8], concerning the computational
power of energy–based P systems.

Let Π be an energy–based P system as formally defined above. First of all
we observe that if we assume that the number of free energy units is bounded
in each region of Π, then only a finite number of distinct configurations can be
obtained, starting from the initial configuration. In fact, each object of Π can only
be transformed into another object (it can never be created or destroyed), and
possibly moved to another region, according to the rules listed in the definition
of the system. In the “worst” case, every object can be transformed into any
other object, and can be sent to any region of Π; however, also in this case the
number of possible combinations is finite, and thus we obtain a finite number of
configurations. By associating a state to each possible configuration of Π, it is not
difficult to see that bounded energy–based P systems can be simulated by finite
state automata: an arc of the state diagram connects two vertices u and v if and
only if the configuration of Π that corresponds to v can be obtained in one step
(that is, by applying one rule) from the configuration that corresponds to u.

In order to compare the computational power of energy–based P systems with
that of Turing machines, from now on we assume that, in the initial configuration,
some regions of the system contain an unlimited number of free energy units.
Moreover, we define the following local priorities associated to the rules of the
system: in each region, if two or more rules can be applied at a given computation
step, then one of the rules that manipulate the maximum amount of free energy
units is nondeterministically chosen and applied. Clearly, even if we impose this
policy on energy–based P systems that have a bounded amount of free energy
units in each region, we cannot go beyond the computational power of finite state
automata.

Assuming an infinite amount of free energy units in the initial configuration,
energy–based P systems with priorities assigned to the rules are universal, as stated
in the following theorem.

Theorem 1. Every partial recursive function f : Nα → Nβ can be computed by an
energy–based P system with an infinite supply of free energy units and priorities
assigned to rules, with (at most) max{α, β}+ 3 membranes.

68 G. Mauri, A. Leporati, C. Zandron

Proof. We prove this proposition by simulating deterministic register machines.
Let M = (n, P, m) be a deterministic n–register machine that computes f . Observe
that, according to Proposition 1, n = max{α, β}+ 2 is enough.

The input values x1, . . . , xα are expected to be in the first α registers of
M , and the output values are expected to be in registers 1 to β at the end
of a successful computation. Moreover, without loss of generality, we may as-
sume that at the beginning of a computation all registers except (possibly)
registers 1 to α contain zero. We construct the energy–based P system Π =
(A, ε, µ, e, ws, w1, . . . , wn, Rs, R1, . . . , Rn) where:

• A = {pj : j ∈ {1, 2, . . . ,m}} ∪ {p̃j : j ∈ {1, 2, . . . , m− 1} and j is the label of
an INC instruction} ∪ {p′j : j ∈ {1, 2, . . . ,m− 1} and j is the label of a DEC
instruction};

• ε : A → N is defined as follows:
– ε(pj) = 2 for all j ∈ {1, 2, . . . ,m};
– ε(p̃j) = 1 for all j ∈ {1, 2, . . . ,m − 1} such that j is the label of an INC

instruction;
– ε(p′j) = 3 for all j ∈ {1, 2, . . . ,m − 1} such that j is the label of a DEC

instruction;
• µ = [s[1]1 · · · [α]α · · · [n]n]s (note that label s denotes the skin membrane);
• ws = {p1}, plus an infinite supply of free energy units;

• wi =

{
{exi} if 1 ≤ i ≤ α

∅ if α + 1 ≤ i ≤ n

• Rs = {pj → (pj , in(r)) : j ∈ {1, 2, . . . , m − 1} and the j-th instruction of P
operates on register r} ∪ {p̃je → (p`, here) : j ∈ {1, 2, . . . , m− 1} and j is the
label of an INC instruction that jumps to label `}∪ {p′j → (p`1 , here)e : j ∈
{1, 2, . . . ,m−1} and j is the label of a DEC instruction whose first jump label
is `1};

• Ri = {pj → (p̃j , out)e : j ∈ {1, 2, . . . , m − 1} and j is the label of an INC
instruction that affects register i}∪ {pje → (p′j , out) : j ∈ {1, 2, . . . , m−1} and
j is the label of a DEC instruction that affects register i}∪ {pj → (p`2 , out) :
j ∈ {1, 2, . . . , m−1} and j is the label of a DEC instruction that affects register
i and whose second jump label is `2}, for all i ∈ {1, 2, . . . , n}.
Informally, the system is composed of the skin membrane, that contains one

elementary membrane for each register of M . At each moment during the com-
putation, the value ri contained in register i, 1 ≤ i ≤ n, is represented by the
number of free energy units contained in the i-th elementary membrane. Hence,
the elementary membranes from 1 to α contain the input at the beginning of the
computation, whereas the elementary membranes from 1 to β contain the output
if and when the computation halts. The region enclosed by the skin contains one
object of the kind pj , j ∈ {1, 2, . . . ,m}, which represents the value j (that is,
the instruction labelled with j) of the program counter of M . To simulate the
instruction j : (INC(r), `), the object pj enters into the region r thanks to the
rule pj → (pj , in(r)). In this region, pj is transformed into p̃j by means of the

Energy-based Models of P Systems 69

rule pj → (p̃j , out)e, thus releasing one free energy unit, while the resulting ob-
ject p̃j is sent back to the region enclosed by the skin. There, a rule of the kind
p̃je → (p`, here) produces the object which represents the label of the next in-
struction to be executed. As we can see, the application of this rule requires the
presence of a free energy unit in the region enclosed by the skin.

