
Integer Linear Programming
for Tissue-like P Systems

Raúl Reina-Molina1, Daniel Dı́az-Pernil1, Miguel A. Gutiérrez-Naranjo2

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics
University of Sevilla
raureimol@alum.us.es, sbdani@us.es

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
magutier@us.es

Summary. In this paper we report a work-in-progress whose final target is the imple-
mentation of tissue-like P system in a cluster of computers which solves some instances
of the segmentation problem in 2D Digital Imagery. We focus on the theoretical aspects
and the problem of choosing a maximal number of application of rules by using Integer
Linear Programming techniques. This study is on the basis of a future distribution of the
parallel work among the processors.

1 Introduction

Membrane systems1 are distributed and parallel computing devices processing
multisets of objects in compartments delimited by membranes. Computation is
carried out by applying given rules to every membrane content, usually in a max-
imal non-deterministic way, although other semantics are being explored.

In spite of some recent efforts (see [6]), there are neither in vivo, in vitro nor in
silico implementations of such devices and the unique way to get a mechanical ap-
plication of the rules is by the development of software tools capable of performing
simulations of such devices on current computers [4, 7].

In this paper we report a work-in-progress about the implementation of tissue-
like P system in a cluster of computers. This is not the first attempt. In 2003,
Ciobanu and Wenyuan presented in [3], a parallel implementation of transition P
systems. The program was designed for a cluster of 64 dual processor nodes and
1 We refer to [13] for basic information in this area, to [14] for a comprehensive presen-

tation and the web site [15] for the up-to-date information.

344 R. Reina-Molina et al.

it was implemented and tested on a Linux cluster at the National University of
Singapore.

We will focus on the problem of finding a maximal amount of applications of
rules from a given configuration in the framework of tissue-like P systems. The
contribution of this paper is the use of a matrix representation for configuratios
and rules and the use of Integer Linear Programming.

In this paper we will consider a matrix representation of tissue-like P systems.
This new representation will be useful for considering Integer Linear Programming
for automatically searching a maximal set of rules.

We also start using Operation Research techniques for calculating the rules to
be applied in each computing step.

A linear program, LP for short, is an Operation Research problem consisting in
optimizing a linear function subject to linear restrictions. Without lost of generality
we may assume that a LP is a problem like the following:

(LP)





maximize:
n∑

k=1

ckxk

subject to:
n∑

k=1

a1kxk ≤ b1

· · ·
n∑

k=1

amkxk ≤ bm

When the additional constraint of integrality of xk, the LP is called Integer
Linear Program, ILP for short.

The paper is organized as follows: First we briefly recall some basic definitions
related to multisets and tissue-like P systems. Next, we show a theoretical study
on how the tissue-like P systems can adopt a matrix representation. We show that
this representation can be useful for using Integer Linear Programming for finding
a maximal set of applications which will be used for a future distribution of the
work among different processors. We illustrates this definition with an explicative
example. Finally, some clues for the future work are presented.

2 Preliminaries

An alphabet, Σ, is a non empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length
of the string, and it is denoted by |u|. As usual, the empty string (with length 0)
will be denoted by λ. The set of strings of length n built with symbols from the
alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset
from Σ∗.

ILP for tissue-like P Systems 345

A multiset over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0} and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its

support is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A, then it will be denoted as

m = a
f(a1)
1 a

f(a2)
2 · · · af(ak)

k or {{af(aj)
j ; 1 ≤ j ≤ k}} where supp(m) = {a1, . . . , ak},

and for each element ai, f(ai) is called the multiplicity of ai. furthermore the mul-
tiplicity of an element ai ∈ m is denoted as mult(ai,m). In what follows we assume
the reader is already familiar with the basic notions and the terminology underly-
ing P systems. For details, see [14].

In the initial definition of the cell-like model of P systems [12], membranes are
hierarchically arranged in a tree–like structure. Its biological inspiration comes
from the morphology of cells, where small vesicles are surrounded by larger ones.
This biological structure can be abstracted into a tree–like graph, where the root
represents the skin of the cell (i.e., the outermost membrane) and the leaves rep-
resent membranes that do not contain any other membrane.

In tissue P systems, the tree-like membrane structure is replaced by a general
graph. This model has two biological inspirations (see [9, 10]): intercellular com-
munication and cooperation between neurons. The common mathematical model
of these two mechanisms is a net of processors dealing with symbols and commu-
nicating these symbols along channels specified in advance. The communication
among cells is based on symport/antiport rules. In symport rules, objects cooper-
ate to traverse a membrane together in the same direction, whereas in the case of
antiport rules, objects residing at both sides of the membrane cross it simultane-
ously but in opposite directions.

