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Summary. A variety of different transition modes for tissue P systems as well as several
halting modes currently are used in the area of membrane computing. In this paper, the
definitions of the most important transition modes and halting modes are explained based
on networks of cells, a general model for tissue P systems. Moreover, some results for
specific variants of tissue P systems working on multisets of objects are recalled.

1 Introduction

Membrane systems were introduced by Gheorghe Păun one decade ago as dis-
tributed parallel computing devices, based on inspiration from biochemistry, es-
pecially with respect to the structure and the functioning of a living cell, which
is considered as a set of compartments enclosed by membranes containing objects
and evolution rules. In the original model of membrane systems, the objects evolve
in a hierarchical membrane structure (see [8], [16]); in tissue P systems (e.g., see
[20], [21], and [11]), the cells communicate within an arbitrary graph topology. In
the original model of membrane systems, the maximally parallel transition mode
was used, yet later on also other new transition modes for P systems and tis-
sue P systems have been introduced and investigated, for example, the sequential
and the asynchronous transition mode as well as the minimally parallel transi-
tion mode (see [6]). In [12], a formal framework for (tissue) P systems capturing
the formal features of these transition modes was developed, based on a general
model of membrane systems as a collection of interacting cells containing multi-
sets of objects (compare with the models of networks of cells as discussed in [5]
and networks of language processors as considered in [7]). Continuing the formal
approach started in [12], the k-bounded minimally parallel transition mode (see
[13]) was introduced, where at most k rules can be taken from each of the sets of
the partitioning of the set of rules used in the minimally parallel transition mode.

In most models of (tissue) P systems, a computation continues as long as still
a (multiset of) rule(s) can be applied; the result of a computation then is taken at
the end of a halting computation (total halting). Recently, various other halting
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conditions have been investigated; for example, when using partial halting (see
[2], [3], [10]), a computation may only continue as long as from each set of a rule
partitioning at least one rule can still be applied. The result of a computation may
also be extracted at each step of a (halting or non-halting) computation, e.g., see
[4].

The main parts of notions, definitions, and results presented in the following
are taken from [12] and [13] as well as from [3] and [10]. For an introduction to
the area of membrane computing we refer the interested reader to the monograph
[17], the actual state of the art can be seen in the web [22].

2 Preliminaries

We recall some of the notions and the notations we use (for further details see [8]
and [19]). Let V be a (finite) alphabet; then V ∗ is the set of all strings (a lan-
guage) over V , and V + = V ∗ − {λ} where λ denotes the empty string. RE, REG
(RE (T ), REG (T )) denote the families of recursively enumerable and regular lan-
guages (over the alphabet T ), respectively; MATλ denotes the family of languages
generated by context-free matrix grammars. For any family of string languages F ,
PsF denotes the family of Parikh sets of languages from F and NF the family of
Parikh sets of languages from F over a one-letter alphabet. By N we denote the set
of all non-negative integers, by Nk the set of all vectors of non-negative integers;
[k..m] for k ≤ m denotes the set of natural numbers n with k ≤ n ≤ m. In the fol-
lowing, we will not distinguish between NRE, which coincides with PsRE ({a}),
and RE ({a}).

Let V be a (finite) set, V = {a1, ..., ak}. A finite multiset M over V is a mapping
M : V −→ N, i.e., for each a ∈ V , M (a) specifies the number of occurrences of a
in M . The size of the multiset M is |M | = ∑

a∈V M (a). A multiset M over V can
also be represented by any string x that contains exactly M (ai) symbols ai for
all 1 ≤ i ≤ k, e.g., by a

M(a1)
1 ...a

M(ak)
k . The set of all finite multisets over the set

V is denoted by 〈V,N〉. Throughout the rest of the paper, we will not distinguish
between a multiset from 〈V,N〉 and its representation by a string over V containing
the corresponding number of each symbol. We may also consider mappings M of
the form M : V −→ N∞ where N∞ = N ∪ {∞}, i.e., elements of M may have an
infinite multiplicity; we shall call such multisets where M (ai) = ∞ for at least
one i, 1 ≤ i ≤ k, infinite multisets. The set of all such multisets M over V with
M : V −→ N∞ is denoted by 〈V,N∞〉.

