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Summary. Metabolic P systems (MP systems) represent metabolic processes in a dis-
crete mathematical framework based on P systems. MP systems are presented, with a
special emphasis to their roots and to their relationship with P systems, which provided
the right conceptual framework for their development. A synthetic algebraic formulation
of MP system is given, and the log-gain theory of MP systems is outlined, by discussing
the research perspectives and the methodological aspects of this approach.

1 Introduction

Metabolism is one of the basic phenomenon on which life is based. Any living
organism has to maintain processes which introduce matter of some kind from the
external environment, transform internal matter by changing its distribution in a
number of biochemical species, and expel outside matter which is not useful or
dangerous for the organism. Of course life cannot be reduced to this basic cycle of
matter transformation, but no life can exist without such a kind of basic mecha-
nism. To be more realistic, metabolism is not a unique process, but a network of
strictly related processes, usually indicated as metabolic pathways. They differ for
the involved substances, for the reactions and the enzymes performing them, for
the shapes of the dynamical curves they determine (the amount of substances dur-
ing time). The main question on the essence of life processes need to understand
the origins of metabolic processes, their reliability, their integration and their re-
lationship with other essential life functionalities which need metabolism as their
basic energetic fuel.

A (finite) multiset is a collection of elements where the same kind of element
may occur many times, therefore a chemical reaction is representable by a multiset
rewriting rule. In a wide sense, metabolism is any kind of matter transformation
which changes (bio)molecules of some types into molecules of other types (possibly
allowing molecules come/go from/to the external environment).

A metabolic P system, shortly an MP system, is essentially a multiset grammar
with maps regulated by functions. As it will results evident from the next section,
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the letter P of MP systems comes from the theoretical framework of P systems
introduced by Păun, in the context of membrane computing [39]. In fact, MP
systems are a special class of P systems introduced for expressing metabolism in
a discrete mathematical setting.

A peculiar aspect of MP systems is given by the Log-gain theory, specifically
devised for them [28]. This theory, provides tools for solving the inverse dynamical
problem for real metabolic processes. This means that, given a time series of the
states of an observed metabolic system (at a specified time interval τ), then it
is possible to deduce, by suitable algebraic manipulations, the functions regulat-
ing the rules which represent the metabolic transformations in terms of multiset
rewriting. In this manner, an MP system can be defined which coincides, within
a certain approximation, with the observed real system. This coincidence is, in
many cases, an evidence of adequacy between the systemic logic of the observed
real system and the mathematical structure of the deduced MP system.

Many phenomena were reconstructed in terms of MP systems (e. g., Gold-
beter’s mitotic oscillator, Belousov-Zhabotinski reaction in the Nicolis and Pri-
gogine’s formulation, and Lotka-Volterra’s Prey-Predator model [15, 30, 16]). In
all these cases a complete concordance with the classical models was found. More-
over, some synthetic oscillators with interesting behaviors were easily discovered
[27, 28, 33], and some MP models were directly deduced by using the Log-gain
theory (a part of the photosynthetic NPQ phenomenon of NonPhotochemical
Quencing, for which no standard reliable model is known) [36]. A specific soft-
ware was developed for MP systems, starting from a prototypal version developed
by Luca Bianco (Psim, MPsim, MetaPlab) [9, 11, 35, 31] which is downloadable
from http://mplab.sci.univr.it, and http://www.cbmc.it).

In this paper we give a quick presentation of the theory of MP systems, with a
special emphasis to its roots and to its relationship with P systems which provided
the right conceptual framework for its development.

2 Historical backgrounds

The occasion for writing this paper, the decennial anniversary of Membrane Com-
puting, suggested me to briefly reconstruct the initial ideas underlying the MP
systems, aimed at developing a discrete theory of metabolic processes based on P
systems. Along the line of this historical reconstruction it is possible to grasp in
a deeper way the link between P systems and MP system, which rather than of
a technical nature is based on the essential assimilation of P perspective in the
context of symbolic analysis of metabolism.

My interests in this direction date around the late years 1990. The initial
intuition of such a kind of research was the apparent similarity between processes
of symbol transformation, typical of logic or formal language theory, with the
processes of matter transformations typical of chemistry and biochemistry. If we
represent atoms and molecules by suitable symbols, then any chemical reaction is
directly translated by a rule of symbol manipulation.
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Let me report an example which was a sort of initial formalization exercize.
It describes a famous process known as Daniell’s cell, a variant of Volta’s pile. I
presented this example during my invited talk in a meeting organized in 1997 by
Gheorghe Păun in Mangalia (not so far from Curtea de Arges) [21].

Daniell’ cell is constituted by two rods of two different metals, zinc and copper
(Zn,Cu) which are partially immersed in two solutions where the respective salts
in ionic state ZnSO4, CuSO4 are present (see Fig 1). The two salt solutions are
separated, but a salt bridge allows ions to pass through the two compartments.
In the zinc compartment, the Zn metal molecules prefer to pass from the metal
state to the ion state Zn++, therefore some electrons are in abundance on the zinc
rod. If a conductor wire connects the two metal rods, these electrons, according
to the greater electron affinity (electronegativity) of copper with respect to the
zinc, flow from the zinc rod to the copper rod. After that, the copper ions in
the copper solutions, after attracting these exceeding electrons, pass from the ion
state to the metal state. At this point, a different electrical charge is present
in the two solutions, because in the zinc compartment is present a quantity of
SO−−4 ions which are not balanced by Zn++, while in the copper solution, the
opposite phenomenon happens, because a quantity of Cu++ is not balanced by the
corresponding SO−−4 ions. In this situation, a passage happens of SO−−4 ions from
the copper to the zinc compartment, in order to restore the electrical equilibrium.
In conclusion, an electrical flow along the conductor wire between the rods is
coupled with the ion flows through the salt bridge. This provides a cycle which
persists, consuming the metal zinc, producing metal copper, and moving ions.
In principle the cycle continues until zinc is available, and both kinds of ions
are present in both compartments. The membrane perspective of this example is
apparent. According to Păun’s terminology, in this case a neuron-like membranes
system represents the process, which is essentially based on transformation and
passage of object symbols through membranes.

