
P Systems for Social Networks

Erzsébet Csuhaj-Varjú1, Marian Gheorghe2, György Vaszil1, Marion Oswald3

1 Computer and Automation Research Institute
Hungarian Academy of Sciences
H-1111, Budapest, Kende u. 13-17, Hungary
{csuhaj,marion,vaszil}@sztaki.hu

2 Department of Computer Science
University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, United Kingdom
m.gheorghe@dcs.shef.ac.uk

3 Institute for Computer Languages
Vienna University of Technology
Favoritenstr. 9-11, 1040 Vienna, Austria
marion@logic.at

Summary. We introduce some variants of P systems that mimic the behaviour of social
networks and illustrate some of the characteristics of them. Other concepts related to
social networks are discussed and suitable classes of P systems are suggested. A simple
example shows the capabilities of such a P system where the intensity of the communi-
cation is modelled with complementary alphabets.

1 Introduction

Membrane computing (also called P systems theory) is a new computing paradigm,
which in its initial variants was inspired by the structure and functionality of the
living cell [19]. Later on some other biological entities have been considered in
order to extend the capabilities of this computational model - tissues or special
types of cells, like neurons, or colonies of cells, like bacteria. So far, concepts and
methods of P systems theory have been successfully employed in solving important
problems of computer science and describing various biological phenomena, but,
except promising applications in linguistics and natural language processing, only
a limited amount of attention has been paid to the suitability of membrane systems
in modelling social phenomena.

In this paper, we attempt to build a bridge between membrane computing and
the theory of social networks, an area of great interest in contemporary computer
science and practice. For this reason, we define certain classes of P systems which
are suitable for modelling features of social networks and which can be derived
from problems in this field, and we formulate various research topics related to

114 E. Csuhaj-Varjú et al.

connections between P systems theory and the theory of social interactions and
networks. The underlying mathematical tool set is the theory of formal languages,
i.e., our approach to social networks is a purely syntactic one. We note that social
phenomena have already been described by different frameworks in formal lan-
guage theory, our recent aim is to formulate models which combine tools of both
membrane computing and formal language theory. In terms of formal grammars,
communities of agents interacting with each other and with their dynamically
changing environment were modelled by eco-grammar systems, a research field
launched in [9]. Population of agents, called networks of (parallel) language pro-
cessors, with biological and social background were described by rewriting systems
in [12, 7]. Another formal language-theoretic model for communities of evolving
agents, called evolutionary systems, was introduced in [10]. Multi-agent systems
in terms of formal language theory and membrane computing were discussed in
[4], [5], [3], and [15].

2 Social Networks

In various formalisms related to the study of social phenomena, interpersonal rela-
tionships between individuals are defined as information-carrying connections [14].
These relationships come in various forms, two of them are strong and weak ties.
Weak ties seem to be responsible for the embeddedness and structure of social net-
works and for the communication within these systems [14]. There are other mea-
sures that characterise connections between nodes (individuals). Centrality gives
an indication of the social power of a node and the strength of its connections.
It relies on other measures, betweenness, closeness, degree. Betweenness measures
to what extent a node is connected to nodes that have a significant number of
neighbours (direct connections). Closeness is the degree describing that a node is
close to all other nodes in the network: it counts the number of connections. For
the above concepts as well as for other measures of the connections existing in
social networks, we refer to [23].

3 P Systems Capturing Communication Aspects

We are focusing now on identifying some classes of P systems that capture com-
munication aspects in social networks. We can consider various types of nodes:
ordinary or popular nodes - those that host individuals and allow communication
between them; new-born nodes - those that are dynamically created and linked to
the existing network; non-visible or extinct nodes - the nodes that are no longer
connected to the network or have disappeared; nodes with one way communication,
only allowing information to go into, blackholes or allowing only to exit from, white-
holes. Some of these aspects have been already considered in the current research
framework of membrane computing; for instance population P systems allow nodes

P Systems for Social Networks 115

to be dynamically connected and disconnected [6]; the one-way communication for
communicating accepting P systems has been considered in [13]. We can also take
into account connections between nodes and look at the volume of communication
- the amount of (new) information generated or sent-received by various nodes or
groups of nodes; frequency of communicated messages - the number of communi-
cation steps related to the evolution (computation) steps; communication motifs -
patterns of communication identified throughout the network evolution. In order
to capture these phenomena we aim to formally define a generic and flexible frame-
work whereby these concepts can be appropriately accommodated. In this respect
we provide the following general definition of a population P system governed by
communication, a pgcP system, for short.

