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Preface

These proceedings, consisting of two volumes, contain the papers emerged from the
Seventh Brainstorming Week on Membrane Computing (BWMC), held in Sevilla,
from February 2 to February 6, 2009, in the organization of the Research Group
on Natural Computing from the Department of Computer Science and Artificial
Intelligence of Sevilla University. The first edition of BWMC was organized at the
beginning of February 2003 in Rovira i Virgili University, Tarragona, and the next
five editions took place in Sevilla at the beginning of February 2004, 2005, 2006,
2007, and 2008, respectively.

In the style of previous meetings in this series, the seventh BWMC was con-
ceived as a period of active interaction among the participants, with the empha-
sis on exchanging ideas and cooperation; this time, however, there were much
more presentations than in the previous years, but still these presentations were
“provocative”, mainly proposing new ideas, open problems, research topics, results
which need further improvements. The efficiency of this type of meetings was again
proved to be very high and the present volumes prove this assertion.

As already usual, the number of participants was around 40, most of them
computer scientists, but also a few biologists were present. It is important to note
that several new names appeared in the membrane computing community, also
bringing new view points and research topics to this research area.

The papers included in these volumes, arranged in the alphabetic order of the
authors, were collected in the form available at a short time after the brainstorm-
ing; several of them are still under elaboration. The idea is that the proceedings are
a working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of the papers from these volumes will be considered for publication
in a special issues of International Journal of Computers, Control and Communi-
cation. After the first BWMC, a special issue of Natural Computing – volume 2,
number 3, 2003, and a special issue of New Generation Computing – volume 22,
number 4, 2004, were published; papers from the second BWMC have appeared in
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a special issue of Journal of Universal Computer Science – volume 10, number 5,
2004, as well as in a special issue of Soft Computing – volume 9, number 5, 2005;
a selection of papers written during the third BWMC have appeared in a special
issue of International Journal of Foundations of Computer Science – volume 17,
number 1, 2006); after the fourth BWMC a special issue of Theoretical Computer
Science was edited – volume 372, numbers 2-3, 2007; after the fifth edition, a
special issue of International Journal of Unconventional Computing was edited –
volume 5, number 5, 2009; finally, a selection of papers elaborated during the sixth
BWMC has appeared in a special issue of Fundamenta Informaticae – volume 87,
number 1, 2008. Other papers elaborated during the seventh BWMC will be sub-
mitted to other journals or to suitable conferences. The reader interested in the
final version of these papers is advised to check the current bibliography of mem-
brane computing available in the domain website http://ppage.psystems.eu.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Alhazov Artiom, Hiroshima University, Japan,
aartiom@yahoo.com

2. Ardelean Ioan, Institute of Biology of the Romanian Academy, Bucharest,
Romania,
ioan.ardelean@ibiol.ro

3. Bogdan Aman, A.I.Cuza University, Iasi, Romania,
baman@iit.tuiasi.ro

4. Caravagna Giulio, University of Pisa, Italy,
caravagn@di.unipi.it

5. Ceterchi Rodica, University of Bucharest, Romania,
rceterchi@gmail.com

6. Colomer-Cugat M. Angels, University of Lleida, Spain,
Colomer@matematica.UdL.es

7. Cordón-Franco Andrés, University of Sevilla, Spain,
acordon@us.es

8. Csuhaj-Varjú Erzsébet, Hungarian Academy of Sciences, Budapest, Hungary,
csuhaj@sztaki.hu

9. Dı́az-Pernil Daniel, University of Sevilla, Spain,
sbdani@us.es

10. Frisco Pierluigi, Heriot-Watt University, United Kingdom,
pier@macs.hw.ac.uk

11. Garćıa-Quismondo Manuel, University of Sevilla, Spain,
mangarfer2@alum.us.es

12. Graciani-Dı́az Carmen, University of Sevilla, Spain,
cgdiaz@us.es

13. Gutiérrez-Naranjo Miguel Ángel, University of Sevilla, Spain,
magutier@us.es
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14. Gutiérrez-Escudero Rosa, University of Sevilla, Spain,
rgutierrez@us.es

15. Henley Beverley, University of Sevilla, Spain,
bhenley@us.es

16. Ipate Florentin, University of Pitesti, Romania,
florentin.ipate@ifsoft.ro

17. Ishdorj Tseren-Onolt, Abo Akademi, Finland,
tishdorj@abo.fi

18. Krassovitskiy Alexander, Rovira i Virgili University, Tarragona, Spain,
alexander.krassovitskiy@estudiants.urv.cat

19. Leporati Alberto, University of Milano-Bicocca, Italy,
leporati@disco.unimib.it

20. Mart́ınez-del-Amor Miguel Angel, University of Sevilla, Spain,
mdelamor@us.es

21. Mauri Giancarlo, University of Milano-Bicocca, Italy,
mauri@disco.unimib.it

22. Mingo Postiglioni Jack Mario, Carlos Tercero University, Madrid, Spain,
jmingo@inf.uc3m.es

23. Murphy Niall, NUI Maynooth, Ireland,
nmurphy@cs.nuim.ie

24. Obtu lowicz Adam, Polish Academy of Sciences, Poland,
A.Obtulowicz@impan.gov.pl

25. Orejuela-Pinedo Enrique Francisco, University of Sevilla, Spain,
eorejuela@us.es

26. Pagliarini Roberto, University of Verona, Italy,
roberto.pagliarini@univr.it

27. Pan Linqiang, Huazhong University of Science and Technology, Wuhan, Hubei,
China,
lqpan@mail.hust.edu.cn

28. Păun Gheorghe, Institute of Mathematics of the Romanian Academy, Bucharest,
Romania, and University of Sevilla, Spain,
george.paun@imar.ro, gpaun@us.es

