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Summary. In this paper we discuss P automata, constructs combining properties of
classical automata and P systems being in interaction with their environments. We de-
scribe the most important variants and their properties, and propose new topics and
open problems for future research.

1 Introduction

Observing natural systems and processes, concepts for reconsidering fundamentals
of computation can be obtained, and based on the new ideas unconventional com-
putational devices can be built. When such a new construct is defined, its benefits
for computing usually are demonstrated by a comparison to its conceptual prede-
cessors or to other classical computational models having features similar to the
new one. This procedure is taking place in the theory of P automata, a framework
consisting of accepting variants of P systems which combine features of classical
automata and P systems being in interaction with their environments. Shortly, a
P automaton is a P system receiving input in each computational step from its
environment which influences its operation, by changing its configuration and thus
affecting its functioning. The sequences of inputs are distinguished as accepted or
rejected input sequences. The input is given as a multiset of objects, where ob-
jects can be elementary ones, i.e., without any structure (for example, symbols)
or non-elementary, structured ones (for example, a P system). The P system that
receives the input is called the underlying P system of the P automaton.
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Similarities between P automata and classical automata can immediately be
observed, but the reader easily may notice differences between the two constructs
as well: for example, conventional automata have separate state sets while in the
case of P automata the actual state is represented by the actual configuration
of the underlying P system. Another property which makes P automata different
from classical automata is that the workspace that they can use for computation is
provided by the objects of the already consumed input multisets. The objects which
enter the system become part of the description of the machine, that is, the input,
the object of the computation and the machine which executes the computation
cannot be separated as it can be done in the case of customary automata.

The first variant of P automata, introduced in [14, 15], was the so-called one-
way P automaton where the underlying P system had only top-down symport rules
with promoters (and implicitly inhibitors). Almost at the same time, a closely
related notion, the analyzing P system was defined in [21] providing a slightly
different concept of an automaton-like P system. Both models describe the class
of recursively enumerable languages. The property that purely communicating
accepting P systems may represent computationally complete classes of computing
devices gave an impetus to the research in the theory of P automata, resulting in
a detailed study of automaton-like P systems.

Since that time, several variants of P automata have been introduced and
investigated, which differ from each other in the main ingredients of these systems:
the objects the P system operates with, the way of defining the acceptance, the
way of communication with the environment, the types of the communication rules
used by the regions, the types of the rules associated with the regions (whether
or not evolution rules are allowed to be used), and whether or not the membrane
structure changes in the course of the computation. Summaries on these constructs
and their properties can be found in [32, 10, 13, 41].

Due to the power of the underlying P system, several of the above variants of P
automata determine the class of recursively enumerable languages, even with lim-
ited size parameters. Although these constructs offer alternative models for Turing
machines, P automata with significantly less computational power are of special
interest as well, since they provide descriptions of natural systems, with low com-
plexity. An adequate example of the latter systems is the standard, generic variant
of P automata, based on antiport rules with promoters or inhibitors, functioning
with sequential rule application, and accepting with final states. By appropriately
chosen mappings for defining the language of the P automaton, these constructs
determine a language class with sub-logarithmic space complexity.

In the following sections we describe the most important variants of P automata
and their properties. We also discuss how some classical variants of automata can
be represented in terms of P automata. Special emphasis is put on non-standard
features of P automata, namely, that the same construct is able to operate over
both finite and infinite alphabets, the underlying membrane structure may remain
unchanged but it also may dynamically vary under functioning, and that to obtain
large computational power they do not need workspace overhead.



P Automata: Concepts, Results and New Aspects 3

We also propose new topics and problems for future research.

2 P automaton - the basic model

2.1 The formal concept

In order to provide the reader with sufficient information to follow the discussion
on P automata and its different variants, we present some formal details concerning
the basic model, following the terms and notations from [13]. For more information
on membrane computing we refer to [37] and for more details on formal language
and automata theory to [38].