4 Preliminaries and Definitions

Throughout the paper we assume that the reader is familiar with the basics of
membrane computing and formal language theory; for details we refer to [17, 21]
and [22]. For an alphabet V , we denote by |V | the cardinality of V , and by V ∗

the set of all finite words over V . If λ, the empty word is excluded, then we
use the notation V +. As usual in membrane computing, we represent the finite
multisets over V by strings over V as well, that is, a string and all its permutations
correspond to the same multiset. We denote by |w|a the number of occurrences of
a symbol a ∈ V in a string w ∈ V ∗ which is equal to the multiplicity of that object
in the represented multiset. We use ∅ to denote the empty multiset, and also use
V ∗ to denote the set of finite multisets over an alphabet V .

In the following we consider P systems with static underlying graph structure;
the notion can easily be extended to a construct capturing dynamically changing
underlying graph architecture as well.

Definition 1. A population P system governed by communication (a pgcP system,
for short), is a construct

(Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1,

where

• Σ = Σ1∪Σ2 is a finite alphabet of objects, Σ1 is the alphabet of cellular objects,
i.e., the objects in the nodes, and Σ2 is the set of communication symbols;

• E ⊆ {1, . . . , n} × {1, . . . , n} is the set of (directed) links between the nodes;
• ωi ∈ Σ∗

1 , 1 ≤ i ≤ n, is a multiset of cellular objects, the initial content of the
node i of the system; and

• (ρi, Ri), 1 ≤ i ≤ k, are predicate based rule-sets governing the transitions of
the system, with
– ρi : Σ∗

2 → {true, false}, a predicate over the multisets of communication
symbols, and

116 E. Csuhaj-Varjú et al.

– Ri = (Ri,1, . . . , Ri,n), an n-tuple of sets of rewriting rules, where Ri,j , 1 ≤
j ≤ n, is the set of rules that are allowed to be applied at node j, and any
rule is of the form u → v for u ∈ Σ∗

1 , v ∈ (Σ1 ∪ (Σ1 ×Σ2 × Tar))∗ where
Tar = {1, . . . n} is a set of target indicators.

Definition 2. A configuration of a pgcP system

Π = (Σ,E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1,

is an n + s-tuple for s = |E|,

(w1, ..., wn;u1, ..., us), wi ∈ Σ∗
1 , uj ∈ Σ∗

2 , 1 ≤ i ≤ n, 1 ≤ j ≤ s,

where multiset wi is the multiset of cellular objects at the i-th node, i.e., the current
content of node i, 1 ≤ i ≤ n, and uj is the multiset of communication symbols
associated to the communication link ej ∈ E, 1 ≤ j ≤ s.

The initial configuration of Π is (ω1, . . . , ωn; ∅, . . . , ∅).
The pgcP system works by changing its configurations. In the following we

describe the transition or configuration change: it takes place by rewriting and
communication of the cellular objects and recording the performed communication.
The rewriting rules are applied to the cellular objects in the maximally parallel
manner, i.e., any object can be involved in at most one rule application, and
as many rules are applied simultaneously to the cellular objects at the nodes as
possible.

Definition 3. Let Π = (Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1, be a
pgcP system and let c1 = (w1, ..., wn;u1, ..., us) and c2 = (w′1, ..., w

′
n;u′1, ..., u

′
s) be

two configurations of Π.
We say that c1 changes directly to c2 (or c2 is obtained from c1 with a transi-

tion), denoted by

c1 = (w1, ..., wn;u1, ..., us) ⇒(ρi,Ri) c2 = (w′1, ..., w
′
n; u′1, ..., u

′
s)

for some i ∈ {1, . . . , k}, if the following hold:

• ρi(u1, . . . , us) = true,
• c1 is changed to c2 by using the rules of Ri = (Ri,1, . . . , Ri,n) as follows:

– the rules of Ri,j are applied in the maximal parallel manner in the node j
to the multiset wj , 1 ≤ j ≤ n; and

– if a rule of the form u → v where v = v1v2 for v1 ∈ Σ∗
1 and v2 ∈ (Σ1 ×

Σ2 × Tar)∗ is applied in a node j, then the following holds:
· u is changed to v1v2 and all objects in v1 remain in node j;
· all symbols of (a, a′, l) ∈ v2 are processed by sending the cellular object

a ∈ Σ1 to node l and adding the communication object a′ ∈ Σ2 to the
multiset associated to the link (j, l) ∈ E, 1 ≤ j 6= l ≤ n.