29. Pérez-Hurtado-de-Mendoza Ignacio, University of Sevilla, Spain,
perezh@us.es

30. Pérez-Jiménez Mario de Jesús, University of Sevilla, Spain,
marper@us.es

31. Porreca Antonio, University of Milano-Bicocca, Italy,
porreca@disco.unimib.it

32. Riscos-Núñez Agust́ın, University of Sevilla, Spain,
ariscosn@us.es

33. Rogozhin Yurii, Institute of Mathematics and Computer Science,
Chisinau, Moldova,
rogozhin@math.md
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34. Romero-Jiménez Alvaro, University of Sevilla, Spain,
Alvaro.Romero@cs.us.es

35. Sburlan Dragoş, Ovidius University, Constanţa, Romania,
dsburlan@univ-ovidius.ro
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As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)– and all the
members of this group were enthusiastically involved in this (not always easy) work.
The meeting was supported from various sources: (i) Proyecto de Excelencia de la
Junta de Andalućıa, grant TIC 581, (ii) Proyecto de Excelencia con investigador de
reconocida vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200, (iii) Proyecto
del Ministerio de Educación y Ciencia, grant TIN2006 – 13425, (iv) IV Plan Propio
de la Universidad de Sevilla, (v) Consejeŕıa de Innovación, Ciencia y Empresa de la
Junta de Andalućıa, well as by the Department of Computer Science and Artificial
Intelligence from Sevilla University.

Gheorghe Păun
Mario de Jesús Pérez-Jiménez

(Sevilla, April 10, 2009)
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Dictionary Search and Update by P Systems with
String-Objects and Active Membranes

Artiom Alhazov2,1, Svetlana Cojocaru1, Ludmila Malahova1,
Yurii Rogozhin3,1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova, Academiei 5, Chişinău MD-2028 Moldova
{artiom,sveta,mal,rogozhin}@math.md

2 IEC, Department of Information Engineering, Graduate School of Engineering
Hiroshima University, Higashi-Hiroshima 739-8527 Japan

3 Rovira i Virgili University, Research Group on Mathematical Linguistics
Pl. Imperial Tàrraco 1, Tarragona 43005 Spain

Summary. Membrane computing is a formal framework of distributed parallel comput-
ing. In this paper we implement working with the prefix tree by P systems with strings
and active membranes.

1 Introduction

Solving most problems of natural language processing is based on using certain
linguistic resources, represented by corpora, lexicons, etc. Usually, these collections
of data constitute an enormous volume of information, so processing them requires
much computational resources. A reasonable approach for obtaining efficient solu-
tion is that based on applying parallelism; it has started to be promoted already
in 1970s. For instance, the possibilities of applying massive parallelism in Machine
Translation are considered in [4, 1]. We mention that many of the stages of text
processing (from tokenization, segmentation, lematizing to those dealing with nat-
ural language understanding) can be carried out by parallel methods. This justifies
the interest to applying methods offered by the biologically inspired models, and
by membrane computing in particular.

However, there are some issues that by their nature do not allow complete
parallelization, yet exactly they are often those “computational primitives” that
are inevitably used during solving major problems, like the elementary arithmetic
operations are always present in solving difficult computational problems. Among
such “primitives” in the computational linguistics there are handling of the dictio-
naries, e.g., dictionary lookup and dictionary completion. Exactly these problems
constitute the subject of the present paper. In our approach we speak about dic-
tionary represented by a prefix tree.
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Membrane systems are a convenient framework of describing computations on
trees. Since membrane systems are an abstraction of living cells, the membranes
are arranged hierarchically, yielding a tree structure.

2 Definitions

Membrane computing is a recent domain of natural computing started by Gh. Păun
in [2]. The components of a membrane system are a cell-like membrane structure, in
the regions of which one places multisets of objects which evolve in a synchronous
maximally parallel manner according to given evolution rules associated with the
membranes. The necessary definitions are given in the following subsection; see
also [3] for an overview of the domain and [5] for the comprehensive bibliography.

2.1 Computing by P systems

Let O be a finite set of elements called symbols; the set of words over O is denoted
by O∗, and the empty word is denoted by λ.

Definition 1. A P system with string-objects and input is a tuple

Π =
(
O, Σ,H, E, µ, M1, · · · ,Mp, R, i0

)
, where:

• O is the working alphabet of the system whose elements are called objects.
• Σ is an input alphabet.
• H is an alphabet whose elements are called labels.
• E is the set of polarizations.
• µ is a membrane structure (a rooted tree) consisting of p membranes injectively

labeled by elements of H.
• Mi is an initial multiset of strings over O associated with membrane i, 1 ≤ i ≤

p.
• R is a finite set of rules defining the behavior of objects from O and membranes

labeled by elements of H.
• i0 identifies the input region.