3 Networks of Cells

In this section we consider membrane systems as a collection of interacting cells
containing multisets of objects like in [5] and [12].
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Definition 1. A network of cells – we shall also use the notion tissue P system –
with checking sets, of degree n ≥ 1, is a construct

Π = (n, V,w, R)

where

1. n is the number of cells;
2. V is a finite alphabet;
3. w = (w1, . . . , wn) where wi ∈ 〈V,N∞〉, for all 1 ≤ i ≤ n, is the multiset ini-

tially associated to cell i (in most of the cases, at most one cell, then being
called the environment, will contain symbols occurring with infinite multiplic-
ity);

4. R is a finite set of rules of the form

(E : X → Y )

where E is a recursive condition for configurations of Π (see definition below)
as well as X = (x1, . . . , xn), Y = (y1, . . . , yn), with xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n,
are vectors of multisets over V . We will also use the notation

(E : (x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n))

for a rule (E : X → Y ). If no conditions E are used, we use the simpler nota-
tions X → Y etc.

A network of cells consists of n cells, numbered from 1 to n, that contain (possi-
bly infinite) multisets of objects over V ; initially cell i contains wi. A configuration
C of Π is an n-tuple of multisets over V (u1, . . . , un); the initial configuration of
Π, C0, is described by w, i.e., C0 = w = (w1, . . . , wn). Cells can interact with each
other by means of the rules in R. An interaction rule

(E : (x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n))

is applicable to a configuration C if and only if C fulfills condition E; its application
means rewriting objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n.

The set of all multisets of rules applicable to C is denoted by Appl (Π,C) (a
procedural algorithm how to obtain Appl (Π, C) is described in [12]).

For the specific transition modes to be defined in the following, the selection
of multisets of rules applicable to a configuration C has to be a specific subset of
Appl (Π, C); for the transition mode ϑ, the selection of multisets of rules applicable
to a configuration C is denoted by Appl (Π, C, ϑ).

Definition 2. For the asynchronous transition mode (asyn),

Appl (Π, C, asyn) = Appl (Π,C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.
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Definition 3. For the sequential transition mode (sequ),

Appl (Π,C, sequ) = {R′ | R′ ∈ Appl (Π, C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Appl (Π, C, sequ) has size 1.

The most important transition mode considered in the area of P systems from
the beginning is the maximally parallel transition mode where we only select mul-
tisets of rules R′ that are not extensible, i.e., there is no other multiset of rules
R′′ % R′ applicable to C.

Definition 4. For the maximally parallel transition mode (max),

Appl (Π, C,max) = {R′ | R′ ∈ Appl (Π,C) and there is
no R′′ ∈ Appl (Π, C) with R′′ % R′} .

For the minimally parallel transition mode, we need an additional feature for
the set of rules R, i.e., we consider a partition of R into disjoint subsets R1 to Rh.
Usually, this partition of R may coincide with a specific assignment of the rules to
the cells. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number of sets of rules
Rj , 1 ≤ j ≤ h, with Rj ∩R′ 6= ∅.

There are several possible interpretations of this minimally parallel transition
mode which in an informal way can be described as applying multisets such that
from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible – has to be used (e.g.,
see [6]). For the basic variant as defined in the following, in each transition step
we choose a multiset of rules R′ from Appl (Π,C, asyn) that cannot be extended
to R′′ ∈ Appl (Π, C, asyn) with R′′ % R′ as well as (R′′ −R′) ∩ Rj 6= ∅ and
R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ h, i.e., extended by a rule from a set of rules Rj

from which no rule has been taken into R′.

