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Summary. In this work we propose a variant of P systems based on the Central Dogma
of Molecular Biology which establishes the transformation of DNA strands into protein
products by applying different string transformation such as transductions and transcrip-
tions. We introduce a new kind of worm object rules to carry out transducion operations.
Finally, we establish the universality of the proposed model by simulating Iterated finite
state sequential transducers (IFTs).

1 Introduction

P systems [15] were introduced as a computational model inspired by the in-
formation and biochemical product processing of living cells through the use of
membrane communication. In most of the works about P systems, information is
represented as multisets of symbol/objects which can interact and evolve according
to predefined rules. Nevertheless, the use of strings to represent the information
and the use of rules to transform strings instead of multisets of objects have always
been present in the literature of this scientific area. So, in his mostly referred book
[15], Gh. Păun overviews the use of string rules in P systems. Different variants
of string-based P systems have been proposed along the time. We can mention
rewriting P systems [11], referred as membrane systems with worm objects [2] in
the case of genomic operations, insertion-deletion P systems [6] and splicing P
systems [14], among others. Observe that most of these models have been used for
language generation [12]. In [5, 7], the proposal of hybrid P systems introduces the
use of contextual rules and Chomsky rules to achieve universality by generating all
the recursively enumerable languages. Recently, in [13] a variant of P systems with
worm objects and evolutionary based operations has been introduced to simulate
Networks of Evolutionary Processors, hence to achieve universality.

In this work, we propose a variant of P systems with worm objects and a new
kind of worm rules based on the central dogma of molecular biology which sets
? Work supported by the Spanish Ministerio de Educación y Ciencia under project

TIN2007-60769



292 J.M. Sempere

the framework to obtain protein products from DNA strands by applying, among
others, transduction and transcription operations.

The structure of this work is as follows: In section 2 we introduce basic concepts
and notation on formal language theory, iterated transductions, P systems and
molecular biology related to the Central Dogma. Then, we will define the dogmatic
rules in regions which transduce (fragments of) worm objects into (fragments of)
worm objects. We will propose a simulation of iterated transductions with the
new proposed model in order to achieve universality. Finally, we will outline future
research related to this work.

2 Basic Concepts

We start by summarizing the notions used throughout this work. An alphabet is
a finite and nonempty set of symbols. Any finite sequence of symbols from an
alphabet V is called word or string over V . The set of all words over V is denoted
by V ∗. A language over the alphabet V is any subset of V ∗.

A grammar is a construct G = (N, Σ, P, S) where N and Σ are the alphabets
of auxiliary and terminal symbols with N ∩ Σ = ∅, S ∈ N is the axiom of the
grammar and P is a finite set of productions in the form α → β, where α ∈
(N∪Σ)∗N(N∪Σ)∗ and β ∈ (N∪Σ)∗. The language of the grammar is denoted by
L(G) and it is the set of terminal strings that can be obtained from S by applying
symbol substitutions according to P . Formally, w1 ⇒

G
w2 if w1 = uαv, w2 = uβv

and α → β ∈ P . We will denote by ∗⇒
G

the reflexive and transitive closure of ⇒
G

.

So, the language generated by G is defined by the set L(G) = {w ∈ Σ∗ : S
∗⇒
G

w}.
Four larger families of languages generated by grammars can be defined: REG

(regular), CF (context-free), CS (context-sensitive) and RE (recursively enumer-
able). The definition of these families comes from the restriction over the produc-
tion forms in the grammar. The well known Chomsky’s hierarchy establishes the
inclusions REG ⊂ CF ⊂ CS ⊂ RE.

Iterated Transductions

In the following, we will introduce Iterated finite state sequential transducers (IFT)
as it was defined in previous works ([1, 8, 10]).