A configuration of a P system is its “snapshot”, i.e., the current membrane
structure and the multisets of strings of objects present in regions of the system.
While initial configuration is C0 = (µ,M1, · · · ,Mp), each subsequent configuration
C ′ is obtained from the previous configuration C by maximally parallel application
of rules to objects and membranes, denoted by C ⇒ C ′ (no further rules are
applicable together with the rules that transform C into C ′). A computation is
thus a sequence of configurations starting from C0, respecting relation ⇒ and
ending in a halting configuration (i.e., such one that no rules are applicable).

If M is a multiset of strings over the input alphabet Σ ⊆ O, then the initial
configuration of a P system Π with an input M over alphabet Σ and input region
i0 is

(µ,M1, · · · , Mi0−1,Mi0 ∪M, Mi0+1, · · · ,Mp).
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2.2 P systems with active membranes

To speak about P systems with active membranes, we need to specify the rules,
i.e., the elements of the set R in the description of a P system.

Due to the nature of the problem of this paper, the standard model was gen-
eralized in the following:

• Cooperative rules: a rule can consider consecutive symbols in a string (other-
wise, the time complexity would be much higher).

• String replication (to return the result without removing it from the dictio-
nary).

• Membrane creation (to add words to the dictionary).

Hence, the rules can be of the following forms:

(a∗) [ a → b ]e
h,

for h ∈ H, e ∈ E, a, b ∈ O∗

(evolution rules, associated with membranes and depending on the label and
the polarization of the membranes, but not directly involving the membranes,
in the sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(a∗r) [ a → b||c ]e
h
,

for h ∈ H, e ∈ E, a, b, c ∈ O∗

(like the previous case, but with string replication);
(b∗) a[ ]e1

h → [ b ]e2
h ,

for h ∈ H, e1, e2 ∈ E, a, b ∈ O∗

(communication rules; an object is introduced into the membrane; the object
can be modified during this process, as well as the polarization of the membrane
can be modified, but not its label);

(c∗) [ a ]e1
h
→ [ ]e2

h
b,

for h ∈ H, e1, e2 ∈ E, a, b ∈ O∗

(communication rules; an object is sent out of the membrane; the object can
be modified during this process; also the polarization of the membrane can be
modified, but not its label);

(d∗) [ a ]e
h
→ b,

for h ∈ H, e ∈ E, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(g∗) [ a → [ b ]e2
g

]e1
h

,
for g, h ∈ H, e1, e2 ∈ E, a, b ∈ O∗

(membrane creation rules; an object is moved into a newly created membrane
and possibly modified).

Additionally, we will write ∅ in place of some strings on the right-hand side of
the rules, meaning that the entire string is deleted.

The rules of types (a∗), (a∗r) and (g∗) are considered to only involve objects,
while all other rules are assumed to involve objects and membranes mentioned in
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their left-hand side. An application of a rule consists in replacing a substring de-
scribed in the left-hand side of a string in the corresponding region (i.e., associated
to a membrane with label h and polarization e for rules of types (a∗), (a∗r) and
(d∗), or associated to a membrane with label h and polarization e1 for rules of type
(c∗), or immediately outer of such a membrane for rules of type (b∗) ), by a string
described in the right-hand side of the rule, moving the string to the corresponding
region (that can be the same as the source region immediately inner or immedi-
ately outer, depending on the rule type), and updating the membrane structure
accordingly if needed (changing membrane polarization, creating or dissolving a
membrane).

The rules can only be applied simultaneously if they involve different objects
and membranes (we repeat that rules of type (a) are not considered to involve a
membrane), and such parallelism is maximal if no further rules are applicable to
objects and membranes that were not involved.

3 Dictionary

Dictionary search represents computing a string-valued function

{ui −→ vi | 1 ≤ i ≤ d}

defined on a finite set of strings.
We represent such a dictionary by the skin membrane containing the membrane

structure corresponding to the prefix tree of {ui | 1 ≤ i ≤ d}, with strings $vi$′ in
regions corresponding to the nodes associated to ui. Due to technical reasons, we
assume that for every l ∈ A1, the skin contains a membrane with label l. We also
suppose that the source words are non-empty.

For instance, the dictionary {bat −→ flying, bit −→ stored} is represented by

[ [ ]0
a
[ [ [ $flying$′ ]0

t
]0
a
[ [ $stored$′ ]0

t
]0
i

]
b
[ ]0

c
· · · [ ]0

z
]0
0

Let A1, A2 be the alphabets of the source and target languages, respectively.
Consider a P system corresponding to the given dictionary.

