
Towards Bridging Two Cell-Inspired Models:
P Systems and R Systems

Gheorghe Păun1,2, Mario J. Pérez-Jiménez2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

2 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

Summary. We examine, from the point of view of membrane computing, the two basic
assumptions of reaction systems, the “threshold” and “no permanence” ones. In certain
circumstances (e.g., defining the successful computations by local halting), the second
assumption can be incorporated in a transition P system or in a symport/antiport P
system without losing the universality. The case of the first postulate remains open: the
reaction systems deal, deterministically, with finite sets of symbols, which is not of much
interest for computing; three ways to introduce nondeterminism are suggested and left
as research topics.

1 Introduction

The aim of this note is to bridge two branches of natural computing inspired from
the biochemistry of a living cell, membrane computing (see, e.g., [11], [12], [13],
and the domain website from [15]) and the recently introduced reaction systems
area – see [2], [3], [4], [5], [6].

Both areas deals with populations of reactants (molecules) which evolve by
means of reactions, with several basic differences. Most of these differences are
not mentioned here (e.g., the compartmental structure of models – P systems – in
membrane computing versus the missing of membranes in reaction systems – we
also call them R systems –, the focus on evolution, not on computation, in reaction
systems, the unique form of rules in reaction systems and so on), and we recall the
two basic ones in the formulation from [2]:

The way that we define the result of a set of reactions on a set of elements
formalizes the following two assumptions that we made about the chemistry of a
cell:

(i) We assume that we have the “threshold” supply of elements (molecules) –
either an element is present and then we have “enough” of it, or an element is



306 Gh. Păun, M.J. Pérez-Jiménez

not present. Therefore we deal with a qualitative rather than quantitative (e.g.,
multisets) calculus.

(ii) We do not have the “permanence” feature in our model: if nothing happens to
an element, then it remains/survives (status quo approach). On the contrary,
in our model, an element remains/survives only if there is a reaction sustaining
it.

Passing from multisets, which are basic in P systems, to sets (actually, to mul-
tisets with an infinite multiplicity of their elements) is a fundamental assumption,
which changes completely the approach; for instance, we can no longer define com-
putations with the result expressed in terms of counting molecules: the total set
of molecules is finite, any molecule is either absent or present in infinitely many
copies. Moreover, the behavior of a reaction system is deterministic, from a set
of symbols we precisely pass to a unique set of symbols (hence the behavior of a
reaction system can be described by a graph of outdegree one, having the nodes
marked with subsets of the total set of molecules). How to bridge at this level
the two research areas (defining computations in reaction systems or working with
multisets with infinite multiplicity of each element in P systems) remains as a
research topic. Here we only propose three ways to introduce nondeterminism in
reaction systems, so that more interesting computation (evolution) graphs can
be obtained: providing tables of rules, considering also molecules with a finite
multiplicity, and considering a threshold on the number of rules which can use
simultaneously molecules of a given type.

P systems with sets were also considered in [10], mainly from the semantics
(via Petri nets) point of view.

The second assumption of the reaction systems theory is much easier to handle
in terms of membrane computing. The immediate idea is to simply remove any
element which does not evolve by means of a reaction; somewhat equivalently, if
we want to preserve an object a which is not evolving, we may provide a dummy
rule for it, of the type a → a, changing nothing.

Still, many technical problems appear in this framework. The presence of such
dummy rules makes the computation endless, while halting is the “standard” way
to define successful computations in membrane computing. Moreover, the rules
are nondeterministically chosen, hence the dummy rules can interfere with the
“computing rules”.

While the second difficulty is a purely technical one, the first one can be over-
passed by considering other ways of defining the result of a computation in a P
system, and there are many suggestions in the literature. We consider here three
possibilities: (i) the local halting of [8] (the computation stops when at least one
membrane in the system cannot use any rule), (ii) signal-objects (the result con-
sists of the number of objects in a specified membrane at the moment when a
distinguished object appears in the system), (iii) signal-events (the result consists
of the number of objects in a specified membrane at the moment when a distin-
guished rule is used in the system). Such signals were considered in various papers;
we refer here only to [9].



Towards Bridging P Systems and R Systems 307

All these possibilities are checked both for transition and for symport/antiport
P systems – with some cases still remaining open (the most important one is that
of catalytic P systems).

2 Basic Definitions

For the sake of completeness, we recall here a few elementary notions about reac-
tion systems and P systems.

