
Elementary Active Membranes
Have the Power of Counting

Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Universit degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{porreca,leporati,mauri,zandron}@disco.unimib.it

Summary. We prove that uniform families of P systems with active membranes operat-
ing in polynomial time can solve the whole class of PP decision problems, without using
nonelementary membrane division or dissolution rules. This result also holds for families
having a stricter uniformity condition than the usual one.

1 Introduction

P systems with active membranes [9] are known to solve computationally hard
problems in polynomial time by trading space for time: an exponential number
of membranes is created in polynomial time by using division rules, and then
massive parallelism is exploited, e.g., to explore the whole solution space of an
NP-complete problem in parallel.

When we allow nonelementary division rules, i.e., rules that can be applied
to membranes containing further membranes, even PSPACE-complete problems
become solvable in polynomial time [10, 2]. The general idea is that nonelementary
division allows us to construct a binary tree-shaped membrane structure, isomor-
phic to the parse tree of the formula resulting from the expansion of universal
and existential quantifiers into conjunctions and disjunctions, according to the
equivalences

∀x ϕ(x) ⇔ ϕ(0) ∧ ϕ(1) ∃x ϕ(x) ⇔ ϕ(0) ∨ ϕ(1).

We also know that no problem outside PSPACE can be solved in polynomial time,
as this is also an upper bound [11]: in symbols, we have PMCAM = PSPACE.

On the other hand, when no division at all is allowed the resulting P systems
can be shown to be no more powerful than polynomial-time Turing machines
(“Milano Theorem” [12]).

The “intermediate” case, when the only membranes that can divide are elemen-
tary (i.e., leaves of the tree corresponding to the membrane structure), is possibly



330 A.E. Porreca et al.

the most interesting one. The exponential number of membranes that may be
created cannot be structured into a binary tree: hence, the algorithm above can
only be applied to formulae having just one kind of quantifier. This is enough to
solve the SAT problem [12] and its complement (which are respectively NP- and
coNP-complete), where only existentially (resp., universally) quantified variables
are allowed.1 However, the corresponding complexity class PMCAM(−n) still lacks
a characterisation in terms of Turing machines. Alhazov et al. [1] have shown how
PP- and #P-complete problems can be solved without nonelementary division,
but their result is not directly related to the class PMCAM(−n), as it requires
some form of post-processing or the use of non-standard rules. In this paper, we
improve the previous NP∪ coNP lower bound to PP within the standard frame-
work of active membranes. This is an improved version of the paper “P systems
with active membranes: Beyond NP and coNP” presented by the authors and the
Eleventh International Conference on Membrane Computing [7].

2 Preliminaries

We use P systems with restricted elementary active membranes, which are defined
as follows.

Definition 1. A P system with restricted elementary active membranes of initial
degree d ≥ 1 is a tuple Π = (Γ, Λ, µ, w1, . . . , wd, R), where:

• Γ is a finite alphabet of symbols (the objects);
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree) consisting of d mem-

branes enumerated by 1, . . . , d; furthermore, each membrane is labeled by an
element of Λ, not necessarily in a one-to-one way;

• w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge (or polarization), which can be either neutral (0), positive
(+) or negative (−) and is always neutral before the beginning of the computation.

The rules are of the following kinds:

• Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

1 Some further partial results relating quantifier alternations and nonelementary division
depth, albeit in the slightly different framework of P systems with active membranes
without charges, have been obtained [8].
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• Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β.

• Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to β.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charge β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane any number of evolution rules
can be applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary division
must be subject to exactly one of them (unless the current charge of the mem-
brane prohibits it). The same reasoning applies to each membrane that can be
involved to communication, dissolution, elementary or nonelementary division
rules. In other words, the only objects and membranes that do not evolve are
those associated with no rule, or only to rules that are not applicable due to
the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• While all the chosen rules are considered to be applied simultaneously during
each computation step, they are logically applied in a bottom-up fashion: first,
all evolution rules are applied to the elementary membranes, then all commu-
nication, dissolution and division rules; then we proceed towards the root of
the membrane structure. In other words, each membrane evolves only after its
internal configuration has been updated.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

A halting computation of Π is a finite sequence of configurations C = (C0, . . . , Ck),
where C0 is the initial configuration, every Ci+1 is reachable by Ci via a single
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computation step, and no rules can be applied anymore in Ck. A non-halting com-
putation C = (Ci : i ∈ N) consists of infinitely many configurations, again starting
from the initial one and generated by successive computation steps, where the
applicable rules are never exhausted.

