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Summary. This paper continues the research on determining a maximum cardinality
set of edge- and node-disjoint paths between a source cell and a target cell in P systems.
We review the previous solution [3], based on depth-first search (DFS), and we propose
a faster solution, based on breadth-first search (BFS), which leverages the parallel and
distributed characteristics of P systems. The runtime complexity shows that, our BFS-
based solution performs better than the DFS-based solution, in terms of P steps.

1 Introduction

P systems is a bio-inspired computational model, based on the way in which chem-
icals interact and cross cell membranes, introduced by Păun [16]. The essential
specification of a P system includes a membrane structure, objects and rules. All
cells evolve synchronously by applying rules in a non-deterministic and (potentially
maximally) parallel manner. Thus, P systems is a strong candidate as a model for
distributed and parallel computing.

Given a digraph G and two nodes, s and t, the disjoint paths problem aims to
find the maximum number of s-to-t edge- or node-disjoint paths. There are many
important applications that need to find alternative paths between two nodes, in
all domains. Alternative paths are fundamental in biological remodelling, e.g., of
nervous or vascular systems. Multipath routing can use all available bandwidth
in computer networks. Disjoint paths are sought in streaming multi-core applica-
tions that are bandwidth sensitive to avoid sharing communication links between
processors [17]. The maximum matching problem in a bipartite graph can also be
transformed to the disjoint paths problem. In case of non-complete graphs, Byzan-
tine Agreement requires at least 2k + 1 node-disjoint paths, between each pair of
nodes to ensure that a distributed consensus can occur, with up to k failures [9].

It is interesting to design a native P system solution for the disjoint path
problem. In this case, the input graph is the P system structure itself, not as data
to a program. Also, the system is fully distributed, i.e. there is no central node and
only local channels (between structural neighbours) are allowed. In 2010, Dinneen,
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Kim and Nicolescu [3] proposed the first P solution, as a distributed version of
the Ford-Fulkerson algorithm, based on depth-first search (DFS). This solution
searches by visiting nodes sequentially, which is not always efficient. To exploit
the parallel potential of P systems, we propose a faster P system solution—a
distributed version of the Edmonds-Karp algorithm, which concurrently searches
as many paths as possible in breadth-first search (BFS).

This paper is organized as follows. Section 2 defines a simplified P system,
general enough to cover most basic families. Section 3 describes the disjoint paths
problem and the strategies for finding disjoint paths in digraphs. Section 4 dis-
cusses the specifics of the disjoint paths problem in P systems. Section 5 reviews
the previous DFS-based solution [3] and sets out our faster BFS-based solution.
Section 6 presents the P system rules for the disjoint paths algorithm using BFS.
Section 7 compares the performance of the BFS-based and DFS-based algorithms,
in terms of P steps, and the relative performance of the BFS-based solution simula-
tion on sequential vs. parallel (multi-core) hardware. Finally, Section 8 summarizes
our work and highlights future work.

2 Preliminary

Essentially, a static P system is specified by the membrane structure, objects
and rules. The membrane structure can be modeled as: a rooted tree (cell-like
P systems [16]), a directed acyclic graph (hyperdag P systems [11], [12], [13]), or
in a more general case, an arbitrary digraph (neural P systems [10], [14]). Usually,
the objects are symbols from a given alphabet, but one can also consider strings
or other more complex structures (such as tuples). P systems combine rewriting
rules that change objects in the region and communication rules that move objects
across membranes. Here, we define a simple P system, with priorities, promoters
and duplex channels as a system, Π = (O, σ1, σ2, . . . , σn, δ), where:

1. O is a finite non-empty alphabet of objects;
2. σ1, . . . , σn are cells, of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, where:
• Qi is a finite set of states;
• si,0 ∈ Qi is the initial state;
• wi,0 ∈ O∗ is the initial multiset of objects;
• Ri is a finite ordered set of rewriting/communication rules of the form:

s x →α s′ x′ (y)β |z, where: s, s′ ∈ Qi, x, x′, y, z ∈ O∗, α ∈ {min,max},
β ∈ {↑, ↓, l}.

3. δ is a set of digraph arcs on {1, 2, . . . , n}, without symmetric arcs, representing
duplex channels between cells.

The membrane structure is a digraph with duplex channels, so parents can send
messages to children and children to parents, but the disjoint paths strictly follow
the parent-child direction. Rules are prioritized and are applied in weak priority
order [15].
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The general form of a rule, which transforms state s to state s′, is s x →α

s′ x′ (y)βγ |z. This rule consumes multiset x, and then (after all applicable rules
have consumed their left-hand objects) produces multiset x′, in the same cell
(“here”). Also, it produces multiset y and sends it, by replication, to all parents
(“up”), to all children (“down”), or to all parents and children (“up and down”),
according to the value of target indicator β ∈ {↑, ↓, l} (effectively, here we use the
repl communication mode, exclusively). α ∈ {min,max} describes the rewriting
mode. In the minimal mode, an applicable rule is applied exactly once. In the
maximal mode, an applicable rule is used as many times as possible and all rules
with the same states s and s′ can be applied in the maximally parallel manner.
Finally, the optional z indicates a multiset of promoters, which are not consumed,
but are required, when determining whether the rule can be applied.

3 Disjoint Paths

Given a digraph, G = (V,E), a source node, s ∈ V , and a target node, t ∈ V , the
edge- and node-disjoint paths problem looks for one of the largest sets of edge- and
node-disjoint s-to-t paths. A set of paths is edge-disjoint or node-disjoint if they
have no common arc or no common intermediate node. Note that node-disjoint
paths are also edge-disjoint paths, but the converse is not true. Cormen et al. [1]
give a more detailed presentation of the topics discussed in this section.