Throughout the paper, we denote the class of regular, context-free, context-
sensitive, and recursively enumerable languages by REG, CF, CS, and RE, re-
spectively.

We designate the set of finite multisets over a set V by V ◦, and the set
of their sequences by (V ◦)∗. We also denote u ∈ V ◦ by the correspond-
ing string a

u(a1)
1 a

u(a2)
2 . . . a

u(at)
t ∈ V ∗, V = {a1, a2, . . . , at}, or in the form

{(a1, u(a1)), (a2, u(a2)), . . . , (at, u(at))}.
The underlying membrane system of a P automaton is an antiport (sym-

port) P system possibly having promoters and/or inhibitors. For details on sym-
port/antiport the reader is referred to [35], for the use of promoters to [31].

Briefly, a symport rule is of the form (x, in) or (x, out), x ∈ V ◦. When such a
rule is applied in a region of a P system, then the objects of the multiset x enter
the region from the parent region (in) or they leave to the parent region (out).
An antiport rule is of the form (x, out; y, in), x, y ∈ V ◦. In this case, the objects
of y enter the region from the parent region and in the same step the objects of
x leave to the parent region. Notice that the parent region of the skin region is
the environment. All types of these rules might be associated with a promoter
or an inhibitor multiset, denoted as (x, in)|Z , (x, out)|Z , or (x, out; y, in)|Z , x, y ∈
V ◦, Z ∈ {z,¬z | z ∈ V ◦}. If Z = z, then the rule can only be applied if the
region contains all objects of multiset z, and if Z = ¬z, then z must not be a sub-
multiset of the multiset of objects present in the region. To simplify the notations,
we denote symport and antiport rules with or without promoters/inhibitors as
(x, out; y, in)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦} where we also allow x, y, z to
be the empty multiset. If y = λ or x = λ, then the notation above denotes the
symport rule (x, in)|Z or (y, out)|Z , respectively, if Z = λ, then the rules above
are without promoters or inhibitors.

Definition 1. A P automaton (with n membranes) is an (n + 4)-tuple, n ≥ 1,
Π = (V, µ, P1, . . . , Pn, c0,F), where

• V is a finite alphabet of objects,
• µ is a membrane structure of n membranes with membrane 1 being the skin

membrane,
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• Pi is a finite set of antiport rules with promoters or inhibitors associated to
membrane i for all i, 1 ≤ i ≤ n,

• c0 = (w1, . . . , wn) is called the initial configuration (or the initial state) of Π
where each wi ∈ V ◦ is called the initial contents of region i, 1 ≤ i ≤ n,

• F is a computable set of n-tuples (v1, . . . , vn) where vi ⊆ V ◦, 1 ≤ i ≤ n; it is
called the set of accepting configurations of Π.

An n-tuple (u1, . . . , un) of finite multisets of objects over V present in the n
regions of the P automaton Π is called a (possible) configuration of Π; ui is the
contents of region i in this configuration, 1 ≤ i ≤ n.

A P automaton functions as a standard antiport (symport) P system (with
promoters and/or inhibitors), changes its configurations by applying rules accord-
ing to a certain type of working mode. In the case of P automata, the two most
commonly used variants are the sequential rule application, introduced in [14, 15]
(also called 1-restricted minimally parallel in [26]), and the maximally parallel rule
application. In the case of sequential rule application, at any step of the compu-
tation the rule set to be applied is chosen in such a way that exactly one rule is
applied in each region where the application of at least one rule is possible. When
the the maximally parallel working mode is used, at every computational step as
many rule application is performed simultaneously in each region as it is possible.

The set of the different types of working modes is denoted by MODE, we use
seq and maxpar for the sequential and the maximally parallel rule application,
respectively.