P systems can be used as recognisers by employing two distinguished objects
yes and no; exactly one of these must be sent out from the outermost membrane
during each computation, in order to signal acceptance or rejection respectively; we
also assume that all computations are halting. If all computations starting from
the same initial configuration are accepting, or all are rejecting, the P system
is said to be confluent. If this is not necessarily the case, then we have a non-
confluent P system, and the overall result is established as for nondeterministic
Turing machines: it is acceptance iff an accepting computation exists.

In order to solve decision problems (i.e., decide languages), we use families of
recogniser P systems Π = {Πx : x ∈ Σ?}. Each input x is associated with a P sys-
tem Πx that decides the membership of x in the language L ⊆ Σ? by accepting or
rejecting. The mapping x 7→ Πx is restricted, in order to be computable efficiently
and uniformly for each input length.

Definition 2. A family of P systems Π = {Πx : x ∈ Σ?} is said to be
(polynomial-time) uniform if the mapping x 7→ Πx can be computed by two deter-
ministic polynomial-time Turing machines F (for “family”) and E (for “encod-
ing”) as follows:

• The machine F , taking as input the length n of x in unary notation, constructs
a P system Πn with a distinguished input membrane (the P systems structure
Πn is common for all inputs of length n).

• The machine E, on input x, outputs a multiset wx (an encoding of the specific
input x).

• Finally, Πx is simply Πn with wx added to the multiset placed inside its input
membrane.

Notice that this definition of uniformity is possibly weaker than the other one
commonly used in membrane computing [6], where the Turing machine F maps
each input x to a P system Πs(x), where s : Σ? → N is a measure of the size of the
input (in our case, s(x) is always |x|). In particular, complexity classes defined us-
ing this restricted uniformity condition are not always formally known to be closed
under polynomial-time reductions2. See [4] for further details on uniformity condi-
tions, including constructions using weaker devices than polynomial-time Turing
machines.

Any explicit encoding of Πx is allowed as output, as long as the number of
membranes and objects represented by it does not exceed the length of the whole
description, and the rules are listed one by one. This restriction is enforced in
2 This might complicate proofs of inclusions among complexity classes, although one

can usually find a proof not relying on closure under polynomial-time reductions, as
in the present paper.
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order to mimic a (hypothetical) realistic process of construction of the P systems,
where membranes and objects are presumably placed in a constant amount during
each construction step, and require actual physical space in proportion to their
number. For instance, the membrane structure can be represented by brackets,
and the multisets as strings (i.e., in unary notation); this is a permissible encoding
in the sense of [4].

Finally, we describe how time complexity for families of recogniser P systems
is measured.

Definition 3. A uniform family of P systems Π = {Πx : x ∈ Σ?} is said to
decide the language L ⊆ Σ? (in symbols L(Π) = L) in time f : N → N iff, for
each x ∈ Σ?,

• the system Πx accepts if x ∈ L, and rejects if x /∈ L;
• each computation of Πx halts within f(|x|) computation steps.

In this paper we use uniform families of P systems to solve a variant of the SAT
problem. Hence, we set the relevant notation and describe how Boolean formulae
can be encoded in order to simplify a uniform solution.

Given a set of m ≥ 3 variables Xm = {x1, . . . , xm}, the number of clauses of
3 variables (without repeated variables, and ignoring permutations of literals) is
given by 8

(
m
3

)
, the number of 3-element subsets times the 23 ways to negate them.

Hence, a 3CNF formula ϕ can be encoded as an 8
(
m
3

)
-bit string, where the i-th

bit is 1 iff the i-th clause (under some fixed ordering) appears in ϕ. Notice that
8
(
m
3

)
= 4

3m3 − 4m2 + 8
3m is a polynomial.

In this paper, we will order the clauses according to the enumeration printed
by the recursive algorithm of Figure 1.

Example 1 (Encoding). The clauses over 4 variables X4 = {x1, . . . , x4}, in the
order given by the algorithm above, are the following ones:

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4

x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4

Then, the formula

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

is encoded as the following sequence of 8
(
4
3

)
= 32 bits
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print-clauses(m)
if m > 3 then

print-clauses(m− 1)
end
for i ← 1 to m− 2 do

for j ← i + 1 to m− 1 do
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”

end
end

end

Fig. 1. A recursive, polynomial-time algorithm that enumerates all clauses of 3 out of
m variables.