Figure 1 (a) shows two node-disjoint paths from 0 to 6, i.e. 0.3.6 and 0.1.4.6,
which are also edge-disjoint. In this scenario, this is the maximum number of
node-disjoint paths one can find. However, one could add to this set another path,
0.2.3.5.6, shown in Figure 1 (b), to obtain a set of three edge-disjoint paths.
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Fig. 1. Node- and edge- disjoint paths.

The maximum edge-disjoint paths problem can be transformed to a maximum
flow problem by assigning unit capacity to each edge [5]. Given a set of already
established edge- or node-disjoint paths P , we recall the definition of the residual
digraph Gr = (Vr, Er):

• Vr = V and
• Er = (E \ EP ) ∪ E′P , where EP is the set of arcs (u, v) that appear in the P

paths and E′P = {(v, u) | (u, v) ∈ EP }.

Briefly, the residual digraph is constructed by reversing the already established
path arcs. An augmenting path is an s-to-t path in the residual digraph, Gr.
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Augmenting paths are used to extend the existing set of established disjoint paths.
If an augmenting arc reverses an existing path arc (also known as a push-back
operation), then these two arcs “cancel” each other, due to zero total flow, and are
discarded. The remaining path fragments are relinked to construct an extended
set of disjoint paths. This round is repeated, starting with the new and larger set
of established paths, until no more augmenting paths are found. A more detailed
construction appears in Ford and Fulkerson maximal flow algorithm [5].

Example 1. Figure 2 illustrates a residual digraph and an augmenting path: (a)
shows a digraph, where two edge-disjoint paths, 0.1.4.7 and 0.2.5.7, are present; (b)
shows the residual digraph, formed by reversing path arcs; (c) shows an augmenting
path, 0.3.5.2.6.7, which uses a reverse arc, (5, 2); (d) discards the cancelling arcs,
(2, 5) and (5, 2); (e) relinks the remaining path fragments, 0.1.4.7, 0.2, 5.7, 0.3.5
and 2.6.7, resulting in now three edge-disjoint paths, 0.1.4.7, 0.2.6.7 and 0.3.5.7.
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Fig. 2. Finding an augmenting path in the residual digraph.

The search for augmenting paths uses a search algorithm such as DFS (e.g., the
Ford-Fulkerson algorithm) or BFS (e.g., the Edmonds-Karp algorithm). A search
path in the residual graph (also known as a tentative augmenting path) starts
from the source node and tries to reach the target node. A successful search path
becomes a new augmenting path and is used (as previously explained) to increase
the number of disjoint paths. Conceptually, this solves the edge-disjoint paths
problem (at a high level). However, the node-disjoint paths require additional
refinements—usually by node splitting [8]. Each intermediate node, v, is split into
an entry node, v1, and an exit node, v2, linked by an arc (v1, v2). Arcs that in the
original digraph, G, were directed into v are redirected into v1 and arcs that were
directed out of v are redirected out of v2. Figure 3 illustrates this node-splitting
procedure: (a) shows the original digraph and (b) the modified digraph, where all
intermediate nodes are split—this is a bipartite digraph.
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4 Disjoint Paths in P Systems

Classical algorithms use the digraph as data and keep global information. In con-
trast, our solutions are fully distributed. There is no central cell to convey global
information among all cells, i.e. cells only communicate with their neighbors via
local channels (between structural neighbours).

Unlike traditional programs, which keep full path information globally, our
P systems solution records paths predecessors and successors locally in each cell,
similar to distributed routing tables in computer networks. To construct such
routing indicators, we assume that each cell σi is “blessed” with a unique cell ID
object, ιi, functioning as a promoter.

Although many versions of P systems accept cell division, we feel that this
feature should not be used here and we intentionally discard it. Rather than actu-
ally splitting the intermediate P cells, we simulate this by ad-hoc cell rules. This
approach could be in other distributed networks, where nodes cannot be split [3].
Essentially, node splitting prevents more than one unit flow to pass through an
intermediate node [8].

In our case, node splitting can be simulated by: (i) constraining in and out
flow capacities to one and (ii) having two visited markers for each cell, one for
a virtual entry node and another for a virtual exit node, extending the visiting
idea of classical search algorithms. Figure 3 illustrates a scenario when one cell,
y, is visited twice, first on its entry and then on its exit node [3]. Assume that
path π = s.x.y.z.t, is established. Consider a search path, τ , starting from cell, s,
and reaching cell, y, in fact, y’s entry node. This is allowed and y’s entry node
is marked as visited. However, to constrain its in-flow to one, y can only push-
back τ on its in-flow arc, (x, y). Cell x’s exit node becomes visited, x’s out-flow
becomes zero and τ continues on x’s outgoing arc, (x, z). When τ reaches cell
z, z’s entry node becomes visited and z pushes τ back on its in-flow arc, (y, z).
Cell y’s exit node becomes visited, y’s out-flow becomes zero and τ continues on
y’s outgoing arc, (y, t). When no other outgoing arc is present, the cell needs to
push-back from its exit node to its entry node, which is only possible if its entry
node is not visited. Finally, the search path, τ , reaches the target, t, and becomes
τ = s.y.x.z.t. After removing cancelling arcs and relinking the remaining ones, we
have two node-disjoint paths, s.x.z.t and s.y.t.

Fig. 3. Simulating node splitting [3].
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5 Distributed DFS-based and BFS-based Solutions

As mentioned in Section 3, augmenting paths can be searched using DFS or BFS.
Conceptually, DFS explores as far as possible along a single branch, before back-
tracking, while BFS explores as many branches as possible concurrently—P sys-
tems can exploit this parallelism.