To simulate the instruction j : (DEC(r), `1, `2), the object pj , which occurs
in the region enclosed by the skin, enters into region r by means of the rule
pj → (pj , in(r)). Assuming that there is at least one free energy unit inside region
r, the object pj can be transformed into p′j thanks to the rule pje → (p′j , out).
One free energy unit is thus consumed in region r, and the resulting object is sent
back to the region enclosed by the skin. There, it is transformed into p`1 thanks
to the rule p′j → (p`1 , here)e, by releasing one unit of free energy. On the other
hand, if membrane r does not contain free energy units (and only in this case)
then object pj – just arrived from the region enclosed by the skin – is transformed
into p`2 by means of the rule: pj → (p`2 , out). In this case no free energy units
are involved in the transformation, and the resulting object is immediately sent
to the region enclosed by the skin. Note that the correct simulation of the DEC
instruction is guaranteed by the priorities associated with the rules: when object
pj enters into membrane r, then the rule pje → (p′j , out) has priority over the rule
pj → (p`2 , out), since it manipulates more free energy units than the other.

The halt instruction is simply simulated by doing nothing with the object pm

when it appears in region s. It is apparent from the description given above that,
after the simulation of each instruction, the number of free energy units contained
into membrane i equals the value contained in register i, with 1 ≤ i ≤ n. Hence,
when the halting symbol pm appears in region s, the contents of membranes 1 to
β equal the output of the program P . ut

The following corollary is an immediate consequence of Theorem 1, by taking
β = 0.

Corollary 1. Let L ⊆ Nα, α ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be accepted by an energy–based P system with
an infinite supply of free energy units and priorities assigned to rules, with (at
most) α + 3 membranes.

For the generating case we have to simulate nondeterministic register machines,
which are defined exactly as the deterministic version, the only difference being in
the INC instruction, that now has the form j : (INC(r), k, `); when executing this
instruction, after incrementing register r, the computation continues nondetermin-
istically either with the instruction labelled by k or with the instruction labelled
by `. The necessary changes in the above simulation are obvious, and hence are
here omitted. Under this setting, the following corollary is also an immediate con-
sequence of Theorem 1, by taking α = 0.

Corollary 2. Let L ⊆ Nβ, β ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be generated by an energy–based P system with

70 G. Mauri, A. Leporati, C. Zandron

an infinite supply of free energy units and priorities assigned to rules, with (at
most) β + 3 membranes.

On the other hand, if we assume that an infinite amount of free energy units
occurs in the initial configuration but no priorities are assigned to the rules, then
energy–based P systems are not universal, as proved in the following theorem.

Theorem 2. Energy–based P systems with an infinite supply of free energy units,
and without priorities assigned to the rules, can be simulated by vector addition
systems.

Proof. Let Π be an energy–based P system that contains an infinite supply of free
energy units in its initial configuration. Denoted by m the degree of Π, by n the
cardinality of the alphabet A, and by R the total number of rules in Π, we define
a vector addition system V = (B, s), with B = {b1, b2, . . . , bR}, as follows. The
vectors s, b1, b2, . . . , bR have one component for each possible object/region pair
(a, i) of Π, that is, for all a ∈ A∪{e} and i ∈ {1, 2, . . . , m} (note that here we treat
e just like the objects of A). The start vector s reflects the initial configuration of
Π: for all a ∈ A ∪ {e} and for all i ∈ {1, 2, . . . , m}, the component of s associated
with the pair (a, i) is set to the number of copies of a in the i-th region of Π.
The only exception is given for those regions of Π where an infinite number of
free energy units occur: the corresponding components of s are initialized with E,
which is defined as the maximum number of free energy units which are necessary
to execute any rule of Π (formally, E = max{k | aek → (b, p) is a rule of Π}). So
doing, we are able to initialize every component of s with a finite value.

