
Standardized Proofs of PSPACE-completeness of
P Systems with Active Membranes

Petr Sośık1,2, Alfonso Rodŕıguez-Patón1, Lucie Ciencialová2

1 Departamento de Inteligencia Artificial, Facultad de Informática
Universidad Politécnica de Madrid, Campus de Montegancedo s/n
Boadilla del Monte, 28660 Madrid, Spain

2 Institute of Computer Science, Faculty of Philosophy and Science, Silesian University
in Opava, 74601 Opava, Czech Republic

Summary. Two proofs have been shown for P systems with active membranes in previ-
ously published papers, demonstrating that these P systems can solve in polynomial time
exactly the class of problems PSPACE. Consequently, these P systems are equivalent
(up to a polynomial time reduction) to Second Machine Class models as the alternating
Turing machine or the PRAM computer. These proofs were based on a modified defini-
tion of uniform families of P systems. Here we demonstrate that the results remain valid
also in the case of standard definitions.

1 Introduction

P systems with active membranes are among computationally most powerful mod-
els of P systems. It has been shown that this model, in its standard definition, can
solve the PSPACE-complete problem QSAT in a polynomial time [8, 1]. Later
on, the paper [10] demonstrated that uniform families of P systems with active
membranes can solve in polynomial time exactly the class of problems PSPACE.
Consequently, these P systems satisfy the Parallel Computation Thesis [2]:

M -PTIME = M -NPTIME = PSPACE, (1)

where M -(N)PTIME is the class of problems solved in polynomial time by a (non-
)deterministic machine M. We recall that computers satisfying (1) form the second
machine class, whose members are the alternating Turing machine, SIMDAG (also
known as SIMD PRAM) and other parallel models [2].

However, the papers [8, 10] used a slightly modified version of definition of
uniform families of membrane systems. Besides different structure of definitions,
the main functional differences between the definition considered standard and
presented, e.g., in [5] were these:

302 P. Sośık, A. Rodŕıguez-Patón, L. Ciencialová

1. While both definitions require each P system – a member of a uniform family
– to halt, the standard definition requires also the system to produce a distin-
guished object yes or no in the last step, telling whether the computation was
accepting or not. Our definition, on the contrary, only required the object yes
in the accepting case.

2. All members of a family must be produced by one and the same Turing machine
in the standard definition, while our formulation allowed that different Turing
machines might be used for different family members. This possibility, however,
was never actually considered and used in our proofs as this would be clearly
contra-intuitive to the commonly accepted sense of uniformity.

Therefore, the modification of the proofs presented here focuses on the first
mentioned difference and makes the proofs compatible with the standard definition
given in the next section.

2 Definitions

A P system with active membranes [7] is a construct

Π = (V, H, µ, w1, . . . , wm, R),

where:

(i) m ≥ 1;
(ii) V is an alphabet;
(iii)H is a finite set of labels for membranes;
(iv)µ is a membrane structure, consisting of m membranes, labelled (not necessarily

in a one-to-one manner) with elements of H; all membranes in µ are supposed
to be neutral;

(v) w1, . . . , wm are strings over V , describing the multisets of objects placed in the
regions of µ;

(vi)R is a finite set of developmental rules, of the following forms:
(a) [

h
a → v]α

h
,

for h ∈ H, α ∈ {+,−, 0}, a ∈ V, v ∈ V ∗

(object evolution rules, associated with membranes and depending on the
label and the charge of the membranes, but not directly involving the mem-
branes, in the sense that the membranes are neither taking part to the
application of these rules nor are they modified by them);

(b) a[
h

]α1
h
→ [

h
b]α2

h
,

for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ V
(communication rules; an object is introduced into the membrane, maybe
modified during this process; also, the polarization of the membrane can be
modified, but not its label);

Standardized Proofs of PSPACE-completeness of P Systems 303

(c) [
h
a]α1

h
→ [

h
]α2
h

b,
for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ V
(communication rules; an object is sent out of the membrane, maybe mod-
ified during this process; also, the polarization of the membrane can be
modified, but not its label);

(d) [
h
a]α

h
→ b,

for h ∈ H, α ∈ {+,−, 0}, a, b ∈ V
(dissolving rules; in reaction with an object, a membrane can be dissolved,
leaving all its object in the surrounding region, while the object specified
in the rule can be modified);

(e) [
h
a]α1

h
→ [

h
b]α2

h
[
h
c]α3

h
,

for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ V
(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, maybe of
different polarizations; the object specified in the rule is replaced in the two
new membranes by possibly new objects; all the other objects are copied
into both resulting membranes);