Formally, a tissue-like P system of degree q ≥ 1 with input is a tuple of the
form

Π = (Γ, Σ, E , w1, . . . , wq,R, iΠ , oΠ)

where

1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ(⊂ Γ) is the input alphabet;
3. E ⊆ Γ (the objects in the environment);
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells at the initial configuration;
5. R is a finite set of communication rules of the following form: (i, u/v, j), for

i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
6. iΠ ∈ {1, 2, . . . , q} is the input cell;
7. oΠ ∈ {0, 1, 2, . . . , q} is the output cell.

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells labeled
by 1, 2, . . . , q. We will use 0 to refer to the label of the environment, iΠ and oΠ

denote the input region and the output region (which can be the region inside a
cell or the environment) respectively.

346 R. Reina-Molina et al.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of
the system. We interpret that E ⊆ Γ is the set of objects placed in the environment,
each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labeled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object than can participate in a rule of any
form must do it, i.e., at each step a maximal set of rules is applied.

A configuration is an instantenous description of the system Π, and it is repre-
sented as a tuple 〈w0, w1, . . . , wq〉. Given a configuration, we can perform a com-
putational step and obtain a new configuration by applying the rules in a parallel
manner as it is shown above. A sequence of computation steps is called a compu-
tation. A configuration is halting when no rules can be applied to it. The output
of a computation is collected from its halting configuration by reading the objects
contained in the output cell.

3 Encoding Tissue-like P Systems by Using Matrices

In this section we define the formal framework for a new way of calculating maximal
set of rules to be applied in tissue-like P systems. First of all let us suppose that
we have the alphabet indexed, so Γ = {γj : 1 ≤ j ≤ |Γ |}. In the same sense
let R = {rk : 1 ≤ k ≤ |R|} be the set of communication rules. By using the
order in Γ settled by the indexation, we can consider the vector representation [1],
u ∈ N|Γ | of the multiset u as the |Γ |-dimensional vector u with uj = mult(γj , u)
for each j = 1, 2, . . . , |Γ |. Moreover, for technical reasons, we will extend this
vectorial representation to the environment by including the symbol ∞ for the
objects with an arbitrary amount of copies. In this way, we will consider a vector
u with coordinates in N∞ = N ∪ {∞} with

uj =
{

mult(γj , u) if γj ∈ E
∞ if γj ∈ E

We can extend elementary operations in N to N∞ with

∞± n = ∞, ∀n ∈ N
∞ · n = ∞, ∀n ∈ N, n 6= 0

By using this extension to N∞, we can use a vector representation for the
multisets inside the cell as as well as the multiset in the environment in each
configuration.

ILP for tissue-like P Systems 347

The configuration matrix is the (q + 1) × |Γ | matrix of non-negative integers
whose i-th row is the vector representation of the multiset wi. Let us recall that
the rows is indexed from 0, to take in count the multiset for environment.

In the following, we do not lose generality if we consider the communication
rule (i, u/v, j) written with i < j.

Let r = (iu, u/v, iv) be a communication rule interchanging the elements in u
with the elements in v. From this characterizaction we define two matrices:

M−
r =




...
iu : u

...
iv : v

...




,M+
r =




...
iu : v

...
iv : u

...




(1)

for 0 ≤ i ≤ q, 1 ≤ j ≤ |Γ |, where M−
r has all the rows 0 ∈ N|Γ | except the iu-th

and iv-th, which are, respectively, u and v, and so on. Both matrices defined above
makes the matrix representation for rule r, M(r) = 〈M−

r ,M+
r 〉.

For example, let Γ = {a, b, c, d} be an alphabet with environment E = {c, d}.
The multiset u = {{a2, c, d3}} is encoded by u = (2, 0, 1, 3). The rule r =
(1, ab2/c, 0) in a tissue-like P system with three cells (and the environment) is
encoded by

M−
r =




0 : (0, 0, 1, 0)
1 : (1, 2, 0, 0)
2 : (0, 0, 0, 0)
3 : (0, 0, 0, 0)


 ,M+

r =




0 : (1, 2, 0, 0)
1 : (0, 0, 1, 0)
2 : (0, 0, 0, 0)
3 : (0, 0, 0, 0)