ϕ = 0100 0001 0000 0000 0001 0000 0000 0010

because the clauses actually appearing are the 2nd, 8th, 20th, and 31st ones.

Besides being computable in polynomial time with respect to m, this ordering
has the following important property: the sequence of clauses over m variables
is a prefix of the sequence of clauses over m′ variables whenever m′ ≥ m. As a
consequence, each formula over m variables can also be considered as a formula
over m′ variables by padding its encoding to the correct length. For instance,
the formula ϕ of Example 1 can be interpreted as a formula over five variables
x1, . . . , x5 if its encoding is padded to length 8

(
5
3

)
= 80 by a string of zeroes, i.e.,

as ϕ · 048.
We now consider the following decision problem.

Problem 1 (Threshold-3SAT). Given a Boolean formula ϕ over m variables
and a non-negative integer k < 2m, do more than k assignments (out of 2m)
satisfy it?

Notice that we can force all valid instances (ϕ, k) of Problem 1 to have a descrip-
tion of length exactly 8

(
m
3

)
+ m for some m, as every number in the range [0, 2m)

can be represented using m bits. This will be useful in the next section.

Proposition 1. Threshold-3SAT is PP-hard.

Proof. We reduce the following standard PP-complete problem [5, p. 256] to
Threshold-3SAT.
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Problem 2 (Majority-SAT). Given a Boolean formula ϕ in CNF, hav-
ing c clauses over m variables and such that each variable occurs at most
once per clause, do more than half the assignments (i.e., more than 2m−1

assignments) satisfy it?

The reduction is similar to that from SAT to 3SAT described in [3, p. 48]. We
first transform ϕ into a formula having at most three literals per clause. Observe
that ϕ is satisfied iff the formula obtained by replacing a clause of p > 3 literals∨p

i=1 `i with

(y ⇔ `1 ∨ `2) ∧
(

y ∨
p∨

i=3

`i

)

is also satisfied, assuming y is a new variable. In CNF, that is equivalent to

(`1 ∨ y) ∧ (`2 ∨ y) ∧ (`1 ∨ `2 ∨ y) ∧
(

y ∨
p∨

i=3

`i

)
.

This substitution doubles the number of total assignments of the formula, due to
the addition of a new variable, but the number of satisfying ones is left unchanged,
as the value of y is forced to be equal to `1 ∨ `2. The substitution decreases by one
the number of literals of the initial clause; by repeating the process p − 3 times,
and then again to any other clause having more than three literals, we obtain
a formula ϕ′ having at most three literals per clause, and the same number of
satisfying assignments as ϕ. The number of variables of ϕ′ is bounded by m+ cm.

Next, we transform every clause of one or two literals into a clause of exactly
three. A clause of a single literal ` is replaced by

(` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2),

where z1 and z2 are new variables, which is clearly satisfied iff ` is. Each replace-
ment like this one multiplies by 22 = 4 the number of satisfying assignments of
the whole formula, as the values of z1 and z2 are actually irrelevant.

A clause of two literals `1 ∨ `2 is replaced by

(`1 ∨ `2 ∨ z) ∧ (`1 ∨ `2 ∨ z),

where z is a new variable, which is also equivalent to the original clause but doubles
the number of satisfying assignments of the formula.

Call ϕ′′ the formula obtained from ϕ′ by replacing single and 2-literal clauses
by conjunctions of 3-literal clauses as described above, and let q be the number of
variables added in the process (notice that q is O(cm)). Then it should be clear
that ϕ has more than 2m−1 satisfying assignments iff ϕ′ does, and the latter is
equivalent to ϕ′′ having more than 2m+q−1 satisfying assignment.

Since the mapping R(ϕ) = (ϕ′′, 2m+q−1) is computable in polynomial time with
respect to c and m, it is a reduction from Majority-SAT to Threshold-3SAT.
ut
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3 Solving Threshold-3SAT

In order to solve Threshold-3SAT we design a polynomial time, deterministic
Turing machine F (for “family”) such that, for each n of the form 8

(
m
3

)
+ m, the

output of F (1n) is a P system Πn that solves the problem for all inputs of length
n.