Each rule of the kind aek → (b, p) ∈ Ri is translated into a basis vector
bl ∈ B, l ∈ {1, . . . , R}, as follows: since one copy of a and k copies of e are
removed from region i, the component of bl that corresponds to the pair (a, i)
will be equal to −1, and the component that corresponds to (e, i) will be equal
to −k. Similarly, denoted by j the region determined by the target p, since one
copy of b will be sent to region j, the corresponding component of bl will be
equal to 1. Rules of the kind a → (b, p)ek, as well as rules of the kind a → (b, p)
and e → (e, p), are translated into appropriate basis vectors in a similar way. An
important observation is that each component of the basis vectors that corresponds
to a pair (e, i), such that region i of Π contains an infinite supply of free energy
units in its initial configuration, is set equal to E. So doing, at each computation
step E copies of e are added to those components of the VAS which correspond
to the regions of Π that contain an infinite amount of e. Thus, at the beginning
of the next computation step, such components have a value which is finite but
sufficiently high to simulate any rule of Π.

It is clear that any feasible sequential computation of Π corresponds to a
sequence of applications of basis vectors of V , and that for each pair (a, i), with
a ∈ A∪ {e} and i ∈ {1, 2, . . . , m}, the number of copies of object a in the region i
of Π after the application of a rule matches the value of the component of the state
vector that corresponds to (a, i), with the exception of the pairs (e, i) for those
regions i of Π that contain an infinite number of free energy units in the initial

Energy-based Models of P Systems 71

FG

[0,1]
ID

ID
[b,2] [b,2]

[0,1]

ID

EXC

[b,3] [b,3]

[b,3] [b,3]

[b’,1]ee [b,1] out

[b’,2] e[b,2] out

oute[b,3][b’,3]

[1,1] [1,1]
EXC

EXC
[b,2] [b,2]

EXC

ID

[b,2]e
out

[b’,3]

[b,3]e
out

[b’,2]

[b,2] [b,2]
out

out
[b,3] [b,3]

[1,1]
out

[1’,1] ee

[b,2]e
out

[b,3]e
out

[b,2] [b,2]
out

out
[b,3] [b,3]

out
[0,1] [0’,1] ee

[b’,2]

[b’,3]

Fig. 3. An energy–based P system which simulates the Fredkin gate

configuration. However, any multiset (or its corresponding Parikh set) generated
by Π can also be generated by V by means of the above simulation. ut

3.2 Simulating the Fredkin gate

Let us now describe an energy–based P system which simulates the Fredkin gate.
The results contained in this section are taken from [11, 10]; as stated above, we
switch to the maximally parallel mode of applying the rules.

The system, illustrated in Figure 3, is defined as follows. The alphabet contains
12 kinds of objects. For the sake of clarity, we denote these objects by [b, j] and
[c, j], with b ∈ {0, 1}, c ∈ {0′, 1′} and j ∈ {1, 2, 3}. Intuitively, [b, j] and [c, j]
indicate the boolean value which occurs in the j-th line of the Fredkin gate. It
will be clear from the simulation that we need two different symbols to represent
each of these boolean values. Every object of the kind [b, j], with b ∈ {0, 1} and
j ∈ {1, 2, 3}, has energy equal to 3, whereas the objects [c, 1] have energy equal to
1 and the objects [c, 2] and [c, 3] (with c ∈ {0′, 1′}) have energies equal to 4.

The simulation works as follows. The input values [x1, 1], [x2, 2], [x3, 3], with
x1, x2, x3 ∈ {0, 1}, are injected into the skin. If x1 = 0 then the object [0, 1]
enters into membrane id, where it is transformed to the object [0′, 1] by releasing
2 units of energy. The object [0′, 1] leaves membrane id and waits for 2 energy units
to transform back to [0, 1] and leave the system. The objects [x2, 2] and [x3, 3],
with x2, x3 ∈ {0, 1}, may enter nondeterministically either into membrane id or
into membrane exc; however, if they enter into exc they cannot be transformed
to [x′2, 3] and [x′3, 2] since in exc there are no free energy units. Thus the only
possibility for objects [x2, 2] and [x3, 3] is to leave exc and choose again between
membranes id and exc in a nondeterministic way. Eventually, after some time they

72 G. Mauri, A. Leporati, C. Zandron

enter (one at the time or simultaneously) into membrane id. Here they have the
possibility to be transformed into [x′2, 2] and [x′3, 3] respectively, using the 2 units
of free energy which occur into the region enclosed by id (alternatively, they have
the possibility to leave id and choose nondeterministically between membranes
id and exc once again). When the objects [x′2, 2] and [x′3, 3] are produced they
immediately leave id, and are only allowed to transform back to [x2, 2] and [x3, 3]
respectively, releasing 2 units of energy. The objects [x2, 2] and [x3, 3] just produced
leave the system, and the 2 units of energy can only be used to transform [0′, 1]
back to [0, 1] and expel it from the skin.