An IFT is defined by the tuple T = (Q,Σ, q0, a0, F, P ), where Q is a finite set
of states, Σ is an alphabet, q0 ∈ Q is an initial state, a0 ∈ Σ is a starting symbol,
F ⊆ Q is the set of final states and P is a finite set of transduction rules in the
form (q, a, p, x) with q, p ∈ Q, a ∈ Σ and x ∈ Σ∗ which we will write as qa → xp.
The transduction rule qa → xp means that if the finite control is in state q and
it reads the symbol a then it changes to state p and writes x. We define a direct
transition step as follows

uqav ` uwpv iff qa → wp ∈ P
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The reflexive and transitive closure of ` will be denoted by `∗. We say that w
derives x, and it will be denoted by w =⇒ x, iff q0w `∗ xp, for p ∈ Q (observe
that p is any state in Q not necessarily final). We will denote the reflexive and
transitive closure of =⇒ by =⇒∗. If in the previous derivation the process stops
in a final state we will write

f
=⇒ instead of =⇒. That is, w

f
=⇒ x, iff q0w `∗ xp,

for p ∈ F . The language generated by T is defined as follows

L(T ) = {x ∈ Σ∗ : a0 =⇒∗ w
f

=⇒ x,w ∈ Σ∗}
We denote by IFTn the family of languages generated by IFT with at most n

states. The hierarchy of families in IFTn has been completely explored, and it has
been proved that it collapses at level four. We have the following results

Lemma 1.[10] RE = IFT4; [1] CS ⊂ IFT3; [10] CF ⊂ IFT2.
In addition, IFTs have been related to the computing by carving paradigm [9]

as a way to generate even non-recursively enumerable languages.

The Central Dogma of Molecular Biology

The Central Dogma of Molecular Biology is our source of inspiration for the variant
of P system which we will propose later. We follow the ideas exposed in [4]. Mainly,
the central dogma of molecular biology establishes a metaphor of how DNA strands
in the living cell are transformed into protein products by means of information
storage and transformation.

Mainly, a section of DNA (the gene) is transcribed to a molecule of messenger
RNA and the mRNA is translated by the ribosome into a protein. In the eukary-
otic organisms the mRNA molecule is processed, before translation, by splicing out
certain subsequences called introns. The DNA is replicated before the transcrip-
tion. The transcription is made by complementing the single DNA strand, and by
substituting the thymine nucleotide by the uracil one in the RNA molecule. The
translation from (spliced) mRNA to proteins is based on a mapping of nucleotide
triplets called codons to amino acids with the help of transfer RNA (tRNA). Under
a computer science point of view, the central dogma can be viewed as a sequence of
well known operations over strings such as morphisms, transductions and splicing.
The main ingredients that we will consider in the subsequent P system that we
will propose are the followings:

• There are different processes in different regions. DNA duplication and DNA
transcription to mRNA occurs in the nucleus of the cell, while mRNA trans-
lation to amino acids occurs in some cases in the endoplasmic reticulum with
the membrane ribosome.

• There are different alphabet sizes and symbols involved in the operations. The
DNA strands is a sequence of four different nucleotides: adenine (A), thymine
(T), cytosine (C) and guanine (G), in the RNA the thymine (T) is substituted
by the uracil (U), while the proteins are sequences over a twenty-letter alphabet
(the amino acids)
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Fig. 1. The Central Dogma of Molecular Biology. (This picture has been taken from
accessexcellence.org)

• Transcription and translation can be performed by alphabetic homomorphisms
and finite transductions.

• There are different products at every stage which interacts into different re-
gions. The DNA duplication, transcription and splicing needs the presence of
different proteins and other molecular compounds. The proteins are the final
product of the cycle DNA-RNA-protein.

3 Dogmatic P systems

In this section, we will propose a variant of P systems that work with worm objects
in a transduction-like approach. First, we will introduce a new kind of region rules
to work with.

