
Tissue-like P Systems Without Environment

Hepzibah A. Christinal1, Daniel Dı́az-Pernil1,
Miguel A. Gutiérrez-Naranjo2, Mario J. Pérez-Jiménez2
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Summary. In this paper we present a tissue-like P systems model with cell division
the environment has been replaced by an extra cell. In such model, we present a uni-
form family of recognizer P systems which solves the Subset Sum problem. This solution
establishes a new frontier for the tractability of computationally hard problems in Mem-
brane Computing, since it proves that NP-complete problems can be solved without an
arbitrarily large amount of objects in the environment.

1 Introduction

In Membrane Computing, the environment is the spatial location where the P
system is placed. It appears in the description of all P system models in an explicit
or implicit way. In this paper, we focus on its role in the framework of tissue-like
P systems.

In cell-like models, it is defined as a region surrounding the skin (and therefore
the whole P system) with no rules associated. Its role is inactive. It consists ex-
clusively on holding objects, generally sent out by the P system. Occasionally, the
objects in the environment can be sent into the P system if the skin has associated
a send-in rule, but this is not the usual situation. If we consider the membrane
structure of a cell-like P systems as a tree with the processor units (the mem-
branes) on the nodes, the environment can be seen as a new node, linked uniquely
with the skin and able to contain multisets of objects, but no rules.

The most common point of view is considering the cell-like P system as a black
box where the computation takes place and where an external observer has no
access. Such observer can only watch the skin and the surrounding region from
a point out of the P system. Bearing in mind this point of view, the resulting
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product of the computation must be expelled to the environment in order to be
observed.

In Spiking Neural P system, the environment is also considered the region
surrounding the whole system. It does not belong to the formal description of the
system, but it is implicitly considered, since one neuron is marked to send spikes
out of the system.

In spite of the membrane structure of a SN P system is a general graph instead
of a tree as in the cell-like model, they share a common property with respect to the
environment. In both models only one membrane (neuron, in the usual terminology
of SN P systems) is linked to the environment: In cell-like models, it is the skin and
in the spiking model, it is the output neuron. Beyond this similarity, the role of the
environment is even more restrictive in the case of the SN P systems. According
to this model, the information is encoded in time, so the important question is to
consider the moment in which the spikes are sent out by the output neuron. Such
spikes are not stored and can be forgotten.

The role of the environment changes in tissue-like P systems [13, 14]. In such P
systems, the cells are placed in a general graph3, and, potentially, all of them can
trade objects against the environment. The main feature of the environment is the
arbitrarily large amount of objects placed in it. These objects can participate on
the computation according to the symport/antiport rules associated to cells of the
system. The biological inspiration it is clear, a living tissue can take from outside
as much oxygen and nutrients as it needs without limitation.

This arbitrarily large amount of objects in the environment has been widely
exploited in the design of efficient solutions to NP-problems by recognizer tissue-
like P systems with cell division (see, e.g., [4, 5, 6]). In such designs, the initial
resources of the devices are polynomial in the size of the input and the number
of objects taken from the environment along the computation is not considered in
the initial description.

From this starting point, it is natural to wonder if this singularity can be
avoided. In other words, we wonder if tissue-like P systems in which environment
is empty on the input can also solve NP-problems.

In this paper we give a positive answer to this question. We present a tissue-like
P systems model with cell division where environment is supplied by a cell. To do
this, we divide this cell so many time as we need. In this manner, we generate so
copies of initial objects of this cell as we want.

In such model, we present a uniform family of recognizer tissue-like P systems
which solves the Subset Sum problem. This solution establishes a new frontier for
the tractability of computationally hard problems in Membrane Computing [8],
since it proves that NP-complete problems can be solved without an arbitrarily
large amount of objects in the environment.

Bearing in mind these considerations, if the initial amount of objects in the
environment is fixed in a similar way to the cells, then the environment can be
3 In fact, a virtual graph, as we will see below.
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seen as a new cell w0. The particular feature of this distinguished cell is that it
cannot be divided.

The paper is organized as follows: In Section 2 we recall some basic concepts
which will be used later. In Section 3 we present the model of tissue-like P systems
without environment and cell division and in Section 4 a solution to the Subset Sum
problem is this framework is shown. The paper finishes with some final remarks
and comments on the future work.

2 Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string u is
the length of the string, and it is denoted by |u|. As usual, the empty string (with
length 0) will be denoted by λ. The set of strings of length n built with symbols
from alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a
subset from Σ∗.