On the other hand, if x1 = 1 then the object [1, 1] enters into membrane
exc where it is transformed into the object [1′, 1] by releasing 2 units of energy.
The object [1′, 1] leaves membrane exc and waits for 2 energy units to transform
back to [1, 1] and leave the system. Once again the objects [x2, 2] and [x3, 3], with
x2, x3 ∈ {0, 1}, may choose nondeterministically to enter either into membrane id
or into membrane exc. If they enter into id they can only exit again since in id
there are no free energy units. When they enter into exc they can be transformed
to [x′2, 3] and [x′3, 2] respectively, using the 2 free energy units which occur into the
region, and leave exc. Now objects [x′2, 3] and [x′3, 2] can only be transformed into
[x2, 3] and [x3, 2] respectively, and leave the system. During this transformation 2
free energy units are produced; these can only be used to transform [1′, 1] back to
[1, 1], which leaves the system.

It is apparent from the simulation that the system can be defined to work
on any triple of lines of a circuit, by simply modifying the values of the second
component of the objects manipulated by the system.

The proposed P system is conservative: the number of energy units present
into the system (both free and embedded into objects) during computations is
constantly equal to 9. At the end of the computation, all these energy units are
embedded into the output values. The system is also reversible: it is immediately
seen that if we inject into the skin the output triple just produced as the result of a
computation, the system will expel the corresponding input triple. This behavior is
trivially due to the fact that the Fredkin gate is self–reversible, meaning that fg ◦
fg = id3 (equivalently, fg = fg−1), where id3 is the identity function on {0, 1}3.
Notice that, in general, this property does not hold for the functions f : {0, 1}n →
{0, 1}n computed by n–input reversible Fredkin circuits. This means that in general
the P system that simulates a given Fredkin circuit must be appropriately designed
in order to be self–reversible.

3.3 Simulation of reversible Fredkin circuits

Basing upon the simulation of the Fredkin gate we have exposed in the previous
section, in [10] we have shown that any reversible Fredkin circuit can be simulated
by an appropriate energy–based P system. Since the construction is quite involved,
in what follows we just give a few details.

Let FCn be an n–input reversible Fredkin circuit of depth d, and let L1, L2,
. . . , Ld denote the layers of FCn. As we can see on the left side of Figure 2, each

Energy-based Models of P Systems 73

layer is composed by some number of Fredkin gates and some non–intersecting
wires. Let kj , with j ∈ {1, 2, . . . , d}, be the number of Fredkin gates occurring
in layer Lj . First of all we define the P systems Gj,i, for j ∈ {1, 2, . . . , d} and
i ∈ {1, 2, . . . , kj}, by modifying the P system FG exposed in the previous section
as follows. The objects of Gj,i are denoted by [b, `, j] and [c, `, j], with b ∈ {0, 1},
c ∈ {0′, 1′}, ` ∈ {`1, `2, `3} ⊆ {1, 2, . . . , n} such that `1 6= `2 6= `3, and j ∈
{1, 2, . . . , d}. Intuitively, Gj,i simulates the i-th Fredkin gate occurring in layer Lj

of FCn, and [b, `, j], [c, `, j] indicate the boolean value which occurs in the `-th
line of Lj . The values `1, `2 and `3 correspond to the three lines of the circuit
upon which the Fredkin gate operates. The objects [b, `, j] have energy equal to 3,
whereas the energy of objects [c, `1, j] is 1 and the energy of [c, `2, j] and [c, `3, j] is
equal to 4. The system Gj,i processes the objects [b, `, j] given as input exactly as
FC would process the corresponding objects [b, `], with the only difference that,
when it expels the results of the computation in its enviroment, it changes objects
[b, `, j] to [b, `, j + 1]. This is done in order to indicate that the simulation of FCn

can continue with the next layer.
We can now build an energy–based P system Pn which simulates FCn as

follows. To simplify the exposition, we will consider the P systems Gj,i defined
above as black boxes that, when fed with input values (represented as appropriate
objects), after some time produce their results. The objects of Pn are denoted by
[b, i, j], with b ∈ {0, 1}, i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , d+1}. The energy of all
these objects is equal to 3. As before, [b, i, j] indicates the presence of the boolean
value b on the i-th input line of the j-th layer of FCn. Note that some of these
objects are also used in subsystems Gj,i. The system Pn, illustrated in Figure 4, is
composed by a main membrane (the skin) that contains a subsystem Fj for each
layer Lj of FCn. Every subsystem Fj simulates the corresponding layer Lj of the
circuit, using the subsystems Gj,1, Gj,2, . . . , Gj,kj to simulate the Fredkin gates
which occur in Lj . The region associated to the skin membrane contains the rules:

[b, i, j] → [b, i, j]Fj (1)

and the rules:
[b, i, d + 1] → [b, i, d + 1]out (2)

for every b ∈ {0, 1}, i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. The application of rules
(1) makes the objects representing the boolean values occurring in the i-th input
line of layer Lj move into subsystem Fj , whereas rules (2) expel the result of
the simulation to the environment. The region associated to membrane Fj , for
j ∈ {1, 2, . . . , d}, contains the rules:

[b, i, j] → [b, i, j]Gj,ri
(3)

where ri ∈ {1, 2, . . . , kj} is the number of the Fredkin gate in Lj which has i as an
input line, as well as the rules:

[b, i, j + 1] → [b, i, j + 1]out (4)

74 G. Mauri, A. Leporati, C. Zandron

Pn

G

G

G

G

G
1

G1,1

1,k

F1 F2 Fd

2,1

2,k 2

d,1

d,k d

Fig. 4. Structure of the P system Pn which simulates an n–input reversible Fredkin
circuit FCn. Every subsystem Fj simulates the corresponding layer Lj of FCn, whereas
the subsystems Gj,i simulate the Fredkin gates occurring in Lj

which expel the results towards the skin membrane when they appear. For all the
objects [b, i, j] which have not to be processed by a Fredkin gate (since the i-th
line of Lj is a wire) the region enclosed by membrane Fj contains the rules:

[b, i, j] → [b, i, j + 1]out (5)

Hence, the simulation of FCn works as follows. At the beginning of the compu-
tation the objects [x1, 1, 1], [x2, 2, 1], . . . , [xn, n, 1], representing the input n-tuple
(x1, x2, . . . , xn) of FCn, are injected into the skin. The application of rules (1)
makes these objects move into subsystem F1. If a given object [b, i, 1] hasn’t to be
processed by a Fredkin gate (since the i-th line of L1 is a wire) then the correspond-
ing rule from (5) expels the object [b, i, 2] to the region enclosed by membrane F1.
On the other hand, using rules (3), the objects [b, i, 1] that must be processed by
a Fredkin gate are dispatched to the correct subsystems G1,ri . Eventually, after
some time the objects corresponding to the result of the computation performed
by each gate of L1 leave the corresponding systems G1,1, G1,2, . . . , G1,k1 , with the
third component incremented by 1. These objects are expelled from F1 using rules
(4). As objects [b, i, 2] are expelled from F1, rules (1) dispatch them to subsys-
tem F2. The simulation of FCn continues in this way until the objects [b, i, d + 1]
leave the subsystem Fd. Here they activate rules (2), that expel them into the
environment as the result of the computation performed by Pn.

Energy-based Models of P Systems 75

The formal definition of Pn can be found in [10]. Let us note that the system
is conservative, since the amount of energy units present into the system (both
free and embedded into objects) during computations is constantly equal to 3n.
The number of rules and the number of membranes in the system are directly
proportional to the number of gates in FCn. Differently from the other approaches
seen in literature, the depth of hierarchy µ in system Pn is constant; in particular,
it does not depend upon the number of gates occurring in FCn.

Reverse computations

If a Fredkin circuit FCn is reversible, then there exists a Fredkin circuit FC ′n
which computes the inverse function f−1

FCn
: {0, 1}n → {0, 1}n. This circuit can

be easily obtained from FCn by reversing the order of all layers. Actually, in
[10] we have shown that the P system Pn that simulates FCn can be modi-
fied in order to become self–reversible, that is, able to compute both fFCn

and
f−1

FCn
. To this aim, we add a further component k ∈ {0, 1} to the objects of Pn,

which is used to distinguish between “forward” and “backward” computations.
Precisely, the objects which are used to compute fFCn

have k = 0, and those
used to compute f−1

FCn
have k = 1. A forward computation starts by injecting

the objects [x1, 1, 1, 0], [x2, 2, 1, 0], . . . , [xn, n, 1, 0] into the skin of Pn. The compu-
tation proceeds as described above, with the rules modified in order to consider
the presence of the new component k = 0. The objects produced in output are
[y1, 1, d + 1, 0], . . . , [yn, n, d + 1, 0], where (y1, . . . , yn) = fFCn(x1, . . . , xn).

Analogously, a “backward” computation should start by injecting the objects
[y1, 1, 1, 1], [y2, 2, 1, 1], . . . , [yn, n, 1, 1] into the skin. The computation of f−1

FCn
can

be accomplished by incorporating the rules of the region enclosed by the skin and
the subsystems of P ′n (both modified in order to take into account the presence
of the new component k = 1) into Pn. Interferences between the rules concerning
forward and backward computations do not occur since they act on different kinds
of objects.

A further improvement is obtained by observing that each layer of FCn is
self–reversible, and that the layers of FC ′n are the same as the layers of FCn,
in reverse order. Hence we can merge each subsystem Fj , which simulates layer
Lj of FCn, with the subsystem F ′d−j+1, which simulates layer L′d−j+1 of FC ′n.
The merge operation consists in putting the rules and the subsystems of F ′d−j+1

into Fj . Of course we have also to modify the rules in the region enclosed by the
skin so that the objects that were previously moved to F ′d−j+1 are now dispatched
to Fj . Recursively, since each Fredkin gate is self–reversible, we can merge also
subsystems Gj,1, . . . , Gj,kj occurring into Fj with the corresponding subsystems
G′d−j+1,1, . . . , G

′
d−j+1,kj

which occur into F ′d−j+1. In this way, we obtain a self–
reversible P system which is able to compute both fFCn and f−1

FCn
. The new system

has the same number of membranes as Pn, and the double of rules.