The input provided to Πn is computed by another polynomial time Turing
machine E (for “encoding”) that, given an m-variable 3CNF formula as described
in the previous section and an integer k, outputs the following set of objects:

E(ϕ, k) = {ci : the i-th clause does not appear in ϕ, for 1 ≤ i ≤ 8
(
m
3

)} ∪
{ki : the i-th bit of k (counting from 0) is 1, for 1 ≤ i ≤ m− 1}

Example 2. The formula ϕ of Example 1, together with the integer k = 12, are
encoded as E(ϕ, k) =

{
ci : 1 ≤ i ≤ 32 and i /∈ {2, 8, 20, 31}} ∪ {k2,k3}.

The initial configuration of Πn, input multiset excluded, is the following one:

C0 =
[
[in−m]0e [ ]0k0

· · · [ ]0km−1
ot+1 not+3

]0
in

where t = 4n− 3m + 4. The multiset encoding E(ϕ, k) is placed inside the input
membrane in, and then the computation proceeds according to the following five
phases:

1. Initialise the contents of the membranes.
2. Generate all possible assignments for ϕ.
3. Check if each assignment satisfies the input formula ϕ.
4. Count the number of assignments, testing whether it is larger than k.
5. Output the correct answer.

The fourth phase, first suggested by Alhazov et al. [1], differentiates our solution
from the standard algorithm schema, common in membrane computing, for solving
NP-complete problems.3

Phase 1 (Initialise). In the first computation steps, the objects ci, correspond-
ing to the clauses that do not appear in the input formula ϕ, are moved to mem-
brane e using the communication rules

ci [ ]0e → [ci]0e for 1 ≤ i ≤ n−m. (R1)

This takes a number of steps at most equal to n−m (i.e., to the maximum number
of clauses in ϕ). In the mean time, the object in−m has its subscript decreased by
one for n−m− 1 computation steps, and is finally replaced during the (n−m)-th
step, using the rules
3 Indeed, by eliminating the fourth phase (or, equivalently, by choosing k = 0) we obtain

essentially a uniform version of the original solution to SAT described by Zandron et
al. [12].
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[ii → ii−1]0e for 1 ≤ i ≤ n−m. (R2)

[i0 → x1 · · ·xmwm]0e (R3)

Hence, after n −m computation steps, membrane e contains ci for each missing
clause, and the variable-objects x1, . . . ,xm.

At the same time, the objects ki are first moved to their respective membranes
in the first time step, making them positively charged

ki [ ]0ki
→ [ki]+ki

for 0 ≤ i ≤ m− 1 (R4)

then each ki divides its membrane i times:

[ki]+kj
→ [ki−1]+kj

[ki−1]+kj
for 0 ≤ j ≤ m− 1 and 1 ≤ i ≤ j. (R5)

After at most m steps (the largest possible subscript is m−1), there are exactly k
positively charged membranes among those having label k0, . . . ,km−1.

The total duration of Phase 1 is n−m steps.

Phase 2 (Generate). The variable-objects x1, . . . ,xm are used to generate all
the truth assignment inside multiple copies of membrane e. This is accomplished
by using the division rules

[xi]0e → [ti]0e [fi]0e for 1 ≤ i ≤ m. (R6)

After m steps, we have 2m copies of membrane e, each one containing a different
truth assignment to the variables x1, . . . , xm of ϕ: the occurrence of ti (resp., fi)
indicates that xi is set to true (resp., false) in that particular assignment.

Simultaneously, the subscript of object wm (standing for “wait m steps”) is
decreased by one each step:

[wi → wi−1]0e for 1 ≤ i ≤ m. (R7)

When the counter reaches 0, the objects w0 are sent out from each copy of mem-
brane e while changing its charge according to the following rule:

[w0]0e → [ ]+e w0. (R8)

When membrane e is positively charged, the objects ti and fi are replaced by the
set of clause-objects corresponding to all the clauses satisfied by that particular
value of variable xi (whether they are actually part of formula ϕ or not):

[ti → ci1 · · ·ci`
]+e for 1 ≤ i ≤ m, where clause ij contains literal xi (R9)

[fi → ci1 · · ·ci`
]+e for 1 ≤ i ≤ m, where clause ij contains literal x̄i. (R10)

Notice that ` = 4
(
m−1

2

)
= 2m2 − 6m + 4, as this is the number of clauses over m

variables where a particular literal occurs.
At the same time, each copy of w0 is brought back as s0 to a copy of membrane

e by using the following rule in a maximally parallel way:

w0 [ ]+e → [s0]+e . (R11)

The total duration of Phase 2 is m + 2 steps.
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Phase 3 (Check). The occurrence of si inside a copy of membrane e denotes the
fact that the first i clauses (according to the enumeration described above) have
been found to be satisfied by the assignment corresponding to that membrane. We
assume that the clauses which do not appear in ϕ are satisfied by default; indeed,
this is precisely the reason why the corresponding ci objects were placed inside
membrane e in Phase 1.