5.1 Distributed DFS-based Strategy

Dinneen et al’s DFS-based algorithms find disjoint paths in successive rounds [3].
Each round starts with a set of already established disjoint paths, which is

empty at the start of the first round. The source cell, σs, starts to explore one of
the untried branches. If the search path reaches the target cell, σt, it confirms to σs
that a new augmenting paths was found; otherwise, it backtracks. While moving
towards σs, the confirmation reshapes the existing paths and the newly found
augmenting path, i.e. discarding cancelling arcs and relinking the rest, building a
larger set of paths,

If σs receives the confirmation (one search path was successful, i.e. a new
augmenting path was found), it broadcasts a reset signal, to prepare the next
round. Otherwise, if the search fails, σs receives the backtrack. If there is an
untried branch, the round is repeated. Otherwise, σs broadcasts a finalize signal
to all cells and the search terminates.

This search algorithm is similar to a classical distributed DFS. Other more
efficient distributed DFS algorithms [18] can be considered, but we do not follow
this issue here.

5.2 Distributed BFS-based Strategy

Our BFS-based algorithms also work in successive rounds:
Each round starts with a set of already established disjoint paths, which is

empty at the start of the first round. The source cell, σs, broadcasts a “wave”, to
find new augmenting paths. Current “frontier”cells send out connect signals. The
cells which receive and accept these connect signals become the new frontier, by
appending themselves at the end of current search paths. The advancing wave peri-
odically sends progress indicators back to the source: (a) connect acknowledgments
(at least one search path is still extending) and (b) path confirmations (at least
one search path was successful, i.e. at least a new augmenting path was found).
While travelling towards the source, each path confirmation reshapes the existing
paths and the newly found augmenting path, creating a larger set of paths.

If no progress indicator arrives in the expected time, σs assumes that the search
round ends. If at least one search path was successful (at least one augmenting
path was found), σs broadcasts a reset signal, which prepares the next round, by
resetting all cells (except the target). Otherwise, σs broadcasts a finalize signal to
all cells and the search terminates.
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In each round, an intermediate cell, σi, can be visited only once. Several search
paths may try to visit the same intermediate cell simultaneously, but only one of
them succeeds. Figure 4 (a) shows such a scenario: cells 1, 2 and 3 try to connect
cell 4, in the same step; but only cell 1 succeeds, via arc (1, 4). This choice operation
is further described in Section 6.

The target cell, σt, faces a subtle decision problem. When several search paths
arrive, simultaneously or sequentially, σt must quickly decide which augmenting
path can be established and which one must be ignored (in the current round).
We solve this problem using a branch-cut strategy. Given a search path, τ , its
branch ID is the cell ID of its first intermediate cell after the source, taken by τ .
Figure 4 (b) shows four potential paths arriving at cell 6: π = 0.1.6, τ1 = 0.1.3.6,
τ2 = 0.1.5.6 and τ3 = 0.2.4.6; their branch IDs are 1, 1, 1 and 2, respectively. Paths
π, τ1 and τ2 share the same branch ID, 1, and are incompatible. The following result
is straightforward:

Proposition 1. In any search round, search paths which share the same branch
ID are incompatible; only one of them can be accepted.

Therefore, the target cell accept or reject decision is based on branch ID. These
branch ID operations are further described in Section 6.
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Fig. 4. BFS challenges. (a) A choice must be made between several search paths con-
necting the same cell (4), (b) Search paths sharing the same branch ID are incompatible.

6 P System Rules for Disjoint Paths Using BFS

The P system rules for edge- and node-disjoint paths are slightly different, due to
the simulated node-splitting approach, but the basic principle is the same. We first
discuss the edge-disjoint and then the changes required to cover the node-disjoint.

6.1 Rules for Edge-disjoint Paths

Algorithm 1 (P system algorithm for edge-disjoint paths)

Input: All cells start with the same set of rules and without any topological
awareness (they do not even know their local neighbours). All cells start in the
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same initial state. Initially, each cell, σi, contains a cell ID object, ιi, which is
immutable and used as a promoter. Additionally, the source cell, σs, and the target
cell, σt, are decorated with objects, a and z, respectively.

Output: All cells end in the same final state. On completion, all cells are
empty, with the following exceptions: (1) The source cell, σs, and the target cell,
σt, are still decorated with objects, a and z, respectively; (2) The cells on edge-
disjoint paths contain path link objects, for predecessors, pj , and for successors,
sk.

We use the following six states: S0, the initial state; S1, the quiescent state;
S2, the frontier state; S3, for previous frontier cells; S4, the final state; and S5, a
special state for the target cell.

Initially, all cells are in the initial state, S0. When each cell produces a catalyst-
like object, it enters the quiescent state, S1. When cells in S1 accept connect
signals, they enter the frontier state, S2, except the target which changes directly
to S5. Cells on the frontier send connect signals to neighbors and then change
to S3, to receive and relay progress indicators. Specifically, the target remains in
S5, after accepting the first connect signal (because it is always waiting to be
connected), until it receives the finalize signal. When the search finishes, all cells
transit to the final state, S4. Figure 5 shows all state transitions.

S1 S2 S3 S4 S5

receive connect signal send connect signal

receive finalize signal
receive connect signal

receive finalize signal

receive reset signal

receive reset signal

target receives 1st connect signal

S0

produce a catalyst

receive reset signal

receive finalize signal

receive finalize signal

receive & relay progress indicators

Fig. 5. State-chart of BFS-based algorithm.