A dogmatic rule is defined as follows

u : vpos → wad1,ad2,··· ,adk
, where

u, v are strings (worm objects), pos ∈ {l, r, ∗} and for all i : 1 ≤ i ≤ k adi ∈
{here, out, inj}. The meaning is the following: Provided that there exist a worm
object u in the region (we can omit the presence of u), all the worm objects with
substring v at position pos (which means, rightmost one (r), leftmost one (l) or
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arbitrary position (∗)) change substring v by w and send a copy of the new worm
object at the regions defined by adi after eliminating the original worm object
from the region.

Example 1. Let the region R have the rule r1 defined as eee : al → bbhere and
the worm objects eee and abbcbaa. Then after applying r1 in the region, the worm
objects are eee and bbbbcbaa.

If the rule r1 is defined as eee : ar → bbhere, we obtain abbcbabb as a new worm
object. Finally, if the rule is defined as eee : a∗ → bbhere then we obtain the set
of new strings {bbbbcbaa, abbcbbba, abbcbabb}. Observe that, in this case, we have
previously obtained three copies of the initial string before applying the rule.

The rule al → bbhere can be applied over baa and it obtains the new string bbba.
Here, we have omitted the presence of an additional string and the rule changes
the leftmost appearance of a symbol a. ¤

The addressing label inj , can be directly applied to contiguous regions at the
same level. That is, if there exist regions j and i inside the same region, then a
rule at region i can send worm objects to region j directly.

We can observe that the dogmatic rules capture the following aspects from the
Central Dogma of Molecular Biology:

• The rules transform parts of a string into a new substring as in transcription
and transduction.

• The rules make copies of the target string before transformation as in DNA
replication.

• The rules need the presence of other objects to be applied.
• The rules can address contiguous regions (i.e. RNA moving from nucleus to

ribosomes).

Now, we will define a Dogmatic P system2 as the following construct

Π = (V, µ, A1, · · · , Am, (R1, ρ1), · · · , (Rm, ρm), i0), where:

• V is an alphabet
• µ is a membrane structure consisting of m membranes
• Ai, 1 ≤ i ≤ m is a finite set of strings associated with the region i (the axioms)
• Ri, 1 ≤ i ≤ m is a finite set of dogmatic rules over V associated with the ith

region and ρi is a partial order relation over Ri specifying a priority
• i0 is a number between 1 and m and it specifies the output membrane of Π (in

the case that it equals to ∞ the output is read outside the system).

2 Different acronyms were candidates for naming Dogmatic P systems. Among others,
dP systems were considered but it was previously used by other authors in a differ-
ent context. Another acronym was dogP but the author thinks that, in such a case,
catalyzers will never be used in this context given that ”dogs” and ”cats” could not
cooperate and living in the same regions. We leave open the search for a good acronym
for the proposed Dogmatic P systems.
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Initially, the system holds the set of axioms at every region. Then, in a fully
parallel manner all the rules are applied over the strings defined at every region.
The system halts whenever no rule can be applied at any region.

The language generated by Π is the set of worm objects collected at region
i0. In the case that i0 = ∞, the language is collected in external mode as the set
of strings in the environment. The language generated by Π is denoted by L(Π).
Observe that if the language is infinite then the system will never halt so it will
add new worm objects to the output region or the environment.

Observe that this proposal is different from [3] where the authors propose a
membrane system framework with symport/antyport rules to perform different
types of transductions. In that work the proposed system operates with strings by
taking every symbol of the input string of the environment (outside the membrane
system) and putting every symbol of the transduced string in the environment.
Here, we will avoid symport/antyport rules and we will work with strings in a
worm object approach.

4 A Simulation of Iterated Transductions by Dogmatic P
Systems

In this section, we will show a simulation of IFTs with n states by dogmatic P
Systems. Our approach will use n regions inside the skin one in order to simulate
the n states of the IFT. The transitions of the IFT will be simulated by using
the direct address inj . We will need to mark some symbols in order to carry out
the transduction from left to right. In addition, we will use different alphabets to
avoid a wrong application of the transduction rules at different symbols, and to
prevent that the simulation goes on even if the IFT cannot carry out a complete
transduction.