Π =
(
O,Σ, H, E, µ, M1, · · · ,Mp, R, i0

)
,

O = A1 ∪A2 ∪ {?, ?′, $, $′, $1, $2, fail} ∪ {?i | 1 ≤ i ≤ 11} ∪ {!i | 1 ≤ i ≤ 4},
Σ = A1 ∪A2 ∪ {?, ?′, !, $, $′},
H = A1 ∪ {0}, E = {0,+,−},
µ and sets Mi, 1 ≤ i ≤ p, are defined as described above,
i0 = 1,

so only the rules and input semantics still have to be defined.
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3.1 Dictionary search

To translate a word u, input the string ?u?′ in region 1. Consider the following
rules.

S1 ?l[ ]0
l
→ [ ? ]0

l
, l ∈ A1

Propagation of the input into the membrane structure, reaching the location cor-
responding to the input word.

S2 [ ??′ ]0
l
→ [ ]−

l
∅, l ∈ A1

Marking the region corresponding to the source word.

S3 [ $ → $1||$2 ]−l , l ∈ A1

Replicating the translation.

S4 [ $2 ]e
l
→ [ ]0

l
$2, l ∈ H, e ∈ {−, 0}

Sending one copy of the translation to the environment.

S5 [ $1 → $ ]0l , l ∈ A1

Keeping the other copy in the dictionary.
The system will send the translation of u in the environment. This is a simple

example illustrating search. If the source word is not in the dictionary, the system
will be blocked without giving an answer. The following subsection shows a solution
to this problem.

3.2 Search with fail

The set of rules below is considerably more involved than the previous one. How-
ever, it handles 3 cases: a) the target word is found, b) the target word is missing
in the target location, c) the target location is unreachable.

F1 [ ? →?1||?2 ]00

Replicate the input.

F2 [ ?2 →?3 ]00
Delay the second copy of the input for one step.

F3 ?1l[ ]0
l
→ [ ?1 ]+

l
, l ∈ A1

Propagation of the first copy towards the target location, changing the polarization
of the entered membrane to +.

F4 ?3l[ ]+l → [ ?3 ]0l , l ∈ A1

Propagation of the second copy towards the target location, restoring the polar-
ization of the entered membrane.
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F5 [ ?1l → [ ?4 ]−
l

]0
k
, l, k ∈ A1

If a membrane corresponding to some symbol of the source word is missing, then
the first copy of the input remains in the same membrane, while the second copy
of the input restores its polarization. Creating a membrane to handle the failure.

F6 [ ?1?′ →?7 ]0
l
, l ∈ A1

Target location found, marking the first input copy.

F7 [ ?7 ]0
l
→ [ ]−

l
∅, l ∈ A1

Marking the target location.
In either case, some membrane has polarization −. It remains to send the

answer out, or fail if it is absent. The membrane should be deleted in the fail case.

F8 [ $ → $1||$2 ]−l , l ∈ A1

Replicating the translation.

F9 [ $2 ]e
l
→ [ ]0

l
$2, l ∈ H, e ∈ {0,−}

Sending one copy of the translation out.

F10 [ $1 → $ ]0
l
, l ∈ A1

Keeping the other copy in the dictionary.

F11 [ ?3 →?5 ]−l , l ∈ A1

The second copy of input will check if the translation is available in the current
region.

F12 ?3l[ ]−
l
→ [ ?5 ]−

l
, l ∈ A1

The second copy of input enters the auxiliary membrane with polarization −.

By now the second copy of the input is in the region corresponding to either
the search word, or to its maximal prefix plus one letter (auxiliary one).

F13 [ ?5 →?6 ]−
l

, l ∈ A1

It waits for one step.

F14 [ ?6 → ∅ ]0
l
, l ∈ A1

If the target word has been found, the second copy of the input is erased.

F15 [ ?6 ]−l → [ ]0l ?8, l ∈ A1

If not, the search fails.

F16 [ ?8 ]0l → [ ]0l ?8, l ∈ A1

Sending the fail notification to the skin.

F17 [ ?8l →?8 ]0
0
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Erasing the remaining part of the source word.

F18 [ ?8?′ ]0
l
→ [ ]0

l
fail

Answering fail.

F19 [ ?4 →?9 ]−l , l ∈ A1

F20 [ ?9 →?10 ]−
l

, l ∈ A1

F21 [ ?10 →?11 ]−
l

, l ∈ A1

If the target location was not found, the first input copy waits for 3 steps while
the membrane with polarization − handles the second input copy.

F22 [ ?11 ]0
l
→ ∅, l ∈ A1

Erasing the auxiliary membrane.

3.3 Dictionary update

To add a pair of words u −→ v to the dictionary, input the string !u$v$′ in region
1. Consider the following rules.

U1 [ ! →!1||!2 ]00
Replicate the input.

U2 [ !2 →!3 ]0
0

Delay the second copy of the input for one step.

U3 !1l[ ]0l → [ !1 ]+l , l ∈ A1

Propagation of the first copy towards the target location, changing the polarization
of the entered membrane to +.

U4 !3l[ ]+
l
→ [ !3 ]0

l
, l ∈ A1

Propagation of the second copy towards the target location, restoring the polar-
ization of the entered membrane.

U5 [ !1 →!4 ]0
l
, l ∈ A1

If a membrane corresponding to some symbol of the source word is missing, then
the first copy of the input remains in the same membrane, while the second copy of
the input restores its polarization. Marking the fist copy of the input for creation
of missing membranes.