(f) [h0
[h1

]+h1
. . . [hk

]+hk
[hk+1

]−hk+1
. . . [hn

]−hn
]α2
h0

→ [
h0

[
h1

]α3
h1

. . . [
hk

]α3
hk

]α5
h0

[
h0

[
hk+1

]α4
hk+1

. . . [
hn

]α4
hn

]α6
h0

,
for n > k ≥ 1, hi ∈ H, 0 ≤ i ≤ n, and α2, . . . , α6 ∈ {+,−, 0};
(division of non-elementary membranes; this is possible only if a membrane
contains two immediately lower membranes of opposite polarization, + and
−; the membranes of opposite polarizations are separated in the two new
membranes, but their polarization can change; all membranes of opposite
polarizations are always separated by applying this rule;
if the membrane labelled h0 contains other membranes than h1, . . . , hn spec-
ified above, then they must have neutral charges in order to make this rule
applicable; these membranes are duplicated and then become part of the
content of both copies of membrane h0).

All the above rules are applied in parallel, but at one step, an object a can be
subject to only one rule of type (a)–(e) and a membrane h can be subject to only
one rule of type (b)–(f). In the case of type (f) rules, this means that none of the
membranes h0, . . . , hn listed in the rule can be simultaneously subject to another
rule of type (b)–(f). However, this restriction do not apply to membranes with
neutral charge contained in h0. In general, an application of the rules is performed
as follows:

1. In every step, first the rules are assigned to objects and membranes in a max-
imal way (any object and membrane which can evolve by a rule of any form,
should evolve), and then all the rules are simultaneously applied;

2. all objects and membranes which cannot evolve pass unchanged to the next
step;

304 P. Sośık, A. Rodŕıguez-Patón, L. Ciencialová

3. if a rule of type (d), (e) or (f) is applied to a membrane, then rules of type
(a) are applied first to its objects and then the resulting objects are further
copied/moved in accordance with the (d), (e) or (f) type rule;

4. the skin membrane can neither be dissolved nor divided, nor it can introduce
an object from outside (unless stated otherwise). Therefore, we assume that
there are only rules of types (a) and (c) associated with the skin membrane.

The membrane structure of Π at a given moment, together with all multisets of
objects contained in its regions, form the configuration of the system. The (m+1)-
tuple (µ,w1, . . . , wm) is the initial configuration. We can pass from one configura-
tion to another by using the rules from R according to the principles given above.
The computation stops when there is no rule which can be applied to objects and
membranes in the last configuration.

In this paper we study the accepting (or recognizer) variant of P systems. A
recognizer P system solving decision problems must comply with the following
requirements: (a) the working alphabet contains two distinguished elements yes
and no; (b) all computations halt; and (c) exactly one of the object yes (accepting
computation) or no (rejecting computation) must be sent to the output region of
the system, and only at the last step of each computation. In our case of systems
with active membranes, the outer environment of the system is taken as the output
region.

2.1 Families of membrane systems

Consider a decision problem X = (IX , θX) where IX is a language over a finite
alphabet (whose elements are called instances) and θX is a total boolean function
over IX .

Definition 1. [5] A family Π = {Π(w) : w ∈ IX} of recognizer membrane systems
without input membrane is polynomially uniform by Turing machines if there exists
a deterministic Turing machine working in polynomial time which constructs the
system Π(w) from the instance w ∈ IX .

In the sequel we will for short denote such a family just as uniform.
In this paper we deal with recognizer systems without input membrane, i.e.,

an instance w of a problem X is encoded into the structure of the P system Π(w).
The system Π(w) is supposed to solve the instance w. Formally, [5] defines the
conditions of soundness and completeness of Π with respect to X. A conjunction
of these two conditions ensures that for every w ∈ IX , if θX(w) = 1, then every
computation of Π(w) is accepting, and if θX(w) = 0, then every computation of
Π(w) is rejecting.

Note that the system Π(w) can be generally nondeterministic, i.e, it may have
different possible computations, but with the same result. Such a P system is also
called confluent.

Standardized Proofs of PSPACE-completeness of P Systems 305

Definition 2. [5] A decision problem X is solvable in polynomial time by a family
of recognizer P systems belonging to a class R without input membrane Π =
{Π(w) : w ∈ IX}, denoted by X ∈ PMC∗

R, if the following holds:

• The family Π is polynomially uniform by Turing machines.
• The family Π is polynomially bounded; that is, there exists a natural number

k ∈ N such that for each instance w ∈ IX , every computation of Π(w) performs
at most |w|k steps.

• The family Π is sound and complete with respect to X.

