
Membrane Computing Meets
Artificial Intelligence: A Case Study

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es, marper@us.es

Summary. The usual way to find a solution for a NP complete problem with Membrane
Computing techniques is by brute force algorithms where all the feasible solutions are
generated and they are checked simultaneously by using massive parallelism. These so-
lutions work from a theoretical point of view but they are implementable only for small
instances of the problem. In this paper we provide a family of P systems which brings
techniques from Artificial Intelligence into Membrane Computing and apply them to
solve the N-queens problem.

1 Introduction

Brute force algorithms have been widely used in the design of solutions for NP
problems in Membrane Computing. Trading time against space allows us to solve
NP problems in polynomial (even lineal) time with respect to the input data.
The cost is the number of resources, mainly the number of membranes, which
grows exponentially. The usual idea of such brute force algorithms is to encode
each feasible solution in one membrane. The number of candidates to solution is
exponential in the input size, but the coding process can be done in polynomial
time. Once generated all these candidates, each of them is tested in order to check
whether it represents a solution to the problem or not. This checking stage is
made simultaneously in all membranes by using the massive parallelism inherent
to Membrane Computing. Any computational device that performs this checking
sequentially needs an exponential amount of time. After the checking stage ends,
the P system halts and sends a signal to the user with the output of the process.

Such theoretical process works and many different P system models have been
explored by searching the limits between tractability and intractability [2]. In such
way, several semantic and syntactic ingredients have been mixed and nowadays
there exist many open questions and open problems in the area (see, e.g., [6]).



134 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

In spite of the great success in the design of theoretical solutions to NP prob-
lems, these solution have an intrinsic drawback from a practical point of view. It
is not clear yet whether Membrane Computing will have an in vitro, in vivo or in
silico implementation, but in any case, a membrane will have a space associated
(maybe a piece of memory in a computer, a pipe in a lab or the volume of a bac-
teria) and brute force algorithms only will be able to implement little instances of
such problems. As an illustration, if we consider an in vivo implementation where
each feasible solution is encoded in an elementary membrane and such elementary
membrane is implemented in a bacteria of mass similar to E. Coli (∼ 7×10−16 kg.,
see [8]), then, a brute force algorithm1 which solve an instance of a NP problem
with input size 40 will need approximately the mass of the Earth for an imple-
mentation (∼ 6× 1024 kg., ibid.).

In this paper we explore the possibility of searching solutions to NP problems
with Membrane Computing techniques, but taking ideas from Artificial Intelli-
gence instead of using brute force algorithms. Of course, the worst case of any
solution of an NP-problem needs and exponential amount of resources, but we are
not always in the worst case. The contribution of using search strategies from Ar-
tificial Intelligence is that, on average, the number of resources for solving several
instances of an NP problem decreases with respect to the number of resources
used by brute force, since an exponential number of resources is always used in
the former one. The case study is the N-queens problem (Section 2), which was
previously studied in the framework of Membrane Computing in [3].

The paper is organized as follows: Next we present the N-queens problem and
recall the brute force algorithm presented in [3]. In Section 3, we give a brief no-
tions of searching strategies in Artificial Intelligence and in Section 4, we present
an implementation of depth-first search with P systems. In Section 5, we present a
family of P systems which solve the N-queens problem based on the cellular imple-
mentation. Finally, some conclusions and new open research lines are presented.

2 The N-queens Problem

Along this paper we will consider the N-queens problem as a case study. The N-
queens problem is very popular among computer scientists. It is a generalization
of a classic problem known as the 8-queens problem. The original one is attributed
to the chess player Max Bezzel and it consists on putting eight queens on an 8× 8
chessboard in such way that none of them is able to capture any other using the
standard movement of the queens in chess, i.e., at most one queen can be placed
on each row, column and diagonal line.

The 8-queens problem was later generalized to the N-queens problem, with the
same rules but placing N queens on a N×N board.
1 A similar comparison was proposed by Niall Murphy during the Tenth Workshop on

Membrane Computing.



