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Summary. We introduce the concept of a P colony automaton, an automata-like con-
struct combining properties of finite automata and P colonies. We present some prelimi-
nary results on the accepting power of several variants of these extremely simple language
recognizing devices, and propose problems for future research.

1 Introduction

P colonies are particular variants of very simple tissue-like membrane systems,
modeling a community of very simple cells living together in a shared environment
(for P colonies, see [12, 13], for membrane computing we refer to [15, 16]. In the
basic model, the cells, the basic computing agents, are represented by a collection
of objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to
be inside any cell during the function of the system. Number k is said to be the
capacity of the P colony. The rules of the cells are either of the form a → b,
specifying that an internal object a is transformed into an internal object b, or
of the form c ↔ d, specifying the fact that an internal object c is sent out of
the cell, to the environment, in exchange of the object d, which was present in
the environment. Thus, after applying these rules in parallel, a cell containing the
objects a, c will contain the objects b, d. With each cell, a set of programs composed
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of rules is associated. In the case of P colonies of capacity k, each program has k
rules; the rules of the program must be applied in parallel to the objects in the
cell.

The cells of a P colony execute a computation by synchronously applying their
programs to objects inside the cells and outside in the environment. When a halting
configuration is reached, that is, when no more rules can be applied, the result of
the computation is read as the number of certain types of objects present in the
environment.

P colonies have been extensively examined during the years: among other
things, it has been shown that these extremely simple constructs are computa-
tionally complete computing devices even with very restricted size parameters and
with other syntactic or functioning restrictions [1, 2, 3, 4, 5, 6, 9, 10].

In the generic model, the environment is a multiset of objects, and thus its
impact on the behavior of the P colony is indirect. To describe the situation when
the behavior of the components of the P colony is influenced by direct impulses
coming from the environment step-by-step, the model is augmented with a string
put on an input tape to be processed by the P colony. These string corresponds to
the impulse sequence coming from the environment. In addition to their rewriting
rules and the rules for communicating with the environment, the cells have so-
called tape rules which are used for reading the next symbol on the input tape.
This is done by changing one of objects inside the cell to the object corresponding
to the current input symbol on the tape. The symbol is said to be read if at least
one agent applied its corresponding tape rule. It is easy to observe that the model,
called a P colony automaton or a PCol automaton, resembles to standard finite
automata and P automata [7], furthermore, to colonies of formal grammars [11].

PCol automata may work in several computation modes: for example, at any
step of the computation a maximal set of components may be active and each
component (at least one component, or a maximal number of components) should
perform a tape rule. These computation modes are the so-called t, tmin, and tmax
modes. In some other cases, transitions, i.e., simultaneous applications of non-tape
rules are also allowed. These cases are the so-called nt, ntmin, ntmax, and initial
computation modes. The P colony automaton starts working with a string on its
input tape (the input string) and with initial multisets of objects in its cells. The
input string is accepted if it is read by the system and the P colony is in an
accepting configuration (in an accepting state).

Due to their extreme simplicity, it is a challenging question how much accepting
power can be obtained by the different variants of PCol automata. In this paper
we present some preliminary results. Among other things, we show that PCol au-
tomata working in any of the nt, ntmin, or ntmax computational modes are able
to recognize every recursively enumerable language over any alphabet (thus over
any unary alphabet as well). Notice that P colonies are able to generate/accept
any recursively enumerable set of numbers, which set can be represented as the
length set of words of a recursively enumerable language over a unary alphabet.
The large recognizing power of PCol automata working in these modes is due to



PCol Automata: Recognizing Strings with P Colonies 67

the unbounded “workspace” provided by the symbols sent to the environment by
the components while performing n, nt, ntmin, or ntmax-transitions, respectively.
In the case of t-mode, we have some preliminary results. It is shown that PCol au-
tomata are able to accept any regular language (over any alphabet). Furthermore,
there is a PCol automaton which recognizes the non-context-free context-sensitive
language {anbncn | n ≥ 1}. In the case of initial mode, we provide a PCol automa-
ton which accepts the language L = {a2n}. Finally, we propose some research
areas for future study.

2 Preliminaries and definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗, and
let ε be the empty word. We denote the number of occurrences of a symbol a ∈ V
in w by |w|a.

