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Natural computing is concerned with human-designed computing inspired by na-
ture as well as with computations taking place in nature, i.e., it investigates phe-
nomena taking place in nature in terms of information processing.

Well-known examples of the first strand of research are evolutionary computing,
neural computation, cellular automata, swarm intelligence, molecular computing,
quantum computation, artificial immune systems, and membrane computing.

Examples of research themes from the second strand of research are computa-
tional nature of self-assembly, computational nature of developmental processes,
computational nature of bacterial communication, computational nature of brain
processes, computational nature of biochemical reactions, and system biology ap-
proach to bionetworks.

While progress in the first line of research often contributes to important
progress in Information and Communication Technology (ITC), advances in the
second line of research often remind the general scientific community that com-
puter science is also the fundamental science of information processing, and as
such a basic science for other scientific disciplines such as, e.g., biology.

The research we present is concerned with the computational nature of bio-
chemical reactions in living cells. In particular we investigate the computational
processes inspired (based on) biochemical reactions.

On the level of abstraction that we adopt, the functioning of a biochemical
reaction is based on facilitation and inhibition: a reaction can take place if all of
its reactants are present and none of its inhibitors is present. If a reaction takes
place, then it produces its product. Therefore a reaction is defined as a triplet
a = (R, I, P ), where R, I, P are finite sets called the reactant set of a, the inhibitor
set of a, and the product set of a, and denoted by Ra, Ia, and Pa, respectively. If
S is a set such that R, I, P ⊆ S, then we say that a is a reaction in S.

Then a reaction a takes place (in a given state – a given molecular soup) if all
of its reactants are present and none of its inhibitors is present. Consequently, for
a finite set (state) T , a is enabled by T if Ra ⊆ T and Ia ∩ T = ∅. The result of a
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on T , denoted by resa(T ), is defined by: resa(T ) = Pa if a is enabled on T , and
resa(T ) = ∅ otherwise.

For a set A of reactions, the result of A on T , denoted resA(T ), is defined by:

resA(T ) =
⋃

a∈A

resa(T ).

Finally, a reaction system, abbreviated rs, is an ordered pair A = (S, A) such
that S is a finite set, called the background set of A, and A is a set of reactions in
S, called the set of reactions of A. For a finite set (state) T ⊆ S, the result of A
on T , denoted resA(T ), is defined by:

resA(T ) = resA(T ).

The framework of reaction systems sketched above and motivated by organic
chemistry of living organisms is based on assumptions that are very different from
(and mostly orthogonal to) underlying assumptions of majority of models in the-
oretical computer science. We will discuss now some of these assumptions.

If a reaction a is enabled by a state T , then the result resa(T ) is “locally de-
termined” in the sense that it depends on Ra only. However, the effect of applying
a to T is “dramatically global”, because the whole set T − Pa vanishes (to visu-
alize this effect assume that the cardinalities of T,Ra, and Pa are 10000, 3, and 2
only; then 9998 elements of T will vanish while a has seen/used only 3 elements
of T !!!). This is really orthogonal to models such as, e.g., Petri nets, and it affects
our assumption that there is no permanency of elements: an element of a global
current state will vanish unless it is sustained by a reaction.

When a set of reactions A is applied to a state T , the result of application
is cumulative: it is the union of the results of all individual reactions from A.
Note that we do not have here a notion of conflict between reactions in A: even
if Ra ∩ Rb 6= ∅ for some a, b ∈ A, then still both a and b contribute to resA(T ) –
there is no conflict of resources here. Again this is in strong contrast to standard
models in theoretical computer science such as, e.g., Petri nets. This reflects our
assumption about the “threshold supply”: either an element is present, and then
there is “enough” of it, or an element is not present. Therefore, there is no counting
in reaction systems, and consequently, reaction systems is a qualitative rather than
a quantitative model.

Finally, we note that in reaction systems reactions are primary while struc-
tures are secondary. We do not have permanency of elements and consequently,
in transitions from state to state, reaction systems create states (rather than they
transform states). Therefore, reaction systems do not work in an environment, but
rather they create an environment.