The language theory notations are standard. An alphabet is a finite and
nonempty set. For an alphabet V , by V ∗ we denote the set of all strings over
V , including the empty string, denoted by λ. The set of nonempty strings over V
is denoted by V +. The length of a string x ∈ V ∗ is denoted by |x|. The multisets
over a finite set S are represented by strings in S∗; a string and all its permuta-
tions represent the same multiset. (The Parikh mapping of a string representing a
multiset indicates the multiplicity of each object in the multiset.)

In the proofs from Section 4 we will use the characterization of recursively
enumerable sets of numbers (sets of numbers computable by Turing machines;
their family is denoted by NRE, reminding the fact that these sets ate length sets
of recursively enumerable languages) by means of register machines; such a device
is a construct M = (m,H, l0, lh, I), where m is the number of registers, H is the
set of instruction labels, l0 is the start label (labeling an ADD instruction), lh is
the halt label (assigned to instruction HALT), and I is the set of instructions; each
label from H labels only one instruction from I, thus precisely identifying it. The
instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we proceed to apply instructions as indicated by labels
(and made possible by the content of registers); if we reach the halt instruction,
then the number n stored at that time in the first register is said to be computed
by M . The set of all numbers computed by M is denoted by N(M). It is known
that register machines compute all sets of numbers which are Turing computable,
i.e., they characterize the family NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register is
never decremented during the computation, we only add to its content.



308 Gh. Păun, M.J. Pérez-Jiménez

2.1 Reaction Systems

We recall here some elementary notions and notation about reaction systems, as
available in the few papers already published in this area – see again the titles
mentioned at the beginning of the Introduction.

Let S be an alphabet (its elements are called molecules or, simply, symbols).
A reaction (in S) is a triple a = (R, I, P ), where R, I, P are nonempty subsets of
S such that R ∩ I = ∅. R is the reactant set of a, I is the inhibitor set of a, and
P is the product set of a. R, I, P are also denoted Ra, Ia, Pa. We denote by rac(S)
the set of all reactions in S.

If T ⊆ S and a ∈ rac(S), then a is enabled by T if Ra ⊆ T and Ia ∩T = ∅, and
then the result of a on T, denoted by resa(T ), is defined by resa(T ) = Pa. If a is
not enabled by T , then resa(T ) = ∅.

If A is a finite set of reactions, then the result of A on T is defined by resA(T ) =⋃
a∈A resa(T ).

Then, a reaction system (we also call it an R system) is an ordered pair σ =
(S,A), where S is an alphabet and A ⊆ rac(S).

Note in the definition of the result of a set A of reactions on a set T of molecules
the occurrence of the two assumptions mentioned in the Introduction: a molecule
can evolve by means of several reactions (or can inhibit several reactions if it
appears in inhibitor sets), hence the multiplicity of each molecule is unbounded,
while all molecules present at a given time “disappears”, after the reactions we
continue with the set of molecules produced by the reactions.

2.2 P Systems

We introduce first the class of transition P systems, closer in their definition to
reaction systems. Some familiarity of the reader with the elementary notions of
membrane computing is assumed, e.g., from [12], [13].

A membrane structure is a cell-like hierarchical arrangement of labeled mem-
branes (understood as 3D vesicles); the external membrane is usually called the
skin membrane, and a membrane without any membrane inside is called elemen-
tary. With each membrane, a region is associated, the space delimited by it and
the inner membranes, if any. A membrane structure can be represented by a rooted
tree or by an expression of labeled parentheses (with a unique external parenthesis,
associated with the skin).

Given an alphabet O of objects, a multiset-rewriting rule (over O; we also say
evolution rule) is a pair (u, v), written in the form u → v, where u and v are
multisets over O (given as strings in O∗). The rules are classified according to the
complexity (of their left hand side). A rule with at least two objects in its left
hand side is said to be cooperative; a particular case is that of catalytic rules, of
the form ca → cv, where c is a catalyst which assists the object a (which is not
a catalyst) to evolve into the multiset v (where no catalyst appears); rules of the
form a → v, where a is an object, are called non-cooperative.



Towards Bridging P Systems and R Systems 309

The rules can also have associated promoters or inhibitors, objects whose pres-
ence make possible the use of a rule (but are not modified by the rule application),
respectively, can forbid the application of the rule. Also, a priority relation can
be considered, in the form of a partial order relation among the set of rules in
a membrane; a rule can be used only if no rule of a higher priority can be used.
Finally, we mention the dissolution operation: a rule can be of the form u → vδ
and, when used, the membrane in which it is applied is “dissolved”, its objects
become elements of the immediately higher membrane (and its rules disappear, as
being associated with the “reactor” defined by the membrane). We do not enter
here into details – in general, such additional controls on using the rules are rather
useful (and powerful) in “programming” the work of a P system.