If the set of non-negative integers is denoted by N, then a multiset over a set
V is a mapping M : V → N which assigns to each object a ∈ V its multiplicity
M(a) in M . The support of M is the set supp(M) = {a | M(a) ≥ 1}. If V is a
finite set, then M is called a finite multiset. A multiset M is empty if its support
is empty, supp(M) = ∅. We will represent a finite multiset M over V by a string
w over the alphabet V with |w|a = M(a), a ∈ V , and ε will represent the empty
multiset which is also denoted by ∅.

We say that a ∈ M if M(a) ≥ 1, and the cardinality of M , card(M) is defined
as card(M) = Σa∈MM(a). For two multisets M1,M2 : V → N, M1 ⊆ M2 holds, if
for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined as (M1 ∪M2) :
V → N with (M1∪M2)(a) = M1(a)+M2(a) for all a ∈ V , the difference is defined
for M2 ⊆ M1 as (M1 −M2) : V → N with (M1 −M2)(a) = M1(a)−M2(a) for all
a ∈ V .

Now we define the notion of a PCol automaton.

Definition 1. A PCol automaton of capacity k and with n cells, k, n ≥ 1, is a
construct Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) where V is an alphabet, the
alphabet of the PCol automaton, its elements are called objects; e ∈ V is the
environmental object of the automaton; wE ∈ (V − {e})∗ is a string representing
the multiset of objects different from e which is found in the environment initially;
(wi, Pi), 1 ≤ i ≤ n, is the i-th cell; and F is a set of accepting configurations of the
PCol automaton.

For each cell, (wi, Pi), 1 ≤ i ≤ n, wi is a multiset over V , it determines the
initial contents of the cell, and its cardinality |wi| = k is called the capacity of the
system; Pi is a set of programs, where every program is formed from k rules of the
following types:

• tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and commu-
nication tape rules, respectively; or
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• nontape rules of the form a → b, or c ↔ d, called rewriting (nontape) rules and
communication (nontape) rules, respectively.

For each i, 1 ≤ i ≤ n, the set of tape programs is denoted by PT
i , they are formed

from one tape rule and k − 1 nontape rules, the set of nontape programs which
contain only nontape rules, is denoted by PN

i , thus, Pi = PT
i ∪PN

i , PT
i ∩PN

i = ∅.
The computation of a PCol automaton starts in the initial configuration, and

the configurations are changed by the cells with the application of some of their
programs. The programs either change the objects inside the cells (with rewriting
rules) or exchange them for other objects with the environment (with communica-
tion rules). During the computation, the PCol automaton processes an input word.
The leftmost symbol of the yet non-read part of the input word is read during a
configuration change if at least one cell applies a tape program which introduces
the same symbol inside the cell as the symbol to be read either by rewriting or by
communication.

A configuration of PCol automaton is an (n+2)-tuple (u; uE , u1, . . . , un), where
u ∈ V ∗ is the unprocessed (unread) part of the input string, uE ∈ (V − {e})∗
represents the multiset of objects different from e in the environment, and ui,∈
V ∗, 1 ≤ i ≤ n, represents the contents of i-th cell. The initial configuration is
given by (w;wE , w1, . . . , wn), the input word to be processed by the system and
the initial contents of the environment and the cells. The elements of the set F of
accepting configurations are given as configurations of the form (ε; vE , v1, . . . , vn).

To describe the computation process formally, we introduce the following no-
tation. For any rule r we define four mappings as follows. Let X ∈ {T, ε}, and if
r = a

X→ b, then let left(r) = a, right(r) = b, export(r) = ε, and import(r) = ε; if
r = a

X↔ b, then let left(r) = ε, right(r) = ε, export(r) = a, and import(r) = b for
b 6= e, or import(r) = ε for b = e. Let us extend this notation also for programs.
For α ∈ {left, right, export, import} and for any program p, let α(p) =

⋃
r∈p α(r)

where for a rule r and program p = 〈r1, . . . , rk〉, the notation r ∈ p denotes the fact
that r = rj for some j, 1 ≤ j ≤ q. Moreover, for any tape program p containing
the tape rule r ∈ p, we also define the mapping read(p) as read(p) = right(r) if r
is a rewriting tape rule, or read(p) = import(r) if r is a communication tape rule.