The family Π is said to provide a semi-uniform solution to the problem X. In
this case, for each instance of X we have a special P system.

3 P Systems with Active Membranes Solving QSAT

The QSAT (satisfiability of quantified propositional formulas) is a well-known
PSPACE-complete problem. It asks whether or not a given quantified boolean
formula in the conjunctive normal form assumes the value true. A formula as above
is of the form

γ = Q1x1Q2x2 . . . Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm), (2)

where each Qi, 1 ≤ i ≤ n, is either ∀ or ∃, and each Cj , 1 ≤ j ≤ m, is a clause of
the form of a disjunction

Cj = y1 ∨ y2 ∨ . . . ∨ yr,

with each yk being either a propositional variable, xs, or its negation, ∼ xs. For
example, let us consider the propositional formula

β = Q1x1Q2x2[(x1 ∨ x2) ∧ (∼ x1∨ ∼ x2)]

It is easy to see that it is true when Q1 = ∀ and Q2 = ∃, but it is false when
Q1 = ∃ and Q2 = ∀.

By adding dummy variables, each such formula can be rewritten such that the
quantifiers alternate: Q1 = ∃, Q2 = ∀, Q3 = ∃, Q4 = ∀ etc. We assume this normal
form for the formulas considered in the sequel.

Theorem 1 ([8]). There exists a uniform family of recognizer P systems with
active membranes providing a semi-uniform solution to QSAT in a time linear in
the number of variables and the number of clauses.

Proof. The following proof differs from the original one published in [8] mostly in
omitting the original paragraph 1, modifying paragraph 8 (here paragraph 7) and
adding a new paragraph 8.

Consider a propositional formula γ of the form (2) with

Ci = yi,1 ∨ . . . ∨ yi,pi ,

306 P. Sośık, A. Rodŕıguez-Patón, L. Ciencialová

for some pi ≥ 1, and yi,j ∈ {xk,∼ xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi.
We construct the P system

Π = (V,H, µ,w0, w1, . . . , wm, wm+n+1, R)

with the components

V = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ci | 0 ≤ i ≤ 4n + 2m + 2} ∪ {t, s, yes, no},
H = {0, 1, . . . ,m + n + 1},
µ = [

m+n+1
[
m+n

. . . [
1
[
0

]0
0
]0
1
. . .]0

m+n
]0
m+n+1

,

w0 = c0,

wi = λ, for all i = 1, 2, . . . , m + n,

wm+n+1 = b,

while the set R contains the following rules:

1. [
0
ci → ai/2+1ci+1]

α
0
, for all 0 ≤ i < 2n, i even, α ∈ {+,−, 0}, and

[0ci → ci+1]
α
0 , for all 0 ≤ i < 2n, i odd, or 2n ≤ i ≤ 2n + m− 1, α ∈ {+,−, 0}

(we count to 2n + m, which is the time needed for producing all 2n truth-
assignments for the n variables, as well as 2n membrane sub-structures which
will examine the truth value of formula γ for each of these truth-assignments;
this counting is done in the central membrane, irrespective which is its po-
larity; moreover during first n odd steps, symbols a1, . . . an are subsequently
produced);

2. [0ai]
0
0 → [0ti]

+
0 [0fi]

−
0 , for all 1 ≤ i ≤ n

(in membrane 0, when it is “electrically neutral” we subsequently choose each
variable xi, 1 ≤ i ≤ n, and both values true and false are associated with it,
in the form of objects ti, fi, which are separated in two membranes with the
label 0 which differ only by these objects ti, fi and by their charge);

3. [
i+1

[
i

]+
i
[
i
]−
i

]0
i+1

→ [
i+1

[
i

]0
i
]+
i+1

[
i+1

[
i
]0
i
]−
i+1

, for all 0 ≤ i ≤ m + n− 1

(division rules for membranes labeled with 0, 1, . . . ,m + n; the opposite po-
larization introduced when dividing a membrane 0 is propagated from lower
levels to upper levels of the membrane structure and the membranes are con-
tinuously divided until also membrane m+n has been divided; this membrane
remains polarized and hence may be never divided again; in the following cycle
of the division process, the same holds for the membrane m+n− 1 and so on,
resulting in the structure at Figure 1 after 2n + m steps);

4. [
0
c2n+m]0

0
→ t

(after 2n + m steps, each copy of membrane 0 is dissolved and the contents is
released into the surrounding membrane, which is labeled with 1);

Standardized Proofs of PSPACE-completeness of P Systems 307

5. [
j
ti]

0
j
→ ti, if xi appears in clause Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and