P Systems for Social Networks 117

The pgcP system may record information on the communication performed
during the whole computation or only on communication during the last configu-
ration change. This is captured in the following definition.

Definition 4. Let Π = (Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1, be a
pgcP system. We say that Π works in the

• history preserving mode, if for any transition

(w1, ..., wn;u1, ..., us) ⇒(ρi,Ri) (w′1, ..., w
′
n; u′1, ..., u

′
s)

it holds that u′j = uju
′′
j , for 1 ≤ j ≤ s, where u′′j is the multiset of communica-

tion symbols sent to link j during the transition,
• non-history preserving mode, if u′j consists of the communication symbols sent

to link j during the transition (the communication symbols in uj are forgotten).

Definition 5. Let Π = (Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1, be a
pgcP system. A derivation (or computation) in Π is a sequence of transitions
starting in the initial configuration and ending in some final (possibly halting)
configuration.

The result of a computation in a pgcP system Π can be defined in various
manners. We may consider the number (vector) of (certain) communication objects
going through (certain) communication links or the number (vector) of (certain)
cellular objects in (certain) nodes. If we assume distinguished, so called output
link(s) or node(s), then we indicate this fact in the notation for the accepted
languages of the pgcP system. As usual in membrane computing we consider only
halting computations.

Definition 6. Let Π = (Σ,E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), where n, k ≥ 1,
and let Ti ⊆ Σi, 1 ≤ i ≤ 2, be the sets of terminal cellular and communication
objects; Out1 ⊆ {1, . . . , n} and Out2 ⊆ E be the sets of output nodes and output
links, respectively.

• We define Ncell(Π, T1, Out1) (Pscell(Π,T1, Out1)) as the number (vector) of
terminal cellular objects in the output nodes in a final configuration.

• We define Ncom(Π, T2, Out2) (Pscom(Π, T2, Out2)) as the number (vector) of
terminal communication objects associated to the output links in a final config-
uration.

5 Complementary Alphabets in pgcP Systems

We are focusing now on communication in these networks. In order to characterize
its intensity and the fact that the importance of a connection might evolve in time
by either increasing or decreasing its value, we would need some sort of symbols
that act in this respect. One way to model this is by considering complementary

118 E. Csuhaj-Varjú et al.

communication symbols, whereby the customary (or positive) symbols strengthen
a connection, whereas the complementary (negative) ones weaken it. Formally this
is achieved by splitting the alphabets Σ1 and Σ2 as follows:

Σi = Σ′
i ∪ Σ̄′

i ∪Σ′′
i

where Σ′
i and Σ̄′

i, i = 1, 2 are dual alphabets. Σ′
i consists of normal (positive)

elements and Σ̄′
i contains complementary symbols.

The idea of complementary alphabets is not new in the field of natural com-
puting. DNA computing has as a core data structure a double-strand structure
consisting of dual elements, the DNA nucleotides, adenine, thymine, cytosine and
guanine represented by the four letter alphabet, {A, T,C, G}, respectively; the
pairs (A, T) and (C, G) are known as complementary base pairs [20]. In the con-
text of networks of Watson-Crick D0L systems, networks of such systems over
DNA-like alphabets are introduced and operations relying on complementarity
properties are utilised [8, 11].

Active and passive objects have been considered in a similar way with comple-
mentary elements. Two types of such objects have been introduced and studied:
within components [1] and on membranes [2]. Other membrane systems using com-
plementary features are spiking neural P systems with anti-spikes where a neuron
receiving s spikes and t anti-spikes is left with s − t if s ≥ t or t − s when t ≥ s
objects [18], and membrane systems with bi-stable catalysts, where the system
may switch between two states [17].

To demonstrate the above ideas, we present a simulation of an n-register ma-
chine M where the communication is controlled by “Watson-Crick-like” predicates.