Definition 5. For the minimally parallel transition mode (min),

Appl (Π, C,min) = {R′ | R′ ∈ Appl (Π, C, asyn) and
there is no R′′ ∈ Appl (Π,C, asyn)
with R′′ % R′, (R′′ −R′) ∩Rj 6= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ h} .

In [12], further restricting conditions on the four basic modes defined above,
especially interesting for the minimally parallel transition mode, were considered.
The following variant allasetmin requires that from all applicable partition at least
one rule has to be applied:

Definition 6. For the using all applicable sets minimally parallel transition mode
(allasetmin),

Appl (Π,C, allasetmin) = {R′ | R′ ∈ Appl (Π,C, min) and
for all j, 1 ≤ j ≤ h,
Rj ∩Appl (Π, C) 6= ∅
implies Rj ∩R′ 6= ∅} .
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We now consider a restricted variant of the minimally parallel transition mode
allowing only a bounded number of at most k rules to be taken from each set Rj ,
1 ≤ j ≤ h, of the partitioning into a multiset of rules applicable in the minimally
parallel transition mode.

Definition 7. For the k-restricted minimally parallel transition mode (mink),

Appl (Π,C, mink) = {R′ | R′ ∈ Appl (Π,C, min) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ h} .

For all the transition modes defined above, we now can define how to obtain
a next configuration from a given one by applying an applicable multiset of rules
according to the constraints of the underlying transition mode:

Definition 8. Given a configuration C of Π and a transition mode ϑ, we may
choose a multiset of rules R′ ∈ Appl (Π, C, ϑ) in a non-deterministic way and
apply it to C. The result of this transition step from the configuration C with
applying R′ is the configuration Apply (Π,C, R′), and we also write C =⇒(Π,ϑ) C ′.
The reflexive and transitive closure of the transition relation =⇒(Π,ϑ) is denoted
by =⇒∗

(Π,ϑ).

Definition 9. A configuration C is said to be accessible in Π with respect to the
derivation mode ϑ if and only if C0 =⇒∗

(Π,ϑ) C (C0 is the initial configuration of
Π). The set of all accessible configurations in Π is denoted by Acc (Π).

Definition 10. A derivation mode ϑ is said to be deterministic (det-ϑ) if
|Appl (Π, C, ϑ)| = 1 for any accessible configuration C.

Definition 11. A computation in a tissue P system Π, Π = (n, V,w, R), starts
with the initial configuration C0 = w and continues with transition steps according
to the chosen transition mode ϑ.

3.1 Halting Conditions

A halting condition is a predicate applied to an accessible configuration. The sys-
tem halts according to the halting condition if this predicate is true for the current
configuration. In such a general way, the notion halting with final state or signal
halting can be defined as follows:

Definition 12. An accessible configuration C is said to fulfill the signal halting
condition or final state halting condition (S) if and only if

S (Π, ϑ) = {C ′ | C ′ ∈ Acc (Π) and State (Π,C ′, ϑ)} .

Here State (Π,C ′, ϑ) means a decidable feature of the underlying configuration
C ′, e.g., the occurrence of a specific symbol (signal) in a specific cell.

The most important halting condition used from the beginning in the P systems
area is the total halting, usually simply considered as halting :
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Definition 13. An accessible configuration C is said to fulfill the total halting
condition (H) if and only if no multiset of rules can be applied to C with respect
to the derivation mode anymore, i.e.,

H (Π,ϑ) = {C ′ | C ′ ∈ Acc (Π) and Appl (Π, C ′, ϑ) = ∅} .

The adult halting condition guarantees that we still can apply a multiset of
rules to the underlying configuration, yet without changing it anymore:

Definition 14. An accessible configuration C is said to fulfill the adult halting
condition (A) if and only if

A (Π,ϑ) = {C ′ | C ′ ∈ Acc (Π) , Appl (Π,C ′, ϑ) 6= ∅ and
Apply (Π, C ′, R′) = C ′ for every R′ ∈ Appl (Π, C ′, ϑ)} .