In my formalization the concept of membrane was explicit, but the symbol
manipulation was based on a special kind of Post rules, which I was very familiar
with, and which are a powerful formalism for symbol manipulation. But this is
exactly the crucial point which made my formalization unsatisfactory in many
aspects. Post rules are too powerful, and moreover, in this context strings are not
the right data structure for expressing the chemical reactions.

Maybe Gheorghe Păun got some suggestions from my conference in Mangalia in
August of 1997 (the paper [34]) including the Daniell’s cell example was published
in 1999). However, Gheorghe Păun (informally, George) sent me a preliminary
version of his seminal paper on Membrane Computing [38] in the October of 1998.
In his paper membrane were acutely conjugated with multiset rewriting, and from
it I surely got the idea of using multisets in the representation of biochemical
reactions.

This perspective emerged to me quite slowly, because I spent almost one year
by searching the right form of a combinatorial mechanism for molecule manipula-
tions, by essentially considering special forms of Post rules (with string variables
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Fig. 1. A Daniell’s cell (on the right) and its membrane representation (on the left).

and suitable constraints) [22]. In any case, in 2001, I realized what now seems to
me almost obvious: that molecule populations and their transformations are the
essence of metabolism and that multiset rewriting is the natural way to mathe-
matically express this reality. However, an aspect of Paun’s P systems was not
the exact ingredient to use. The original way of applying rules in P systems was
the nondeterministic maximal parallel approach. This perspective is mathemati-
cally clear and elegant, moreover allows the proof of computational universality
for many variants of P systems. But it is not realistic to assume that biochemical
reactions work in this way. For example, if a so efficient approach were applied to
the ATP → ADP molecule transformation in our cells, then our bodies would al-
most instantaneously burned. Therefore, the next step, for a P system perspective
to metabolism was the molar perspective and the mass partition principle which
we will briefly recall in the next section. Another aspect deserves to be prelimi-
narily remarked. Biological processes are subjected to noise, fluctuations, external
influxes, but at large, they are essentially deterministic. This determinism is of
statistical nature. In fact, the individual behavior is strongly variable, but popula-
tions obey to strict laws. This introduces a second level of considering multiset. A
rule W + 6C → Z + 6O (we use multiset polynomial notation) has to be read not
only as one molecule occurrence of W (water) and six of C (carbon) to be replaced
by one of Z (sugar) and six of O (oxygen), but rather, as a replacement of popula-
tions of N and 6N objects. The size N is the (molar) reaction unit, depending, in
general, on the state of the system. This perspective of multiset rewriting changed
completely the discrete mathematical point of view about metabolism, providing
the right conceptual framework for quantitative analysis of metabolic processes.

In 2004, I started to apply this idea during the supervision of Luca Bianco’s
Phd thesis [4] (in the meantime I moved from Pisa to Verona). Luca was asked
to model some biological phenomena where differential models were available, by
trying to find the same dynamics given by these known models, by using a P
system perspective (a similar attempt, more devoted to aspects of biological local-
ization, was afforded in [18]). Finding the rules was generally a simple task, but
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the definition of the strategy for rewriting rules was very hard. Finally, we found a
procedure, later called “Metabolic P Algorithm” (MPA), which was adequate for
the example we considered, and which was based on a multiset representation of
chemical transformations (I realized in [27] that they were an abstract formulation
of Avogadro and Dalton principles in chemistry). The “official” appearance of MP
system was in 2004 [30], but Initially, their focus was on a new rewriting strategy
for P systems [5, 6, 7]. Later it was clear that this was only an aspect of the MP
approach, because other radical changes were necessary, and MPA was a particular
case of a regulation mechanism based on the notion of population mole. In fact,
the name of MP systems was introduced in 2006, when this awareness emerged
[23, 24]. In the membrane computing community, rewriting strategies different
from maximal parallel rewriting were proposed, especially according to probabilis-
tic approaches [40, 41], however neither of them adopted the molar perspective,
which is peculiar to the development of the log-gain theory of MP systems. The
interest in metabolism was a specific aspect of a more general interest in a dynam-
ical, rather than computational, perspective in the study of P systems, addressed
in [2], and more recently in [33]. The paper [42] was particularly influential in
drawing my attention toward oscillatory phenomena.

3 The molar perspective in multiset rewriting

Let us give a first intuition of the molar perspective in the multiset representation
of biochemical reactions. A reaction 2a + b → c identifies a transformation such
that, when it is applied to a population of objects where types a and b occur in
more than 20000 and 10000 elements respectively, and when its flux regulation map
specifies a reaction unit of, say 10000 elements, then, in the passage from two time
instants at a given time distance τ , these 30000 elements are replaced by 10000 new
objects of type c. For example, 20000 molecules of Hydrogen, plus 10000 molecules
of Oxygen, are transformed into 10000 molecules of water. Time interval between
consecutive instants depends on the macroscopic level is chosen for considering the
dynamics of the system in question. The state, on which reaction units depend,
is given by the value of some magnitudes, called parameters, which can influence
the reactions (e.g., temperature and pressure) and on the sizes of the different
populations inside the system, in correspondence to the different kinds of objects.