76 G. Mauri, A. Leporati, C. Zandron

Reducing the number of subsystems

As we have seen in the previous sections, the number of membranes and the
number of rules of the P system Pn that simulates the reversible Fredkin circuit
FCn grow linearly with respect to the number of gates occurring in the circuit.
Actually, the number of membranes in Pn can be made linear with respect to n,
independently of the number of gates occurring in the simulated Fredkin circuit
FCn. To compensate the reduced number of membranes, the number of rules
in the system will grow accordingly. For the sake of simplicity, let us consider
only forward computations, involving objects of the kind [b, i, j], with b ∈ {0, 1},
i ∈ {1, . . . , n} and j ∈ {1, . . . , d + 1}.

First of all, every n–input reversible Fredkin circuit FCn can be “normalized”
by moving the Fredkin gates contained into each layer as upward as possible, as
illustrated on the right side of Figure 2. The resulting layers are called normalized
layers. In order to keep track of which input value goes into which gate, we pre-
cede each normalized layer by a fixed (that is, non input–dependent) permutation,
which is realized by rearranging the wires as required. A final fixed permutation,
occurring after the last normalized layer, allows the output values of FCn to appear
on the correct output lines. Observe that the number of possible n–input normal-
ized layers of Fredkin gates is bn

3 c. We can thus number all possible normalized
layers with an index ` ∈ {1, . . . , bn

3 c}, and describe a normalized Fredkin circuit
by a sequence of indexes `1, `2, . . . , `d together with a corresponding sequence of
fixed permutations π1, π2, . . . , πd+1.

The normalization of every layer Lj of FCn can be performed in linear time
with respect to n, as described in [10]. The time needed to normalize the entire
circuit is thus bounded by O(n · d), the size of the circuit.

An energy–based P system that simulates a normalized Fredkin circuit can be
built by composing (at most) the bn

3 c subsystems F1, . . ., Fbn/3c, each one capable
to simulate a fixed normalized layer of Fredkin gates. The region enclosed by the
skin contains the rules [b, i, j] → [b, πj(i), j]F`j

for all b ∈ {0, 1}, i ∈ {1, . . . , n}
and j ∈ {1, . . . , d}, as well as the rules [b, i, d + 1] → [b, πd+1(i), d + 1]out. These
rules implement the fixed permutations, move the objects to the subsystem that
simulates the next normalized layer, and expel the results of the computation
into the environment. The simulation of each normalized layer is analogous to the
simulation of the layers of a non–normalized Fredkin circuit, as described above.
Note that the objects emerge from subsystems F1, . . . , Fbn/3c with the j component
incremented by 1, so that they are ready for the next computation step. If the same
normalized layer occurs in two or more positions in the normalized Fredkin circuit,
then the corresponding subsystem must contain the rules which allow to process
all the objects which appear in these positions.

A further transformation of the Fredkin circuit allows to perform the simula-
tion with just one subsystem. Starting from a normalized n–input Fredkin circuit
NFCn, we transform each normalized layer so that in the resulting circuit ev-
ery layer contains the same number of gates. Figure 5 shows the result of this
transformation, applied to the normalized Fredkin circuit illustrated in Figure 2.

Energy-based Models of P Systems 77

Informally, the transformation is performed as follows. Considering one normal-

x

x

x

x

2

3

4

5

x1

FG

FG

y1

y2

y3

y4

y5

FG

x6

x7

y6

0

0

FG
(aux)

FG
(aux)

FG
(aux)

y7

0

0

Fig. 5. A normalized Fredkin circuit with auxiliary lines and gates. The number of gates
is the same in each layer

ized layer at a time, we first add a number of auxiliary lines, fed with the boolean
constant 0. The number of auxiliary lines added depends upon the number of free
lines (that is, lines not affected by any gate) in the given layer. As a result, the
total number of lines is a multiple of 3. We can thus add an appropriate number
of auxiliary Fredkin gates (denoted by “FG (aux)” in Figure 5) to the layer, each
one taking an auxiliary line as its first input, so that every auxiliary gate com-
putes the identity function. At the end of this process, we add (if needed) to each
layer further auxiliary lines, in order to obtain the same number of input/output
lines for all the layers. Since the auxiliary lines have been added at the bottom
of the circuit, we have to permute them together with the original free lines to
feed them correctly to the transformed layer. The details can be found in [10].
The energy–based P system that simulates a transformed Fredkin circuit is the
same as described in the previous section, but now it contains only the subsystem
which simulates a full layer of Fredkin gates. If desired, also the membrane which
encloses such subsystem can be removed, thus lowering the depth of the membrane
hierarchy by 1. The new system has again bn/3c subsystems, each one simulating
a Fredkin gate. Of course, the rules in the skin must be modified so that they
dispatch the objects directly to the correct subsystem.