Now, a transition P system (of degree m) is a construct

Π = (O, µ,w1, . . . , wm, R1, . . . , Rm, iin, iout),

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), given as an expression of labeled parentheses, w1, . . . , wm are (strings over
O representing) multisets of objects present in the m regions of µ at the beginning
of a computation, R1, . . . , Rm are finite sets of evolution rules associated with the
regions of µ, and iin, iout are the labels of input and output membranes, respec-
tively. If the system is used in the generative mode, then iin is omitted, and if
the system is used in the accepting mode, then iout is omitted. If the system is
a catalytic one, then a subset C of O is specified, containing the catalysts. The
number m of membranes in µ is called the degree of Π.

The rules in sets Ri are of the form u → v, as specified above, with u ∈ O+,
but with the objects in v also having associated target indications, i.e., v ∈ (O ×
{here, out, in})∗. After using a rule u → v, the objects in u are consumed, and
those in v are produced; if (a, here) appears in v, then a remains in the same
compartment of the system where the rule was used, if (u, out) is in v, then the
object a is moved immediately in the region surrounding the compartment where
the rule was used (this is the environment if the rules is used in the skin region), and
if (a, in) is in v, then a is sent to one of the inner membranes, nondeterministically
chosen (if there is no membrane inside the membrane where the rule is meant to
be applied, then the use of the rule is forbidden). The indication here is omitted,
we write a instead of (a, here).

The rules are used in the nondeterministic maximally parallel manner: in each
membrane, a multiset of rules is applied such that there is no larger multiset of
rules which is applicable in that membrane.

In the generative mode, the result of a computation consists of the number of
objects in membrane iout in the moment when the computation halts, i.e., no rule
can be applied in any membrane of the system. In the accepting mode, a number
is introduced in the membrane iin, in the form of the multiplicity of a given object,
and, if the computation halts, then this number is accepted. A P system can also
be used in the computing mode, with a number introduced in membrane iin and
the result obtained in membrane iout, in the moment when the computation halts.



310 Gh. Păun, M.J. Pérez-Jiménez

In what follows, we only deal with generating P systems. One knows that
catalytic P systems are Turing equivalent, they compute all recursively enumerable
sets of natural numbers (i.e., they characterize NRE), but non-cooperative P
systems compute only semilinear sets of numbers. Details can be found in the
references given at the beginning of the Introduction.

Another much investigated class of P systems is that of symport/antiport P
systems. These systems are not based on reaction rules, but on biological operations
of passing coupled molecules across membranes.

We can formalize these operations by considering symport rules of the form
(x, in) and (x, out), and antiport rules of the form (z, out;w, in), where x, z, and
w are multisets of objects.

A P system with symport/antiport rules is a construct of the form

Π = (O, µ, w1, . . . , wm, E, R1, . . . , Rm, iin, iout),

where all components O,µ, w1, . . . , wm, iin, iout are as in a P system with multiset
rewriting rules, E ⊆ O, and R1, . . . , Rm are finite sets of symport/antiport rules
associated with the m membranes of µ. The objects of E are supposed to be
present in the environment of the system with an arbitrary multiplicity. (Note
that the symport/antiport rules do not change the number of objects, but only
their place, that is why we need a supply of objects in the environment; this
supply is inexhaustible, i.e., does not matter how many objects are introduced in
the system, arbitrarily many still remain in the environment.)

As above, the rules are used in the nondeterministic maximally parallel manner:
we choose nondeterministically multisets of rules associated with each membrane
and such an m-tuple of multisets is applied if for no membrane a rule can be
added to the associated multiset still having the enlarged m-tuple of multisets
applicable. We define transitions, computations, and halting computations in the
usual way. The number of objects present in region iout in the halting configuration
is said to be computed by the system by means of that computation; the set of
all numbers computed in this way by Π is denoted by N(Π). Accepting and
computing symport/antiport P systems are defined in the natural manner.

It is known that symport/antiport P systems (with a small number of mem-
branes and with rules of a low complexity) characterize NRE.

Note that in the previous definitions multisets play a crucial role, objects not
evolving by a rule remain unchanged, and that always successful computations are
defined by halting.