Definition 2. Let Π = (V, µ, P1, . . . , Pn, c0,F), n ≥ 1, be a P automaton working
in the X-mode of rule application, where X ∈ MODE. The transition mapping of
Π is defined as a partial mapping δX : V ◦ × (V ◦)n → 2(V ◦)n

as follows:
For two configurations c, c′ ∈ (V ◦)n, we say that c′ ∈ δX(u, c) if Π enters con-

figuration c′ from configuration c by applying its rules in the X-mode while reading
the input u ∈ V ◦, i.e., if u is the multiset of objects that enter the skin membrane
from the environment while the underlying P system changes configuration c to c′

by applying its rules in mode X.

The sequence of multisets of objects accepted by a P automaton is defined
as the input sequence which is consumed by the skin membrane until the system
reaches an accepting configuration.

Definition 3. Let Π = (V, µ, P1, . . . , Pn, c0,F), n ≥ 1, be a P automaton. The set
of input sequences accepted by Π with X-mode of rule application, X ∈ MODE,
is defined as

AX(Π) = {v1 . . . vs ∈ (V ◦)∗ | there are c0, c1, . . . , cs ∈ (V ◦)n, such that
ci ∈ δX(vi, ci−1), 1 ≤ i ≤ s, and cs ∈ F}.

A P automaton Π, as above, is said to be accepting by final states if F =
E1 × . . . × En for some Ei ⊆ V ◦, 1 ≤ i ≤ n, where Ei is either a finite set of
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finite multisets or Ei = V ◦. Thus, a configuration c = (u1, . . . , un) is final, if for
all regions of Π, ui ∈ Ei, 1 ≤ i ≤ n.

If Π accepts by halting, then F contains all halting configurations of Π, that
is, all configurations c with no c′ ∈ (V ◦)n such that c′ ∈ δX(v, c) for some v ∈ V ◦,
X ∈ MODE.

The accepted multiset sequences of a P automaton can be encoded to strings,
thus making possible to assign languages to the P automaton. In the case of se-
quential rule application, the set of multisets that may enter the system is finite,
thus the input multisets can obviously be encoded by a finite alphabet. This im-
plies that any accepted input sequence can be considered as a string over a finite
alphabet. In the case of parallel rule application, the number of objects which
may enter the system in one step is not necessarily bounded by a constant. There-
fore, in this case the accepted input sequences correspond to strings over infinite
alphabets.

In the following we consider languages over finite alphabets, therefore we apply
a mapping to produce a finite set of symbols from a possibly infinite set of multisets.

Definition 4. Let Π = (V, µ, P1, . . . , Pn, c0,F), n ≥ 1, be a P automaton, Σ be
a finite alphabet, and let f : V ◦ → Σ∗ be a mapping. The language accepted by
Π with respect to f using the X-mode rule application, where X ∈ MODE, is
defined as

LX(Π, f) = {f(v1) . . . f(vs) ∈ Σ∗ | v1 . . . vs ∈ AX(Π)}.

The class of languages accepted by P automata with respect to a class of
computable mappings C with X-mode rule application, X ∈ MODE, is denoted
by LX,C(PA).

We illustrate the notion of a P automaton by an example from [10].

Example 1. Let

Π = ({S1, S2, S3, a, b, c}, [1 [2 [3 ]3 ]2 ]1(S1, P1, {d}), (S2, P2, {S1S2}), (S3, P3, ∅),

with

P1 = {(a, in)|S1 , (a, in)|a, (b, in)|a, (b, in)|b, (c, in)|b, (c, in)|c,
(d, in)|c, (ε, in)|d},

P2 = {(S1, in)|S2 , (a, in)|S1 , (b, in)|S1 , (c, in)|S1 , (ε, in)|c},
P3 = {(ε, in)|S3 , (abc, in)|S3},

Then, for f(x) = x, for x ∈ {a, b, c}, Π accepts words of the form anbncn,
n ≥ 1, with sequential application of rules and with only symport rules with
promoters. Thus, the language accepted by Π is a well-known non-context-free
context-sensitive language.
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2.2 Computational power

Examining the concept of a language accepted by a P automaton, the reader
can immediately notice that it strongly depends on the choice of mapping f (see
Definition 4). This implies that there might be cases when the power of the P
automaton comes from the mapping f and not from the P automaton itself. Due
to this property, the investigations on the accepting power of P automata have
concentrated on the cases where the mapping f is of low complexity.