Membrane Computing Meets Artificial Intelligence 135

1 2 4

6 7 8

9 10 11

13 15 16

1 3 4

5 6 7

10 11 12

13 14 16

¡¡@@

¡¡@@

¡¡@@

¡¡@@ ¡¡@@

¡¡@@

¡¡@@

¡¡@@

Fig. 1. Solutions to the 4-queens problem

In [3], a first solution to the N-queens problem in Membrane Computing was
shown. For that aim, a family of deterministic P systems with active membranes
was presented. In such family, the N-th element of the family solves the N-queens
problem and the last configuration encodes all the solutions of the problem.

In order to solve the N-queens problem, a truth assignment such that it makes
true a formula in CNF is searched. This problem is exactly SAT, so the solution
presented in [3] uses a modified solution for SAT from [5].

In such a paper, it was proven that given an integer N ≥ 3, there exists a
formula Φ in conjunctive normal form such that encodes the N-queens problem
with N2 variables and 1

3 (5N3 − 6N2 + 4N) clauses.
Some experiments were presented by running the corresponding P systems

with an updated version of the the P-lingua simulator [1]. The experiments were
performed on a one-processor Intel core2 Quad (with 4 cores at 2,83Ghz), 8GB of
RAM and using a C++ simulator over the operating system Ubuntu Server 8.04.

In the 3-queens problem, three queens should be placed on a 3×3 chessboard.
According to our representation, the problem can be expressed by a formula in
CNF with 9 variables and 31 clauses. The input multiset has 65 elements and
the P system has 3185 rules. Along the computation, 29 = 512 elementary mem-
branes need to be considered in parallel. Since the simulation was carried out in
a one-processor computer, in the simulation, these membranes were evaluated se-
quentially. It took 7 seconds to reach the halting configuration. It is the 117-th
configuration and in this configuration one object No appears in the environment.
As expected, this means that we cannot place three queens on a 3×3 chessboard
satisfying the restriction of problem.

In the 4-queens problem, we try to place four queens on a 4×4 chessboard. Ac-
cording to our representation, the problem can be expressed by a formula in CNF
with 16 variables and 80 clauses. Along the computation, 216 = 65536 elementary
membranes were considered in the same configuration and the P system has 13622
rules.

The simulation takes 20583 seconds (> 5 hours) to reach the halting config-
uration. It is the 256-th configuration and in this configuration one object Yes
appears in the environment. This means that there exists at least one solution to
the problem. In order to know such solutions, we check the multiset of the elemen-



136 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

tary membranes. In this case there are two elementary membranes in the halting
configuration with the following multisets:

w1 = {f1, f2, t3, f4, t5, f6, f7, f8, f9, f10, f11, t12, f13, t14, f15, f16}

w2 = {f1, t2, f3, f4, f5, f6, f7, t8, t9, f10, f11, f12, f13, f14, t15, f16}

Such multisets encode the solution showed in the Figure 1
According to this design, for the solution of the N-queens problem in a standard

8×8 chessboard 264 = 18.446.744.073.709.551.616 elementary membranes should
be considered simultaneously. If we follow with the analogy from the Introduction,
an E. Coli implementation of such P system we will need approximately a metric
tone of bacteria to solve the problem. Does it means that Membrane Computing is
not able to find at least one solution to the N-queens problem on a 8×8 chessboard?

3 Searching Strategies

Searching has been deeply studied in Artificial Intelligence. In its basic form, a
state is an instantaneous description of the world and two states are linked by a
transition which allows us to reach a state from a previous one. In such way, we
consider a directed graph where the nodes are the states and the edges are the
actions. Giving a starting state, a sequence of actions (a path in a graph) to one
of the final states is searched.

In sequential algorithms, only one node is considered in each time unit and the
order in which we explore new nodes determines the different searching strategies.
In the usual framework, several possible unexplored nodes are reachable and we
need to choose one of them in order to continue the search. In the best case, we
have a heuristic which can help us to decide the best options among the candidates.
Such heuristic represents, in a certain sense, how far the considered node is from
a solution node and it captures our information about the nature of the problem.
In many other situations we have no information about how far we are from a
solution and we need to use a blind strategy.