3 Computing with Reaction Systems

Starting from a reaction system σ = (S, A), we can consider a “generative device”
γ = (S,A, w0), where w0 is a subset of S, an “axiom set”. (We denoted the starting
set by a small letter, like a string, in the multiset sense, because we will need such



Towards Bridging P Systems and R Systems 311

an approach below, e.g., when part of molecules will be considered in the multiset
sense.) Then, we can obtain a sequence w0 =⇒A w1 =⇒A w1 =⇒A . . ., where
wi+1 = resA(wi), i ≥ 0.

Two basic observations: (i) this sequence is unique, because the passage from
a set of molecules to the next one is deterministic, and (ii) for all i ≥ 0 we have
wi ⊆ S. Therefore, if we associate a label to each subset of S, then a sequences
as above is either finite (at some moment, no rule can be applied, all elements
vanishes, hence we end with the label of the empty set), or the sequence is infinite
and then it can be described by a string of the form uvω: after a finite path among
subsets of S, we enter a cycle which goes forever.

In terms of graphs, the relation =⇒A defines a graph GS(A) = (2S ,=⇒A) of
outdegree (at most) one (the outdegree can be zero, but this is a trivial case).
Computations in γ = (S, A,w0) can then be followed along the paths in GS(A)
starting in the node w0.

We do not have here too much from a computability point of view, even if we
consider the graph itself as the result of the computation (the number of graphs
GS(A) is bounded, because of the finiteness of S). The dramatic restriction here is
the deterministic behavior of a reaction system, that is why we propose here three
possibilities to get a nondeterministic device.

The first natural idea is to consider a tabled reaction system, in the form
γ = (S, A1, A2, . . . , An, w0) where Ai, 1 ≤ i ≤ n, are sets of reactions over S
(called tables). Like in an E0L system (see, e.g., [14]), in a step of a computation
we can nondeterministically choose the table to use, hence branching is possible.
In this case, we can also introduce halting as a criterion for defining successful
computations: a halt table can be considered, for instance, with rules of the form
a → a′ for all a ∈ S, such that no rule exists for a′, hence in the next step all
(primed) molecules disappear.

Another idea, at the bridge of membrane computing and reaction systems, is to
consider a subset C ⊆ S of molecules for which the multiplicity matters, and having
finite multiplicities. Then we move towards usual P systems (cooperative, with
inhibitors, hence rather powerful). The elements of C are counted when applying
the rules, those in S−C not. The nondeterminism appears now when using copies
of elements in C, if more rules than such objects can be applied.

Finally, without modifying the components of a computing reaction system γ =
(S,A, w0), we can provide the nondeterminism by introducing a general threshold
on the number of rules which can use the same molecule, hence having a system
of the form γ = (S, A,w0, k), where k is the threshold. This is similar to the
previous case, taking C = S, which is like working with multisets, but with the
same multiplicity for all objects (only at most k copies of each object can evolve,
the others are removed, hence we can assume that the multiplicity is exactly k for
each object). The nondeterminism appears again when choosing the rules which
compete for the same objects. We have a usual P system, but dealing with finite
populations of objects: if only k rules are used for each molecule, only finitely many



312 Gh. Păun, M.J. Pérez-Jiménez

rules are used, all existing objects are consumed or they vanishes and a bounded
number of objects are produced.

In the second case, the multiplicity of objects in C can increase arbitrarily, but
in the other two cases we again deal with a finite computation graph (but not of
an outdegree bounded in advance).

All these three possibilities remain to be investigated: properties of the obtained
graphs, possible links with computing devices from formal language and automata
theory, influence of the introduced parameters (number of tables, cardinality of C,
threshold k), possible hierarchies.

Of course, another research topic is to find other ways of building a (string or
graph) computing device in terms of reaction systems.

4 P Systems without the “Permanence” of Objects

Let us now move to membrane computing, and borrow from reaction systems area
the assumption that an object which is not involved in a rule does not pass to
the next configuration. Then, we cannot define the result of a computation by
halting, because in a halting step all objects vanish. Similarly, it is not enough
to add dummy rules of the form a → a (in transition systems), because this
time the computation never halts. Thus, we have to define successful computa-
tions by other conditions – and we consider here the three possibilities recalled
in the Introduction: local halting, signal-objects, signal-events. The definitions are
straightforward, we pass directly to examine the power of P systems endowed with
such conditions.