We should like to mention that we could also consider A (Π, ϑ) ∪ H (Π,ϑ)
instead of A (Π,ϑ).

For introducing the notion of partial halting, we have to consider a partitioning
of R into disjoint subsets R1 to Rh as for the minimally parallel transition mode.
We then say that we are not halting only if there still is a multiset of rules R′ from
Appl (Π, C) with R′ ∩Rj 6= ∅ for all j, 1 ≤ j ≤ h:

Definition 15. An accessible configuration C is said to fulfill the partial halting
condition (h) if and only if

h (Π,ϑ) = {C ′ | C ′ ∈ Acc (Π) and there is
no R′ ∈ Appl (Π, C ′) with
R′ ∩Rj 6= ∅ for all j, 1 ≤ j ≤ h} .

3.2 Goal and Result of a Computation

The computations with a tissue P system may have different goals, e.g., to generate
(gen) a (vector of) non-negative integers in a specific output cell (membrane) or
to accept (acc) a (vector of) non-negative integers placed in a specific input cell at
the beginning of a computation. Moreover, the goal can also be to compute (com)
an output from a given input or to output yes or no to decide (dec) a specific
property of a given input.

The results not only can be taken as the number (N) of objects in a specified
output cell, but, for example, also be taken modulo a terminal alphabet (T ) or by
subtracting a constant from the result (−k).

Such different tasks of a tissue P system may require additional parameters
when specifying its functioning, e.g., we may have to specify the output/input
cell(s) or the terminal alphabet.

We shall not go into the details of such definitions here, we just mention that
the goal of the computations γ ∈ {gen, acc, com, dec} and the way to extract the
results ρ are two other parameters to be specified and clearly defined when defining
the functioning of a tissue P system.
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3.3 Taxonomy of Tissue P Systems

For a particular variant of networks of cells or tissue P systems we have to specify
the transition mode, the halting condition as well as the procedure how to get the
result of a computation, but also the specific kind of rules that are used, especially
some complexity parameters.

For tissue P systems, we shall use the notation

OmtCn (ϑ, φ, γ, ρ) [parameters for rules]

to denote the family of sets of vectors obtained by tissue P systems Π = (n, V, w, R)
of degree n with m = |V |, as well as ϑ, φ, ρ indicating the transition mode, the
halting condition, and the way how to get results, respectively; the parameters for
rules describe the specific features of the rules in R. If any of the parameters m
and n is unbounded, we replace it by ∗.

If the communication structure in the tissue P system is a tree as in the
original model of membrane systems, then we omit the t and use the notations
OmCn (ϑ, φ, γ, ρ) and OmCn (ϑ, φ, γ, ρ).

4 Examples and Results

In this section, we give some examples how several well-known models of (tissue) P
systems can be expressed within the general framework presented in the preceding
section.

4.1 P Systems with Symport/Antiport Rules

For definitions and results concerning P systems with symport/antiport rules, we
refer to the original paper [15] as well as to the overview given in [18]. An antiport
rule is a rule of the form (x, i) (u, j) → (x, j) (u, i) usually written as (x, out;u, in),
xu 6= λ, where j is the region outside the membrane i in the underlying graph
structure. A symport rule is of the form (x, i) → (x, j) or (u, j) → (u, i).

The weight of the antiport rule (x, out;u, in) is defined as max {|x| , |u|}. Using
only antiport rules with weight k induces the type of rules α usually written as
antik. The weight of a symport rule (x, out) or (u, in) is defined as |x| or |u|,
respectively. Using only symport rules with weight k induces the type of rules α
usually written as symk. If only antiport rules (x, out;u, in) of weight ≤ 2 and
with |x| + |u| ≤ 3 as well as symport rules of weight 1 are used, we shall write
anti2′ . The following result is well known:

Theorem 1. O∗tC2 (max, H, gen,N) [anti2′ ] = NRE.