A metabolic P system is a discrete representation of a metabolic system. It is
essentially given by a set of reactions, each of them equipped with a corresponding
flux regulation map. Such a map provides, for any state of the system, a (flux)
reaction unit (rules and reactions are often used synonymously, and also fluxes
and reaction units will be equivalently used).

The notion of MP system was explicitly defined, as a special class of P sys-
tems, during the Brainstorming Week on Membrane Computing, held in Sevilla
in 2006 [23]. The initial formulations of MP systems were based on the usual
string notation of P systems (sometimes using the additive notation). in Table
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1 is given an example of this notation for Golbeter’s model of mitotic oscillator,
which we will consider later on. In this case, the rules are based on five substances
{C,M,Mp, X,Xp} (Cyclin, M-active kinase, M-inactive kinase, X-protease, X–
inactive protease) .

However, the same multiset grammar can be easily expressed in algebraic no-
tation. In fact any multiset over {C,M,Mp, X,Xp} is easily denoted by a vector
of N having as its first component the multiplicity of C, as second component
the multiplicity of M , and so forth (in tis context, an implicit order is assumed
over substances). In this manner a multiset rewriting rule αr → βr becomes repre-
sentable by a pair of vector (r−, r+) (left and right vector), where r− is the vector
expressing the multiset αr, and r+ is the vector expressing the multiset βr. For
example the rule r3 : C +Mp → C +M is denoted by the pair of vectors

1
0
1
0
0




1
1
0
0
0



r1 : λ→ C
r2 : C → λ
r3 : C +Mp → C +M
r4 : C +X → X
r5 : M →Mp
r6 : Xp +M → X +M
r7 : X → Xp

Table 1. The rules of a mitotic oscillator.

The algebraic sum of the right component minus the left one provides the
stoichiometric balance of the rule. It is important to distinguish in a rule its left
part, its right part, and its stoichiometric balance. The left part (left vector) ex-
presses the reactants necessary for activating the rule, the right part expresses the
products replacing the reactants, while the stoichiometric balance expresses the
effective variation performed by the application of the rule. Even if two rules have
the same stoichiometric balance, they can be different in the amount of matter
they need for their activation. For example the rule 2C +Mp → 2C +M has the
same stoichiometric balance of the rule C + Mp → C + M , but the latter needs
half of the quantity of c necessary for the activation of the former.

1
1
0
0
0

 –


1
0
1
0
0

 =


0
1
−1
0
0
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This algebraic representation of rules remarkably simplify the definition of MP
system. The reader is advised to compare the next definition with the previous
definitions of MP system [27, 28, 32]. However, it is not only matter of notation
simplification. In fact, important properties of reactions need to be expressed by
usual linear algebra concepts. For example, as it will be explained, the linear
independence of some reactions is an essential requirement for discovering the
fluxes responsible of a given dynamics.

Definition 1. Let Rn be the vector (phase) space of n substance quantities (con-
sidered with a certain order). An MP system of type (n,m, k) is a deterministic
discrete dynamical system, specified by a structure:

(R,H,Φ,X[0], τ, ν, µ)

where:
• R is a pair (R−, R+) of matrices n×m over N, constituted by the m (column)
vectors of Nn denoted by r−1 , . . . , r

−
m and r+1 , . . . , r

+
m respectively. A pairs (r−j , r

+
j )

for 1 ≤ j ≤ m specifies a reaction of the system (left and right vectors). The
n×m matrix A = R+−R− over Z (the componentwise algebraic difference of the
matrices R+ and R−) is the stoichiometric matrix associated to R;
• H : N→ Rk is the function providing, at each step, the parameter vector;
• Φ : Rn × Rk → Rm is the (vector) function (ϕ1, . . . , ϕm) providing the flux
vector corresponding to a state vector of Rn and to a parameter vector of Rk;
• X[0] ∈ Rn is the initial state of the system;
• τ ∈ R is the time interval between two consecutive steps;
• ν ∈ R is the molar population (conventional) unit;
• µ :∈ Rn is the vector of the molar masses of substances.

The dynamics of this system, that is, its state X[i], at step i ∈ N, i > 0, is given
by the following recurrent vector equation, called EMA[i] (Equational Metabolic
Algorithm)

X[i] = A× Φ(X[i− 1], H[i− 1]) +X[i− 1] (1)

for any step i, Φ(X[i], H[i]) is abbreviated by U [i], called the flux vector at step i.

�

The intuition behind the previous definition is that of a system defined by:
reactions (among substances), parameters, regulations, initial state, and scale fac-
tors (time and population units, plus molecular masses). Reactions transform sub-
stances, while flux regulation maps regulate the amount of matter transformed
by each reaction at each step, and parameters, which are not directly involved
in reactions, together with the substance quantities, influence the flux regulation
maps. Scale factors do not enter in the mathematical description of the dynamics,
but they define its physical interpretation, according to an adequate time/mass
scale of the phenomenon under investigation.