We use these symbols to describe our edge-disjoint implementation:

• a indicates the source cell.
• z indicates the target cell.
• d indicates, in the source cell, that an augmenting path was found in the current

round (it appears in the source cell).
• ej records, in the target cell, the branch ID of a successful augmenting path

(i.e. σj is the first cell after the source, in this augmenting path).
• cs is the connect signal sent by the source cell, σs, to its children.
• cj.k is the connect signal sent by an intermediate cell, σk, to its children; j is

the branch ID.
• lj.k is the connect signal sent by an intermediate cell, σk, to its parents; j is

the branch ID.
• rj is the connect acknowledgment sent to cell, σj .
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• fj.k is the path confirmation of a successful augmenting path, sent by cell σj
to cell σk.

• h is a catalyst object in each cell.
• o is a signal broadcast by the source cell, σs, to make each cell produce one

catalyst object.
• u indicates the first intermediate cell after the source, which is produced on

receiving the connect signal, cs.
• b is the reset signal which starts a new round.
• g is the finalize signal which terminates the search.
• tj indicates that cell σj is a predecessor on a search path (recorded when a cell

accepts a connect signal).
• pj is a disjoint path predecessor (recorded when a successful augmenting path

is confirmed).
• sj is a disjoint path successor (recorded when a successful augmenting path is

confirmed).
• w, v implement a source cell timer to wait for the first response or confirmation.
• x, y implement another source cell timer to wait for the periodically relayed

response or confirmation.

We next present the rules and briefly explain them.

0. Rules in state S1:
1 S0 a→min S1 ah(o)↓
2 S0 o→min S1 h(o)↓
3 S0 o→max S1

1. Rules in state S1:
1 S1 o→max S1

2 S1 d→max S1

3 S1 b→max S1

4 S1 ej →max S1

5 S1 g →min S4 (g)↓
6 S1 v →max S1

7 S1 w →max S1

8 S1 x→max S1

9 S1 y →max S1

10 S1 fj.k →max S1

11 S1 tj →max S1

12 S1 rj →max S1

13 S1 a→min S2 a
14 S1 cjpj →min S1 upj
15 S1 cj.kpk →min S1 pk
16 S1 zhcj.k →min S5 zhpkej(fi.k)l|ιi
17 S1 zhcj →min S5 zhupj(fi.j)l|ιi
18 S1 hlj.ksk →min S2 htkejsk (rk)l
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19 S1 hcj →min S2 hutj (rj)l
20 S1 hcj.k →min S2 htkej (rk)l

2. Rules in state S2:
1 S2 b→min S1(b)↓
2 S2 g →min S4(g)↓
3 S2 ah→min S3 ahw(ci)↓|ιi
4 S2 hej →min S3 hej(lj.i)↑ (cj.i)↓|ιi
5 S2 hu→min S3 hu(li.i)↑ (ci.i)↓|ιi
6 S2 fj.k →max S2

7 S2 cj.k →max S2

8 S2 lj.k →max S2

3. Rules for state S3:
1 S3 b→min S1(b)↓
2 S3 g →min S4(g)↓
3 S3 axyyfj.i →min S3 adsjx|ιi
4 S3 axyyri →min S3 ax|ιi
5 S3 axyyyfj.i →min S3 adsjx|ιi
6 S3 axyyyri →min S3 ax|ιi
7 S3 adxyyy →min S1 a(b)↓
8 S3 axyyy →min S4 a(g)↓
9 S3 awvv →min S4 a(g)↓

10 S3 awvfj.i →min S3 adsjx|ιi
11 S3 awvri →min S3 ax|ιi
12 S3 x→min S3 y
13 S3 tjfk.i →min S3 pjsk(fi.j)l|ιi
14 S3 afj.i →min S3 asj |ιi
15 S3 pjsj →min S3

16 S3 ritj →min S3 tj(rj)l|ιi
17 S3 w →min S3 wv
18 S3 rj →max S3

19 S3 cj.k →max S3

20 S3 fj.k →max S3

21 S3 lj.k →max S3

4. Rules for state S4:
1 S4 g →max S4

2 S4 ej →max S4

3 S4 fj.k →max S4

4 S4 cj.k →max S4

5 S4 lj.k →max S4

6 S4 tj →max S4

7 S4 rj →max S4

8 S4 w →max S4
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9 S4 v →max S4

10 S4 u→max S4

11 S4 h→max S4

12 S4 o→max S4

5. Rules for state S5:
1 S5 cjpj →min S5 pj
2 S5 cj.k →min S5|ej
3 S5 cj.kpk →min S5 pk
4 S5 hcj.k →min S5 hpkej(fi.k)l|ιi
5 S5 hcj →min S5 hpj(fi.j)l|ιi
6 S5 g →max S4

7 S5 b→max S5

8 S5 fj.k →max S5

9 S5 lj.k →max S5

10 S5 tj →max S5

11 S5 rj →max S5

12 S5 u→max S5

The following paragraphs outline how these rules are used by each major cell
group: the source cell, frontier cells, other intermediate cells and the target cell.

Scripts for the source cell: In the initial state S0, the source cell, σs, indi-
cated by the special object a, starts by broadcasting an object, o, to all cells and
enters S1 (rule 0.1); each receiving cell creates a local catalyst-like object, h, and
enters S1 (rule 0.2).