Since there is no information about the nature of the problem, blind strategies
are based exclusively in the topology of the graph and the order in which new
nodes are reached.

There exists a clear parallelism between the space of states represented as a
directed graph and the computation trees in Membrane Computing. In Membrane
Computing, we start with an initial description of the world (the initial config-
uration) and, in the general case, we have several sets of applicable rules which
lead us to different configurations. We choose one of the reachable configurations
and go on with the process till reaching a halting configuration. In the case of
recognizer P systems, no matter which new configuration we choose among the
different possibilities since all of them lead us to the same answer, but this is not
the general case.



Membrane Computing Meets Artificial Intelligence 137

The two basic blind search strategies are depth-first search and breath-first
search. The main difference between them is that depth-first search follows a path
to its completion before trying an alternative path. Some path can be infinite, so
this search may never succeed. It involves backtracing: One alternative is selected
for each node and it backtracks to the next alternative when it has pursued all of
the paths from the first choice. In the worst case, depth-first search will explore
all of the O(bm) nodes in the search tree, where m is the maximum depth of any
node and b is the maximum branching factor. The complexity in time is O(bm),
and the complexity in space is O(bm).

In breath-first search the order in which nodes are explored depends on the
number of arcs in the path. The algorithm always selects one of the paths with
fewest arcs. If there exists a solution at depth d, the total number of generated
nodes is O(bd+1). In this case the complexity in time and in space is O(bd+1).

4 Depth-first Search with P Systems

The idea of representing an instantaneous description of the world as a state and
a step from a state to the following one as an edge in the graph is so general that
many real-life problems can be modeled as a problem of space of states. In this
paper we present a first approach to depth-first search with P systems. The aim is
to show that Membrane Computing provides all the ingredients that we need to
find a solution for any problem represented as a space of states and hence, to be
a useful tool to solve many real-life problems.

The aim of this first approach is not minimalist. We are not looking for the
minimum number of ingredients for implementing in P systems the depth-first
search. In fact, we use four of the most powerful available ingredients: inhibitors,
cooperation, priorities and dissolution. As we will remark in Section 6, it is an
open question to weaken these conditions.

In an abstract way, the representation of a problem P = (a, S,E, F ) as a space
of states consists on:

• A set of states S and an initial state, a ∈ S
• A set E of ordered pairs (x, y), called transitions, where x and y are states and

y is reachable from x in one step.
• A set F of final states.

Technically, we also need a cost mapping, which assigns a cost to each transition
(x, y), but we will consider a constant cost and we will omit it.

Given a problem P = (a, S,E, F ), we will consider a P system Π =
(Γ,H, µ,we, ws, R1, R2, R3, R1 > R2, > R3) where

• The alphabet Γ = S ∪ {pe, re | e ∈ E}
• The set of labels H = {u, s}
• A membrane structure µ = [ [ ]u ]s
• The initial multisets wu = {a} and ws = ∅.



138 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

• Three sets of rules R1, R2 and R3

– R1 = {[x]u → λ : x ∈ F}. For each final state we have a dissolution rule
which dissolves the membrane u.

– R2 = {[x¬py → y rxy]u : (x, y) ∈ E}. For each transition (x, y), x can be
changed by y rxy if py does not occur in the membrane u, i.e., py acts as an
inhibitor.

– R3 = {[y rxy → x py]u : (x, y) ∈ E}. For each transition (x, y) we have a co-
operative rule where the multiset y rxy is rewritten as x py in the membrane
u.

• Finally, we have an order among the rules. Rules of R1 have priority over the
other rules and rules from R2 have priority over rules from R3.

The intuition behind the objects is the following: In each configuration (but
in the last one) there is one object from S in the configuration. It represents
the current state in the searching process. For each state y, the object py is an
inhibitor2 which forbid to visit the state y. Finally, the occurrence of the object
rxy represents that the transition (x, y) belongs to the path from the initial state
to the current one. We illustrate one computation of these P systems with the
following example.