4.1 The Case of Transition P Systems

Let us consider a register machine M = (m,H, l0, lh, I), as introduced at
the beginning of Section 2. We first construct a transition P system Π =
(O, µ, w1, w2, R1, R2, 1), aiming to simulate the machine M , and then we discuss
modes of defining the result of a computation in Π. We take:

O = {ai, a
′
i | 1 ≤ i ≤ m} ∪ {l, l′, l′′, l′′′, liv | l ∈ H} ∪ {b, c,#},

µ = [ [ ]
2

]
1
,

w1 = l0, w2 = b,

R1 = {li → ljar,

li → lkar | li : (ADD(r), lj , lk) ∈ I}
∪ {a1 → a1} ∪ {as → asa

′
s | 2 ≤ s ≤ m}

∪ {li → l′il
′′
i ,

l′iar → l′′′i ,

l′ia
′
r → (#, in),



Towards Bridging P Systems and R Systems 313

l′′i → livi ,

livi → lk,

l′′′i → (#, in),
livi l′′′i → lj | li : (SUB(r), lj , lk) ∈ I}

∪ {lh → (lh, in)},
R2 = {b → b, # → #, lhb → c}.

This system works as follows. The contents of each register r is represented by
the number of occurrences of objects ar in the skin region of Π. In each step, each
of these objects is reproduced, hence their number is never decreased; moreover,
objects ar, r 6= 1, also produce “twin objects” a′r, which disappear in the next
step (one copy is used in simulating SUB instructions, as we will see below).
Object b evolves forever in membrane 2. One of our goals is to define the end of a
computation in Π by local halting, namely, by halting the evolution of membrane
2. This can happen only in the presence of the halt label of M , and without
introducing the trap-object #.

We start with label l0 in membrane 1. In general, when a label li is present in
membrane 1, the respective instruction of M is simulated.

The simulation of an ADD instruction is obvious. Assume that li is the label of
a SUB instruction, li : (SUB(r), lj , lk). We use the rule li → l′il

′′
i . At the same time,

all objects a′s disappear and all objects as are replaced by asa
′
s, 2 ≤ s ≤ m; objects

a1 remains always unchanged during simulating a SUB instruction (remember that
M never decreases register 1). In the next step, l′′i is replaced by livi , while l′i has
two possibilities. If a copy of ar is present (hence register r is not empty), then
also a′r is present. If the rule l′iar → l′′′i is used, then a′r disappear, and this is the
correct continuation – in the next step, the rule livi l′′′i → lj is used, introducing
the label of the next instruction to simulate. If, instead of l′iar → l′′′i , the rule
l′ia

′
r → (#, in) is used, then the trap-object # is introduced in membrane 2, and

it will evolve here forever. If the register r is empty, hence no object ar and a′r is
present, then l′′′i is not introduced, l′i disappears. In the next step livi has to evolve
by means of the rule livi → lk, the correct continuation in the register machine.
If this rule is used also in the presence of l′′′3 (hence in case the register r was
nonempty), then we have to use the rule l′′′i → (#, in).

In this way, the instructions of M are correctly simulated. When the halt label
lh is introduced in M , this object is moved to membrane 2. If the only object
present here is b, then the computation in membrane 2 can halt by means of lhb →
c. If also # is present, then the computation in membrane 2 continues forever. The
number of objects a1 in membrane 1 at the moment of halting membrane 2 gives
the result of the computation. (Remember that all registers of M except the first
one are empty in the end of computations in M .)

The previous construction can be slightly modified in order to mark the end
of the computation by means of signal objects or events instead of local halting.
For instance, if we replace the rule # → # of R2 with # → δ, then membrane



314 Gh. Păun, M.J. Pérez-Jiménez

2 is dissolved, the rule lhb → c cannot be used. Thus, the signal can be either
the object c or the use of the rule lhb → c. When one of these signals appears
in membrane 2, the number of copies of a1 in membrane 1 is the result of the
computation. If # was introduced, then these signals never appear.

We conclude with the assertion-theorem that transition P systems of degree 2,
using cooperative rules, without the “permanence” of objects, are computationally
complete.

An interesting open problem in this framework is the case of catalytic P systems,
known to be universal in the “permanence” assumption (see, e.g., [7]).

4.2 The Case of Symport/Antiport P Systems

The case of symport/antiport systems just “recodes” the previous construction,
but, because for these systems we do not have the dissolution operation (it can be
introduced, in a natural way, but this was not done up to now, hence we do not
consider it here), only the case of local halting is considered.