Let T = (Q,Σ, q0, a0, F, P ) be an IFT with Q = {q0, · · · , qn}. Then, we propose
the following dogmatic P system

Π = (V, µ, A,A0, · · · , An, (R, ρ), (R0, ρ0), · · · , (Rn, ρn),∞), where

• V = Σ ∪ Σ̂ ∪ Σ̆ ∪ {#}, where Σ̂ = {â : a ∈ Σ} and Σ̆ = {ă : a ∈ Σ}
• µ = [[0]0, · · · , [n]n] (we have omitted a label for the skin region).
• A0 = {#a0}, A = ∅, and for all i : 1 ≤ i ≤ n Ai = ∅.
• Type (a) rules: For every rule q0a → vqj ∈ P , we add the rule #al → #v̂inj

if qj 6= q0 or the rule #al → #v̂here if qj = q0 to R0

• Type (b) rules: For every rule qia → vqj ∈ P , and for every symbol b̂ ∈ Σ̂

we add the rule b̂al → b̂v̂inj if qi 6= qj or the rule b̂al → b̂v̂here if qi = qj to Ri

• Type (c) rules: For every region Ri and for every pair of symbols â ∈ Σ̂ and
b ∈ Σ add the following rule âbl → âbhere

• Type (d) rules: For every region Ri such that qi ∈ F , and for every symbol
â ∈ Σ̂ add the following rule âr → ăout
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• Type (e) rules: For every region Ri such that qi 6∈ F , and for every symbol
â ∈ Σ̂ add the following rule âr → âout

• Type (f) rules: Add to R the rules {âl → ahere : a ∈ Σ}
• Type (g) rules: Add to R the rules {ăl → ain0,out}
• Type (h) rule: #l → #in0

We will explain the rules in the system as follows: Type (a) rules start the
transduction of the string from the initial state. Hence, we use the # symbol as a
left delimiter of the string to be transduced. The alphabet Σ̂ is used to mark the
symbols that have been transduced during a derivation process. Type (b) rules
simulate the transitions in the transducer. Observe that we use the address inj

to change the state in the finite control and the address here to simulate the
transducer loops. Type (c) rules are used to block the strings that cannot be
completely transduced (observe that the IFT can be non complete and it would
not finish the derivation process). Type (d) rules are used to output the transduced
strings that arrive to a final state. Here, we use the alphabet Σ̆ to mark the strings
that belong to the language generated by the transducer. Type (e) rules are used
to output the transduced strings that arrive to a non final state.

The priorities of the rules in regions Ri keep the following order: Type (a) rules
> Type (b) rules > Type (c) rules > Type (d) and Type (e) rules.

The rules of the skin region are explained as follows: Type (f) rules are used
to restore the string symbols of the transduced string in order to feed-back the
transducer with a new input string (hence, it performs the iteration in the trans-
duction). Type (g) rules are used to restore the symbols from those transduced
strings that come from a final state (hence, they belong to the language generated
by iterating the transducer). In such a case, one copy of the string is sent out the
environment while another copy is sent in the region zero in order to feed-back the
transducer. Finally, the rule of type (g) is used to send the transduced string into
the initial region to iterate a new transduction.

If a string w ∈ L(T ), then #w ∈ L(Π). We can observe that the transitions
from T are simulated by the P system by means of the rules of type (a) and (b).
The iteration is carried out at the skin region by applying rules of type (g) or (h)
(after restoring the symbols with rules of type (f). If the transduced string arrives
to a final state, then rules of type (g) are applied and the string with the left mark
# outputs the system.