4.1 Example

Let us consider the space of states P = (a, S,E, F ) with a the initial state, the set
of transitions E = {(a, b), (a, c), (b, d), (b, e), (e, f), (c, g)} and the set of final states
F = {g}. Let Π be the P system associated with this space as described above.
The initial configuration is C0 = [ [a]u ]s. Two rules are applicable, both belonging
to the set R2, rb ≡ [a¬pb → b rab]u and rc ≡ [a¬pc → c rac]u. Let us suppose that
non-deterministically rb is chosen. Then we have C1 = [ [b rab]u ]s. From C1, three
rules are applicable

rd ≡ [b¬pd → d rbd]u ∈ R2 re ≡ [b¬pe → e rbe]u ∈ R2 rb ≡ [b rab → a pb]u ∈ R3

Since R2 has priority over R3, only rd or re can be non-deterministically chosen.
We choose re and reach C2 = [ [e rab rbe]u ]s. Now, only two rules are applicable

rf ≡ [e¬pf → f ref ]u ∈ R2 re ≡ [e rbe → b pe]u ∈ R3

Since R2 has priority, rf is applied and we reach C3 ≡ [ [f rab rbe ref ]u ]s. From C3,
the unique applicable rule is rf ≡ [f ref → e pf ]u ∈ R3 and C4 ≡ [ [e rab rbe pf ]u ]s.
Notice than the application of rf is an implementation of backtracing. In the
configuration C4, the current state is e and the state f is forbidden. From C4, only
re ≡ [e rbe → b pe]u ∈ R3 is applicable. The application of this rule is a new step
of backtracing and it leads us to the configuration C5 ≡ [ [b rab pe pf ]u ]s. From C5,
two rules are applicable
2 Notice taht the object py is never removed. If the state y can be reached from different

paths, then we should add new rules in order to prevent it.



Membrane Computing Meets Artificial Intelligence 139

rd ≡ [b¬pd → d rbd]u ∈ R2 rb ≡ [b rab → a pe]u ∈ R3

Notice that the rule re ≡ [b¬pe → e rbe]u ∈ R2 is not applicable due to the
occurrence of the inhibitor pe in the membrane u. Since R2 has priority over
R3, the rule rd is applied an the configuration C6 ≡ [ [d rab rbd pe pf ]u ]s is reached.
From C6 we only can do backtracing by applying the rule rd ≡ [d rbd → b pd]u ∈ R3

and reach C6 ≡ [ [b rab pd pe pf ]u ]s. By applying now rb ≡ [b rab → a pb]u ∈ R3 we
obtain C7 ≡ [ [a pb pd pe pf ]u ]s. From C7 we only can apply rc ≡ [a¬pc → c rac]u ∈
R2 and reach C8 ≡ [ [c rac pb pd pe pf ]u ]s. From C8 two rules are applicable

rg ≡ [c¬pg → g rcg]u ∈ R2 rc ≡ [c rac → a pc]u ∈ R3

Due to the priority of R2 over R3, rg is applied and we obtain C9 ≡
[ [g rac rcg pb pd pe pf ]u ]s. Finally, the applicable rules are

rF ≡ [g]u → λ ∈ R1 rg ≡ [g rcg → c pg]u ∈ R3

Since R1 has priority over R3, the rule rF is applied and the configuration
C10 ≡ [rac rcg pb pd pe pf ]s. No more rules are applicable and C10 is a halting con-
figuration. The objects rac and rcg determine a path from the initial state to the
final one. Notice that the chosen rules in the non-deterministic points are crucial.
From C0 the configuration C∗

3 ≡ [rac rcg]s is reachable in three steps by applying
sequentially the rules rc ≡ [a¬pc → c rac]u ∈ R2, rg ≡ [c¬pg → g rcg]u ∈ R2 and
rF ≡ [g]u → λ ∈ R1.