MP systems can be depicted by means of MP graphs [29, 19] with five kinds
of nodes and four kinds of edges (see Fig. 3). Nodes are: substance nodes, reaction
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nodes, regulation nodes, parameter nodes, and gate nodes denoting matter fluxes
from/to the external environment (lambda rules). Edges are: transformation edges,
regulation edges and dependency edges.

Table 2 specifies, an MP model, of type (5, 7, 1), for a famous oscillator oc-
curring in the mitosis of early amphibian embryos, established by Goldbeter in
terms of differential equations [20]. In the order, are indicated: i) the constants
(used for e better reading of formulae and including the temporal interval τ and
the population unit ν, but leaving unspecified the molar weights), ii) the initial
values of substance quantities, iii) the rules with the corresponding flux regula-
tion maps, and iv) the parameters with their evolution functions (i ∈ N are the
steps). This MP formulation is obtained by extending a procedure introduced in
[17] and provides the same dynamics of the original differential model (see [27, 28]
for Goldbeter’s differential equations, for other MP models, and for discussions
concerning their identification).

K1 = 0.005 ν K2 = 0.005 ν K3 = 0.005 ν
K4 = 0.005 ν VM1 = 3 ν Vi = 0.025 · 10−6 ν
V2 = 1.5 ν V4 = 0.5 ν Qd = 0.02 · 10−6 ν
Vd = 0.25 Kc = 0.5 · 10−6 ν τ = 0.001 min
Kd = 0.01 S = 0.001 ν = 6.02× 1023

C = 0.01 · 10−6 ν M = 0.01 ν Mp = 0.99 ν X = 0.01 ν Xp = 0.99 ν

r1 : λ→ C ϕ1 = S · Vi

r2 : C → λ ϕ2 = S ·Kd · C
r3 : C +Mp → C +M ϕ3 = (S · V1 ·Mp)/(K1 +Mp)
r4 : C +X → X ϕ4 = (S · Vd ·X · C)/(Qd + C)
r5 : M →Mp ϕ5 = (S · V2 ·M)/(K2 +M)
r6 : Xp +M → X +M ϕ6 = (S ·M ·Xp)/(K3 +Xp)
r7 : X → Xp ϕ7 = (S · V 4 ·X)/(K4 +X)

V1[i] = (C[i] · VM1)/(Kc + C[i])

Table 2. MP formulation of Goldbeter’s mitotic oscillator.

4 The log-gain theory of MP Systems

The main question, at beginning of the log-gain theory for MP systems, is the
following inverse dynamic problem. Given a time series (X[i], H[i]) ∈ Rn+k (for
i = 0, 1, 2, . . . t) of some consecutive states and parameters of a metabolic system
(at a time interval τ), is it possible to deduce a corresponding time series of
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vectors U [i] ∈ Rm (for i = 0, 1, 2, . . . t − 1) giving the reaction units at any step,
which put in the equation (1) provide the time series of substance quantities (for
i = 1, 2, . . . t)? This is the discrete dynamical problem of reaction flux discovery.
The deduction of time series U [i] implies the knowledge, at the time granularity τ ,
of the systemic logic governing the matter transformations underlying the observed
metabolic states. When vectors U [i] are known, the discovery of maps Φ which
provide U [i], in correspondence to the vectors (X[i], H[i]), is a typical problem
of approximation which can be solved with standard techniques of mathematical
regression. Fig. 2 expresses graphically the two procedures, going in the opposite
verses, of generation of a dynamics from a given MP system, and of providing an
MP system fitting with an observed dynamics. The equation linear systems EMA
provide the dynamics of an MP system, while the equation linear system OLGA,
allow us to perform the opposite task. In the following, we will outline the log-gain
theory, which determines the methods for construct the OLGA systems.

Fig. 2. Synthesis and analysis of dynamics by means of MP systems: direct and inverse
dynamical problems.

An important remark is due in this context (which will be more extensively
reconsidered, in the final section). The approach of flux discovery is essentially
observational, macroscopic, and global, in a sense which is opposite to the per-
spective of differential models, which is infinitesimal, microscopic and local. In
fact, we do not pretend to discover the real kinetic responsible, at a microscopic
level, of the biochemical dynamics of each reaction, but we are determined to cap-
ture the global pattern of reaction ratios of an observed dynamics. In other words,
leaving unknown the real local internal dynamics, we decide to consider the system
at an abstraction level which is sufficient to reveal the logic of the behavior we
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observe. This more abstract approach can be less informative, with respect to spe-
cific important details, but such a more generic information could be very useful
in discriminating important aspects of the reality, and often, especially in the case
of very complex systems, is the only way for grasping a kind of comprehension of
the reality under investigation. From a mathematical point of view, the searched
vectors U [i] are the solutions of the equation system (1) (for i = 0, 2, . . . t− 1).

We call it EMA (Equational Metabolic Algorithm) when it is used for calcu-
lating the substance quantities, from the knowledge of flux regulation maps, while
we call it ADA (Avogadro and Dalton Action), when we search so determine U [i]
from the knowledge of substance quantities (Avogadro refers to the integer stoi-
chiometric coefficients, and Dalton to the summation of the effects of reactions).
Unfortunately, often, ADA is not sufficient to provide the solutions because the
number m of reactions is greater than the number n of substances. Therefore, we
need to extend ADA by adding new equations.