If we have a configuration matrix given by, for example,

M =




0 : (0, 0,∞,∞)
1 : (3, 2, 0, 0)
2 : (0, 0, 1, 0)
3 : (0, 1, 0, 3)




then the application of rule r gives the configuration matrix given by

M ′ = M + M+
r −M−

r =



0 : (0, 0,∞,∞)
1 : (3, 2, 0, 0)
2 : (0, 0, 1, 0)
3 : (0, 1, 0, 3)


 +




0 : (1, 2, 0, 0)
1 : (0, 0, 1, 0)
2 : (0, 0, 0, 0)
3 : (0, 0, 0, 0)


−




0 : (0, 0, 1, 0)
1 : (1, 2, 0, 0)
2 : (0, 0, 0, 0)
3 : (0, 0, 0, 0)


 =




0 : (1, 2,∞,∞)
1 : (2, 0, 1, 0)
2 : (0, 0, 1, 0)
3 : (0, 1, 0, 3)




348 R. Reina-Molina et al.

If a computation step consists on applying the rule rk for mk times, 1 ≤ k ≤
|R|, M is the configuration matrix for a given configuration of the system and
M−

k ,M+
k are the matrices defined in Equation 1 for rule rk then

M +
|R|∑

k=1

mk(M+
k −M−

k)

is the configuration matrix for the configuration after the computation step. Hence,
if M is a multiset of rules, the result of applying all the rules in M to the configu-
ration given by M , is the configuration obtained from matrix

M ′ = M +M = M +
∑

r∈M
mult(r,M)Mr

where Mr = M−
r + M+

r

A rule r can be applied if there are enough objects in each cell to be com-
municated. Thus, if M is a configuration matrix and 〈M−

r ,M+
r 〉 is the matrix

representation of the communication rule r, it is clear that the rule can be applied
if and only if M + M(r)− ≥ 0, where 0 is the null matrix and ≥ is considered
elementwise. Thus, if M is a multiset of rules, then

M can be applied ⇔ M +
∑

r∈M
mult(r,M)M−

r ≥ 0 (2)

We will consider the following definition of maximality. A maximal multiset of
rules is a multiset M of communication rules such that no other applicable rule
can be added. Hence we have

M is maximal ⇔ ∀r ∈ R \M,M +M− + M−
r � 0 (3)

where M− is the multiset {{M+
r

mr : r ∈M ∧mr = mult(r,M)}}.
Given a configuration matrix M , finding a maximal set of rules is equivalent

to finding non-negative integers, mk, 1 ≤ k ≤ |R|, such that the multiset {{rmk

k :
rk ∈ R∧mk > 0}} is applicable and it cannot be extended by another applicable
rule. In membrane computer literature there are many approaches to the way
maximality is defined. As we are trying to apply membrane computing techniques
to silicon computers, we are interested in a definition of maximality that fits well
to this kind of devices. Therefore, we choose maximality in the sense of number of
rules applied.

In this way, we find one of the possible maximal sets of rules from all of the
available. For example, given Γ = {a, b}, the rules r1 = (1, a/b, 2) and r2 =
(1, a/b2) with multisets w1 = {{a2}} and w2 = {{b2}}, the multisets M1 = {{r2

1}}
andM2 = {{r2}} are both maximals. However, we preferM1 because of the higher
number of rule applications.

Hence our problem can be reduced to find non-negative integers mk (thought
to be multiplicities of rules) such that they maximize the sum

∑
k mk (which is

ILP for tissue-like P Systems 349

the total number of rule applications) subject to applicability condition. Therefore,
this problem can be exposed as the following Integer Linear Programming problem





maximize:
|R|∑

k=1

mk

subject to:
|R|∑

k=1

|M−
k [i, j]|mk ≤ M [i, j], for 0 ≤ i ≤ q, 1 ≤ j ≤ |Γ |

(4)

Although the Integer Linear Programming (ILP) problem in Equation 4 can be
solved in parallel, it is a well known that it is a NP problem (with respect to the
number of decision variables) [5, 8]. However, it can be solved with a reasonable
speed in ordinary computers when the number of variables is relatively small.
Hence it is important to decrease the number of decision variables. In order to
do that we will divide the entire ILP problem in Equation 4 is several smaller
problems. However, we must bear in mind the dependence between communication
rules. Hence, we say that two communication rules r = (iu, u/v, iv) and r′ =
(i′u, u′/v′, i′v) are dependent if they share some cells and, in the common ones, the
multisets being communicated have non empty intersection. It is equivalent to the
following condition

iu = i′u ∧ u ∩ u′ 6= ∅
∨

iv = i′v ∧ v ∩ v′ 6= ∅
∨

iu = i′v ∧ u ∩ v′ 6= ∅
∨

iv = i′u ∧ v ∩ u′ 6= ∅

(5)

We can define a partition of the set of communication rules, R, in several sets
such that every two rules in distinct sets are independent. More formally, let ∼
be the relation in R given by r ∼ r′ if and only if r and r′ are dependent rules.
Clearly ∼ is reflexive and symmetric. Let ' be the transitive closure of ∼. With the
definitions above, ' is an equivalence relation and the quotient set R/ ' defines
a partition in the set of rules such that each rule in any set is independent with
any rule in other partition set.