5 A New Solution for the N-queens Problem

The first step for designing a new solution for the N-queens problem is to determine
the space of states. There are two basic formulations (see [7]). A complete-state
formulation, which starts with N queens on the board and moves them around and
an incremental formulation, where the operators augment the state description,
starting from the empty state and each action adds a queen to the state. This
second formulation reduces drastically the space of states, since a new queen added
to the description of a state can be placed only in a non forbidden square. In such
way, states and transitions are the following:

• States: Arrangements of k queens (0 ≤ k ≤ N), one per column in the leftmost
k columns.

• Transitions (x, y): The state y is the state x where a new queen is added in
the leftmost empty column. Such new queen is not attacked by any other one.

The basic idea of the P system design is to encode the position of a queen as
a set of four objects xi, yj , ui−j and vi+j , where xi represents a column and yj

represents a row (1 ≤ i, j ≤ N). The objects ui−j and vi+j represent the ascendant
and the descendant diagonals respectively and their subindices are determined by



140 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

the corresponding column and row i and j. Placing a queen on the chessboard
means to choose a square, i.e., a set {xi, yj , ui−j , vi+j} among the eligible objects
and delete them from the corresponding membrane. The choice is recorded. If the
final state is reached we finish the process; otherwise we do backtracing and choose
other eligible set.

We present a family of P systems which find a solution for the N-queens problem
(a P system for each value of N) slightly different from the general one presented
in Section 4. We add a new set of rules R∗ for cleaning purposes. For each positive
integer greater than 2, we consider the P system

Π = (Γ,H, µ,we, ws, R1, R
∗, R2, R3, R1 > R∗ > R2, > R3) where

• The alphabet Γ = {xi, yj , ui−j , vi+j , pi,j : i, j ∈ {1, . . . , N}} ∪ {xN+1}
• The set of labels H = {u, s}
• The initial multisets wu = {x1, y1, . . . , yN , u1−N , . . . , uN−1, v2, . . . , v2N} and

ws = ∅.
• A membrane structure µ = [ [ ]u ]s
• Four sets of rules R1, R∗, R2 and R3

– R1 = {[xN+1]u → λ : x ∈ F}. In this design, when the object kN is reached,
the membrane u is dissolved and the computation ends.

– R∗ = {[pi,jxi−1 → xi−1]u : i ∈ {2, . . . , N}, j ∈ {1, . . . , N}} Just cleaning
rules.

– R2 = {[xi yj ui−j vi+j ¬pi,j → xi+1 ri,j ]u : i, j ∈ {1, . . . , N}} These rules
put a new queen on the chessboard by choosing an eligible position.

– R3 = {[ri,j xi+1 → xi yj ui−j vi+j pi,j ]u i, j ∈ {1, . . . , N}}. These rules re-
move one queen form the chessboard and implement the backtracing.

• Finally, the order R1 > R∗ > R2, > R3 among the sets of rules is settled.

5.1 Hints on the computation

From the objects {x1, . . . , xN}, only x1 occurs in the initial configuration. This
means that the column 1 is already chosen. In order to take the row, one of the N
rules [k0 x1 yj u1−j v1+j ¬p1,j,0 → x2 r1,j,1 k2]u where j ∈ {1, . . . , N} is chosen. The
election of this rule determines the square (x1, yj) where the first queen is placed.
The application of the rule removes the objects corresponding to the column, row
ascendant and descendant diagonal lines x1 yj u1−j v1+j in the chessboard. The
associated column, row and diagonals to these objects are no eligible and the new
queen will be put in a safe square. The application of the rule produces the object
x2. Next, a rule from the set [k1 x2 yj u2−j v2+j ¬p2,j,1 → x3 r2,j,2 k3]u is chosen. If
the successive choices are right, then the object kN is reached and the membrane
u dissolved. The objects ri,j,r in the membrane s from the halting configuration
give us a solution to the problem. If no rules from the set R2 can be applied, then
we apply one rule from R3. As shown in the general case, such rules implement
backtracing and produces objects pi,j,r which act as inhibitors. Before applying
rules from R2 or R3, the P system tries to apply rules from R1, which means the
halt of the computation, or from R∗, which clean useless inhibitor objects.