Let the programs of each Pi be labeled in a one-to-one manner by labels from
the set lab(Pi), 1 ≤ i ≤ n, lab(Pi)∩ lab(Pj) = ∅ for i 6= j. In the following, for the
sake of brevity, if no confusion arises, we designate programs and their labels with
the same letters, thus, for a label p ∈ lab(Pi), we also write p ∈ Pi.

Let c = (u; uE , u1, . . . , un) be a configuration of a PCol automaton Π. We call
a set of programs, Pc, applicable in configuration c, if the following conditions hold.

• If p, p′ ∈ Pc, p 6= p′ and p ∈ Pi, p
′ ∈ Pj , then i 6= j;

• for each p ∈ Pc, if p ∈ Pi then left(p) ∪ export(p) = ui;
• for each p ∈ Pc, if p is a tape rule, then read(p) = a where u = au′;
• ⋃

p∈Pc
import(p) ⊆ uE .
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A configuration c = (au; uE , u1, . . . , un), a ∈ V , is changed to a configuration c′ =
(u′;u′E , u′1, . . . , u

′
n) by applying the set Pc of applicable programs if the following

properties hold:

• If there is a p ∈ Pc such that p ∈ Pi, then u′i = right(p)∪ import(p), otherwise
u′i = ui, 1 ≤ i ≤ n;

• uE = uE −
⋃

p∈Pc
import(p) ∪⋃

p∈Pc
export(p); and

• if there is a tape program p ∈ Pc with read(p) = a, then u′ = u, otherwise
u′ = au.

We say that a set Pc of applicable programs is maximal (with respect to a
certain additional property), if for any p′ ∈ ⋃n

i=1 Pi (having the same additional
property) such that p′ 6∈ Pc, the set of programs Pc ∪ {p′} is not applicable.

Based on the properties of Pc, the set of programs applied to a configuration
c = (au; uE , u1, . . . , un), a ∈ V , we distinguish the following types of transitions.
Let the configuration obtained after the application of Pc be denoted by c′ =
(u′;u′E , u′1, . . . , u

′
n). We have a

• t-transition, denoted by ⇒t, if u′ = u and Pc is maximal set of programs with
respect to the property that every p ∈ Pc is a tape program with read(p) = a;

• tmin-transition, denoted by⇒tmin, if u′ = u and Pc is maximal set of programs
with at least one p ∈ Pc, such that p is a tape program with read(p) = a;

• tmax-transition, denoted as ⇒tmax, if u′ = u and Pc = PT ∪PN where PT is a
maximal set of applicable tape programs with read(p) = a for all p ∈ PT , the
set PN is a set of nontape programs, and Pc = PT ∪ PN is maximal;

• n-transition, denoted by ⇒n, if u′ = au and Pc is maximal set of nontape
programs.

A PCol automaton works in the t (tmax, tmin) mode of computation if it uses
only t- (tmax-, tmin-) transitions. It works in the nt (ntmax or ntmin) mode if at
any computation step it may use a t- (tmax- or tmin-) transition or an n-transition,

A special case of the nt mode is called initial, denoted by init, if the compu-
tation of the automaton is divided in two phases: first it reads the input strings
using t-transitions and after reading all the input symbols it uses n-transitions to
finish the computation.

Let us designate M = {t, nt, tmax, ntmax, tmin, ntmin, init}. The language
accepted by a PCol automaton Π as above is defined as the set of strings which
can be read during a successful computation:

L(Π, mode) = {w ∈ V ∗|(w; wE , w1, . . . , wn) can be
transformed by Π into (ε; vE , v1, . . . , vn) ∈ F

with a computation in mode mode ∈ M}.
Let L(PColA, mode) denote the class of languages accepted by PCol automata

in the computational mode mode ∈ M , and let RE denote the class of recursively
enumerable languages.