Take again a register machine M = (m,H, l0, lh, I). We construct the sym-
port/antiport P system Π = (O, µ, w1, w2, E, R1, R2, 1) with the same alpha-
bet of objects and membrane structure as in the previous subsection, but with
w1 = bl0, w2 = b, E = O, and with the rules as specified in Figure 1 – instead of
a formal definition, we give now the graphical representation of the system.

The functioning of this system is very much similar to the functioning of the
system in the previous subsection, hence we do not describe it in details (membrane
2 halts only when # is not present and lh moves outside the system the object b
from the skin region).

The case of defining the result of a computation by means of signals – objects
or events (using a specified rule) – remains as an open problem. (Considering a
priority relation on each set of rules can easily solve this problem.) The previous
symport/antiport P system contains antiport rules of sizes (2, 1) and (1, 2), which
is “large” for universality results in the case when objects are persistent (see, e.g.,
[1]). Can the size of rules be decreased also in the case discussed here?

5 Final Remarks

Although there are so many similarities and differences between membrane com-
puting (P systems) and reaction systems (R systems), up to our knowledge, so
far there is no bridging investigation, in spite of the fact that this research topic
was formulated several times in the membrane computing community (e.g., dur-
ing the yearly Brainstorming Weeks on Membrane Computing). This is a natural
and surely fruitful area to explore, especially in checking the influence of basic
postulates of one domain in another one and in borrowing notions and research
issues from a domain to another one. The present paper is only a first step in this
direction, examining the two basic postulates of reaction systems: working with



Towards Bridging P Systems and R Systems 315

'

&

$

%

Â

Á

¿

À

1

2

b

(b, out; b, in)

(#, in)

(#, out)

l0b
(li, out; ljar, in),

(li, out; lkar, in), li : (ADD(r), lj , lk) ∈ I

(a1, out; a1, in)

(as, out; asa
′
s, in), 2 ≤ s ≤ m

(li, out; l′il
′′
i , in),

(l′iar, out; l′′′i , in),

(l′ia
′
r, out;#, in),

(l′′i , out; livi , in),

(livi , out; lk, in),

(l′′′i , out;#, in),

(livi l′′′i , out; lj , in), li : (SUB(r), lj , lk) ∈ I

(lhb, out)

Fig. 1.

molecules whose multiplicity is not counted (it is considered infinite) and removing
from the system molecules which do not evolve by reactions. Many open problems
and research topics are formulated.

Acknowledgements. Work supported by Proyecto de Excelencia con Investi-
gador de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. A. Alhazov, R. Freund, Yu. Rogozhin: Some optimal results on symport/ antiport
P systems with minimal cooperation. In Cellular Computing (Complexity Aspects)
(M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.), ESF PESC Ex-
ploratory Workshop, Fénix Editorial, Sevilla, 2005, 23–36.

2. A. Ehrenfeucht, G. Rozenberg: Basic notions of reaction systems, Proc. DLT 2004
(C.S. Calude, E. Calude, M.J. Dinneen, eds.), LNCS 3340, Springer, 2004, 27–29.

3. A. Ehrenfeucht, G. Rozenberg: Reaction systems. Fundamenta Informaticae, 75
(2007), 263–280.



316 Gh. Păun, M.J. Pérez-Jiménez

4. A. Ehrenfeucht, G. Rozenberg: Events and modules in reaction systems. Theoretical
Computer Sci., 376 (2007), 3–16.

5. A. Ehrenfeucht, G. Rozenberg: Introducing time in reaction systems. Theoretical
Computer Sci., 410 (2009), 310–322.

6. A. Ehrenfeucht, G. Rozenberg: Reaction systems. A model of computation inspired
by biochemistry. Proc. DLT 2010 (Y. Gao et al., eds.), LNCS 6224, Springer, 2010,
1–3.

7. R. Freund, L. Kari, P. Sosik: Computationally universal P systems without priorities:
two catalysts are sufficient. Theoretical Computer Sci., 330 (2005), 251–266.

8. R. Freund, M. Oswald: Partial halting in P systems. Intern. J. Foundations of Com-
puter Sci., 18 (2007), 1215–1225.

9. P. Frisco: Computing with Cells. Advances in Membrane Computing. Oxford Univer-
sity Press, 2008.

10. J. Kleijn, M. Koutny: Membrane systems with qualitative evolution rules, Fundaenta
Informaticae, to appear.

11. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (first circulated as Turku Center for Computer Science-TUCS
Report 208, November 1998, www.tucs.fi).

12. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
13. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-

ford University Press, 2010.
14. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic Press,

New York, 1980.
15. The P Systems Website: http://ppage.psystems.eu.