The log-gain principle assist us in the search of further equations for identifying
the fluxes. This principle derives from a general biological principle called allom-
etry, according to which, in a living organism, the global variation of its typical
magnitudes follow a sort of harmonic rule according to which their relative vari-
ations are proportional to the relative variations of the magnitudes related them.
In differential terms the relative variation in time of a magnitude coincides with
the variation of its logarithm, therefore we used the term “log-gain” for any law
grounded on this assumption. In the specific context of our problem, we assume
that the relative variations of a reaction flux is a linear combination of the relative
variations of substance quantities and parameters affecting the reaction, and in a
more restrict case, it is the sum of the relative variations of the reactants of the
reaction. We refer to the papers [28] for a detailed account on the log-gain theory
of MP systems. The principle was initially formulated starting from its general
form. Then, in three subsequent transformations, it provided an equation system
COLG (Covering Offset Log-Gain), involving fluxes, with a number of equations
equal to the number of reactions, but with additional unknown variables, called
offset log-gain, equal to the number of substances. This means that the whole sys-
tem constituted by ADA and COLG has 2m+n variables. Moreover, if we consider
the two systems, at the same observation step i, then it results a nonlinear system.

Here, an induction argument helps us to obtain a further reduction of variables,
in order to get a square equation linear system. In fact, if we consider ADA[i+ 1]
and COLG[i], assuming to know the fluxes at step i, we contemporarily reduce
the variables to n+m and remove the nonlinearity of the system.

Now we report the final form of a system of equations called OLGA which
solves our initial problem of flux discovery (× is the usual matrix product, while
+, ·,−, / are the componen-twise vector operations of sum, product, difference and
division, respectively).

X[i+ 2] = A× U [i+ 1] +X[i+ 1] (2)
(U [i+ 1]− U [i])/U [i] = B × (W [i+ 1]−W [i])/W [i] + C · P (3)
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where W is the (n+k) dimensional vector of substances and parameters, B is
a boolean matrix choosing, for any reaction, its tuners, that is the magnitudes
affecting its flux, and P is an m-dimensional vector of reals, expressing the reaction
offsets, that is, the errors introduced in the log-gain approximations of fluxes, while
C is a boolean m-dimensional vector, such that

∑
C = n, that is, the sum of its

components is equal to n.
We assume that the stoichiometric matrix A has maximum rank. This as-

sumption is not restrictive because it implies that no substance variation is linear
combination of the variations of other substance. If this were the case we can re-
move the substance variation which is combination of other variations, without
loss of information, by obtaining a stoichiometric matrix of maximum rank.

We say that a rule is linearly dependent on other rules if its stoichiometric
balance is a vector which is linearly dependent on the stoichiometric balance of
other rules. A set of rules are linearly independent if no rule of this set is dependent
on other rules of the set. We say that a subset R0 of n rules is a covering of the
set R of rules, if any substance is reactant o product of some rule in R0.

The following theorems are a natural consequence of the algebraic formulation
of rules and of the dynamics of MP system defined by EMA (we omit the proofs
here).

Theorem 1. Given a set of rules with stoichiometric matrix of maximum rank,
then there exits a covering of linearly independent rules.

Theorem 2. Let R0 subset of rules of R which are linearly independent. Let
OLGA be a system with a covering vector C corresponding to R0 (C(i) = 1 iff
ri ∈ R0). Then, OLGA has one and only one solution.

The previous theorems show that the problem of finding fluxes of a metabolic
system is solvable under very general assumptions.

However, given the inductive nature of our method, in order to generate the
time series of U [i], we need the knowledge of U [0]. An algorithm for achieving
this task was recently found [37], which was tested in many cases with a good
success. This problem is essentially an optimum problem based on the notion of
activation matrix. This matrix is the right component of the matrix R of rules.
If we multiply it with the flux vector U [i], then we get, for each component, the
amount of a substance necessary, at step i, to activate all the rules which need that
substance. Other constraints regard the positivity of fluxes and a sort of Lavoisier
principle (the absolute variation of matter between two consecutive states has
to equate the absolute difference between the sums of in-coming and out-coming
fluxes).

The determination of the covering vector C is another important aspect in
the construction of the OLGA system. Some investigations are in progress for the
search of an optimal covering, or for showing that, under suitable conditions, the
goodness of solutions can be independent on the choice of a specific covering. How-
ever, in the study of this aspect it seems useful to consider the Galois connection
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arising between substances and reactions. Given a substance x, we denote by R(x)
the set of reactions where x occurs (as product or reactant), but symmetrically,
given a reaction r, we can define S(r) as the set of substances involved in the reac-
tion r. If we extend R,S as functions from set of substances to set of reactions, and
viceversa, we get a Galois connection, which is a very general and powerful alge-
braic concept. It seems possible that, rule covering, and other metabolic concepts,
are related to properties which can be analyzed in this algebraic setting.

The following theorem shows a relevant aspect of the notion of covering. In
fact, for the application of the log-gain principle, the flux log-gain of a rule should
consider non only its reactants, but its tuners, that is, all magnitudes (substances
and parameters) which influence the rule. Unfortunately, the knowledge of tuners
of reactions is very often not available. The following theorem (we omit the proof)
ensures that fluxes can be deduced even with this lack of knowledge. Therefore, the
analysis about tuners, for determining fluxes, could be focused on the uncovered
reactions.

Theorem 3. Consider an OLGA system based on a linearly independent covering
R0. The fluxes which are solutions of this system do not depend on the tuners
which are chosen for the rules of R0 in the flux log-gains of these rules.

In conclusion, tuners of rules of R0 can be reduced only to the reactants of
there rules, and the solutions of OLGA systems, one for each step, provide the
time series U [i] that solve the flux discovery problem, posed at the beginning of
our discourse.