[jfi]
0
j → fi, if ∼ xi appears in clause Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m

(a membrane with label j, 1 ≤ j ≤ m, is dissolved if and only if clause Cj

is satisfied by the current truth-assignment; if this is the case, then the truth
values associated with the variables are released in the surrounding membrane,
that associated with the next clause, Cj+1, otherwise these truth values remain
blocked in membrane j and never used at the next steps by the membranes
placed above; note that, as we will see immediately, after 2n+m steps we have
2n membrane sub-structures of the form [

m
[
m−1

. . . [
1

]0
1
. . .]0

m−1
]0
m

working
in parallel; each of them is connected to a leaf of the binary tree membrane
structure as in Figure 1);

6. [m+1t]
α
m+1 → [m+1]α

m+1t, α ∈ {+,−}

(together with the truth-assignments, we also have the object t, which can
be passed from a level to the upper one only by dissolving membranes; this
object reaches the level m+1 if only if all membranes in a sub-structure of the
form [m[m−1 . . . [1]01 . . .]0m−1]

0
m are dissolved, which means that the associated

truth-assignment has satisfied all the clauses);
7. [it]

α
i → [i]0i s, [it]

0
i → [i]0i t, if Qm+n+2−i = ∀, α ∈ {+,−}, m+2 ≤ i ≤ m+n,

and

[
i
t]α

i
→ [

i
]0
i
t, if Qm+n+2−i = ∃, α ∈ {+,−}, m + 2 ≤ i ≤ m + n

(a membrane [
i
]
i
corresponds to the quantifier Qjxj , where j = m+n+2− i;

if Qj = ∀, the object t is passed to the upper level only if it comes from both
lower level membranes, i.e. the respective clauses are satisfied for both truth
values of xj ; if Qj = ∃, then the object t coming from lower level is sent up);

8. [m+n+1ci → ci+1]
0
m+n+1, for all i, 0 ≤ i < 4n + 2m + 2,

[
m+n+1

c4n+2m+2]
0
m+n+1

→ [
m+n+1

]−
m+n+1

no,

[
m+n+1

t]0
m+n+1

→ [
m+n+1

]+
m+n+1

yes

(objects ci in the region enclosed by the skin membrane act as a clock; if
the object t reaches this region within 4n + 2m + 2 steps, signalling that the
formula evaluates to true, then the object yes is expeled from the system,
otherwise the object no is expeled after 4n + 2m + 2 steps. In both cases the
systems immediately halts.

From the previous explanations one can see that the object yes (no) leaves the
system in the last step if and only if formula γ evaluates to true (false, respectively).
This is achieved in 3n + bn/2c+ 2m + 2 steps:

308 P. Sośık, A. Rodŕıguez-Patón, L. Ciencialová

m + n + 1

m + n

m + n− 1

...

m + 2

m + 1

...

m

1

0

c

c c

c c c c

c

c c

c c

+

0

−

0

c c

c c

0

0

0

0

...
...

...

. . .

...
...

+ −

0

+ −

. . .

. . .

. . .

c

c c

c c

+

0

−

0

c c

c c

0

0

0

0

...
...

+ −

Fig. 1. The membrane structure of the system Π after 2n + m steps.

• in 2n + m steps we create the membrane structure at Figure 1 (as well as the
2n different truth-assignments)

• then we dissolve all membranes 0 (one step)
• we check the satisfiability of each clause for each truth-assignment, in parallel

in the 2n sub-structures (m + 1 steps)
• we check whether all quantifiers are satisfied by propagating objects t through

the indicated binary tree structure; one step is need for each of dn/2e quantifiers
∃, while two steps are necessary for each of bn/2c quantifiers ∀.
The arguments given above ensure that the system Π is polynomially bounded

and that the family of these P systems is complete and sound with respect to the
problem QSAT. Finally, the family is polynomially uniform by Turing machines
as the above construction can be performed by an algorithm which would run on
a classical computer (and hence also on Turing machine) in a polynomial time,
having as input a propositional formula γ (an instance of QSAT) and which would
output the description of the system Π. Note that both the size of the alphabet
V and the number of membranes in the initial configuration is O(n + m), and
the number of rules is O(nm), which determines the time necessary for the con-

Standardized Proofs of PSPACE-completeness of P Systems 309

struction. Since the construction can be done step-by step without a need to store
previous steps, the space needed is O(log n + log m).

Corollary 1 ([8]). PSPACE ⊆ PMCS
AM.