Example 2. Let us consider the finite transducer defined through the following
transition diagram, with a as the starting symbol

The proposed dogmatic P system is defined with a membrane structure
[[0]0, [1]1, [2]2], and the following dogmatic rules

Skin region rules
r1 : âl → ahere r4 : ăl → ain0,out r45 : #l → #in0

r2 : b̂l → bhere r5 : b̆l → bin0,out

r3 : ĉl → chere r6 : c̆l → cin0,out
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with ρ defined as {r1, r2, r3} > {r4, r5, r6} > r45, and A = ∅.
Region 0 rules
r7 : #al → #b̂b̂in1 r9 : âal → âb̂b̂in1 r12 : âbl → âĉĉin2

r8 : #bl → #ĉĉin2 r10 : b̂al → b̂b̂b̂in1 r13 : b̂bl → b̂ĉĉin2

r11 : ĉal → ĉb̂b̂in1 r14 : ĉbl → ĉĉĉin2

r15 : âal → âahere r18 : b̂al → b̂ahere r21 : ĉal → âahere

r16 : âbl → âbhere r19 : b̂bl → b̂bhere r22 : ĉbl → ĉbhere

r17 : âcl → âchere r20 : b̂cl → b̂chere r23 : ĉcl → ĉchere

r24 : âr → âout

r25 : b̂r → b̂out

r26 : ĉr → ĉout

with ρ0 defined as {r7, r8} > {r9, r10, r11, r12, r13, r14} > {r15, r16, r17, r18,
r19, r20, r21, r22, r23} > {r24, r25, r26}, and A0 = {#a}

Region 1 rules
r27 : âal → âb̂b̂here r30 : âbl → âĉĉin2

r28 : b̂al → b̂b̂b̂here r31 : b̂bl → b̂ĉĉin2

r29 : ĉal → ĉb̂b̂here r32 : ĉbl → ĉĉĉin2

r33 : âal → âahere r36 : b̂al → b̂ahere r39 : ĉal → ĉahere

r34 : âbl → âbhere r37 : b̂bl → b̂bhere r40 : ĉbl → ĉbhere

r35 : âcl → âchere r38 : b̂cl → b̂chere r41 : ĉcl → ĉchere

r42 : âr → âout

r43 : b̂r → b̂out

r44 : ĉr → ĉout

with ρ1 defined as {r27, r28, r29, r30, r31, r32} > {r33, r34, r35, r36, r37, r38,
r39, r40, r41} > {r42, r43, r44}, and A1 = ∅

Region 2 rules
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r45 : âbl → âĉĉhere

r46 : b̂bl → b̂ĉĉhere

r47 : ĉbl → ĉĉĉhere

r48 : âal → âahere r51 : b̂al → b̂ahere r54 : ĉal → ĉahere

r49 : âbl → âbhere r52 : b̂bl → b̂bhere r55 : ĉbl → ĉbhere

r50 : âcl → âchere r53 : b̂cl → b̂chere r56 : ĉcl → ĉchere

r57 : âr → ăout

r58 : b̂r → b̆out

r59 : ĉr → c̆out

with ρ2 defined as {r45, r46, r47} > {r48, r49, r50, r51, r52, r53, r54, r55, r56} >
{r57, r58, r59}, and A2 = ∅

¤
From the previous proposed P system and other works previously referred we

get the following result.

Theorem 1. Every recursively enumerable language can be generated by a dog-
matic P system.

Proof. The result comes from the simulation of IFTs by dogmatic P systems that
we have proposed before. Given that any recursively enumerable can be generated
by an IFT with four states [10] then we have the result. ¤

5 Conclusions and future work

In this paper we have proposed new kinds of rules for P system in which we have
been inspired by the Central Dogma of Molecular Biology. The P systems that we
have proposed are a suitable framework to generate languages. We think that these
kind of rules will help in the construction of systems for biological simulations due
to its inspiration from nature.

Our future research will focus on the power of these systems to transduce formal
languages with no iteration. Hence, we will study the simulation of rational and
recognizable transductions and the simulation of (restricted) gsms. In addition,
the framework to accept languages of strings or their Parikh mappings (which is
the natural framework of P systems) should be explored too. Finally, due to the
relation between IFTs and Computing by carving we should explore the possibility
of applying membrane systems to that paradigm, as a continuation of a previous
work [16].
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1999.
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