It can also easily be seen that P automata work with no workspace overhead,
i.e., the workspace P automata can use for computation is provided by the objects
of the already consumed input multisets. Although this property appears to sig-
nificantly bound the computational power, since P automata may use maximally
parallel working mode, i.e., may input an exponentially growing number of objects,
the obtained computational power can be rather large.

We first recall some notations from [13]. Let NSPACE(S) designate the class
of languages accepted by a non-deterministic Turing machine using a workspace
which is bounded by a function S : N → N of the length of the input. We say that
L ∈ r1NSPACE(S) if there is a Turing machine which accepts L by reading the
input from a read only input tape once from left to right, and for every accepted
word of length n, there is an accepting computation during which the number of
nonempty cells on the work-tape(s) is bounded in each step by c · S(d) where c is
an integer constant, and d ≤ n is the number of input tape cells that have already
been read, that is, the actual distance of the reading head from the left end of the
one-way input tape.

Let c = (u1, . . . , un) be a configuration of a P automaton. We denote by |c| the
number of objects present inside the membrane structure, that is, |c| = Σn

i=1|ui|
where |ui| denotes the number of objects of ui ∈ V ◦.

The following statement describes the workspace of the P automaton used for
computing and its language for a non-erasing mapping f [13]. (The mapping f is
non-erasing if f : V ◦ → Σ∗ for some V, Σ with f(u) = λ if and only if u = ∅.)
Theorem 1. Let Π be a P automaton, let c0, c1, . . . , cm be a sequence of con-
figurations during an accepting computation, and let S : N → N, such that
|ci| ≤ S(d), 0 ≤ d ≤ i ≤ m, where S(d) bounds the number of objects inside
the system in the ith step of functioning, d ≤ i being the number of transitions in
which a nonempty multiset was imported into the system from the environment.

If f is non-erasing and f ∈ NSPACE(Sf ), then for any X ∈ MODE,
LX(Π, f) ∈ r1NSPACE(log(S) + Sf ).

By applying the above theorem and its proof to three-counter machines, the
following theorem can be obtained (see [13]). (Three-counter machines are Turing
machines with a one-way read only input tape and three work-tapes which can be
used as three counters capable of storing any non-negative integer as the distance
of the reading head from the only non-blank tape cell marked with the special
symbol Z.)

The following results were first published in [11, 12].
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Theorem 2.

1. Lseq,C(PA) = r1NSPACE(log(n)) for any class C of non-erasing mappings
with a finite domain, and

2. Lmaxpar,C(PA) = CS for any class C of non-erasing linear space computable
mappings.

By the simulation of the three-counter machine which is used to prove the
previous theorem, it follows that if we allow arbitrary linear space computable
functions for mapping the input multisets of the P automaton to the alphabet
of the accepted language, then we can obtain a characterization of the class of
recursively enumerable languages.

Corollary 1. Lmaxpar,C(PA) = RE for any class C of linear space computable
mappings.

2.3 Discussion of the basic model

In the following we briefly discuss the main ingredients of P automata and propose
topics for future research.

If we consider a P automaton as a P system being in interaction with its envi-
ronment, then not only input sequences but also output sequences are of interest
to study. While an input sequence can be considered as a representation of a se-
quence of impulses obtained from the environment, a sequence of outputs, i.e., a
sequence of multisets of objects that were sent to the environment at the steps of
the computation, correspond to reactions to the effect of the previously obtained
impulses and the change they caused in the behavior of the system. By obvious
modifications of Definitions 2, 3, 4, we can assign a so-called output language to
the P automaton. Output languages of P automata, supposing that the underlying
P system issues at any computation step at least one object to the environment,
would be of particular interest topic of investigations.