4 Simulation of P Systems with Active Membranes in
Polynomial Space

In this section we show that the inclusion reverse to Corollary 1 hold as well. We
employ the technique of reverse-time simulation. Instead of simulating a compu-
tation of a P system from its initial configuration onwards (which would require
an exponential space for storing configurations), we create a recursive function
which returns the state of any membrane h after a given number of steps. The
recursive calls evaluate contents of the membranes interacting with h in a reverse
time order (towards the initial configuration). In such a manner we do not need
to store a state of any membrane, but instead we calculate it recursively whenever
it is needed. In this way a result of any T (n)-time-bounded computation of a rec-
ognizer P system with active membranes can be found in a space polynomial to
T (n).

Theorem 2 ([10]). PMCS
AM ⊆ PSPACE.

Proof. The proof of this result published in [10] remains unchanged under the
standard definition, except the paragraph at p. 149 under the subtitle “Space
complexity of the simulation”, starting with ”Consider an instance of a size s. . . ”.
This paragraph should be reformulated as follows:

Consider a decision problem which is, by assumption, solved by a uniform
family of P system with active membranes in a semi-uniform way. Each instance
of a size s is solved by a P system Π = (V, H, µ, w1, . . . , wm, R) of size sO(1), a
member of the family. The result of computation of Π can be calculated with the
aid of the function State. Let h0 be the skin membrane of Π. One can subsequently
calculate State(h0, n) for n = 0, 1, 2 . . . until the object yes or no is expelled from
h0 using the rule of type (c). We determine the space complexity of the function
State. Let. . . 2

Together with Corollary 1 we obtain the parallel computation thesis for uniform
families of recognizer P systems with active membranes:

Corollary 2. PMCS
AM = PSPACE.

5 Concluding Remarks

Since the publication of papers [8, 10], similar results linking the class PSPACE
with other types of membrane systems have been presented, see, e.g., [3, 9]. The

310 P. Sośık, A. Rodŕıguez-Patón, L. Ciencialová

proof technique we have used in Theorem 2 is applicable also to other variants of
P systems.

Finally, we note that the characterization of power of non-confluent P systems
with active membranes remains still open. The presented proof cannot be simply
adapted to this case by using a non-deterministic Turing machine. The reason is
that we cannot store non-deterministic choices of such a P system along a chosen
trace of computation, as this would require an exponential space. It is possible
that non-confluent P systems with active membranes might capture in polynomial
time the class NEXPTIME.

Acknowledgements

Authors are grateful to Mario Pérez-Jiménez for discussions and suggestions con-
cerning complexity issues and uniform families of membrane systems. The research
was partially supported by the Ministerio de Ciencia e Innovación (MICINN),
Spain, under project TIN2009–14421, by the program I3, by the Comunidad de
Madrid (grant No. CCG06-UPM/TIC-0386 to the LIA research group), by the
Czech Science Foundation, grant No. 201/09/P075, and by the Silesian University
in Opava, grant No. SGS/4/2010.

References

1. A. Alhazov, C. Mart́ın-Vide, and L. Pan. Solving a PSPACE-complete problem by P
systems with restricted active membranes. Fundamenta Informaticae, 58(2):67–77,
2003.

2. P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A: Algorithms and Complexity,
pages 1–66. Elsevier, Amsterdam, 1990.

3. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, and X. Zhang. Deterministic solutions
to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. In
Mart́ınez-del-Amor et al. [4], pages 1–27. Volume 2.

4. M.A. Mart́ınez-del-Amor, E.F. Orejuela-Pinedo, G. Păun, I. Pérez-Hurtado, and
A. Riscos-Núnez, editors. Seventh Brainstorming Week on Membrane Computing,
Sevilla, 2009. Fenix Editora.

5. M.J. Pérez-Jiménez. A computational complexity theory in membrane computing.
In Păun et al. [6], pages 125–148.

6. G. Păun, M.J. Pérez-Jiménez, A. Riscos-Núnez, G. Rozenberg, and A. Salomaa,
editors. Membrane Computing, 10th International Workshop, WMC 2009, volume
5957 of Lecture Notes in Computer Science, Berlin, 2010. Springer.

7. Gh. Păun. P systems with active membranes: attacking NP-complete problems. J.
Automata, Languages and Combinatorics, 6 (1):75–90, 2001.

8. P. Sośık. The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing, 2(3):287–298, 2003.

9. P. Sośık, A. Păun, A. Rodŕıguez-Patón, and D. Pérez. On the power of computing
with proteins on membranes. In Păun et al. [6], pages 448–460.

10. P. Sośık and A. Rodŕıguez-Patón. Membrane computing and complexity theory: A
characterization of PSPACE. J. Comput. System Sci., 73(1):137–152, 2007.