A multiset over a set A is a pair (A, f) where f : A → N is a mapping. The
set of all multisets on A will be denoted by M(A). If m = (A, f) is a multiset
then its support is defined as supp(m) = {x ∈ A | f(x) > 0} and its size is defined
as

∑
x∈A f(x). A multiset is empty (resp. finite) if its support is the empty set

(resp. finite). If m = (A, f) is a finite multiset over A, then it will be denoted as
m = {{af(a1)

1 a
f(a2)
2 · · · af(ak)

k }}, where supp(m) = {a1, . . . , ak}, and for each ele-
ment ai, f(ai) is called the multiplicity of ai. If f(ai) = 1, we will write ai instead
of a1

i . In what follows we assume the reader is already familiar with the basic
notions and the terminology underlying P systems4.

3 Tissue-like P Systems without Environment

Tissue P systems were defined in [13, 14] under two biological inspirations: intercel-
lular communication and cooperation between neurons. The common mathemat-
ical model of these two mechanisms is a net of processors dealing with symbols
and communicating these symbols along channels specified in advance. From the
initial definition, several research lines have been developed and other variants
have arisen (see, for example, [2, 3, 7, 11, 12, 18]). Based on the cell-like model of
P systems with active membranes, Gh. Păun et al. presented in [16] a new model
of tissue P systems endowed with cell division. The biological inspiration is clear:
alive tissues are not static network of cells, since cells are duplicated via mitosis
in a natural way. In this model, the tissue (of cells) is formed by the cells and a
region called environment containing all of them. Moreover, this model deals with
4 We refer to [15] for basic information in this ares, to [17] for a comprehensive presen-

tation and the web site [19] for the up-to-date information.
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an arbitrarily large amount of objects in the environment, and it can not divided
along a computation.

Next, we present a variant of this model, in which we drop one ingredient: the
arbitrary large amount of objects in the environment. The key idea is to consider
a set of initial cells w1, . . . , wn plus an extra cell w0. This extra cell will have the
same behavior as the other ones, but it will assume the role of the environment.
As we pointed out above, the resources in this cell will be also computed as initial
resources and must be polynomially generated.

Formally, a tissue-like P system without environment (or simplifying tissue-like
P systemWE+D) of degree q ≥ 1 is a tuple of the form

Π = (Γ, env, w1 . . . , wq,R, i0),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. env(= w0), is a string over Γ representing the multisets of objects associated

with the environment in the initial configuration.
3. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration.
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i 6= j, u, v ∈ Γ ∗

and 0 represents to the environment.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, . . . , q} and a, b, c ∈ Γ . Note

that the environment (labeled by 0) cannot divide.
5. i0 ∈ {0, 1, 2, . . . , q} denotes the output region, which can be the environment

(i0 = 0) or the region inside a cell (1 ≤ i0 ≤ q).

In tissue-like P systems, the graph structure of the cells is not given in an
explicit way. The links between regions are provided by the set of symport/antiport
rules. It is known as a virtual graph. In such way, two cells are linked if and only
if there is a rule that allows the interchange of objects between them. In a similar
way, any cell can trade objects against the environment if there exists a rule for
this purpose. Notice that the rules are associated to the labels. In such way, the
graph is dynamical, since new nodes can appear produced by the application of
division rules.

The application of rules in this new model is the same as in usual tissue-like P
systems with cell division:

• The communication rule (i, u/v, j) can be applied over two regions i and j such
that u is contained in cell i and v is contained in region j. The application of
this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells.

• The division rule [a]i → [b]i[c]i is applied over a cell i ∈ {1, . . . , q} containing
object a. The application of this rule divides this cell into two new cells with
the same label. All the objects in the original cell are replicated and copied in
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the new cell, with the exception of the object a, which is replaced by the object
b in the first one and by c in the other one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules. This way
of applying rules has only one restriction when a cell is divided, the division rule
is the only one which is applied for that cell in that step; the objects inside that
cell cannot be communicated in that step.

The cells obtained by division have the same labels as the original cell and if a
cell is divided, its interaction with other cells is blocked during the mitosis process.
In some sense, this means that while a cell is dividing it closes the communication
channels with other cells.

A configuration is an instantaneous description of the system Π, and it is
represented as a tuple (w0, w1, . . . , wq). Given a configuration, we can perform
a computation step and obtain a new configuration by applying the rules in a
parallel manner as it is shown above. A sequence of computation steps is called
a computation. A configuration is halting when no rules can be applied to it.
Then, a computation halts when the system reaches a halting configuration. In the
literature, the output of a computation is collected from its halting configuration
by reading the objects contained in the output cell.