Now we demonstrate the above defined notions by an example.
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Example 1. Let Π = ({a, b, c}, e, wE , (w1, P1), (w2, P2), (w3, P3), F ) be a PCol au-
tomaton, where the sets of programs are defined as

P1 P2 P3

p1 : 〈e T→ b; e ↔ a〉, pA : 〈e T↔ a; e ↔ a〉, pI : 〈e T→ a; e ↔ a〉,
p2 : 〈e T→ a; e → a〉, pB : 〈e T↔ b; e ↔ a〉, pII : 〈e T→ a; e → b〉,
p3 : 〈e ↔ a; e ↔ e〉, pC : 〈e → a; e ↔ e〉, pIII : 〈e → a; e ↔ e〉,

and c = (w; aa, ee, ee, ee) is the current configuration of Π.
If w = bw′ for some b ∈ V, w′ ∈ V ∗, then Π can execute a t-transition by

applying the set of programs Pc = {p1, pB} since the third cell has no applicable
tape program. For a tmax-transition, Π can apply the set Pc = {p1, pB , pIII},
in this case the third cell can use its applicable nontape program. For a tmin-
transition, Π has to choose one from three possible sets of programs {p1, pB , pIII},
{p1, pC , pIII}, or {p3, pB , pIII}. For an n-transition, Π has to use the set Pc =
{p3, pC , pIII}.

If w = aw′, a ∈ V, w′ ∈ V ∗, then the sets of applicable programs for the
different transition types are given in the following table.

transition types applicable sets of programs
t, tmax {p2, pA, pII}

{p2, pA, pIII}, {p2, pC , pI}, {p2, pC , pII .}, {p2, pC , pIII},tmin {p3, pA, pII}, {p3, pA, pIII}, {p3, pC , pI}, {p3, pC , pII}
n {p3, pC , pIII}

If w = cw′, c ∈ V, w′ ∈ V ∗, then there is no cell with an applicable tape
program. The only set of applicable programs is the set Pc = {p3, pC , pIII} for an
n-transition.

Example 2. Let L ⊆ Σ∗ be a regular language, and let M = (Σ, Q, δ, q0, F ) be a
finite automaton with L(M) = L, with alphabet Σ, set of states Q, initial state
q0, set of final states F , and transition function δ : Σ ×Q → Q.

It is not difficult to see that the PCol automaton Π = (Σ ∪Q, e, (w, P ), F ′) of
capacity two simulates the computation of M , with initial cell contents w = aq0

for some a ∈ Σ, set of rules

P = {〈x T→ a, q → q′〉 | for all x ∈ Σ such that δ(x, q) = q′ for some q, q′ ∈ Q},

and set of final configurations

F ′ = {(ε; ε, xqf )|for all x ∈ Σ, and qf ∈ F}.

Since P contains only tape programs, Π cannot execute any n-transitions, and
since it has only one cell, L(Π, t) = L(Π, tmax) = L(Π, tmin) = L(M).
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3 PCol automata computing in the modes with n-transitions

In this section we show that if we consider the functioning modes which allow n-
transitions at arbitrary points of the computational process, then PCol automata
characterize the class of recursively enumerable languages. First we recall the no-
tion of a two-counter machine which will be used in the proof.

A two-counter machine, see [8], M = (Σ ∪ {Z, B}, E, R, q0, qF ) is a 3-tape
Turing machine where Σ is an alphabet, E is a set of internal states with q0, qF ∈ E
being the initial and the final states, and R is a set of transition rules. The machine
has a read-only input tape and two semi-infinite storage tapes which are used as
counters. The alphabet of the storage tapes contains only two symbols, Z and B
(blank), while the alphabet of the input tape is Σ ∪{B}. The symbol Z is written
on the first, leftmost cells of the storage tapes which are scanned initially by the
tape heads. An integer t can be stored by moving a tape head t cells to the right
of Z. A stored number can be incremented or decremented by moving the tape
head right or left. The machine is capable of checking whether a stored value is
zero or not by looking at the symbol scanned by the tape heads. If the scanned
symbol is Z, then the value stored in the corresponding counter is zero.