An n-register machine M = (Q, R, q0, qf , P), n ≥ 1, is defined as usual, that
is, with internal state set Q, registers R = (A1, . . . , An), initial and final states
q0, qf ∈ Q, respectively, and a set of instructions P of the form (q,Ai+, r, s) or
(q, Ai−, r, s), q, r, s ∈ Q, q 6= qf , Ai ∈ R. When an instruction of the first type
is performed, then M is in state q, increases the value of register Ai by one, and
enters a state r or s, chosen nondeterministically. When an instruction of the
second type is performed, then M is in state q and it subtracts one from the value
of register Ai if it stores a positive number and then enters state r, or it leaves
the value of Ai unchanged if it stores zero and then enters state s. There are no
instructions for the final state, therefore the machine halts after entering state qf .
M starts its work in the initial state, q0, with empty registers. Then it performs
a sequence of instructions; if the sequence is finite (it ends with halting), then we
speak of a computation by M . The result of the computation is the number stored
in the output register A1 after halting.

It is known that 2-register machines are able to compute any recursively enu-
merable set of numbers [16].

Example 1. Let M = (Q,R, q0, qf , P), n ≥ 1, be an n-register machine. We con-
struct the pgcP system Π with n + 1 nodes simulating M as follows. Let

Π = (Σ, T1, E, w0, w1, . . . , wn, (ρ1, R1), (ρ2, R2), Out)

P Systems for Social Networks 119

where Σ = Σ1 ∪Σ2 with Σ1 = {a, ā} ∪ {q, [q, r, s] | q, r, s ∈ Q}, Σ2 = {a, ā}, and
E = {(0, i) | 1 ≤ i ≤ n}, T1 = {a}, and Out = 1. The initial configuration and the
rule sets are defined as follows. Let

w0 = q0, and wi = ∅, 1 ≤ i ≤ n.

Moreover, let R1 = (R1,0, . . . , R1,n), R2 = (R2,0, . . . , R2,n), and let

ρ1(u1, . . . , un) : |ui|a ≥ |ui|ā for all 1 ≤ i ≤ n,

R1,0 = {q → [q, r, s](a, a, j) | (q,Aj+, r, s) ∈ P} ∪
{q → [q, r, s](ā, ā, j) | (q,Aj−, r, s) ∈ P} ∪
{[q, r, s] → r, [q, r, s] → s | q, r, s ∈ Q},

ρ2(u1, . . . , un) : |ui|a < |ui|ā for some i, 1 ≤ i ≤ n,

R2,0 = {[q, r, s] → s(a, a, j) | (q, Aj−, r, s) ∈ P}, and finally

Rj,k = {aā → ε} for all 1 ≤ j ≤ 2, 1 ≤ k ≤ n.

If Π works in the history preserving mode, then the difference between the
number of symbols a and ā on a link (0, j) for some 1 ≤ j ≤ n corresponds to the
value of register j.

The result of the computation can be found in node 1 corresponding to the
output register A1 of M if the system introduces the symbol qf in node 0 and
halts (because there is no rule for the final state in M). Thus, these variants of
pgcP systems are computationally complete.

The reader may observe that in the above example we have not only comple-
mentary alphabets, but through various global predicates, the sets of rules are
split into “normal” rules in R1 and “recovery” rules in R2.

We note that it is possible to simulate a register machine with one active com-
ponent and n others receiving values a or ā. In a very similar way, we can consider
a distributed model where the n components corresponding to registers are used
in such a way that each one has its own addition and subtraction rules, similar to
R1,0, R2,0. In this case we have to communicate not only a or ā but also the label
of the next register to the component simulating this register; some other variants
of rules can be considered. Regarding these two models, one immediate question,
perhaps not difficult to be addressed, is which one is simpler, more efficient - with
respect to the number of rules, symbols etc; or are they just the same? What about
simulating one with the other one?

Furthermore, the example of simulating a register machine suggests the use of
dual sets of rules, triggered by predicates, i.e., to have for each rule, r, its dual rule,
r̄, defined in such a way that the complementary rules introduce complementary
symbols (only).

120 E. Csuhaj-Varjú et al.

6 Further Research Topics

In the previous sections we introduced the concept of a pgcP system inspired by
social networks and made some steps towards identifying the necessary abstract
elements related to measuring the intensity of the communication in these systems.
In this respect, complementary alphabets and particular variants of pgcP systems
have been considered. In the following, we define some further concepts regarding
some specific types of pgcP systems, and list some preliminary results for these
so-called deterministic and non-cooperative pgcP systems.

Definition 7. Let Π = (Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρs, Rs)), n, s ≥ 1, be a
non-cooperative deterministic pgcP system.

Let c(t) = (w1(t), ..., wn(t); u1(t), ..., us(t)), t ≥ 0, be a computation in Π in
the history preserving mode.