4 UREM P Systems

Let us now consider UREM P systems [4], that is, P systems with unit rules and
energy assigned to membranes. A UREM P system of degree d + 1 is a construct
Π of the form Π = (A,µ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd), where:

• A is an alphabet of objects;

78 G. Mauri, A. Leporati, C. Zandron

• µ is a membrane structure, with the membranes labelled by numbers 0, . . . , d
in a one-to-one manner;

• e0, . . . , ed are the initial energy values assigned to the membranes 0, . . . , d. In
what follows we assume that e0, . . . , ed are non–negative integers;

• w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of µ;
• R0, . . . , Rd are finite sets of unit rules associated with the membranes 0, . . . , d.

Each rule or Ri has the form (αi : a,∆e, b), where α ∈ {in, out}, a, b ∈ A,
and |∆e| is the amount of energy that — for ∆e ≥ 0 — is added to or — for
∆e < 0 — is subtracted from ei (the energy assigned to membrane i) by the
application of the rule.

The initial configuration of Π consists of e0, . . . , ed and w0, . . . , wd. The tran-
sition from a configuration to another one is performed by nondeterministically
choosing one rule from some Ri and applying it (hence we consider the sequen-
tial mode of applying the rules). Applying (ini : a,∆e, b) means that an object a
(being in the membrane immediately outside of i) is changed into b while entering
membrane i, thereby changing the energy value ei of membrane i by ∆e. On the
other hand, the application of a rule (outi : a, ∆e, b) changes object a into b while
leaving membrane i, and changes the energy value ei by ∆e. The rules can be
applied only if the amount ei of energy assigned to membrane i fulfills the require-
ment ei + ∆e ≥ 0. Moreover, we use a sort of local priorities: if there are two or
more applicable rules in membrane i, then one of the rules with max |∆e| has to
be used.

A sequence of transitions is called a computation; it is successful if and only if
it halts. The result of a successful computation is considered to be the distribution
of energies among the membranes in the halting configuration. A non–halting
computation does not produce a result. If we consider the energy distribution
of the membrane structure as the input to be analysed, we obtain a model for
accepting sets of (vectors of) non–negative integers.

4.1 Computational power

The following result, proved in [4], establishes computational completeness for this
model of P systems.

Theorem 3. Every partial recursive function f : Nα → Nβ (α ≥ 1, β ≥ 1) can be
computed by a UREM P system with (at most) max{α, β}+ 3 membranes.

As in the case of energy–based P systems, the proof of this proposition is
obtained by simulating register machines. In the simulation, a P system is defined
which contains one subsystem for each register of the simulated machine. The
contents of the register are expressed as the energy value ei assigned to the i-th
subsystem. A single object is present in the system at every computation step,
which stores the label of the instruction of the program P currently simulated.
Increment instructions are simulated in two steps by using the rules (ini : pj , 1, p̃j)
and (outi : p̃j , 0, pk). Decrement instructions are also simulated in two steps, by

Energy-based Models of P Systems 79

using the rules (ini : pj , 0, p̃j) and (outi : p̃j ,−1, pk) or (outi : p̃j , 0, pl). The use of
priorities associated to these last rules is crucial to correctly simulate a decrement
instruction. For the details of the proof we refer the reader to [4].

When taking β = 0 in the proof of the above proposition, we get the accepting
variant of P systems with unit rules and energy assigned to membranes:

Corollary 3. Let L ⊆ Nα, α ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be accepted by a UREM P system having (at
most) α + 3 membranes.

The above results were obtained by simulating deterministic register machines
by means of deterministic UREM P systems, where at each step only one rule
is enabled and can be applied. As we did with energy–based P systems, for the
generative case we have to pass to a nondeterministic choice of rules, and simulate
nondeterministic register machines. Under this setting, the following corollary is
also a simple consequence of Theorem 3, by taking α = 0. As a technical detail
we mention that the nondeterministic INC instruction j : (INC(i), k, `) is sim-
ulated in two steps by using the rules (ini : pj , 1, p̃j) and then (outi : p̃j , 0, pk) or
(outi : p̃j , 0, p`).

Corollary 4. Let L ⊆ Nβ, β ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be generated by a UREM P system having (at
most) β + 3 membranes.

Once again, when omitting the priority feature we do not get systems with
universal computational power. This time, however, we obtain a characterization
of the family PsMATλ of Parikh sets generated by context–free matrix grammars,
without occurrence checking and with λ-rules. The proof is quite involved, and
hence we refer the reader to [4, 10].