Results of equivalence of MP systems with other formalisms were developed
[17, 13, 14]. However, the more relevant feature of MP system is the availability of
the log-gain method here outlined, for the solution of the flux discovery problem.

5 Fluxes, reactivity, inertia, and differential models

The analysis process which provides an MP system from an observed dynamics
is directly related to the notion of reaction fluxes. However, in the process of
synthesizing dynamics is more natural to associate to every reaction a reactivity
parameter determining a sort of score in the competition for getting the reactants
necessary for the activation of the reaction. This competition concerns the part
of matter available in a given state, therefore another parameter is necessary, for
each substance, which provides the amount of substance that, in a given state, can
be partitioned among all reactions competing for it, or equivalently, the amount of
substance that is not transformed, called the inertia of the substance (at a given
step). These systems were the first kind of MP systems formally defined [27], and
correspond to the special class of reactive MP systems. In a reactive MP system
of type (n,m, k), the inequality k ≥ n+m holds, because there is a parameter for
each substance, providing its inertia and a parameter for each reaction, providing
its reactivity. The evolutions of these parameters are specified by inertial maps
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(ψx|x ∈ X) and by reaction maps (fr|r ∈ R) respectively. In reactive MP systems,
the flux regulation maps Φ = {ϕr|r ∈ R} are defined by the following equations for
any q ∈ Rn (see [27, 28] for intuition and motivations of this class of MP systems)

ϕr(q) =

{
fr(q) if αr = λ;
min{wr,y(q)·q(y)|αr|x | y ∈ αr} otherwise.

(4)

where

wr,x(q) =
fr(q)

ψx(q) +
∑
r′∈Rα(x) fr′(q)

(5)

In reactive MP systems, being flux regulation maps ϕr (r ∈ R) completely deter-
mined by the reaction maps and inertias, it is enough to specify only them (usually
indicated fr and ψr (r ∈ R). In Fig. 3, an MP graph is given, which describes the
simple metabolic oscillator Sirius ternarius, a variant of an oscillator widely stud-
ied in the context of MP systems [27, 28, 33]. The core of this oscillations is the
reaction from A→ B, with a flux which linearly depends on the amount of B. In
fact, when this quantity increases too much, then the reactant of A→ B is greatly
consumed, and consequently also the reaction flux diminishes. In such a way A,
which is produced by C → A can increase and consequently also the reaction
A → B returns again to work actively, so that the condition for a new cycle is
restored.

Fig. 3. The MP system Sirius ternarius. Big circles are substances, small circles are re-
actions, rectangles are reactivity parameters, and triangles indicate matter flows from/to
the external environment. Fluxes are not indicated because determined by the reactivity
parameters of reactions by means of Formula (4). The inertias of A,B,C are 100, 100,
and 1 respectively (all values are expressed in conventional moles of unspecified size).

In Fig. 4 is given the oscillatory dinamics of the MP system of Fig. 3, computed
by Psim software.
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Fig. 4. Sirius ternarius’ dynamics where EMA of Definition 1 is computed by Psim
software (see: http://www.cbmc.it and http://mplab.sci.univr.it)

If we avoid the rule consuming C, the dynamics changes dramatically, even if
we reduce sensibly the value of rule introducing C. This show that the analysis
of metabolic processes is very complex and very often the behavior of a system is
hardly deducible by the MP graph, without a direct inspection of its dynamics.
The form of trajectories are related to the graph structure, but very often their
shape is very robust for big changes of regulation maps and initial values, but
very fragile with respect to some parameters. This kind of investigations applied
to real metabolic oscillators are very important for establishing the key features
responsible for maintain some dynamical regimes of interest.

Fig. 5. Sirius ternarius’ dynamics where the reaction λ→ C is removed.
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The following theorem (see [28] for a proof) states the dynamical equivalence
between any MP system and a suitable reactive reactive MP system (starting by
the same state they provide the same sequence of states).

Theorem 4. For any MP system there exists a reactive MP system which is dy-
namically equivalent to it.

A notion of abstraction order can be defined for MP systems, which result
useful in the determination of models. A system M is more abstract of a system
M’ if the substance of M are a subset of those of M’ and the dynamics of M
coincide with the dynamics of M’ on their common substances. In many cases a
right abstraction level could be more informative of a too detailed system where
it is difficult to grasp the main feature of the logic governing a dynamics. Some
investigations are in progress about some basic mechanisms on which oscillatory
phenomena are based, in particular, on the relationship between the MP graph
and the corresponding oscillatory pattern, and on the numerical values and ranges
ensuring some oscillatory forms. In some numerical experiments we found cases
where few parameters have a crucial role in determining the dynamics, and some
threshold values of them are discriminant for very specific behaviors.

Many special forms of reactions can be identified: left-monic, right-monic,
monic, assimilative, dispersive, cooperative, synthetic, dissociative, catalytic, repli-
cative, monogenic [33]. Monic refers to a rule involving only one substance (in the
left, right, or both sides), assimilative to a rule producing without consuming sub-
stances, dispersive to a rule consuming without producing substances, cooperative
to a rule with more than one reactant, synthetic to a rule with more than one
reactant and only one product, dissociative to a rule with one reactant and more
than one product, catalytic to a rule with a substance occurring contemporarily as
reactant and as product, replicative to a rule where a substance occurs as product
more times than as reactant, monogenic to a rule where any product and reactant
occurs only once. These properties correspond to important biochemical aspects,
and equivalence properties can be easily proved in the context of MP systems. The
following theorem involves aspects peculiar to MP systems (we omit the proof).