Observe that, within the normal framework of membrane systems, we only need
one membrane separating the environment and the skin region, but this means that
two regions corresponding to two cells are involved.
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4.2 Purely Catalytic P Systems

Already in the original paper of Gheorghe Păun (see [16]), membrane systems with
catalytic rules were defined, but used together with other noncooperative rules. In
[9] it was shown that only three catalysts are sufficient in one membrane, using
only catalytic rules with the maximally parallel transition mode, to generate any
recursively enumerable set of natural numbers.

A noncooperative rule is of the form (I : (a, i) → (y1, 1) . . . (yn, n)) where a is a
single symbol and I denotes the condition that is always fulfilled. A catalytic rule is
of the form (I : (c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n)) where c is from a distinguished
subset C ⊂ V such that in all rules (noncooperative evolution rules, catalytic rules)
of the whole system the yi are from (V − C)∗ and the symbols a are from (V − C).
Imposing the restriction that the noncooperative rules and the catalytic rules in
a tissue P system allow for finding a hierarchical tree structure of membranes
such that symbols either stay in their membrane region or are sent out to the
surrounding membrane region or sent into an inner membrane, then we get the
classical catalytic P systems without priorities. Allowing regular sets checking for
the non-appearance of specific symbols instead of I, we even get the original P
systems with priorities. Catalytic P systems using only catalytic rules are called
purely catalytic P systems. As we know from [9], only two (three) catalysts in one
membrane are needed to obtain NRE with (purely) catalytic P systems without
priorities working in the maximally parallel transition mode, i.e., we can write
these results as follows:

Theorem 2. NRE = O∗C1 (max,H, gen,−2) [cat2]
= O∗C1 (max,H, gen,−3) [pcat3] .

If we now partition the rule set in a purely catalytic P system according to
the catalysts present in each membrane, this partitioning replaces the use of the
catalysts when working in the 1-restricted minimally parallel transition mode,
because by definition from each of these sets then – if possible – exactly one rule
(as with the use of the corresponding catalyst) is chosen: from the set of purely
catalytic rules R we obtain the corresponding set of noncooperative rules R′ as

R′ = {(a, i) → (y1, 1) . . . (yn, n) |
(c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n) ∈ R}

as well as the corresponding partitioning of R′ as

R′i,c = {(a, i) → (y1, 1) . . . (yn, n) |
(c, i) (a, i) → (c, i) (y1, 1) . . . (yn, n) ∈ R} .

Considering purely catalytic P systems in one membrane, we therefore infer the
following quite astonishing result that when using the 1-restricted minimally paral-
lel transition mode for a suitable partitioning of rules we only need noncooperative
rules:
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Theorem 3. NRE = O∗C1 (min1,H, gen,N) [noncoop] .

When sing the asynchronous or the sequential transition mode, we only obtain
regular sets:

Theorem 4. For every ϑ ∈ {asyn, sequ}, φ ∈ {H,h}, and γ ∈ {gen, acc},

NREG = O∗tC∗ (ϑ, φ, γ, N) [noncoop] .

4.3 Extended Spiking Neural P Systems

In extended spiking neural P systems (without delays, see [1]), the rules are applied
in a sequential way in each neuron, but on the level of the whole system, the
maximally parallel transition mode is applied (every neuron which may use a
spiking rule has to spike, i.e., to apply a rule, see the original paper [14]). When
partitioning the rule set according to the set of neurons, the application of the 1-
restricted minimally parallel transition mode exactly models the original transition
mode defined for spiking neural P systems.