Without the loss of generality, we assume that two-counter machines check
and modify only one of their counters during any transition, thus, the rule set R
contains transition rules of the form (q, x, ci) → (q′, e) where x ∈ Σ ∪ {B} ∪ {λ}
corresponds to the symbol scanned on the input tape in state q ∈ E, and ci ∈
{Z, B}, i ∈ {1, 2} correspond to the symbols scanned on the ith storage tape. By
a rule of the above form, M enters state q′ ∈ E, and the ith counter is modified
according to e ∈ {−1, 0, +1}. If x ∈ Σ ∪ {B}, then the machine was scanning x
on the input tape, and the head moves one cell to the right; if x = ε, then the
machine performs the transition irrespective of the scanned input symbol, and the
reading head does not move.

A word w ∈ Σ∗ is accepted by the two-counter machine if starting in the initial
state q0, the input head reaches and reads the rightmost non-blank symbol on the
input tape, and the machine is in the accepting state qF . Two-counter machines
are computationally complete; they are just as powerful as Turing machines.

Theorem 1.

L(PColA, X) = RE, where X ∈ {nt, ntmax, ntmin}.

Proof. Let L ∈ Σ∗ be an arbitrary recursively enumerable language, and let M =
(Σ, Q, q0, qf , T r) be a two-counter machine as above with L = L(M).

Let us construct the PCol automaton Π = (V, e, wE , (w1, P1), (w2, P2), F )
where V = Σ ∪ Q ∪ {t, t′, t′′, t′′′ | t ∈ Tr} ∪ {c1, c2, A}, w1 = q0e, w2 = ee,
F = {(ε; u, qfe, ee) | u ∈ V ∗}, and the sets of programs are defined as follows.

For any α ∈ {B, Z}, β ∈ {−1, 0,+1}, we define the disjoint sets of transitions
Trα,β ⊆ Tr as follows: t ∈ Trα,β , if and only if, t : (q, x, i, α) → (w, β), x ∈ Σ∪{ε},
i ∈ {1, 2}. Thus, Tr = TrB,−1 ∪ TrB,0 ∪ TrB,+1 ∪ TrZ,0 ∪ TrZ,+1.



72 L. Cienciala et al.

Now we define the sets of programs as

P1 =
⋃

t∈Tr

P1,t and P2 =
⋃

t∈Tr

P2,t,

where for t ∈ (TrB,−1 ∪ TrB,0) we have

P1,t = {pt,1 : 〈q → t; rt,1〉, pt,2 : 〈t ↔ ci; rt,2〉, pt,3 : 〈t′ → t′′; ci → e〉,
pt,4 : 〈t′′ → e; e ↔ t′′′〉, pt,5 : 〈t′′′ → s; e → e〉},

where rt,1 and rt,2 are the rules e
T→ a and a → t′, respectively, if t ∈ Tr is such,

that x = a ∈ Σ, otherwise, if x = ε, then rt,1 = e → e and rt,2 = e → t′.
If t ∈ TrB,+1, then we have

P1,t = {pt,1 : 〈q → t; rt,1〉, pt,2 : 〈t ↔ ci; rt,2〉, pt,3 : 〈t′ → t′′; ci → ci〉,
pt,4 : 〈t′′ → e; ci ↔ t′′′〉, pt,5 : 〈t′′′ → s; e → e〉}

with rt,1 and rt,2 as above.
For these types of transitions, the set P2 is defined as follows. If t ∈ TrB,−1,

then we have

Pt,2 = {pt,6 : 〈e ↔ t; e → e〉, pt,7 : 〈t → t′′′; e → e〉, pt,8 : 〈t′′′ ↔ e; e → e〉},

otherwise, if t ∈ (TrB,0 ∪ TrB,+1), then

Pt,2 = {pt,6 : 〈e ↔ t; e → ci〉, pt,7 : 〈t → t′′′; ci ↔ e〉}.

Now, if t ∈ TrZ,0, then we have in P1

Pt,1 = {pt,1 : 〈q → t; rt,1〉, pt,2 : 〈t ↔ e; rt,2〉, pt,3 : 〈e ↔ ci; t → A〉,
pt,4 : 〈t′ → e; e ↔ t′′〉, pt,5 : 〈e ↔ e; t′′ → s〉}

where rt,1 and rt,2 are the rules e
T→ a and a → t′, respectively, if the transition

is such, that the input symbol is x = a ∈ Σ, otherwise if x = ε, then rt,1 = e → e
and rt,2 = e → t′.