We define the

1. growth of communication volume on link i at derivation step t, t ≥ 1, by
fi : N→ N where fi(t) = |ui(t)| − |ui(t− 1)|.

2. frequency of communication on link i:
hi : N → {0, 1} where hi(t) = 0 if |ui(t)| − |ui(t − 1)| = 0 and hi(t) = 1 if
|ui(t)| − |ui(t− 1)| ≥ 1;

3. intensity of communication on link i:
gi : N→ R, where gi(t) = fi(t)

t .

If Σ2 = Σ′
2 ∪ Σ̄′

2 ∪Σ′′
2 , i.e., complementary symbols are considered, then f̄i(t)

defined over Σ̄′
2, and difference functions as fi(t) − f̄i(t) can also be defined and

examined.
We note that the above concepts can be extended with suitable modifications

to gcpP systems in the general sense; obviously, in this case we speak of relations,
instead of functions.

These notions have their roots in concepts related to networks of parallel lan-
guage processors [12] and evolutionary systems [10]. A network of parallel language
processors with D0L systems as components (an NLP-D0L system) consists of D0L
systems located in nodes of a finite virtual graph (each node has at most one D0L
system) which rewrite and communicate multisets of strings present in the nodes
according to their own rule sets. A D0L system G = (V, P, ω) is a triplet, where V
is an alphabet, P is a finite set of rules of the form a → α with a ∈ V, α ∈ V ∗ and
for each a ∈ V there exists exactly one rule in P , and, finally, ω ∈ V +. For any
string x = x1 . . . xn, xi ∈ V, 1 ≤ i ≤ n, we say that x directly derives y = y1 . . . yn,
if xi → yi ∈ P holds for 1 ≤ i ≤ n. (For more details on D0L systems, we refer
to [21]). The NLP-D0L system functions with alternating rewriting and commu-
nication steps. By rewriting, each string at every node is rewritten in parallel; the
D0L systems work in a synchronized manner. By communication, a copy of each
string at a node is sent to each other node, given that the string satisfies the sender
node’s output context condition (predicate) and the receiver node’s input context
condition (predicate). Communication is performed in a parallel and synchronized

P Systems for Social Networks 121

manner as well. In [12] it was shown that if the conditions for communication are
random context conditions, i.e., they check the presence and /or the absence of cer-
tain symbols in the strings to be communicated, then the growth of the number of
the strings in the network can be described by a growth function of a D0L system.
The growth function of a D0L system orders to the number of derivation steps the
length of the string obtained at that step. It was also shown, that the number of
strings at specific nodes and the number of communicated strings between nodes
can also be obtained from D0L growth functions with suitable homomorphisms.
The idea of the proofs comes from the property that in the case of D0L systems
any string generates only one string and the alphabet of the successor string can
be calculated from the alphabet of the predecessor string.

The reader may easily notice the close relation between NLP-D0L systems and
non-cooperative deterministic pgcP systems: The multisets of different symbols
communicated from a node to some other one by an NLP-D0L system at any
computation step corresponds to multisets of communication symbols added to
the links of an appropriate pgcP system (where the predicates checks the pres-
ence/absence of types of objects in the multiset). Therefore, we may describe the
growth of the communication volume, the frequency, and the intensity of commu-
nication on the links by tools of Lindenmayer systems, in particular the theory of
D0L systems. Since D0L systems demonstrate several nice decidability properties,
the theory provides efficient tools for characterizing the behaviour of particular
types of pgcP systems. The detailed comparison is a topic for future research.

In context of social networks and pgcP systems, a number of other general
problems can also be formulated. For example, how to describe and characterize
other concepts and measures from social networks and how to define and model
problems like leaders and clusters emergence. Or, how to dynamically restructure
the links and distinguish between good and bad or strong and weak links; what
about breaking the links. Finally, how to solve various problems or compute func-
tions with such systems. These and similar questions form the basis of challenging
future research.

7 Acknowledgement

The work of Erzsébet Csuhaj-Varjú and György Vaszil was supported in part by
the Hungarian Scientific Research Fund, OTKA, Grant no. K75952. The work
of Marian Gheorghe was partially done during his visit to the Computer and
Automation Research Institute, Hungarian Academy of Sciences, in June 2010,
and partially was supported by the grant K75952, Hungarian Scientific Research
Fund, OTKA.