An extended spiking neural P system (of degree m ≥ 1) (in the following we
shall simply speak of an ESNP system) is a construct Π = (m,S, R) where

• m is the number of neurons; the neurons are uniquely identified by a number
between 1 and m;

• S describes the initial configuration by assigning an initial value (of spikes) to
each neuron;

• R is a finite set of rules of the form
(
i, E/ak → P

)
such that i ∈ [1..m] (spec-

ifying that this rule is assigned to neuron i), E ⊆ REG ({a}) is the checking
set (the current number of spikes in the neuron has to be from E if this rule
shall be executed), k ∈ N is the “number of spikes” (the energy) consumed by
this rule, and P is a (possibly empty) set of productions of the form (l, aw)
where l ∈ [1..m] (thus specifying the target neuron), w ∈ N is the weight of the
energy sent along the axon from neuron i to neuron l.

A configuration of the ESNP system is described by specifying the actual num-
ber of spikes in every neuron. A transition from one configuration to another one
is executed as follows: for each neuron i, we non-deterministically choose a rule(
i, E/ak → P

)
that can be applied, i.e., if the current value of spikes in neuron

i is in E, neuron i “spikes”, i.e., for every production (l, w) occurring in the set
P we send w spikes along the axon from neuron i to neuron l. A computation
is a sequence of configurations starting with the initial configuration given by S.
An ESNP system can be used to generate sets from NRE (we do not distinguish
between NRE and RE ({a})) taking the contents, i.e., the number of spikes, of a
specific neuron called output neuron in halting computations.

We now consider the ESNP system Π = (m,S, R) as a tissue P system Π ′ =
(m, {a} , S, R′) working in the 1-restricted minimally parallel transition mode, with
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R′ =
{(

E :
(
ak, i

) → (aw1 , l1) . . . (awn , ln)
) |(

i, E/ak → (l1, aw1) . . . (ln, awn)
) ∈ R

}

and the partitioning R′i, 1 ≤ i ≤ m, of the rule set R′ according to the set of
neurons, i.e.,

R′i =
{(

E :
(
ak, i

) → (aw1 , l1) . . . (awn , ln)
) |(

E :
(
ak, i

) → (aw1 , l1) . . . (awn , ln)
) ∈ R′

}
.

The 1-restricted minimally parallel transition mode chooses one rule – if possible
– from every set Ri and then applies such a multiset of rules in parallel, which
directly corresponds to applying one spiking rule in every neuron where a rule can
be applied. Hence, it is easy to see that Π ′ and Π generate the same set from
RE {a} if in both systems we take the same cell/neuron for extracting the output.
Due to the results valid for ESNP systems, see [1], we obtain the following result:

Theorem 5. NRE = O1tC3 (min1,H, gen, N) [ESNP] .

4.4 A General Result

For any tissue P system using rules of type α, with a transition mode ϑ, ϑ ∈
{allasetmin, asyn, sequ}, and partial halting, we only get Parikh sets of matrix
languages (regular sets of non-negative integers), provided the checking set for
each rule can be simulated by checking the (independent) applicability of a finite
set of rules (fixed for each rule):

Theorem 6. For every ϑ ∈ {allasetmin, asyn, sequ},
O∗tC∗ (ϑ, h, gen, T ) [α] ⊆ PsMAT and
O∗tC∗ (ϑ, h, gen, N) [α] ⊆ NREG.

The proof follows the ideas of a similar result proved for a general variant of P
systems with permitting contexts in [3] and therefore is omitted. We do not know
whether a similar result also holds true for the transition mode min itself instead
of allasetmin.

5 Conclusions

In the general framework considered in this paper, many variants of static tissue
P systems (and P systems as well) can be represented. Although during the last
decade, a great variety of such systems working in different transition mode has
been considered, many specific models of (tissue) P systems still wait for being
considered with other transition modes, for example, with the k-restricted mini-
mally parallel transition mode. Moreover, different variants of halting, especially
partial halting, should be considered for a lot more models of (tissue) P systems
in the future.
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Österreichische Computer Gesellschaft, 2008, 43–52.



30 R. Freund
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