The concept of an (accepted) output sequence of a P automaton opens several
further topics to be examined. For example, if ui denotes the input and vi the
output of the P automaton Π at the ith computation step of a computation,
then diff(i) =| card(ui)− card(vi) |, i.e., the difference in the number of objects
entering and leaving the system, describes the volume of information exchange
at the given computation step and it is a characteristics of the P system. Based
on this parameter, several complexity measures can be defined: maxdiff(Π), i.e.,
the supremum, or mindiff(Π), i.e., the minimum of the difference of the volume
of information exchange with respect to any accepting computation. We also can
consider the difference of these two measures as well.

Based on the above measures, we can define a P automaton Π to be monotone
or strictly monotone if for any accepting computation in Π (or, for an accept-
ing computation for any word in the language accepted by Π) m(Π) ≥ 0 or
m(Π) > 0 holds, respectively, where m ∈ {maxdiff, mindiff}. Monotone P au-
tomata represent systems which are able to tolerate more and more impulses from
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the environment. Especially interesting topic for future research would be the de-
scription of language classes of P automata classes where the value of measures
maxdiff and mindiff regarding the P automata in the class can be bounded by
linear, polynomial, and exponential functions, respectively.

The concepts of an input and an output of a P automaton raise another issue.
As we have seen, unlike classical automata, the whole input sequence is not given at
the beginning of the computation, but it will be available step by step. Moreover,
the input is not given in advance but it is determined by the actual configuration
(state) of the underlying P system. It is an obvious question, what happens if we
present an input sequence of multisets of objects in advance and we consider it as an
accepted sequence if after consuming the elements of the sequence the underlying
P system enters an accepting state. Obviously, this model needs to be elaborated,
since the multisets in the sequence need not to coincide with the multiset of objects
the underlying P system is able to consume. However, this direction of research
would be of certain interest.

Some steps, although in a bit different manner, have already been made in this
direction, see, for example, [20]. We note that the existence of a designated input
membrane does not necessarily alter the computational power.

2.4 Non-standard features of P automata

P automata over infinite alphabets

One of the important characteristics of P automata is that the basic model is
suitable for describing languages over infinite alphabets, without any extension
or additional component added to the construct. This property arises from the
fact that the language accepted by these systems corresponds to the sequence of
multisets entering during a successful computation, and the number of possible
symbols which constitute the accepted string can be arbitrarily large.

An example of this approach is the notion of a P finite automaton, introduced
in [19].

This construct is a P automaton Π = (V ∪ {a}, µ, P1, . . . , Pn, c0,F) which
applies the rules in the maximally parallel manner, accepts by final states, the
object alphabet V ∪ {a} contains a distinguished symbol a; P1 (the skin region)
contains rules of the form (x, out; y, in)|Z with x ∈ (V ∪ {a})◦, y ∈ {a}◦, Z ∈
{z,¬z}, z ∈ V ◦; and if i 6= 1, the set Pi contains rules of the form (x, out; y, in)|Z
with Z ∈ {z,¬z}, x, y, z ∈ V ◦. We also allow the use of rules of the form (x, in)|Z
in the skin membrane in such a way, that the application of any number of copies
of the rule is considered in maximally parallel manner.

Notice that the domain of the mapping f is infinite, so its range could also
easily be defined to be infinite, as f : {a}◦ → Σ ∪ {λ} for an infinite alphabet
Σ = {a1, a2, . . .} with f(ak) = ak for any k ≥ 1, and f(∅) = λ.

The language accepted by a P finite automaton Π is L(Π) = Lmaxpar(Π, f)
for f as above.
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In [19] it was shown that for any L ⊆ Σ∗ over a finite alphabet Σ, L ∈ REG
if and only if L = L(Π) for some P finite automaton Π.

Because of these properties, the infinite alphabet languages accepted by P finite
automata can be considered as the extension of the class of regular languages
to infinite alphabets. In [19] it is also shown that this construction significantly
differs from other infinite alphabet extensions of regular languages defined by,
for example, the machine model called finite memory automata from [29] or the
infinite alphabet regular expressions introduced in [34].