Membrane Computing Meets Artificial Intelligence 141

5.2 Examples

Figure 3 shows a computation of the P system which solves the four queens prob-
lem, where the rules are non deterministically chosen. The subindices of the objects
r1,2r2,4r3,1r4,3 in the halting configuration give us the found solution. In this case
the squares for the four queens are (1, 2), (2, 4), (3, 1), (4, 3).

An ad hoc CLIPS program has been written based on this design of solution
for the N-queens problem based on Membrane Computing techniques. Figure 2
shows a solution for the 20-queens problem found by such computer program.

1-20 2-1 3-3 4-5 5-2 6-4 7-13 8-10 9-17 10- 15
11-6 12-19 13-16 14-18 15-8 16-12 17-7 18-9 19-11 20-14

Fig. 2. A solution for the 20-queens problem

6 Conclusions and Future Work

The purpose of this paper is twofold. On the one hand, to stress the inviability
of solutions based on brute force algorithms for intractable problems, even in case
of a future implementations. On the other hand, to open a door in Membrane
Computing to Artificial Intelligence techniques, which are broadly studied and
which can enrich the methodology of the design of P system solutions.

This first approach can be improved in many senses. As pointed out in Section
4, the aim of this paper is not minimalist and probably, searching algorithms can
be implemented into P systems by using more simple P system models. The second
improvement is associated to the nature of P systems. The design of P systems



142 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

Applied rule Configuration

C0 ≡
h ˆ

x1y2y3, y4u−3 . . . u3v2 . . . , v8

˜
u

i
s

[x1y1u0v2 ¬p1,1 → x2r1,1]u C1 ≡
» »

x2y2y3y4u−3, u−2u−1

u1u2u3v3 . . . v8r1,1

–
u

–
s

[x2y3u−1v5 ¬p2,3 → x3r2,3]u C2 ≡
» »

x3y2y4u−3, u−2u1u2u3

v3v4v6v7v8r1,1r2,3

–
u

–
s

[r2,3x3 → x2 y3 u−1 v5 p2,3]u C3 ≡
» »

x2y2y3y4u−3, u−2u−1u1u2

u3v3v4v5v6v7v8r1,1p2,3

–
u

–
s

[x2 y4 u−2 v6 ¬p2,4 → x3 r2,4]u C4 ≡
» »

x3y2y3u−3u−1u1u2u3

v3v4v5v7v8r1,1r2,4p2,3

–
u

–
s

[x3y2u1v5¬p3,2 → x4 r3,2]u C5 ≡
» »

x4y3u−3, u−1u2u3v3v4

v7v8r1,1r2,4r3,2p2,3

–
u

–
s

[r3,2x4 → x3y2u1v5p3,2]u C6 ≡
» »

x3y2y3u−3, u−1u1u2u3v3v4

v5v7v8r1,1r2,4p3,2p2,3

–
u

–
s

[r2,4x3 → x2y4u−2v6p2,4]u C7 ≡

2424x2y2y3y4u−3u−2u−1

u1u2u3v3v4v5v6v7v8

r1,1p3,2p2,3p2,4

35
u

35
s

[p3,2x2 → x2]u C8 ≡

2424x2y2y3y4u−3u−2u−1

u1u2u3v3v4v5v6v7v8

r1,1p2,3p2,4

35
u

35
s

[r1,1x2 → x1y1u0v2p1,1]u C9 ≡

2424x1y1y2y3y4u−3u−2

u−1u0u1u2u3v2v3v4v5

v6v7v8p1,1p2,3p2,4

35
u

35
s

[p2,3x1 → x1]u C10 ≡

2424x1y1y2y3y4u−3u−2

u−1u0u1u2u3v2v3v4v5

v6v7v8p1,1p2,4

35
u

35
s

[p2,4x1 → x1]u C11 ≡

2424x1y1y2y3y4u−3u−2

u−1u0u1u2u3v2v3v4v5

v6v7v8p1,1

35
u

35
s

[x1y2u−1v3 ¬p1,2 → x2r1,2]u C12 ≡
» »