U6 [ !4l → [ !4 ]+
l

]0
k
, l, k ∈ A1

Creating missing membranes.

U7 [ !4$ → $ ]0l , l ∈ A1
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Releasing the target word in the corresponding location.

U8 [ !3$ → ∅ ]0
l
, l ∈ A1

Erasing the second copy of the input.

We underline that the constructions presented above also hold in a more gen-
eral case, i.e., when the dictionary is a multi-valued function. Indeed, multiple
translations can be added to the dictionary as multiple strings in the region as-
sociated to the input word. The search for a word with multiple translations will
lead to all translations sent to the environment. The price to pay is that the con-
struction is no longer deterministic, since the order of application of rules S4 or
F9 to different translations is arbitrary. Nevertheless, the constructions remain
“deterministic modulo the order in which the translations are sent out”.

4 Discussion

In this paper we presented the algorithms of searching in a dictionary and com-
pleting it implemented as membrane systems. We underline that the systems are
constructed as reusable modules, so they are suitable for using as sub-algorithms
for solving more complicated problems.

The scope of handling dictionaries is not limited to the dictionaries in the clas-
sical sense. Understanding a dictionary as introduced in Section 3, i.e., a string-
valued function defined on a finite set of strings, leads to direct applicability of
the proposed methods to handle alphabets, lexicons, thesaura, dictionaries of ex-
ceptions, and even databases.
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Academiei 5, Chişinău MD-2028 Moldova
{artiom,rogozhin}@math.md
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Summary. In this paper we consider insertion-deletion P systems with priority of dele-
tion over the insertion. We show that such systems with one symbol context-free insertion
and deletion rules are able to generate PsRE. If one-symbol one-sided context is added
to insertion or deletion rules but no priority is considered, then all recursively enumer-
able languages can be generated. The same result holds if a deletion of two symbols is
permitted. We also show that the priority relation is very important and in its absence
the corresponding class of P systems is strictly included in MAT .

1 Introduction

The operations of insertion and deletion are fundamental in formal language the-
ory, and generative mechanisms based on them were considered (with linguistic
motivation) for some time, see [14] and [6]. Related formal language investigations
can be found in several places; we mention only [8], [10], [16], [19]. In the last
years, the study of these operations has received a new motivation from molecular
computing, see [3], [9], [21], [23], [15].

In general form, an insertion operation means adding a substring to a given
string in a specified (left and right) context, while a deletion operation means
removing a substring of a given string from a specified (left and right) context.
A finite set of insertion-deletion rules, together with a set of axioms provide a
language generating device: starting from the set of initial strings and iterating
insertion-deletion operations as defined by the given rules we get a language. The
number of axioms, the length of the inserted or deleted strings, as well as the
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length of the contexts where these operations take place are natural descriptional
complexity measures in this framework. As expected, insertion and deletion op-
erations with context dependence are very powerful, leading to characterizations
of recursively enumerable languages. Most of the papers mentioned above contain
such results, in many cases improving the complexity of insertion-deletion systems
previously available in the literature.

Some combinations of parameters lead to systems which are not computa-
tionally complete [17], [11] or even decidable [24]. However, if these systems are
combined with the distributed computing framework of P systems [20], then their
computational power may strictly increase, see [12], [13].

In this paper we study P systems with insertion and deletion rules of one
symbol without context. We show that this family is strictly included in MAT ,
however some non-context-free languages may be generated. If Parikh vectors are
considered, then the corresponding family equals to PsMAT . When a priority of
deletion over insertion is introduced, PsRE can be characterized, but in terms
of language generation such systems cannot generate a lot of languages because
there is no control on the position of an inserted symbol. If one-sided contextual
insertion or deletion rules are used, then this can be controlled and all recursively
enumerable languages can be generated. The same result holds if a context-free
deletion of two symbols is allowed.

2 Definitions

All formal language notions and notations we use here are elementary and stan-
dard. The reader can consult any of the many monographs in this area – for
instance, [22] – for the unexplained details.

We denote by |w| the length of a word w and by |w|a the number of occurrences
of symbol a in w. For a word w ∈ V ∗ we denote by ∆(w) all words w′ having the
same number of letters as w, ∆(w) = {w′ |, |w′|a = |w|a for all a ∈ V } and we
denote by t⊥ the binary shuffle operation. By card(V ) we denote the cardinality
of the set V .

An InsDel system is a construct ID = (V, T, A, I,D), where V is an alphabet,
T ⊆ V , A is a finite language over V , and I,D are finite sets of triples of the form
(u, α, v), α 6= λ, where u and v are strings over V and λ denotes the empty string.
The elements of T are terminal symbols (in contrast, those of V − T are called
nonterminals), those of A are axioms, the triples in I are insertion rules, and those
from D are deletion rules. An insertion rule (u, α, v) ∈ I indicates that the string
α can be inserted in between u and v, while a deletion rule (u, α, v) ∈ D indicates
that α can be removed from the context (u, v). As stated otherwise, (u, α, v) ∈ I
corresponds to the rewriting rule uv → uαv, and (u, α, v) ∈ D corresponds to the
rewriting rule uαv → uv. We refer by =⇒ to the relation defined by an insertion
or deletion rule.