122 E. Csuhaj-Varjú et al.

References

1. B. Aman, G. Ciobanu. Turing completeness using three mobile membranes. In Un-
conventional Computing 2009, LNCS, 5715, 42–55, 2009.

2. B. Aman, G. Ciobanu. Mutual mobile membranes systems with surface objects. In
7-th Brainstorming Week of Membrane Computing, 29–39, 2009.

3. G. Bel-Enguix. A Multi-agent Model for Simulating the Impact of Social Structure
in Linguistic Convergence. InICAART(2) (J. Filipe et. al, Eds.), INSTICC Press,
367–372, 2009.

4. G. Bel-Enguix, M. A. Grando, M. D. Jiménez López. A Grammatical Framework for
Modelling Multi-Agent Dialogues. In PRIMA 2006 (Z.-Z. Shi, R. Sadananda, Eds.),
LNAI 4088, Springer Verlag, Berlin Heidelberg, 10–21, 2009.

5. G. Bel-Enguix, M. D. Jiménez López. Membranes as Multi-agent Systems: an Appli-
cation for Dialogue Modelling. In IFIP PPAI 2006 (J.K. Debenham, Ed.), Springer,
31–40, 2006.

6. F. Bernardini, M. Gheorghe. Population P systems. Intern J of Universal Comp Sci,
10, 509–539, 2004.

7. E. Csuhaj-Varjú. Networks of Language Processors. EATCS Bulletin 63, 120–134,
1997.

8. E. Csuhaj-Varjú. Computing by networks of Watson-Crick D0L systems. In Proc. Al-
gebraic Systems, Formal Languages and Computation (M. Ito, Ed.) RIMS Kokyuroku
1166, August 2000, Research Institute for Mathematical Sciences, Kyoto University,
Kyoto, 43–51, 2000.

9. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun. Eco-Grammar Systems:
A Grammatical Framework for Studying Lifelike Interactions. Artificial Life, 3(3),
1–28, 1997.

10. E. Csuhaj-Varjú, V. Mitrana. Evolutionary systems: a language generating device
inspired by evolving communities of cells. Acta Informatica, 36(11), 913–926, 2000.

11. E. Csuhaj-Varjú, A. Salomaa. Networks of Watson-Crick D0L systems. In Words,
Languages & Combinatorics III. Proceedings of the International Colloquium, Kyoto,
Japan, March 14-21, 2000. (M. Ito, T. Imaoka, Eds.), World Scientific Publishing
Co., Singapore, 134–149, 2003.

12. E. Csuhaj-Varjú, A. Salomaa. Networks of Parallel Language Processors. In New
Trends in Formal Languages. Control, Cooperation, and Combinatorics (Gh. Păun,
A. Salomaa, Eds.), LNCS 1218, Springer Verlag, Berlin Heidelberg, 299-318, 1997.

13. E. Csuhaj-Varjú, G. Vaszil. P automata or purely communicating accepting P sys-
tems. In Membrane Computing(Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron,
Eds.), LNCS 2597, Springer Verlag, Berlin Heidelberg, 219–233, 2003.

14. M.D. Granovetter. The Impact of Social Structures on Economic Development. Jour-
nal of Economic Perspectives, 19, 33–50, 2004.

15. M. D. Jiménez López. Agents in Formal Language Theory: An Overview. In High-
lights in Practical Applications of Agents and Multiagent Systems. 9th International
Conference on Practical Applications of Agents and Multiagent Systems (J. Bajo
Pérez et. al, Eds.) Advances in Intelligent and Soft Computing 89, Springer, 283–
290, 2011.

16. M. Minsky. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New Jer-
sey, 1967.

17. Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.

P Systems for Social Networks 123

18. L. Pan, Gh. Păun. Spiking neural P systems with anti-spikes, Int J Computers
Comms Control, 4, 273–282, 2009.

19. Gh. Păun. Computing with Membranes. J. of Comput. Syst. Sci., 61, 108–143, 2000.
20. Gh. Păun, G. Rozenberg, A. Salomaa. DNA Computing - New Computing Paradigms.

Springer Verlag, 1998.
21. G. Rozenberg, A. Salomaa. (Eds). Handbook of Formal Languages I-III. Springer,

1997.
22. Gh. Păun, G. Rozenberg, A. Salomaa. (Eds). The Handbook of Membrane Computing.

Oxford University Press, 2009.
23. S. Wasserman, K. Faust. Social Networks Analysis: Methods and Applications. Cam-

bridge University Press, 1994.