P automata models for extensions of further language classes to infinite alpha-
bets, for example, to context-free languages, would also be an interesting research
direction.

ω-P automata

P automata also provide possibilities of describing (possibly) infinite runs (se-
quences of configurations). This feature is of particular importance, since if we
consider a P automaton as a system being in interaction with its environment, we
also should consider communication processes not limited in time.

Variants of P automata, motivated by these considerations, are the so-called
ω-P automata [25]. These constructs (having also so-called membrane channels)
were introduced to simulate the functioning of ω-Turing machines, that is, actions
of Turing machines on infinite words.

It was proved that for any well-known variant of acceptance mode of ω-Turing
machines one can construct an ω-P automaton with two membranes which simu-
lates the computations of the corresponding ω-Turing machine.

2.5 Variants of P automata

During the years, several types of automaton-like P systems were introduced with
the aim of studying their boundaries as computational devices and exploring their
relations to classical automata.

A lot of efforts have been devoted to describe the recursively enumerable lan-
guage class in terms of P automata. To be conform with formal language theoretic
constructs, several variants have been introduced, where input objects and auxil-
iary objects , i.e., terminal objects and nonterminal objects of the P automaton are
distinguished. Then, the accepted language is defined as the sequence of terminal
strings of the input multisets during an accepting computation (where the set of
terminal strings of a multiset consists of all permutations of its terminal symbols).
An example for this extended P automaton is the analyzing P system [21], which
has only antiport rules, works with the maximally parallel rule application and
accepts by halting. As we mentioned in the Introduction, the authors have shown
that these systems, even with small size parameters, are able to recognize any
recursively enumerable language.

In the case of these extended P automata, the workspace to obtain the computa-
tional completeness of P automata model, is due to the nonterminal objects which
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can be available in a number not restricted by the length of the input string. In [28]
interesting results were obtained for automaton-like P systems, called exponential-
space symport/antiport acceptors, working with other types of bounded resources,
with a set of terminal objects Σ containing a distinguished symbol $, and four types
of rules of restricted forms. These systems work with maximally parallel applica-
tion of rules and accept by final states; the language accepted by them is defined
in a slightly different way from the one that is used in the case of an extended P
automaton. The term “exponential-space symport/antiport acceptor” comes from
the fact that due to the restricted form of the rules, the workspace which can be
used by such a construct is not arbitrarily large, the membrane system contains
no more than an exponential number of objects (up to some constant) at any time
during the computation. Working with the maximally parallel rule application,
these systems describe the class of context-sensitive languages [28].

The original motivation of the introduction of the concept of the P automaton
was to study the power of purely communicating accepting P systems. For this
reason, the question whether or not any change in the underlying communicating
P system implies changes in the power and the size complexity of the respective
new class of P automata is of particular interest. During the years, several models
have been introduced to approach this problem.

Additional constraints given by a partial binary relation were posed to the
application of the communication rules of the basic model in the case of P automata
with priorities in [6], where the rules with the highest priority must be applied in
configuration change. Two other variants, with conditional symport/antiport rules,
are P automata with membrane channels [32, 22, 23], motivated by certain natural
processes taking place in cells, and P automata with conditional communication
rules associated with the membranes [32, 24]. All these models are computationally
complete devices, in the latter two cases optimal results on their size parameters
have also been obtained.

Another feature in which P automata differ from classical automata is the
property that they have no separate internal state sets, the states are represented
by the (possibly infinite) set of configurations. P automata with states attempted
to make the basic concept resemble more to conventional automata [30]. In this
model, both states and objects are considered, the states, together with the objects,
govern the communication. The device is computationally complete, moreover,
any recursively enumerable language can be described by these systems with very
restricted form [20].