3.1 Recognizer Tissue-like P SystemsW E+D

Complexity classes within Membrane Computing have been usually studied in the
framework of decision problems. Let us recall that a decision problem is a pair
(IX , θX) where IX is a language over a finite alphabet (whose elements are called
instances) and θX is a total boolean function over IX .

In order to study the computational efficiency for solving NP-complete decision
problems, a special class of P systems were introduced in [1]: recognizer P systems.
The original definition corresponds to cell-like P systems, but it was extended in
a natural way in [16] to tissue-like ones.

Recognizer cell-like P systems are the natural framework to study and solve de-
cision problems within Membrane Computing, since deciding whether an instance
of a given problem has an affirmative or negative answer is equivalent to deciding
if a string belongs or not to the language associated with the problem.

In the literature, recognizer P systems are associated with P systems with input
in a natural way. The data encoding to an instance of the decision problem has to
be provided to the P system in order to compute the appropriate answer. This is
done by codifying each instance as a multiset placed in an input membrane. The
output of the computation (yes or no) is sent to the output region, in the last step
of the computation.

A recognizer tissue-like P systemWE+D of degree q ≥ 1 is a tuple
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Π = (Γ, Σ,w0, w1, . . . , wq,R, iin, i0)

where

• (Γ, w0, w1, . . . , wq,R, i0) is a tissue-like P systemWE+D of degree q ≥ 1 (as
defined in the previous section), M(σ) is a string over Γ \ Σ, for each σ ∈
V ∪ {w0}.

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets.

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the output region, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a config-
uration of the form (w0, w1, w2, . . . , wiin

∪ wi, . . . , wq), that is, after adding the
multiset w to the contents of the input cell iin.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue-like P
systemsWE+D if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

We denote by PMCTD−E the set of all decision problems which can be solved
by means of recognizer tissue-like P systemsWE+D in polynomial time. This class
is closed under polynomial reduction and under complement.



Tissue-like P Systems Without Environment 59

4 A Solution for the Subset Sum Problem

The Subset Sum problem is very well-known. It can be settled as follows: Given
a finite set V , a weight function, w : V → N, and a constant k ∈ N, determine
whether or not there exists a subset B ⊆ V such that w(B) = k.

Next, we prove that the Subset Sum problem can be solved in a linear time (in
{n, log k}) by a family of recognizer tissue-like P systemsWE+D. An instance u =
(V, w, k) of the Subset Sum Problem with V = {v1, v2, . . . , vn} will be represented
by u = (n, (w1, . . . , wn), k), where wi = w(vi), for each i (1 ≤ i ≤ n). Such
an instance will be encoded as the multiset cod(u) = {{vj

i : w(Ai) = j ∧ i ∈
{1, . . . , n}}} ∪ {{qk}}.

Next, we present a family of recognizer tissue-like P systemsWE+D with cell
division where at the initial configuration each system of the family has four regions
(labeled by 0,1,2 and 3).

We will address the resolution via a brute force algorithm, which consists in
the following stages:

• generation stage: all possible subsets of V are generated by successive applica-
tion of division rules;

• pre-checking stage: the weight of each subset of V is calculated;
• checking stage: It is check if there exists a subset of V with weight equal to k;
• output stage: an affirmative or negative answer to the problem is given, accord-

ing to the results of the previous stage.

For each (n, k) ∈ N2 we will consider the system

Π(n, k) = (Γ, Σ, V, env, L, M,R, E , iin, i0),

where

• Γ = Σ ∪ {Ai, Bi : 1 ≤ i ≤ n}
∪ {Gi : 1 ≤ i ≤ n + dlog(k + 1)e − 2}
∪ {ai : 1 ≤ i ≤ 2n + dlog ne+ 2dlog(k + 1)e+ 9}
∪ {c̄i : 1 ≤ i ≤ n + dlog(k + 1)e − 1}
∪ {ci : 1 ≤ i ≤ n + 1}
∪ {di : 1 ≤ i ≤ dlog ne+ dlog(k + 1)e+ 3}
∪ {ei : 1 ≤ i ≤ dlog ne+ 1}
∪ {Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ dlog(k + 1)e+ 1}
∪ {α, b, D, p, q, g1, g2, f1, T, S,N, yes, no}