For each partition set defined above, we can define an ILP problem for rule
selection as in Equation 4. Hence, we have a solution of the problem for the whole
set of rules by considering the partial solution of each subproblem. This technique,
together with an appropriate design of the rules, ensures an upper bound on the
number of decision variables for each partial ILP making them available to be
solved in reasonable time.

350 R. Reina-Molina et al.

4 Example

In the following section, we will illustrate the techniques shown in section 3 (En-
coding tissue-like P Systems using matrices) by the application of them to an
example.

Let consider the following tissue-like P System with two cells

Π = (Γ,Σ, E , w1, w2,R, iΠ , oΠ)

where

1. Γ = {a, b, c, d} is the alphabet of objects;
2. Σ = ∅ is the input alphabet;
3. E = {a, c, d} represents the objects in the environment;
4. w1 = {{a10, b5, d}}, w2 = {{a4, c7}} are strings over Γ representing the multi-

sets of objects associated with the cells at the initial configuration;
5. R is the finite set of communication rules below:

a) r1 = (0, c/ab, 1)
b) r2 = (0, c5/a, 2)
c) r3 = (0, c2/a2b3, 1)
d) r4 = (1, d/c3, 2)
e) r5 = (0, a2d3/d, 1)

6. iΠ = 1 is the input cell;
7. oΠ = 2 is the output cell.

Let Mk denote the configuration matrix of the k-th configuration of Π. Triv-
ially,

M0 =



∞ 0 ∞∞
10 5 0 1
4 0 7 0




If 〈M−
k ,M+

k 〉 denotes the matricial form for rule rk, for k = 1, 2, 3, 4, 5, then

M−
1 =




0 0 1 0
1 1 0 0
0 0 0 0


M+

1 =




1 1 0 0
0 0 1 0
0 0 0 0


M−

2 =




0 0 5 0
0 0 0 0
1 0 0 0


 M+

2 =




1 0 0 0
0 0 1 0
0 0 5 0




M−
3 =




0 0 2 0
2 3 0 0
0 0 0 0


M+

3 =




2 3 0 0
0 0 2 0
0 0 0 0


M−

4 =




0 0 0 0
0 0 0 1
0 0 3 0


 M+

4 =




0 0 0 0
0 0 3 0
0 0 5 1




M−
5 =




2 0 0 3
0 0 0 1
0 0 0 0


 M+

5 =




0 0 0 1
2 0 0 3
0 0 0 0




Rule dependency must be studied before ILP problem definition. Hence, the
rule–dependency equivalence relation ' decomposes R in two sets, being [r1] =
{r1, r2, r3} and [r4] = {r4, r5}. Therefore, two ILP must be solved in order to find

ILP for tissue-like P Systems 351

a maximal set of rules to be applied for going from configuration i to i + 1. These
ILP will be respectively denoted as ILP

(1)
i→ı+1 and ILP

(4)
i→ı+1, and are represented

below.

ILP
(1)
i→i+1





maximize:m1 + m2 + m3

subject to:
m1 + 2m3 ≤ mult(a,w1)
m1 + 3m3 ≤ mult(b, w1)
m2 ≤ mult(a, w2)

(6)

ILP
(4)
i→i+1





maximize:m4 + m5

subject to:
m4 + m5 ≤ mult(d,w1)
m4 ≤ mult(c, w2)

(7)

We firstly solve ILP
(1)
0→1, obtaining the solution m2 = 1, m2 = 4 and m3 = 1.

The problem ILP
(4)
0→1 has two maximal solutions, being m4 = 0,m5 = 1 and

m4 = 1,m5 = 0. In such cases, we will choose one non deterministically. For
example, let m4 = 0,m5 = 1 be the solution selected.