Theorem 5. For any MP system there exists a reactive MP system which is dy-
namically equivalent to it having only assimilative and dispersive rules.

The notion of inertia is naturally related to the relationship between reactive
MP models and differential models. In [17] equivalence results between these two
kind of models were proven. In fact, it turns out that the inertia is inversely
proportional to the discretization time of numerical integration methods. This
equivalence holds by means of a limit process along a sequence of increasing values
of inertia, which is supposed to be equal for all substances.

A general theorem can be easily proved stating an equivalence between the
dynamics of a differential model, computed by the Euler method of numerical in-
tegration, and the dynamics computed by EMA for an MP model which is deduced
by means of a straightforward “rule-driven translation” of the right members of
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differential equations (the procedure used in Sect. 3 for the MP formulation of
Goldbeter’s mitotic oscillator). In this case, the MP time interval coincides with
the discretization time of the numerical integration.

However, a deeper relationship can be established between differential and MP
models. In fact, let us suppose, to have an ODE (Ordinary Differential Equation)
model of a metabolic process. According to it, any derivative of substance quantity
is the sum of some additive terms relative to the infinitesimal fluxes of the rules
consuming and producing that substance. Assume to use a numerical integration
method, and to solve the differential equations with a discretization time ∆t. Now,
if we consider a time interval τ and perform τ/∆t numerical integration steps (the
natural number rounding this value), then we can deduce the fluxes of all the
reactions involved in the system in the time interval τ . This means that we get
exactly what the log-gain theory provides by solving the OLGA systems along a
number of observation steps. In other words, we get the macroscopic fluxes from
the ODE microscopic ones. From these fluxes, by approximation and correlation
techniques we can derive the flux regulation maps of an MP system which provides
the same dynamics along the steps separated at the time interval τ . It would be
possible, that at this different temporal grain, some systemic effects emerge which
could shed new light on the analysis of the modeled phenomenon.

6 Reconsidering membranes

MP system are described by focusing on the reactions, but disregarding the com-
partmetalization aspect of membrane computing. However, if we look at the MP
graph we can see a neuron-like membrane structure given by the nodes along which
the matter flows. This means that if we model substances as different membranes,
and we fill them of a unique kind of substance (e. g. water) we are in a perfect
membrane setting. This is a general aspect which it would be interesting to an-
alyze in general terms. Objects and membrane are dual concepts which can be
reciprocally reduced (an analogous situation arises in set theory). This duality is
a special case of the space/matter duality formulated in the context of a discrete
framework. In fact a physical object, having a spatial extension comprises a portion
of space, the internal space occupied by it, that can be separated by an implicit
membrane delimiting its internal region. Conversely, a membrane is an object with
an internal region which can include other objects. Therefore, we may consider an
object of type a as equivalent to an empty membrane [ ]a. Analogously an object
a inside the membrane of label j, [a]j , is represented by as an object aj with the
index denoting the localization of a. In general, we may reverse the relationship of
containment of membranes and objects, by expressing the localization of an ob-
ject by putting its membrane address (for example, a string of membrane labels).
Here we do not enter into further details. However, many aspects deserve a careful
analysis. Namely, a sharp examination of the notion of object distinguishability
could show some subtle implicit pitfalls. In multisets, this feature refers to object
individuality, rather than to their enumerability (two undistinguishable balls are



From P to MP Systems 53

different from only one of them). An important aspect of the relationship between
objects and membrane concerns just the possibility of considering for them (or for
some types of them) different processes of distinguishability.

According to the perspective of addressed objects, moving an object from a
membrane to another one results to be a transformation acting on the index part
of the object. In many modeling context this is the natural approach adopted for
expressing localization changes. For example a protein p which can be localized
in two places A,B is modeled by two species pA and pB and its displacement is
assimilated to a transformation of matter. This discussion shows that the more
appropriate way to model a reality depends on the specific aspects we are inter-
ested to model, but in principle “membranization” or “demembranization”, or a
mixing of the two strategies, are possible, and different viewpoints open different
perspective of investigation.

In [1, 2] the boundary notation for membrane rules was introduced in order to
cope with more general membrane rules. In fact, in Păun’s original formulation,
rules are inside membrane and everything is unknown to a rule, if it is outside
the membrane where the rule is located. However, in many cases a transformation
depends on the possibility of recognize configurations which can be defined only
if the actors of the transformation have a visibility which is wider than interiors
(windows could be necessary). The essential point of boundary representation is
the idea of rules with a greater level of localization knowledge about the objects
which they apply to. This idea can be further generalized, but the two perspectives
could also be integrated for coping with different contexts of application.

Another natural generalization of P rules concerns the possibility of high-order
multisets. This is not a mathematical generalization, but expresses a natural ne-
cessity for representing biochemical transformations. In fact, in many reactions
two or three level multisets occur. Even in the simple case of water formation, the
usual chemical notation is 2H2+O2 → 2H2O. Here we have multiplicative numeric
coefficients and numerical indexes, that we could express, by using parentheses,
as 2(2H) + (2O)→ 2((2H)O). In this case, parentheses are not membrane paren-
theses, but express a two level multiset. In fact, the rule transforms a multiset of
objects which are multisets too, that is, a second order (finite) multiset into in
another one of the same kind.