Next, cell σs enters S2 (rule 1.13) and starts the search wave via connection
requests, cs (rule 2.3). Then, the source cell σs changes to state S3 and uses timers
to wait (a) one step for the the first progress indicators (rules 3.10, 3.11, 3.17),
and (b) two steps for further relayed progress indicators (rules 3.3, 3.4, 3.12). If
no progress indicator arrives when the timer overflows, cell σs waits one more
step (rules 3.5, 3.6). If still no expected progress indicator arrives, cell σs assumes
the round has ended. If an augmenting path was found in the current round, σs
broadcasts a reset signal b to reset all cells (except the target σt) to S1 (rule 3.7).
Otherwise, σs broadcasts a finalize signal, g, which prompts all cells to enter S4

(rules 3.8, 3.9).
It is interesting to note why the source cell needs to wait for one more step,

even when the timer overflows. An intermediate cell filters connect signals, using
rules 1.14–15, which have higher priority than the rules to accept a connect signal,
i.e. rules 1.18–20. The rules to accept a connect signal cannot apply in the same step
because of the different target states. For example, in Figure 6, path 0.2.4.6.7.9 is
found in the first round. In the second round, search paths 0.1.4 and 0.3.5 attempt
to connect to cell 6. Cell 6 discards cell 4’s connect signal, following the higher-
priority rule 1.15 and then, in the next step, accepts cell 5’s connect signal, using
rule 1.20. In this case, the source cell needs an extra one-step delay, to receive the
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relayed connect acknowledgment from cell 6. All unacceptable signals are discarded
in one step, so a one-step delay is enough.

   0    2 

   5 

   6 

   1 

   9    4 

   3 

   7 

   8 

Fig. 6. A particular case requiring a delayed connect acknowledgment.

Scripts for a frontier cell: An intermediate cell, σi, if it is unvisited in
this round, accepts exactly one connect signal and discards the rest; otherwise,
it discards all connect signals. By accepting one connect signal, σi enters S2 and
becomes a frontier cell to send connect signals. When σi sends its connect signals,
the frontier advances.

An intermediate cell, σi, may receive connect signals: (a) cs, connect signals
sent by the source cell, σs, to its children; (b) cj.k, connect signals sent by a
frontier cell, σk, to its children; (c) lj.k, connect signals sent by a frontier cell,
σk, to its parents. Received connect signals are checked for acceptability : (a) a cs
or cj.k connect signal is acceptable if it does not come from an established path
predecessor, which corresponds to a forward operation (rules 1.14, 1.15, 1.19, 1.20);
(b) a lj.k connect signal is acceptable if it comes from an established path successor,
which corresponds to a push-back operation (rule 1.18).

Cell σi becomes a frontier cell by accepting either: (1) a connect signal, cs,
from σs (rules 1.14, 1.19), in this case, cell σi (a) generates an u, indicating that
it is the first intermediate cell on the current search path (the first after cell σs);
(b) records its predecessor on the search path, σs, as ts; and (c) sends a connect
acknowledgment, rs, back to cell σs; or (2) a connect signal, cj.k or lj.k from σk
(rules 1.15, 1.18, 1.20), in this case, cell σi (a) records the branch ID, j, as ej ;
(b) records its predecessor on the search path, σk, as tk; and (c) sends a connect
acknowledgment, rk, back to cell σk.

Then, as a frontier cell, σi sends connect signals to neighbors and changes to
state S3: (1) if cell σi is marked by an u object, it uses its own ID, i, as the branch
ID to further generate connect signals, ci.i or li.i (rule 2.5); (2) otherwise, σi uses
the recorded ej as the branch ID to further generate connect signals, cj.i or lj.i
(rule 2.4).

Consider the scenario when several connect signals arrive simultaneously in
an unvisited cell, σi (see Figure 4 (a)). Cell σi makes a (conceptually random)
choice and selects exactly one of the acceptable connect signals, thus deciding
which search path can follow through. To solve this choice problem, we use an
object, h, which functions like a catalyst [15]. Object h is immediately consumed
by the rule which accepts the connect signal, therefore no other connect signal
is accepted (rules 1.16–20). Next, the catalyst, h, is recreated, but the cell also
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changes its state, thus it cannot accept another connect signal (not in the same
search round).

Scripts for other intermediate cell: A previous frontier cell, σi, relays
progress indicators: connect acknowledgments, ri (rule 3.16) and path confirma-
tions, fk.i (rule 3.13). On receiving path confirmations, σi transforms a temporary
path predecessor, tj , into an established path predecessor, pj , and records the path
successors, sk. In the next step, cell σi discards matching predecessor and succes-
sor objects (i.e. referring to the same cell), e.g., σi may already contain (from a
previous round) another predecessor-successor pair, pj′ , sk′ . If j = k′, then pj and
sk′ are deleted, as one end of the cancelling arc pair, (j, i) and (i, j); similarly, if
k = j′, then sk and pj′ are deleted (rule 3.15).

Scripts for the target cell: The target cell, σt, accepts either (1) a connect
signal from σs, cs, if it does not come from an established path predecessor (rules
1.17, 5.1, 5.5), or (2) a connect signal from a frontier cell σk, cj.k (rules 1.16, 5.2,
5.3, 5.4), which indicates the different branch ID (rule 5.2) and does not come
from an established path predecessor (rule 5.3). In case (1), cell σt: (a) generates
an u, indicating that it is the second cell on a search path (the first after cell σs);
(b) records its predecessor on the search path, σs, as ps; and (c) sends a path
confirmation ft.s, back to cell σs. In case (2), cell σt: (a) records the branch ID,
j, as ej ; (b) records its predecessor on the search path, σk, as pk; and (c) sends a
path confirmation, ft.k, back to cell σk.

This branch-cut strategy is illustrated in Figure 4 (b). It shows an established
path, π = 0.1.6, whose branch ID is recorded as e1. Consider the fate of other
search paths, τ1 = 0.1.3.6, τ2 = 0.1.5.6, and τ3 = 0.2.4.6, which attempt to reach
the target 6, later in the same round. τ1 sends the connect signal c1.3, which
is rejected. τ2 sends the connect signal c1.5, which is also rejected. τ3 sends the
connect signal c2.4, which is accepted. To summarize, in this example round, two
augmenting paths are established, π and τ3; other attempts are properly ignored.