However, even without the priority feature UREM P systems can obtain uni-
versal computational power, provided that their rules are applied in the maximally
parallel mode instead of the sequential mode:

Theorem 4. Each partial recursive function f : Nα → Nβ (α ≥ 1, β ≥ 1) can be
computed by a UREM P system with (at most) max{α, β} + 4 membranes when
working in the maximally parallel mode without priorities on the rules.

Once again, the proof is obtained by simulating register machines. This time,
however, the simulation is more complicated, and requires the use of an auxiliary
membrane which is used as a “pacemaker” to drive the correct simulation of INC
and DEC instructions. We refer the reader to [10] for the details.

The following results are immediate consequences of Theorem 4 as Corollaries
3 and 4 were immediate consequences of Theorem 3:

Corollary 5. Let L ⊆ Nα, α ≥ 1, be a recursively enumerable set of (vectors
of) non–negative integers. Then L can be accepted by a UREM P system with (at
most) α + 4 membranes in the maximally parallel mode without priorities on the
rules.

80 G. Mauri, A. Leporati, C. Zandron

Corollary 6. Let L ⊆ Nβ, β ≥ 1, be a recursively enumerable set of (vectors of)
non–negative integers. Then L can be generated by a UREM P system with (at
most) β + 4 membranes in the maximally parallel mode without priorities on the
rules.

5 Conclusions

In this paper we have reviewed some results obtained in the last few years, con-
cerning the computational power of two models of computation defined in the
framework of membrane computing: energy–based P systems and UREM P sys-
tems. Such models are inspired from the functioning of some physical laws, that
consider the computation devices as physical objects that manipulate energy dur-
ing their computations.

We believe that these P systems have the potential to generate further stim-
ulating research. Two spin–offs of UREM P systems we have not mentioned in
this paper are tissue–like UREM P systems, whose study has begun in [10], and
quantum–like UREM P systems, introduced in [9]. A tissue–like version of energy–
based P systems is missing, as well as a comparison with other models of P systems
that use energy in their computation steps (such as [15, 3, 6]).

References

1. A. Alhazov, R. Freund, A. Leporati, M. Oswald, C. Zandron. (Tissue) P Systems
with Unit Rules and Energy Assigned to Membranes. Fundamenta Informaticae,
74:391–408, 2006.

2. E. Fredkin, T. Toffoli. Conservative Logic. International Journal of Theoretical
Physics, 21(3-4):219–253, 1982.

3. R. Freund. Energy–Controlled P Systems. In Membrane Computing, Proceedings of
the International Workshop WMC–CdeA 2002, LNCS 2597, Springer–Verlag, Berlin,
2003, 247–260.

4. R. Freund, A. Leporati, M. Oswald, C. Zandron. Sequential P Systems with Unit
Rules and Energy Assigned to Membranes. In Machines, Computations and Univer-
sality (MCU 2004), Saint–Petersburg, Russia, September 21–24, 2004, LNCS 3354,
Spriger–Verlag, Berlin, 2005, pp. 200–210.

5. R. Freund, M. Oswald. GP Systems with Forbidding Context. Fundamenta Infor-
maticae, 49(1-3):81–102, 2002.

6. P. Frisco. The Conformon–P System: a Molecular and Cell Biology–inspired Com-
putability Model. Theoretical Computer Science, 312:295–319, 2004.

7. R. Karp, R. Miller. Parallel Program Schemata. Journal of Computer and System
Science, 3(4):167–195, 1969. Also RC2053, IBM T.J. Watson Research Center, New
York, April 1968.

8. A. Leporati, D. Besozzi, P. Cazzaniga, D. Pescini, C. Ferretti. Computing with En-
ergy and Chemical Reactions. Natural Computing, to appear.

Energy-based Models of P Systems 81

9. A. Leporati, G. Mauri, C. Zandron. Quantum Sequential P Systems with Unit Rules
and Energy Assigned to Membranes. In Membrane Computing: 6th International
Workshop (WMC 2005), Vienna, Austria, July 18–21, 2005, LNCS 3850, Springer–
Verlag, Berlin, 2006, pp. 310–325.

10. A. Leporati, C. Zandron, G. Mauri. Reversible P Systems to Simulate Fredkin Cir-
cuits. Fundamenta Informaticae, 74:529548, 2006.

11. A. Leporati, C. Zandron, G. Mauri. Simulating the Fredkin Gate with Energy-based
P Systems. Journal of Universal Computer Science, 10(5):600–619, 2004.

12. M.L. Minsky. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

13. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000. See also Turku Centre for Computer Science – TUCS Report
No. 208, 1998.

14. Gh. Păun: Membrane computing. An introduction. Springer-Verlag, Berlin, 2002.
15. Gh. Păun, Y. Suzuki, H. Tanaka. P Systems with Energy Accounting. International

Journal Computer Math., 78(3):343–364, 2001.
16. J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, Engle-

wood Cliffs, New Jersey, 1981.
17. The P systems Web page: http://ppage.psystems.eu