If t ∈ TrZ,+1, then

Pt,1 = {pt,1 : 〈q → t; rt,1〉, pt,2 : 〈t ↔ e; rt,2〉, pt,3 : 〈e ↔ ci; t → A〉,
pt,4 : 〈t′ → ci; e ↔ t′′〉, pt,5 : 〈ci ↔ e; t′′ → s〉}

where rt,1 and rt,2 are as above.
The set P2 contains only two programs in both cases, these are defined as

Pt,2 = {pt,6 : 〈e ↔ t; e → t′′〉, pt,7 : 〈t → e; t′′ ↔ e〉}

for all t ∈ (TrZ,0 ∪ TrZ,+1).
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The PCol automaton Π simulates the work of the two-counter machine M
by reading the input symbols with its tape programs and keeping track of the
contents of the ith counter as the number of ci, i ∈ {1, 2} objects present in the
environment.

Each transition of M is simulated separately. One of the symbols inside the
first cell of Π is from Q, it corresponds to the internal state of M during the
simulation process. This symbols is changed through a series of programs into the
symbols s ∈ Q if and only if, M can also change its state from q to s while the
counter contents are also checked and modified with an interplay of programs from
the two cells of Π.

The reader may check that the PCol automaton Π may reach a final con-
figuration after reading the whole input, if and only if the simulated two-counter
machine is able to reach the internal state qf after processing the same input string
using its transitions from Tr.

4 The other computation modes

First we consider the power of the t, tmax, and tmin computation modes. Note
that a PCol automaton working in these modes reads one input symbol in every
computational step, thus, the length of the computation cannot be more than the
length of the input string.

As we have seen in Example 2, any regular language can be accepted by a PCol
automaton with one cell. Now we present an example showing that the class of
languages characterized by PCol automata in the t, tmax, or tmin modes contains
non-context-free languages.

Example 3. There exists PCol automaton accepting language L = {anbncn | n ≥
0} in any of the computation modes t, tmax, or tmin. To see this, we construct
Π = ({a, b}, e, ε, (w, P ), F ) where w = ea,

P = {〈e T→ a; a ↔ e〉, 〈a T→ b; e ↔ a〉, 〈a T→ b; b ↔ a〉,
〈a T→ c; b → b〉, 〈b T→ c; c ↔ b〉},

and F = {(ε; u, cb), (ε;u, ea) | u ∈ {c}∗}.
To see how Π works, consider a computation for the input word aabbcc.
After the last step, the input tape is read and the automaton is in the final

state (ε; c, cb). It is not difficult to see that Π can only reach a final state if the
input is of the form {a}∗{b}∗{c}∗ with an equal number of each type of symbols.

Since P contains only tape programs, Π cannot execute any n-transitions, and
since it has only one cell, L(Π, t) = L(Π, tmax) = L(Π, tmin) = L
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step cell environment unread part of tape applied program

1. ea ε aabbcc 〈e T→ a; a ↔ e〉
2. ae a abbcc 〈e T→ a; a ↔ e〉
3. ae aa bbcc 〈a T→ b; e ↔ a〉
4. ba a bcc 〈a T→ b; b ↔ a〉
5. ba b cc 〈a T→ c; b → b〉
6. cb b c 〈b T→ c; c ↔ b〉
7. cb c ε

Now we consider the initial mode. This time, although the computations can
be of arbitrary length, n-transitions can only be executed after the whole input
string is processed. The next example demonstrates that the class of languages
characterized by PCol automata in the initial mode contains non-semilinear lan-
guages.

Example 4. There exists a PCol automaton Π, such that L(Π, init) = {a2n}. To
see this, consider the PCol automaton Π = (V, e, ε, (ee, P1), (ee, P2), F ) where
V = {a, b, B, c, c′, d, d′, f, f ′, g, g′, i, i′, i, i, i′, i′, x, x′, x′′, x′′′, x, x, xh, y, y′, y′′, z, u,

u′, u′′, u′′′, u, u, v, v′, v′′}, F = {(ε; ε, xhe, ee)}, and

P1 = P1,in ∪ P1,div ∪ P1,b ∪ P1,B ∪ P1,tran ∪ P1,fin, and P2 = P2,b ∪ P2,B

where the set of programs are defined as follows.