It is important that recording objects ei are used as promoters, which enable
rules, without being consumed [7]. Otherwise, objects ei can be consumed before
completing their role; e.g., the rejection of τ1 would consume e1 and there would
be nothing left to reject τ2.

Example 2. Table 7 shows Algorithm 1 tracing fragments for stages (a), (c) and
(e) of Figure 2, illustrating how our P system solution works. In all stages, each
cell, σi, contains a promoter object, ιi, as the cell ID; the source cell, σ0, and the
target cell, σ7, are decorated by objects, a and z, respectively. The catalyst object,
h, remains in each cell after it is produced, until the cell enters the final state, S4.

In stage 1(a), the two established paths, 0.1.4.7 and 0.2.5.7, are recorded by
the following cell contents: σ0 : {s1, s2}, σ1 : {p0, s4}, σ2 : {p0, s5}, σ4 : {p1, s7},
σ5 : {p2, s7}, σ7 : {p4, p5}. In the source cell σ0, xy3 is a timer to wait for the
relayed progress indicators, which currently overflows. The object d indicates that
an augmenting path was found in the current round, so in the next step, the source
cell, σ0, broadcasts a reset signal to all cells to start a new round. Cells σ1, σ2, and
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Table 7. Algorithm 1 tracing fragments for stages (a), (c) and (e) of Figure 2.

Stage\Cell σ0 σ1 σ2 σ3

1(a) S3 ι0adhs1s2xy
3 S3 ι1hp0s4u S3 ι2hp0s5u S3 ι3ht0u

1(c) S3 ι0ahs1s2xy S1 ι1hp0s4u
2 S3 ι2e3hp0r3s5t5u

2 S3 ι3hr3t0u
2

1(e) S4 ι0as1s2s3 S4 ι1p0s4 S4 ι2p0s6 S4 ι3p0s5

Stage\Cell σ4 σ5 σ6 σ7
1(a) S3 ι4e1hp1s7 S3 ι5e2hp2s7 S3 ι6e2ht2 S5 ι7e1e2hp4p5z
1(c) S1 ι4f7.6hp1s7 S3 ι5e3f7.6hp2s7t3 S3 ι6e3f7.6ht2 S5 ι7e1e2e3hp4p5p6r3z
1(e) S4 ι4p1s7 S4 ι5p3s7 S4 ι6p2s7 S4 ι7p4p5p6z

σ3 have objects, u, indicating that they are the first intermediate cells after the
source, while cells σ4, σ5, σ6 contain objects, ej , which mean they should include
j as the branch ID when sending connect signals. The target cell, σ7, records the
already used branch IDs, e1 and e2.

In stage 1(c), the successful search path 0.3.5.2.6.7 is recorded as: σ3 : {t0},
σ5 : {t3}, σ2 : {t5}, σ6 : {t2}, σ7 : {p6} (the target records p6 directly). The target
cell σ7 also records the branch ID of the newly successful path, e3, and sends back
a path confirmation f7.6 to all its neighbors. In cell σ3, the objects, r3 and t0,
indicate that the connect acknowledgment needs to be relayed to the source cell
σ0. Thus, in the next step, cell σ0 receives a connect acknowledgment from cell σ3

and resets the timer.
In stage 1(e), all cells enter the final state S4 and there are three established

paths, 0.1.4.7, 0.2.6.7 and 0.3.5.7, which are recorded as: σ0 : {s1, s2, s3}, σ1 :
{p0, s4}, σ2 : {p0, s6}, σ3 : {p0, s5}, σ4 : {p1, s7}, σ5 : {p3, s7}, σ6 : {p2, s7},
σ7 : {p4, p5, p6}.

The preceding arguments indicate a bisimulation relation between our BFS-
based algorithm and the classical Edmonds and Karp BFS-based algorithm for
edge-disjoint paths [4]. The following theorem encapsulates all these arguments:

Theorem 1. When Algorithm 1 terminates, path predecessor and successor objects
listed in its output section indicate a maximal cardinality set of edge-disjoint paths.

6.2 Rules for Node-disjoint Paths

Algorithm 2 (P system algorithm for node-disjoint paths)

Input: As in the edge-disjoint paths algorithm of Algorithm 1.
Output: Similar to in the edge-disjoint paths algorithm. However, the prede-

cessor and successor objects indicate node-disjoint paths, instead of edge-disjoint
paths.

To simulate node splitting, the node-disjoint version uses additional symbols
(as before, rules assume that cell σi is the current cell):

• m indicates that the “entry node is visited”.
• n indicates that the “exit node is visited”.
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• q indicates that this cell’s in-flow and out-flow is one (or, equivalently, that this
cell is in an already established or confirmed path).

• tj.k indicates cell σi’s predecessor, σj , on a search path, recorded after it receives
the connect acknowledgment from cell σi’s successor, σk (before receiving this
acknowledgment, σi’s predecessor is temporarily recorded as tj .)

• rj.k is a connect acknowledgment sent by cell σj to cell σk.