The language L(ID) generated by ID is defined as {w ∈ T ∗ | A 3 x =⇒∗ w}.
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The complexity of an InsDel system ID = (V, T,A, I,D) is described by the
vector (n,m, m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},
m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},
m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.

We also denote by INSm,m′
n DELq,q′

p corresponding families of languages. Tradi-
tionally, in the literature, instead of pairs m/m′ and q/q′ the maximum of both
numbers is used. However, such a complexity measure is not accurate and it can-
not distinguish between universality and non-universality cases, see [24] and [11].
If some of the parameters n, m,m′, p, q, q′ is not specified, then we write symbol ∗
instead. For example, INS0,0

∗ DEL0,0
∗ denotes the family of languages generated

by context-free InsDel systems. InsDel systems of a “sufficiently large” size char-
acterize RE, the family of recursively enumerable languages.

Now we present a definition of insertion-deletion P systems. The insertion-
deletion tissue P systems are defined in an analogous manner.

An insertion-deletion P system is a construct

Π = (O, T, µ,M1, · · · ,Mn, R1, · · · , Rn), where
• O is a finite alphabet,
• T ⊆ O is the terminal alphabet,
• µ is the membrane (tree) structure of the system which has n membranes

(nodes) and it can be represented by a word over the alphabet of correctly
nested marked parentheses,

• Mi, for each 1 ≤ i ≤ n, is a finite language associated to the membrane i,
• Ri, for each 1 ≤ i ≤ n, is a set of insertion and deletion rules with target

indicators associated to region i, of the following forms: (u, x, v; tar)a, where
(u, x, v) is an insertion rule, and (u, x, v; tar)e, where (u, x, v) is a deletion rule,
and the target indicator tar is from the set {here, inj , out | 1 ≤ j ≤ n}.

An n-tuple (N1, · · · , Nn) of finite languages over O is called a configuration of Π.
The transition between the configurations consists in applying the insertion and
deletion rules in parallel to all possible strings, non-deterministically, and following
the target indications associated with the rules.

A sequence of transitions between configurations of a given insertion-deletion
P system Π starting from the initial configuration is called a computation with
respect to Π. We say that Π generates L(Π), the result of its computations. It
consists of all strings over T ever sent out of the system during its computations.

We denote by ELSPk(insm,m′
p , delq,q′

p ) the family of languages L(Π) generated
by insertion-deletion P systems with at most k ≥ 1 membranes and insertion and
deletion rules of size at most (n,m, m′; p, q, q′). We omit the letter E if T =
O. In this paper we also consider insertion-deletion P systems where deletion
rules have a priority over insertion rules; the corresponding class is denoted as
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(E)LSPk(insm,m′
p < delq,q′

p ). Letter ”t” is inserted before P to denote classes for
the tissue case, e.g., ELStPk(insm,m′

p , delq,q′
p ).

A register machine (introduced in [18], see also [4]) is a construct

M = (d,Q, q0, h, P ), where
• d is the number of registers,
• Q is a finite set of bijective labels of instructions of P ,
• q0 ∈ Q is the initial label,
• h ∈ Q is the halting label, and
• P is the set of instructions of the following forms:

1. p : (ADD(k), q, s), with p, q, s ∈ Q, 1 ≤ k ≤ d (“increment” -instruction). Add
1 to register k and go to one of the instructions with labels q, s.

2. p : (SUB(k), q, s), with p, q, s ∈ Q, 1 ≤ k ≤ d (“decrement” -instruction).
Subtract 1 from the positive value of register k and go to the instruction with
label q, otherwise (if it is zero) go to the instruction with label s.

3. h : HALT (the halt instruction). Stop the computation of the machine.

For generating languages over T , we use the model of a register machine with
output tape (introduced in [18], see also [1]), which also uses a tape operation:

4. p : (WRITE(A), q), with p, q ∈ Q, A ∈ T .

The configuration of a register machine is (q, n1, · · · , nd), where q ∈ Q, ni ≥ 0,
1 ≤ i ≤ d. A register machine generates an m-dimensional vector as follows:
let the first m registers be output registers, and the computation starts from
(q0, 0, · · · , 0); if the configuration (h, n1, · · · , nd) is reached, then the resulting
vector is (n1, · · · , nm). Without restricting generality we assume (nm+1, · · · , nd)
= (0, · · · , 0). The set of all vectors generated in this way by M is denoted by
Ps(M). It is known (e.g., see [18], [25]) that register machines generate PsRE. If
the WRITE instruction is used, then RE can be generated.

In the case when a register machine cannot check whether a register is empty
we say that it is partially blind; the second type of instructions is then written as
p : (SUB(k), q) and the transition is undefined if register k is zero.

The word “partially” stands for an implicit test for zero at the end of a (suc-
cessful) computation: counters m + 1, · · · , d should be empty. It is known, [4],
that partially blind register machines generate exactly PsMAT (Parikh sets of
languages of matrix grammars without appearance checking).