When membrane e is positively charged, the object c1 is sent out from e (as
the “junk” object #), changing the charge to negative:

[c1]+e → [ ]−e #. (R12)

When e is negative, object si is sent out; at the same time, the objects ci, for
i ≥ 2, are temporarily “primed”, and all remaining copies of c1 are discarded:

[si]−e → [ ]−e si for 0 ≤ i ≤ n−m− 1 (R13)

[ci → c′i]
−
e for 2 ≤ i ≤ n−m (R14)

[c1 → #]−e . (R15)

In the next step, the objects c′i become ci−1; this way, during this phase we only
need to check for the presence of object c1 for n−m times.

[c′i → ci−1]−e for 2 ≤ i ≤ n−m. (R16)

At the same time, the object si is brought back in (if i < n − m), its subscript
incremented by one, while changing the charge of e to positive in order to resume
the checking of clauses:

si [ ]−e → [si+1]+e for 0 ≤ i ≤ n−m− 1. (R17)

If sn−m is finally found inside e, it is sent out to signal that the formula is fully
satisfied under that particular assignment:

[sn−m]+e → [ ]0e sn−m. (R18)

Hence, after the 3n−3m+1 steps of Phase 3, the outermost membrane in contains
a copy of sn−m for each assignment that satisfies ϕ.

Phase 4 (Count). In the next step, k copies of sn−m (or all of them, if less than k
exist) are “deleted” from membrane in by sending them into any of the membranes
having label k0, . . . ,km−1; these membranes are set to negative in the process, to
avoid absorbing multiple objects:

sn−m [ ]+ki
→ [#]−ki

for 0 ≤ i ≤ m− 1. (R19)

Recall that the number of positively charged membrane ki is exactly k. Hence,
after this single step there are one or more copies of sn−m left inside membrane in
if and only if the number of satisfying assignments of ϕ was greater than k.
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Phase 5 (Output). The objects ot and not+2, initially located inside membrane
in, work as counters during Phases 1–4 (whose total duration is precisely t =
4n− 3m + 4 steps) according to the following rules:

[oi → oi−1]0in for 1 ≤ i ≤ t + 1 (R20)

[noi → noi−1]0in for 2 ≤ i ≤ t + 3. (R21)

When the subscript of oi reaches 0, Phase 5 begins and o0 is sent out, thus
“opening” membrane in for output by setting its charge to positive:

[o0]0in → [ ]+in #. (R22)

If any object sn−m is found inside in, it is sent out as yes in the next step, changing
the charge to negative:

[sn−m]+in → [ ]−in yes. (R23)

Otherwise, membrane in remains positive, and the object no0, produced by the
rule

[no1 → no0]+in (R24)

is sent out as no in the following step:

[no0]+in → [ ]−in no. (R25)

The duration of Phase 5 is either 2 or 3 steps, depending on whether the number
of assignments satisfying ϕ is greater than k or not.

This algorithm allows us to solve the Threshold-3SAT problem in linear
time O(n + m) = O(n).

Theorem 1. Threshold-3SAT ∈ PMCAM(−n,−d).

Proof. Let Π be the family of P systems described above. We show that Π can
be constructed in polynomial time by two Turing machines F and E.

The machine F , on input 1n (where n = |(ϕ, k)|) first computes the unique
positive root of the polynomial

p(m) = 8
(
m
3

)
+ m− n

thus establishing the number of variables. This can be done in polynomial time
with respect to n simply by trying all integers up to n.

Then F outputs the initial configuration C0 of Πn, which can be easily com-
puted in polynomial time from n and m. Finally, the set of rules R1 ∪ · · · ∪ R25

is output. Each of the sets Ri can be computed in polynomial time; the most
complicated ones are R9 and R10, which require enumerating the clauses using the
algorithm of Figure 1.
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The P system Πn itself, on input E(ϕ, k), only requires O(n) time (and O(n2m)
space) to output yes or no, without using any nonelementary division or dissolu-
tion rules; this establishes that the problem is in PMCAM(−n,−d).