0. Rules in state S1:
1 S0 a→min S1 ah(o)↓
2 S0 o→min S1 h(o)↓
3 S0 o→max S1

1. Rules in state S1:
1 S1 o→max S1

2 S1 d→max S1

3 S1 b→max S1

4 S1 ej →max S1

5 S1 g →min S4 (g)↓
6 S1 v →max S1

7 S1 w →max S1

8 S1 u→max S1

9 S1 m→max S1

10 S1 n→max S1

11 S1 fj.k →max S1

12 S1 tj.k →max S1

13 S1 tj →max S1

14 S1 rj.k →max S1

15 S1 a→min S2 a
16 S1 cjpj →min S1 pj
17 S1 cj.kpk →min S1 pk
18 S1 zhcj.k →min S5 zhpkej(fi.k)l|ιi
19 S1 zhcj →min S5 zhpj(fi.j)l|ιi
20 S1 hlj.ksk →min S2 htkejskn (ri.k)l|ιi
21 S1 hcj.kq →min S2 htkejmq (ri.k)l|ιi
22 S1 hcj →min S2 hutj (ri.j)l|ιi
23 S1 hcj.k →min S2 htkej (ri.k)l|ιi

2. Rules in state S2:
1 S2 b→min S1(b)↓
2 S2 g →min S4(g)↓
3 S2 ah→min S3 ahw(ci)↓|ιi
4 S2 hejm→min S3 hejm (lj.i)↑|ιi
5 S2 hejn→min S3 hejn (lj.i)↑ (cj.i)↓|ιi
6 S2 hej →min S3 hej (lj.i)↑ (cj.i)↓|ιi
7 S2 hu→min S3 hu(li.i)↑ (ci.i)↓|ιi
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8 S2 fj.k →max S2

9 S2 cj.k →max S2

10 S2 lj.k →max S2

3. Rules in state S3:
1 S3 b→min S1(b)↓
2 S3 g →min S4(g)↓
3 S3 hmlj.ksk →min S3 hmntkejsk (ri.k)l|ιi
4 S3 hejmn→min S3 hwej (lj.i)↑ (cj.i)↓|ιi
5 S3 axyyfj.i →min S3 adsjx|ιi
6 S3 axyyrj.i →min S3 ax|ιi
7 S3 axyyyfj.i →min S3 adsjx|ιi
8 S3 axyyyrj.i →min S3 ax|ιi
9 S3 adxyyy →min S1 a (b)↓|ιi

10 S3 axyyy →min S4 a (g)↓|ιi
11 S3 awvv →min S4 a(g)↓|ιi
12 S3 awvfj.i →min S3 adsjx|ιi
13 S3 awvrj.i →min S3 ax|ιi
14 S3 x→min S3 xy
15 S3 tj.kfk.i →min S3 pjskq (fi.j)l|ιi
16 S3 tjfk.i →min S3 pjskq (fi.j)l|ιi
17 S3 afj.i →min S3 asj |ιi
18 S3 pjsjq →min S3

19 S3 rk.itj.k →min S3 tj.k (ri.j)l|ιi
20 S3 tjrk.i →min S3 tj.k (ri.j)l|ιi
21 S3 tj.lrk.i →min S3 tj.ltj.k (ri.j)l|ιi
22 S3 w →min S3 wv
23 S3 arj.i →max S3 a|ιi
24 S3 cj.k →max S3

25 S3 fj.k →max S3

26 S3 lj.k →max S3

4. Rules in state S4:
1 S4 g →max S4

2 S4 ej →max S4

3 S4 q →max S4

4 S4 fj.k →max S4

5 S4 cj.k →max S4

6 S4 lj.k →max S4

7 S4 tj.k →max S4

8 S4 tj →max S4

9 S4 rj.k →max S4

10 S4 w →max S4

11 S4 v →max S4

12 S4 u→max S4
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13 S4 m→max S4

14 S4 n→max S4

15 S4 h→max S4

16 S4 o→max S4

5. Rules in state S5:
1 S5 cjpj →min S5 pj
2 S5 cj.k →min S5|ej
3 S5 cj.kpk →min S5 pk
4 S5 hcj.k →min S5 hpkej(fi.k)l|ιi
5 S5 hcj →min S5 hpj(fi.j)l|ιi
6 S5 g →max S4

7 S5 b→max S5

8 S5 fj.k →max S5

9 S5 lj.k →max S5

10 S5 tj.k →max S5

11 S5 tj →max S5

12 S5 rj.k →max S5

13 S5 u→max S5

When a cell, σi, is first reached by a search path, then both its “entry node”
and “exit node” become visited. If this search path is successful, then σi is marked
by one object q (rules 3.15, 3.16). In a subsequent round, new search paths can
visit σi (1) via an incoming arc (forward mode); (2) via an outgoing arc, in the
reverse direction (push-back mode) or (3) on both ways. When a search path visits
σi via an incoming arc, it marks σi with one object, m, indicating a visited entry
node (rule 1.21); in this case, the search path can only continue with a push-back
(rule 2.4). When a search path visits σi via an outgoing arc, it marks the cell with
one object, n, indicating a visited exit node (rule 1.20); in this case, the search
path continues with all other possible arcs (rule 2.5), i.e. all forward searches and
also a push-back on its current in-flow arc. A cell which has a visited entry node is
in state S3, but it can be later revisited by its exit node. Thus, in S3, we provide
extra rules to accept and send connect signals (rules 3.3, 3.4).

Cell, σi, can be visited at most once on each of its entry or exit nodes; but, it
can be visited both on its entry and exit nodes, in which case it has two temporary
predecessors (which simulate the node-splitting technique). In Figure 8, the search
path, 0.4.5.2.1.8.9.3.2.6.7.10, has visited cell 2 twice, once on its “entry” node and
again on its “exit” node. Cell 2 has two temporary predecessors, cells 5 and 3, and
receives progress indicators from two successors, cells 1 and 6. Progress indicators
relayed by cell 6 must be further relayed to cell 3 and progress indicators relayed
by cell 1 must be further relayed to cell 5. To make the right choice, each cell
records matching predecessor-successor pairs, e.g., cell 2 records the pairs t5.1 and
t3.6. For example, when the progress indicator r1.2 or f1.2 arrives, cell 2 knows to
forward it to the correct predecessor, cell 5. When the progress indicator r6.2 or
f6.2 arrives, cell 2 knows to forward it to the correct predecessor, cell 3.
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Fig. 8. An example of node-disjoint paths.