x2y1y3y4u−3u−2u0u1u2

u3v2v4v5v6v7v8p1,1r1,2

–
u

–
s

[x2y4u−2v6¬p2,4 → x3r2,4]u C13 ≡
» »

x3y1y3u−3u0u1u2u3

v2v4v5v7v8p1,1r1,2r2,4

–
u

–
s

[x3y1u2v4¬p3,1 → x4r3,1]u C14 ≡
» »

x4y3u−3u0u1u3v2v5v7v8

p1,1,0r1,2r2,4r3,1

–
u

–
s

[x4y3u1v7¬p4,3 → x5r4,3]u C15 ≡
» »

x5u−3u0u3v2v5v8

p1,1r1,2r2,4r3,1r4,3

–
u

–
s

[x5] → λ C16 ≡
»

u−3u0u3v2v5v8

p1,1r1,2r2,4r3,1r4,3

–
s

Fig. 3. Example of computation



Membrane Computing Meets Artificial Intelligence 143

which computes searching is too close to the classical sequential algorithm. In fact,
although the presented P system family uses non-determinism in the choice of the
rules, it does not explore the intrinsic parallelism of P systems. The next step in this
way is to design algorithms which uses a limited form of parallelism where several
rules can be applied simultaneously, but controlling the exponential explosion of
brute force algorithms. The current hardware based on Compute Unified Device
Architecture [4] from Nvidia can be a clue for these new generation of algorithms.

Acknowledgements

The authors acknowledge the support of the projects TIN2008-04487-E and TIN-
2009-13192 of the Ministerio de Ciencia e Innovación of Spain and the support of
the Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta de
Andalućıa, grant P08-TIC-04200.

References

1. D. Dı́az-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos–Núñez. A P-Lingua
Programming Environment for Membrane Computing. Lecutre Notes in Computer
Science, 5391, (2009), 187-203.

2. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos–Núñez, F.J. Romero-
Campero. Computational efficiency of dissolution rules in membrane systems. In-
ternational Journal of Computer Mathematics 83(7), (2006) 593 - 611.

3. M.A. Gutiérrez-Naranjo, M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-
Jiménez. Solving the N-Queens Puzzle with P Systems. Seventh Brainstorming Week
on Membrane Computing. Vol I. R. Gutiérrez-Escudero, M.A. Gutiérrez-Naranjo,
Gh. Păun, I. Pérez-Hurtado, A. Riscos–Núñez (Eds.). Fénix Editora, Sevilla (2009)
199-210.

4. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, Mario J. Pérez-Jiménez, J.M. Cecilia,
G. Guerrero, J.M. Garćıa. Simulation of Recognizer P Systems by Using Many-
core GPUs. Seventh Brainstorming Week on Membrane Computing. Vol II. M.A.
Mart́ınez-del-Amor, E.F. Orejuela-Pinedo, Gh. Păun, I. Pérez-Hurtado, A. Riscos–
Núñz (Eds.). Fénix Editora, Sevilla (2009) 45-57.

5. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrinini. A polynomial com-
plexity class in P systems using membrane division. In E. Csuhaj-Varjú, C. Kintala,
D. Wotschke, G. Vaszil (Eds.). Proceedings of the 5th Workshop on Descriptional
Complexity of Formal Systems, DCFS 2003, Computer and Automaton Research
Institute of the Hungarian Academy of Sciences (2003), pp.:284-294.

6. M.J. Pérez-Jiménez. A Computational Complexity Theory in Membrane Computing.
Lecture Notes in Computer Science, 5957 (2010), 125-148.

7. S. Russell, P. Norvig. Artificial Intelligence. A Modern Approach. Second Edition.
Pearson Education, Inc. 2003.

8. Wikipedia. http://en.wikipedia.org/wiki/Orders of magnitude (mass)