In many phenomena the localization aspect is predominant, but in a way that
membranes are not adequate. It is the case of gradients in morphogenesis. In this
case, what is important, rather than containment relations, are the distances with
respect to some coordination points, therefore indices memorizing these values are
the natural way for handling this aspect.

In a discrete setting, loci could be represented by (localization) binders at-
tached to the objects, which become relevant in relocation rules, while they are
dummy when internal transformations are performed. Binders, for expressing loci,
are useful for objects as far as for membranes where the importance of specific
parameters for encoding physical feature was already investigated in membrane
computing (e. g. polarization and thickness).
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In conclusion, a very synthetic way for expressing the original P-system per-
spective could be: grammars of “parenthesized strings with commutative concate-
nation”, or more simply, grammars of “parenthesized multisets”. The passage from
boundaries to binders and all the aspects mentioned above could enlarge the spec-
trum of modeling possibilities of P and MP systems toward the study of dynamics
of high level discrete spatial complexity.

7 Open problems and methodological issues

Many lines of development emerged, in the context of MP systems. Some of them,
as it was argued in the previous section, are related to the theory of P systems.
Other research lines are specifically focused on the log-gain theory. The hot points
in this direction are: i) the determination of the initial fluxes, ii) the determination
of the more appropriate covering for the OLGA systems, iii) the determination of
the tuners of reactions (initially for uncovered rules, and, after OLGA solutions, for
all the rules), and iv) the determination of the flux regulation maps associated to
the fluxes and to their tuners. Some investigations are in progress and some partial
results are available. It is interesting that in the search of solutions a variety of
methods naturally occurs, going from vector algebra and vector optimization to
artificial neural networks [12, 37]. The next kinds of modeling applications which
we intend to realize are phenomena related to gene regulation networks and to
signal transduction mechanisms. From the computational side, many plugins are
under development for extending the MetaPlab software, according to specific
needs of the experiments which could orientate the theoretical and applicative
research. Presently, a plug-in is available for computing MP dynamics by means of
EMA, moreover a plug-in is also available for the flux discovery by means of OLGA,
other visualizations and format translation plug-ins are available, and prototypal
plug-ins for polynomial regression and artificial neural network correlation plug-ins
were developed [11, 12, 31].

Other research lines of MP systems theory are more specifically related to
the metabolism and to the population perspective of biological phenomena. Many
aspects of metabolic dynamics can be expressed and abstractly studied on MP
systems [33]. In particular, a general study of metabolic oscillators seems to be
especially adapt to be investigated by using reactive MP systems. This class of
systems are especially suited for synthesizing specific behaviors, in order to identify
the specific structural features related to some dynamical properties. For example,
a catalog of basic MP metabolic oscillators is under investigation, which is aimed
to instantiate experiments of computational synthetic biology.

I want to conclude by stressing an important methodological aspect which is
very often source of misunderstanding, because it remarkably differs from the usual
modeling approaches in computational biology.

When we design an MP model by using the log-gain theory we start with time
series of observations. The model we get at end of the process is a model of what
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we observed. In the case of ODE models, from data kinetic rates of biochemical
reactions are deduced. It is not the case for MP regulation maps. Although the term
reaction is used, our reactions have to be more properly seen as transformations.

We adopt a perspective which could be described as the Boltzmann’s analogy.
According to Boltzmann’s mechanical statistics, the macroscopic state of a ther-
modynamic system (a gas inside a volume at a given pressure and temperature) is
given by the distribution function f(z) providing the number of molecules in the
ensemble z (a kind of energetic level). In our case, we claim that in a biochemical
system, with a number of chemical species, its macroscopic state depends on the
number of molecules which are present for each species. The passage from a state
to another one is completely due to the change of molecule distribution per species.

We do non know and we do not pretend to describe what happens at the
microscopic reaction level. We observe that some species are related by some rea-
sonable transformatios and we assume that the variations are due to the action
of these transformations. These transformations could be executed in many ways
and maybe they involve other underlying very complex transformations, at differ-
ent sublevels. However, this is outside the objective of the model. It tries to find
the logic underlying the specified species and the chosen transformations. In other
words, we explain what is observed in terms of the species and the transformations
under investigation. If the choice of the species and of the transformations is not
the right one, this means that the model was not adequate, but this is indepen-
dent from the methodology, it is only a matter of the specific modeling design.
In conclusion, MP modeling, according the log-gain analysis, is deliberately at a
different, more abstract, level with respect to ODE models. This does not means
that it is less adherent to the reality, but simply that it is focused on a different
level of reality.

A model is either good or bad only if it helps us in predicting and explaining
what we can observe. No other criterion can be discriminant, and it is ingenuous to
adopt a mirror analogy with an absolute character. In fact, many mirrors could be
available, and some could be more useful than others in certain contextes. Reality
is different when it is considered at different levels of observation. When the level
of phenomena under investigation is very different (too small or too big, or too
complex) with respect to the observer level, the true scientific ability concerns
the right theoretical and experimental choices about what has to be observed and
about how the observation results have to be related. A priori is very hard to chose
the “pertinent aspects” of a phenomenon and to disregard what is not relevant.

What is the reality adherence of the physical theories at quantum levels or
at cosmological level? What is the reality of the probability wave in Shrödinger
equation? We trust them because they work. No mirror principle can assist us for
their evaluation. They are creations of the human invention. Modeling is an art,
and it cannot follow easy prefixed procedures. This art is based on the right choice
of what has to be observed, what relationships are relevant among the observed
features, how translate them in a chosen conceptual universe, and how to interpret
the findings which result from this translation.
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