• V = {σ1, σ2, σ3} ∪ {env}
• Σ = {vi : 1 ≤ i ≤ n} ∪ {q}
• L(σ1) = 1, L(σ2) = 2, L(σ3) = 3, L(env) = 0
• M(σ1) = a1 b c̄1 yes no
• M(σ2) = D A1 . . . An
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• M(σ3) = {{G1 . . . Gn+dlog(k+1)e−2 c2
2 . . . c2

n+1 e1 e2
2 . . . e2

dlog ne+1

d1 . . . ddlog ne+dlog(k+1)e+3 pk T S N g1 g2 f1}}
∪ {{Bi1 1 ≤ i ≤ n}}
∪ {{B2

ij 1 ≤ i ≤ n ∧ 2 ≤ j ≤ dlog(k + 1)e+ 1}}
• M(env) = a2 . . . a2n+dlog ne+2dlog(k+1)e+9 c̄2 . . . c̄n+dlog(k+1)e−1 c1

• R is the following set of rules:
1. Division rules:

r1,i ≡ [Gi]3 → [α]3[α]3 for i = 1, . . . , n + dlog(k + 1)e − 2
r2,i ≡ [Ai]2 → [Bi]2[α]2 for i = 1, . . . , n

2. Communication rules:
r3,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , 2n + dlog ne+ 2dlog(k + 1)e+ 8
r4,i ≡ (1, c̄i/c̄i+1, 0) for i = 1, . . . , n + dlog(k + 1)e − 2
r5 ≡ (1, c̄n+dlog(k+1)e−1/c1, 0)
r6,i ≡ (1, ci/c2

i+1, 3) for i = 1, . . . , n
r7 ≡ (1, cn+1/D, 2)
r8 ≡ (2, cn+1/d1e1, 3)
r9,i ≡ (2, ei/e2

i+1, 3) for i = 1, . . . , dlog ne
r10,i ≡ (2, di/di+1, 3) for i = 1, . . . , dlog ne+ dlog(k + 1)e+ 2
r11,i ≡ (2, edlog ne+1Bi/Bi1, 3) for i = 1, . . . , n
r12,i,j ≡ (2, Bij/B2

ij+1, 3) for i = 1, . . . , n, j = 1, . . . , dlog(k + 1)e
r13,i ≡ (2, Bidlog(k+1)e+1vi/p, 3) for i = 1, . . . , n
r14 ≡ (2, pq/λ, 0)
r15 ≡ (2, ddlog ne+dlog(k+1)e+3/g1f1, 3)
r16 ≡ (2, f1p/λ, 0)
r17 ≡ (2, f1q/λ, 0)
r18 ≡ (2, g1/g2, 3)
r19 ≡ (2, g2f1/T, 3)
r20 ≡ (2, T/λ, 1)
r21 ≡ (1, bT/S, 3)
r22 ≡ (1, Syes/λ, 0)
r23 ≡ (1, a2n+dlog ne+2dlog(k+1)e+9b/N, 3)
r24 ≡ (1, Nno/λ, 0)

• iin = 2, is the input cell
• i0 = 0, is the output cell

4.1 An Overview of the Computation

First of all, we recall the polynomial encoding of the Subset Sum problem in the
family Π constructed in the previous section. Let u = (n, (w1, . . . , wn), k) be an
instance of the problem, s(u) =< n, k > and cod(u) = {{vj

i : w(Ai) = j ∧ 1 ≤
i ≤ n}} ∪ {{qk}}.

Next, we describe informally how the recognizer tissue P system with cell di-
vision Π(s(u)) with input cod(u) works. Let us start with the generation stage.
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Recall that if a division rule is triggered, the communication rules cannot be si-
multaneously applied. In this stage we have three parallel processes:

• The first one occurs in the region labeled by 1, where we have two counters:
ai, which will be used in the answer stage, and c̄i, which will be used to delay
the start of the communication rules.

• The second one occurs in the region labeled by 2, where the second group of
division rules are applied. For each object Ai (which codifies a member of the
set V ) we obtain two cells labeled by 2: One of them has an element Bi and
the other one has an object α. Such object will not be used any more in the
computation.

• The third one occurs in the cell labeled by 3, where the first group of division
rules are applied for n + dlog(k + 1)e − 2 steps. For each object Gi, we obtain
two cells labeled by 3: both of them have an object α.

When all divisions have been done, we will have 2n cells with label 2, in which
each one of them will contain the encoding of a subset of V and 2n+dlog(k+1)e−2

cells with label 3.Then c̄n+dlog(k+1)e is replaced by c1 in cell 1. After this step, ci

will be multiplied until getting exactly 2n copies in n steps. At this moment, the
generation stage ends and the pre-checking stage begins.