The following theorem sums up all these arguments:

Theorem 2. When Algorithm 2 ends, path predecessors and successors objects
mentioned in its output section indicate a maximal cardinality set of node-disjoint
paths.

7 Performance of BFS-based Solutions

Consider a simple P system with n cells, m = |δ| arcs, where fe = the maximum
number of edge-disjoint paths, fn = the maximum number of node-disjoint paths
and d = the outdegree of the source cell. Dinneen at al. show that the DFS-based
algorithms for edge- and node-disjoint paths run in O(mn) P steps [3]. A closer
inspection, not detailed here, shows that this upper bound can be improved.

Theorem 3. The DFS-based algorithms run in O(md) P steps, in both the edge-
and node-disjoint cases.

We show that our algorithms run asymptotically faster (fe, fn ≤ d):

Theorem 4. Our BFS-based algorithms run in at most B(m, f) = (3m + 5)f +
4m+ 6 P steps, i.e. O(mf), where f = fe, in the edge-disjoint case, and f = fn,
in the node-disjoint case.

Proof. 1. Initially, the source cell broadcasts a “catalyst” in one step.
2. Then, the algorithm repeatedly searches augmenting paths. First, consider the

rounds where augmenting paths are found. In each round, each cell on the
search path takes two steps to proceed, i.e. one step to accept a signal and
one more step to send connect signals. Each search path spans at most m
arcs, thus it takes at most 2m steps to reach its end (with or without reaching
the target). All search paths in a round proceed in parallel. After the last
augmenting path in a round was found, it takes at most m steps to confirm to
the source. After receiving the last confirmation signal, the source cell waits
four steps (to ensure that it is the last) and then takes one step to broadcast a
reset signal. Therefore, each round, where augmenting paths are found, takes
at most 3m + 5 steps. At least one augmenting path is found in each round,
so the total number of search rounds is at most f .
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3. Next, consider the last search round, where no more augmenting paths are
found. This case is similar, but not identical, to the preceding case. Each cell
on the search path takes two steps to proceed, so it takes at most 2m steps to
search augmenting paths. The connect acknowledgment from the end cell of
the search path takes at most m steps to arrive at the source. The source waits
for three or four steps for the time-out: three steps, if it does not receive any
progress indicators; and four steps, otherwise. Then, the source cell broadcast
a finalize signal, which takes at most m steps to reach all cells.

4. Finally, all cells take one final step, to clear all irrelevant objects, and the
algorithm terminates.
To summarize, the algorithm runs in at most (3m+ 5)f + 4m+ 6 steps and its

asymptotic runtime complexity is O(mf).

Table 9 compares the asymptotic complexity of our BFS-based algorithms
against some well-known maximum flow BFS-based algorithms. Our BFS-based
algorithms are faster, because they leverage the potentially unbounded parallelism
inherent in P systems.

Table 9. Asymptotic worst-case complexity: classical BFS-based algorithms (steps),
P system DFS-based algorithms [3] (P steps) and our P system BFS-based algorithms
(P steps).

Edmonds-Karp [4] O(m2n) steps

Dinic [2] O(mn2) steps

Goldberg and Tarjan [6] O(nm log n2/m) steps

P System DFS-based [3] O(md) P steps

P System BFS-based [here] O(mf) P steps

Theorem 4 indicatess the worst-case upper bound, not the typical case. A
typical search path does not use all m arcs. Also, the algorithm frequently finds
more than one augmenting paths in the same search round, thus the number
of rounds is typically much smaller than f . Therefore, the average runtime is
probably much less than than the upper bound indicated by Theorem 4. Empirical
results, obtained with our in-house simulator (still under development) support
this observation.

Table 11, empirically compares the performance of our BFS-based algorithms
against the DFS-based algorithms [3], for the scenarios of Figure 10. The empirical
results show that BFS-based algorithms take fewer P steps than DFS-based algo-
rithms. The performance is, as expected, influenced by the number of nodes and
the density of the digraph. Typically, the ratio of BFS:DFS decreases even more,
with the complexity of the digraph. We conclude that, the empirical complexity
is substantially smaller than the asymptotic worst-case complexity indicated by
Theorem 4.
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Fig. 10. Empirical tests of BFS-based and DFS-based algorithms.
Table 11. Empirical complexity of BFS-based and DFS-based algorithms (P steps).

Test BFS Empirical Complexity DFS Empirical Complexity
Case m f = fe, fn B(m, f) Edge-disjoint Node-disjoint Edge-disjoint Node-disjoint

(a) 10 3 151 44 45 63 62

(b) 9 2 106 24 24 61 59

(c) 24 4 410 66 75 241 194

8 Conclusions

We proposed the first BFS-based P system solutions for the edge- and node-disjoint
paths problems. As expected, because of potentially unlimited parallelism inherent
in P systems, our P system algorithms compare favourably with the traditional
BFS-based algorithms. Empirical results show that, in terms of P steps, our BFS-
based algorithms outperform the previously introduced DFS-based algorithms [3].

Several interesting questions and directions remain open. Can we solve this
problem using a restricted P system without states, without sacrificing the cur-
rent descriptive and performance complexity? What is the average complexity of
our BFS-based algorithms? How much can we speedup the existing DFS-based
algorithms, by use more efficient distributed DFS algorithms? An interesting av-
enue is to investigate a limited BFS design, in fact, a mixed BFS-DFS solution,
which combines the advantages of both BFS and DFS. Finally, another direction is
to investigate disjoint paths solutions on P systems with asynchronous semantics,
where additional speedup is expected.
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