Although most of the variants of P automata realize purely communicating, ac-
cepting P systems, the concept can be extended to be suitable for describing com-
plex evolving systems. Evolution-communication P automata, having both com-
munication and evolution rules, are examples for such models [1]. The construct
can be considered as a variant of extended P automata, and as it is expected, it
provides a description of the class of recursively enumerable languages.
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3 Further developments

3.1 P automata computing by structure

The models that have been discussed so far have a static membrane structure, that
is, the membrane structure is not altered during the functioning of the system.
Considering P automata as models of complex biological systems, this condition
is rather restrictive, since the architecture of natural systems may change in the
course of their functioning.

A P automaton-like system working with a dynamically changing membrane
structure is the P automaton with marked membranes ([16]), or a Ppp automaton,
for short. The concept is motivated by the theory of P systems, brane calculi [5],
and traditional automata theory. The underlying P system models the situation
when proteins are allowed to move through the membranes and to attach onto or
to detach from the membranes, in such a way that their moves may also imply
changes in the membrane structure. P automata with marked membranes are
able to consume inputs from their environment, i.e., multisets of proteins, which
might influence the behavior of the system, and correspond to the result of a
computation if the Ppp automaton starts in the initial configuration and halts
in a final configuration. As in the previous cases, the model is computationally
complete. Its importance lies in the bridge built between important research areas.

A variant of accepting P systems with dynamically changing membrane struc-
ture, called an active P automaton, was proposed and used for parsing sentences
of natural languages in [2, 3]. An active P automaton starts the computation with
one membrane containing the string to be analyzed together with some additional
information assisting the computation. It computes with the structure of the mem-
brane system, using operations as membrane creation, division, and dissolution.
There are also rules for extracting a symbol from the left-hand end of the input
string and for processing assistant objects. The computation ends with acceptance
when all symbols from the string are consumed and all membranes are dissolved.
It was shown that the model is suitable for recognizing any recursively enumerable
language, and with restrictions in the possible types of rules, also for determining
other well-known language classes, such as the regular language class and the class
of context-sensitive languages. This special variant of accepting P systems resem-
bles P automata since any symbol in the string can be considered as a multiset of
objects with one element consumed from the environment.

3.2 Classical automata versus P automata

Another important research area to investigate is how models and concepts of
classical automata theory can be related to models and concepts in P automata
theory. As we have seen in Subsection 2.4, finite automata can be represented in
terms of P automata in a natural manner.
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The property that by using the maximally parallel working mode an object
can appear in a region in a number of copies not bounded by a constant (ob-
viously, depending on the underlying P automaton), implies that strings (in the
form of numbers which are the values of numbers given in k-ary notation) can be
represented by regions of P automata. Based on this correspondence, contents of
pushdown storages or stacks can be described, which natural observation is used
for characterizing the context-free language class by a restricted variant of P au-
tomata, called stack P automata in [40]. Obviously, a pushdown storage can also
be represented as a configuration of a P system with a linear structure, where there
is only one object or one object of some distinguished type (representing a symbol
that belongs to the pushdown alphabet) in each region [39]. If we allow changes in
the linear membrane structure, i.e., the dissolution of the skin membrane and cre-
ation of a new linear structure which embraces the remaining part of the original
linear membrane structure, we can obtain a representation of a pushdown storage
in some other manner. Both approaches are used in [17], where different languages
classes, for example, the growing context-sensitive language class, are described in
terms of variants of multi-pushdown automata.

Counterparts of other classical variants of automata are found in [7], where
the so-called Mealy multiset automata and elementary Mealy membrane automata
are proposed and examined. These models are inspired by the concept of a Mealy
automaton. As a continuation of this research, an augmented version of the ele-
mentary Mealy membrane automaton, with extended communication capabilities,
called a simple P machine was investigated in [8].