If the machines F and E receive a malformed input, i.e., any input having
length n 6= 8

(
m
3

)
+ m for all m ≤ n, then F produces a fixed P system that sends

out the no object immediately (while E produces an empty multiset). ut

4 Solving the other PP problems

Being able to solve one PP-complete problem implies PP ⊆ PMCAM(−n,−d)

if the uniformity condition is defined as in [6], as closure under polynomial-time
reductions is immediate. However, our uniformity condition is possibly weaker, as
the P system associated with each input only depends on its size and not on the
specific input itself, and the class PMCAM(−n,−d) defined this way is currently
not known to be closed under polynomial-time reductions. Hence, to prove the PP
inclusion we operate as follows.

Theorem 2. PP ⊆ PMCAM(−n,−d).

Proof. Let L ∈ PP, and let R be a Turing machine reducing L to the problem
Threshold-3SAT in polynomial time p(n), where n is the length of the instance
of L. We describe two polynomial-time Turing machines F ′ and E′ constructing a
family of P systems Π ′, also running in polynomial time, such that L(Π ′) = L.

The machine F ′, on input 1n (where n = |x|), constructs a P system able to
solve the largest Threshold-3SAT formula that might be produced as the output
of R; if the actual output of R is smaller than that, we can pad it to the correct
length by adding enough zeroes. Let f be defined as follows:

f(n) = min
{
n′ : n′ ≥ n and n′ = 8

(
m′

3

)
+ m′ for some m′}

that is, f(n) is the smallest integer of the form 8
(
m′

3

)
+ m′ greater than or equal

to n. Then, F ′ behaves as follows:

F ′(1n) = F
(
1f(p(n))

)
= Πf(p(n)).

Since R runs in time p(n), the P system Πf(p(n)) is large enough to receive as
input any formula ϕ obtained via the reduction R, as |R(x)| = |(ϕ, k)| ≤ p(|x|),
as long as it is padded to length f(p(n)) as described above.

Notice that the value f(n) can be obtained in polynomial time with respect to
n by simply computing 8

(
m′

3

)
+m′ for all integers m′ until n is reached or exceeded;

furthermore, f(n) itself is at most polynomial in n (e.g., a trivial upper bound is
8
(
n
3

)
+ n).

The encoding machine E′, on input x, produces an output formula encoding ϕ′,
obtained from (ϕ, k) = R(x) as follows:
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ϕ′ = ϕ · 0` where ` = f(p(n))− |ϕ|.

Recall from Section 2 that ϕ · 0` is indeed a valid encoding of a formula, having
exactly the same clauses of ϕ but over m′ variables instead of the original m (where
m′ satisfies f(p(n)) = 8

(
m′

3

)
+ m′). The number of required assignments k has to

be adjusted accordingly: every assignment of the original formula ϕ corresponds
to 2m′−m assignments of ϕ′ (obtained by extending it with arbitrary values to the
new variables) that satisfy it iff the original assignment satisfies ϕ, since the new
m′ −m variables do not actually appear in ϕ′. Hence, we define k′ = 2m′−m · k.

Summarising, the machine E′ behaves as follows:

E′(x) = E
(
ϕ · 0`, 2m′−mk

)
where (ϕ, k) = R(x).

Since (ϕ′, k′) ∈ Threshold-3SAT iff (ϕ, k) ∈ Threshold-3SAT by con-
struction, and the latter is equivalent to x ∈ L by reduction, we obtain L ∈
PMCAM(−n,−d). But L was an arbitrary PP language: hence the inclusion
PP ⊆ PMCAM(−n,−d) holds as required. ut

5 Conclusions

Uniform families of P systems with active membranes without nonelementary di-
vision and dissolution rules have been proved to be able to solve all PP problems
in polynomial time; this property holds even when the uniformity condition is the
same as that used for traditional families of circuits. The current bounds on the
computing power of these P systems, in terms of complexity classes for Turing
machines, are thus

PP ⊆ PMCAM(−n,−d) ⊆ PSPACE = PMCAM,

where neither inclusion is known to be proper. Further improvements on the PP
lower bound are expected, as it is plausible that P systems like those of the fam-
ily Π solving Threshold-3SAT described in this paper can be used as “modules”
in larger P systems, thus providing a way to simulate an oracle for a PP-complete
problem. Furthermore, it is still possible that PMCAM(−n,−d) actually coincides
with PSPACE, thus showing that nonelementary membrane division (and possi-
bly dissolution) do not increase the efficiency of P systems with active membranes.
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