For each cell 2, an object D is traded against a copy of the counter ci. In this
way, 2n copies of D will appear in the region 1 and, in each cell labeled by 2 there
will be an object cn+1. The occurrence of such object cn+1 in the cells 2 will bring
two counters:

(a) The counter di lets the checking stage start, since it produces the occurrence
of the objects g1 and f1 in cells 2.

(b) The counter ei will be multiplied for obtaining n copies of edlog ne+1 in the step
n + dlog ne + 5 from cell 3. Then, we trade objects edlog ne+1 and Bi against
Bi1 for each element Ai in the subset codifying a possible solution associated
with the membrane. After that, for each 1 ≤ i ≤ n we get k + 1 copies of
Bidlog(k+1)e+1 from cell 3. Then for each element Ai, we get wi copies of object
p, in the step 2n + dlog ne+ 2dlog(k + 1)e+ 3.

The checking takes place in the step 2n + dlog ne+ 2dlog(k + 1)e+ 4, when all
pairs of objects p and q from any cell labeled by 2 are sent to the environment.
In this way, if the weight of the subset associated with a cell is equal to k, then
no object p or q remains in this cell in the next step. Otherwise, if the encoding is
not exactly of weight k, then at least one object p or q will remain in the cell. In
the next step the answer stage starts. Two cases must be considered for each cell:

• If no object p or q remains in the cell, the object f1 keeps in the cell, g1 evolves
to g2, and in the step 2n+ dlog ne+2dlog(k +1)e+6 the objects f1 and g2 are
traded against T from the cell three. In the next step T is sent to the cell 1, and
in the step 2n+dlog ne+2dlog(k+1)e+8, the objects T and b are sent to the cell
labeled by 3 traded against S. Finally in the step 2n+dlog ne+2dlog(k+1)e+9
the objects S and yes are sent to the environment.
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• If any object p or q remains in the cell, such object is sent to the environment
together with the object f1. This causes that the object b still remains in the
cell 1 after the step 2n + dlog ne + 2dlog(k + 1)e + 8. In this way, the objects
b and a2n+dlog ne+2dlog(k+1)e+9 are traded against the object N with the cell
labeled 3, and in the step 2n + dlog ne+ 2dlog(k + 1)e+ 10 the objects N and
no are sent to the environment.

4.2 Some Technical Considerations

In order to establish that the family Π is polynomially uniform by deterministic
Turing machines we firstly note that the sets of rules associated with the systems
Π(n, k) are recursively defined. Hence, it suffices to justify that the amount of
necessary resources for defining the systems is polynomial in max{n, dlog ke}.
• Size of the alphabet: n · dlog(k + 1)e + 8n + 5dlog(k + 1)e + 3dlog ne + 30 ∈

O(n · log k)
• Initial number of cells: 4 ∈ θ(1).
• Initial number of objects: 5n + 3dlog ne+ 3dlog(k + 1)e+ 31 ∈ θ(n).
• Number of rules: n·dlog(k+1)e+6n+3dlog(k+1)e+3dlog ne+27 ∈ O(n·log k)
• Maximal length of a rule: 3.

So, we can claim the following result.

Theorem 1. SS ∈ PMCTD−E

Taking into account that SS is an NP–complete problem, and that the class
PMCTD−E is closed under complement, the following is deduced.

Corollary 1. NP ∪ co−NP ⊆ PMCTD−E

5 Conclusions and Future Work

The search of biologically inspired frontiers for tractability has been an active
research area in the last years. Since the problem P vs. NP is still open and
it seems that will remain open for a long time, the research faces the problem
of finding new frontiers between these classes of problems. Current research on
complexity in Membrane Computing focuses on looking for the minimum amount
of ingredients of a P system model able to solve a NP-complete problem.

One of these steps was the discovery of the role of the dissolution rules (a rule
apparently innocent) as the key stone for solving NP-complete problems in the
framework of P systems with active membranes [10, 9].

In this paper we give a new step in the same direction. We have prove that the
use of an arbitrarily large amount of objects in the environment can be removed
from tissue-like P systems with cell division in order to solve NP-complete prob-
lems. The next steps in this research area will try to reduce the initial ingredients
in order to make the frontier of tractability thinner and thinner.



Tissue-like P Systems Without Environment 63

Acknowledgement

The first author acknowledge the support of the project ”Computational Topology
and Applied Mathematics” PAICYT research project FQM-296. The second,third
and four author acknowledge the support of the projects TIN2008-04487-E and
TIN-2009-13192 of the Ministerio de Ciencia e Innovación of Spain and the support
of the Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta
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