3 Minimal Context-free Insertion-Deletion P Systems

It has been shown, [24], that systems in INS0,0
1 DEL0,0

∗ only generate strings
obtained by inserting any number of specific symbols anywhere in words of a finite
language; this is included in the regular languages family; strictly as, e.g., for
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L = {a∗b∗} the system has no control on the place of insertion or deletion in the
string and the initial language is finite. Therefore, INS0,0

1 DEL0,0
1 ⊂ REG.

When a membrane structure is added to minimal insertion-deletion systems
without context, their computational power is increased.

Theorem 1. PsStP∗(ins0,0
1 , del0,0

1 ) = PsMAT .

Proof. It is not difficult to see that dropping the requirement of the uniqueness of
the instructions with the same label, the power of partially blind register machines
does not change, see, e.g., [4]. We use this fact for the proof.

The inclusion PsStP∗(ins0,0
1 , del0,0

1 ) ⊆ PsMAT follows from the simulation
of minimal context-free insertion-deletion P systems by partially blind regis-
ter machines, which are known to characterize PsMAT [4]. Indeed, any rule
(λ, a, λ; q)a ∈ Rp is simulated by instructions p : (ADD(a), q). Similarly, rule
(λ, a, λ; q)e ∈ Rp is simulated by instructions p : (SUB(a), q).

The output region i0 is associated to the final state, while the halting is rep-
resented by absence of the corresponding symbols (final zero-test) as follows. We
assume that Ri0 has no insertion rules (∅ can be generated by a trivial partially
blind register machine), and the output registers correspond to those symbols that
cannot be deleted by rules from Ri0 .

The converse inclusion follows from the simulation of partially blind register
machines by P systems. Indeed, with every instruction p of the register machine we
associate a cell. Instruction p : (ADD(Ak), q) is simulated by rule (λ,Ak, λ; q)a ∈
Rp, and instruction p : (SUB(Ak), q) by (λ,Ak, λ; q)e ∈ Rp. Final zero-tests: rules
(λ,Ak, λ; #)e ∈ Rh, k ≥ m, should be inapplicable (R# = ∅).
As the membrane structure is a tree, one-way inclusion follows.

Corollary 1. PsSP∗(ins0,0
1 , del0,0

1 ) ⊆ PsMAT .

In terms of the generated language the above systems are not too powerful, even
with priorities. Like in the case of insertion-deletion systems there is no control
on the position of insertion. Hence, the language L = {a∗b∗} cannot be generated,
for insertion strings of any size. Hence we obtain:

Theorem 2. REG\LStP∗(ins0,0
n < del0,0

1 ) 6= ∅, for any n > 0.

However, there are non-context-free languages that can be generated by such P
systems (even without priorities and deletion).

Theorem 3. LStP∗(ins0,0
1 , del0,0

0 ) \ CF 6= ∅.
Proof. It is easy to see that the language {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c} is
generated by such a system with 3 nodes, inserting consecutively a, b and c.

For the tree case the language {w ∈ {a, b}∗ | |w|a = |w|b} can be generated in a
similar manner.

We show a more general inclusion:



14 A. Alhazov et al.

Theorem 4. ELStP∗(ins0,0
n , del0,0

1 ) ⊂ MAT , for any n > 0.

Proof. As in [11] we can suppose that there are no deletions of terminal symbols.
We also suppose that there is only one initial string in the system, because there is
no interaction between different evolving strings and the result matches the union
of results for the systems with only one string. Consider a tissue P system Π with
alphabet O, terminal symbols T , the set H of unique cell labels and the initial
string w in cell labeled p0. Such a system can be simulated by the following matrix
grammar G = (O ∪H,T, S, P ).

For insertion instruction (λ, a1 · · · an, λ; q)a in cell p, the matrix (p → q,D →
Da1D · · ·DanD) ∈ P . For any deletion instruction (λ,A, λ; q)e in cell p, the matrix
(p → q, A → λ) ∈ P . Three additional matrices (h → λ), (D → λ) and (S →
q0Da1D · · ·DamD) (w = a1 · · · am) shall be also added to P .

The above construction correctly simulates the system Π. Indeed, symbols
D represent placeholders for all possible insertions. The first rule in the matrix
permits simulates the navigation between cells.

Nevertheless, minimal context-free insertion-deletion systems with priorities do
generate PsRE. This is especially clear for the tissue P systems: jumping to an
instruction corresponds to sending a string to the associated region, and the en-
tire construction is a composition of graphs shown in Figure 1. The decrement
instruction works correctly because of priority of deletion over insertion.

/.-,()*+
p

(λ,Ak,λ;q)a //

(λ,Ak,λ;r)a

²²

/.-,()*+
q

/.-,()*+
r

/.-,()*+
p

(λ,Ak,λ;q)e //

(λ,N,λ;p′)a

²²

/.-,()*+
q

/.-,()*+
p′

(λ,N,λ;r)e ///.-,()*+
r

Fig. 1. Simulating p : (ADD(k), q, r) (left) and p : (SUB(k), q, r) (right).

We now give a more sophisticated proof for the tree-like membrane structure.