So far we have discussed automata with only input, although transducers, i.e.,
automata with input and output play outstanding role in classical automata the-
ory. The concept of a P transducer, which is basically a one-membrane P automa-
ton working with input and output objects [9], realizes such a construction. Four
types of these machines were distinguished and studied, two of them are computa-
tionally complete, and two are incomparable to finite state sequential transducers.
Iterating these latter P transducer classes, new characterizations of the recursively
enumerable language class were obtained.

3.3 P automata and words with nested data

Since membrane systems are nested architectures, investigations in connections
between P automata theory and the theory of data languages, a theory mainly
motivated by applications in XML databases and parametrized verification, are of
particular interest. Research in this direction has started in [18].

In order to briefly report on the topic, we recall some notions on words with
nested data, following the notations in [4]. Let V be a finite alphabet and ∆ an
infinite set whose elements are called data values. For a natural number k, a word
w with k layers of data is a string where every position, apart from a label in
V , has k labels d1, . . . , dk ∈ ∆. The label di is called the ith data value of the
position. Thus, w ∈ (V ×∆k)∗. In w, the data values can be seen as inducing k
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equivalence relations ∼1, . . . ,∼k on the positions of w; two positions are related
by ∼i if they agree on the ith data value. A word with k layers of data is said to
have nested data if for each i = 2, . . . , k the relation ∼i is a refinement of ∼i−1.
Since P automata are able to operate over infinite alphabets, for representing sets
of words with k layers of data or with k layers of nested data (over some alphabets
V and ∆), P automata with dynamically changing linear structure and antiport
rules can be constructed.

Unlike standard questions concerning the computational power of P automata,
the main questions in this case are how much change the input implies in the
structure of the underlying P system and in the contents of certain regions.

Another important research direction can be to develop logic for these P au-
tomata (P systems), since certain properties of words with (k layers of) nested
data, have been described in terms of a fragment of first order logic, thus these
words were considered as models for logic, with logical quantifiers ranging over
word positions.

The topic is closely related to the study of shuffle expressions, since connec-
tions between words with nested data and these expressions have been explored, see
for example [4]. Shuffle expressions are regular expressions extended with intersec-
tions and the shuffle operation. Relations between shuffle expressions and so-called
high-order multicounter automata was analysed in [4], where it was shown that the
class of languages defined by shuffle expressions, the class of languages defined by
high-order multi-counter automata, and the recursively enumerable language class
are equal. High-order multicounter automata are automata with several counters
which can be incremented and decremented, but zero tests are only allowed at the
end of the word. In [18] a new variant of P automata is defined with strong for-
mal similarities to high-order multicounter automata. Based on the construction,
results on P automata and shuffle expressions can be derived.

3.4 P automata expressions

One important research area of classical automata theory is the study of the closure
with respect to certain operations, especially how to construct an automaton for
languages obtained by certain operation among a given collection of automata.
Questions related to compositions of P automata are of particular interest.

A step in this direction has been made in [27], where so-called P automata with
communication and active membrane rules working in the initial mode (CAIP)
have been introduced. The authors presented methods for constructing automata
for accepting the union, the concatenation, the Kleene closure, or the ω closure
of the given languages which are represented by some P automata. Starting from
these results, and considering these and other operations and these and other
(restricted) variants of P automata, it would be interesting to develop further
descriptions of language classes in term of so-called P-automata expressions.
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4 Conclusions

Investigations in the theory of P automata expected to be continued in several
directions. Since P automata can be considered as constructs attempting to build
a bridge between automata theory and membrane systems theory, similarities and
differences between the two fields are certainly of interest. But, as we mentioned in
the Introduction, P automata are models of dynamically changing systems which
are in communication (interaction) with their environments as well. According to
this approach, the investigations of P automata as dynamical systems form simi-
larly important research directions. We hope to have new results in both directions
in the future.
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brane Computing. Technical Report 26/03 of the Research Group on Mathematical
Linguistics, Rovira i Virgili University, Tarragona, Spain, 2003, 23-31.

2. G. Bel-Enguix and R. Gramatovici: Parsing with active P automata. In: C. Mart́ın-
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