P1,in = {p1 : 〈e T→ a; e → b〉, p2 : 〈a T→ a; b ↔ e〉, p3 : 〈a T→ a; e → b〉}.
Using these programs, the first cell reads the input symbols and puts one object b
into the environment after reading two as.

After reading the input, the cells may replace two bs by one B, or two Bs by
one b. This is achieved by the programs:

P1,div = {p4 : 〈a → c; e ↔ b〉, p5 : 〈c → d; b → e〉, p6 : 〈d → f ; e ↔ b〉,
p7 : 〈f → g; b → B〉, p8 : 〈g → i; B ↔ e〉, p9 : 〈i → c; e ↔ b〉,
p10 : 〈i′ → c′; e ↔ B〉, p11 : 〈c′ → d′; B → e〉,
p12 : 〈d′ → f ′; e ↔ B〉, p13 : 〈f ′ → g′; B → b〉,
p14 : 〈g′ → i′; b ↔ e〉}.

After exchanging the bs to Bs or reversely, the cells have to control if there is
any remaining bs or Bs and only in the negative case an the computation continue.
This is done by the interplay of the programs

P1,b = {p15 : 〈e → x′; x ↔ e〉, p16 : 〈e → x′′;x′ ↔ e〉p17 : 〈x′′ → x′′′; e ↔ e〉,
p18 : 〈x′′′ → x; e ↔ e〉, p19 : 〈x → x; e ↔ e〉, p20 : 〈x → i; e ↔ y′′〉,
p21 : 〈x → i′; e ↔ y〉, p22 : 〈y′′ → i; i ↔ e〉, p23 : 〈y → z; i′ ↔ e〉,
p24 : 〈e → i′; z ↔ i′〉, p25 : 〈i′ → i′; i′ ↔ e〉},
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P2,b = {p26 : 〈e → y; e ↔ x〉, p27 : 〈x → y′; y ↔ x′〉, p28 : 〈x′ → y′′; y′ ↔ b〉,
p29 : 〈b → b; y′′ ↔ y〉, p30 : 〈y → e; b ↔ e〉, p31 : 〈x′ → e; y′ ↔ z〉,
p32 : 〈z → e; e ↔ e〉},

for checking bs, and the programs

P1,B = {p33 : 〈e → u′;u ↔ e〉, p34 : 〈e → u′′; u′ ↔ e〉, p35 : 〈u′′ → u′′′; e ↔ e〉,
p36 : 〈u′′′ → u; e ↔ e〉, p37 : 〈u → u; e ↔ e〉, p38 : 〈u → i′; e ↔ v′′〉,
p39 : 〈u → i; e ↔ v〉, p40 : 〈v′′ → i′; i′ ↔ e〉, p41 : 〈v → w; i ↔ e〉,
p42 : 〈e → i; w ↔ i〉, p43 : 〈i → i; i ↔ e〉},

P2 = {p44 : 〈e → v; e ↔ u〉, p45 : 〈u → v′; v ↔ u′〉, p46 : 〈u′ → v′′; v′ ↔ B〉,
p47 : 〈B → B; v′′ ↔ v〉, p48 : 〈v → e; B ↔ e〉, p49 : 〈u′ → e; v′ ↔ w〉,
p50 : 〈w → e; e ↔ e〉},

for checking Bs.
The following programs are used for connecting the different phases of the

functioning of the system,

P1,tran = {p51 : 〈i → x; e ↔ e〉, p52 : 〈i′ → u; e ↔ e〉},

and for finishing the computation

P1,fin = {p53 : 〈d → xh; e ↔ e〉, p54 : 〈d′ → xh; e ↔ e〉, p55 : 〈a → xh; b → e〉}.

5 Conclusion

P colony automata are very simple language recognizing devices, with strong for-
mal resemblance to finite automata. Especially interesting are those cases when
the function of these constructs is governed by the use of their tape rules, i.e.,
the computational modes t, tmin and tmax. The description of the exact compu-
tational power of these variants of PCol automata is a challenging problem. We
guess to obtain language classes of very low complexity.
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