Both partial solutions make a maximal multiset M0→1 = {{r2
1, r

4
2, r3, r5}},

whose application arises the configuration given by matrix

M1 =



∞ 5 ∞∞
8 0 4 3
0 0 35 0




Analogously, at this step ILP
(1)
1→2 has only the solution m1 = m2 = m3 = 0,

while ILP
(4)
1→2 has multiple solutions given in the set {(0, 3), (1, 2), (2, 1), (3, 0)},

where the first one is m4 and the last one is m5. Again, one solution is non
deterministically choosen, for example, m4 = 2,m5 = 1. Hence, the multiset of
rules to be applied is M1→2 = {{r2

4, r5}}, and the new configuration is given by
matrix

M2 =



∞ 5 ∞∞
10 0 10 3
0 0 29 2




Next computation step involves solving ILP
(1)
2→3 and ILP

(4)
2→3. These Integer

Linear Programs have the same solutions as previous ones. Again, in the second
ILP one only solution must be non deterministically choosen. Let m4 = 2,m5 = 1
be that solution. Application of the multiset of rules M2→3 = {{r2

4, r5}} gives next
configuration, settled as

M3 =



∞ 5 ∞∞
12 0 16 3
0 0 23 4




352 R. Reina-Molina et al.

Next computation step is similar to the previous one and a solution from
{(3, 0), (2, 1), (1, 2), (0, 3)} must be non determistically choosen. Let it be m4 =
3,m5 = 0, for example. Therefore, the configuration matrix obtained is

M4 =



∞ 5 ∞∞
12 0 25 0
0 0 14 7




On the next step, the only solution is the trivial one, settled as mk = 0, k =
1, 2, 3, 4, 5, which is interpreted as halting condition.

5 Final Remarks

Parallelism is on the basis of Membrane Computing. All the theoretical efforts for
designing membrane computing algorithms which use parallelism in an efficient
way has the same problem in realistic simulations. Most of the current computers
are sequential the simulations performed in such computers have the same bottle-
neck.

In this paper we report a preliminary work focused on a distributed simulation
of tissue-like P systems in a cluster of computers. In a general view, if the number
of cells does not increase along the computation it seems quite natural to plan a
distribution of the work among several processors. The first steps in this line have
led us to consider new representations (matrix representation) and new techniques
(Integer Linear Programming) to solve the problems.

Many open research lines are open form this preliminary work. One of them is
to consider different notions of parallelism [2], or introducing new features to our
P system model in order to make it suitable for the hardware implementation.

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN2008-04487-E and
TIN-2009-13192 of the Ministerio de Ciencia e Innovación of Spain and the support
of the Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta
de Andalućıa, grant P08-TIC-04200.

References

1. Busi, N., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Efficient computation in
rational-valued P systems. Mathematical Structures in Computer Science 19, 1125–
1139 (2009), http://dx.doi.org/10.1017/S0960129509990144

2. Ciobanu, G., Marcus, S., Păun, Gh.: New strategies of using the rules of a P system
in a maximal way. Power and complexity. Romanian Journal of Information Science
and Technology (ROMJIST) 12, 157–173 (2009)

ILP for tissue-like P Systems 353

3. Ciobanu, G., Wenyuan, G.: P systems running on a cluster of computers. In: Mart́ın-
Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on
Membrane Computing. Lecture Notes in Computer Science, vol. 2933, pp. 123–139.
Springer (2003)

4. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Mario J.
Pérez-Jiménez, M.: Software for P systems. In: Păun et al. [14], pp. 437–454.

5. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

6. Gershoni, R., Keinan, E., Păun, Gh., Piran, R., Ratner, T., Shoshani, S.: Research
topics arising from the (planned) P systems implementation experiment in Tech-
nion. In: Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Păun, Gh., Pérez-
Hurtado, I., Riscos-Núñez, A. (eds.) Sixth Brainstorming Week on Membrane Com-
puting. pp. 183–192. Fénix Editora, Sevilla, Spain (2008)

7. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Available mem-
brane computing software. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, Gh. (eds.)
Applications of Membrane Computing, pp. 411–436. Natural Computing Series,
Springer (2006)

8. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W. (eds.) Complexity of Computer Computations. pp. 85 – 104. Plenum Press
(1972)

9. Mart́ın-Vide, C., Pazos, J., Păun, Gh., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON.
Lecture Notes in Computer Science, vol. 2387, pp. 290–299. Springer (2002)

10. Mart́ın-Vide, C., Păun, G., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295–326 (2003)

11. Păun, Gh.: Computing with membranes. Tech. Rep. 208, Turku Centre for Computer
Science, Turku, Finland (November 1998)

12. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000), see also [11]

13. Păun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin, Ger-
many (2002)

14. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

15. P system web page. http://ppage.psystems.eu