Theorem 5. PsSP∗(ins0,0
1 < del0,0

1 ) = PsRE.

Proof. The proof is done by showing that for any register machine M = (n, Q, q0,
h, P ) there is a P system Π ∈ PsSP∗(ins0,0

1 < del0,0
1 ) with Ps(M) = Ps(Π), and

the result follows from the existence of register machines generating PsRE.
Let Q+ (Q−) be the sets of labels of increment (conditional decrement, respec-

tively) instructions of a register machine, and let Q = Q+ ∪ Q− ∪ {h} represent
all labels. Consider a P system with alphabet Q ∪ {Ai | 1 ≤ i ≤ d} ∪ {Y } and the
following structure (illustrated in Figure 2)

µ = [ [ [
∏

p∈Q+

µ〈p+〉
∏

p∈Q−

µ〈p−〉 ]
3

]
2

]
1
, where

µ〈p+〉 = [ [ [ ]p+
3

]p+
2

]p+
1

, p− increment,

µ〈p−〉 = [ [ [ ]
p−3

]
p−2

[ [ ]
p0
3

]
p0
2

]
p−1

, p− conditional decrement.
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/.-,()*+
1

/.-,()*+
2

LLLLLL

for every p ∈ Q+
/.-,()*+

3
iiiiiiiiiiii

UUUUUUUUUUUUU /.-,()*+
4

for every p ∈ Q−

/.-,()*+
p+
1

/.-,()*+
p−1

UUUUUUUUUUUU

/.-,()*+
p+
2

/.-,()*+
p−2

/.-,()*+
p0
2

/.-,()*+
p+
3

/.-,()*+
p−3

/.-,()*+
p0
3

_ _ _ _Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â

_ _ _ _

_ _ _ _ _ _ _ _ _ _Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â

_ _ _ _ _ _ _ _ _ _

Fig. 2. Membrane structure for Theorem 5. The structures in the dashed rectangles are
repeated for every instruction of the register machine.

Initially there is a single string q0 in membrane 3. The rules are the following.

R1 = { 1 :(λ, Y, λ; out)e},
R2 = { 2.1 :(λ, Y, λ; out)a, 2.2 :(λ, Y, λ; in4)e},
R3 = { 3.1 :(λ, p, λ; in

p+
1
)e | p ∈ Q+}∪ {3.2 :(λ, p, λ; in

p−1
)e | p ∈ Q−}

∪ { 3.3 :(λ, Y, λ; here)e, 3.4 :(λ, h, λ; out)e},
For any instruction p : (ADD(k), q, s), Rp+

3
= ∅ and

R
p+
1

= { a.1.1 :(λ, Ak, λ; in
p+
2
)a, a.1.2 :(λ, Y, λ; out)a},

R
p+
2

= { a.2.1 :(λ, q, λ; out)a, a.2.1′ :(λ, s, λ; out)a,

a.2.2 :(λ, q, λ; in
p+
3
)e, a.2.2′ :(λ, s, λ; in

p+
3
)e},

For any instruction p : (SUB(k), q, s), Rp−3
= Rp0

3
= ∅ and

R
p−1

= { e.1.1 :(λ, Ak, λ; in
p−2

)e, e.1.2 :(λ, Y, λ; in
p−2

)a, e.1.3 :(λ, Y, λ; out)e},
R

p−2
= { e.2.1 :(λ, q, λ; out)a, e.2.2 :(λ, q, λ; in

p−3
)e,

e.2.3 :(λ, s, λ; in
p−3

)e, e.2.4 :(λ, Y, λ; here)a},
Rp0

2
= { e.3.1 :(λ, s, λ; out)a, e.3.2 :(λ, q, λ; inp0

3
)e, e.3.3 :(λ, s, λ; inp0

3
)e}.

Configurations (p, x1, · · · , xn) of M are encoded by strings ∆(pAx1
1 · · ·Axn

n Y t),
t ≥ 0, in membrane 3. We say that such strings have a simulating form. Clearly,
in the initial configuration the string is already in the simulating form.

To prove that system Π correctly simulates M we prove the following claims:

1. For any transition (p, x1, · · · , xn) =⇒ (q, x′1, · · · , x′n) in M there exists a com-
putation in Π from the configuration containing ∆(pAx1

1 · · ·Axn
n Y t) in mem-

brane 3 to the configuration containing ∆(qAx′1
1 · · ·Ax′n

n Y t′), t′ ≥ 0, in mem-
brane 3 such that during this computation membrane 3 is empty in all inter-
mediate steps and, moreover, this computation is unique.
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2. For any successful computation in Π (yielding a non-empty result), mem-
brane 3 contains only strings of the above form.

3. The result (x1, · · · , xn) in Π is obtained if and only if a string of form
∆(hAx1

1 · · ·Axn
n ) appears in membrane 3.

Now we prove each claim from above. Consider a string ∆(pAx1
1 · · ·Axn

n Y t),
t ≥ 0, in membrane 3 of Π. Take an instruction p : (ADD(k), q, s) ∈ P .
The only applicable rule in Π is from group 3.1 (in the future we simply say
rule 3.1) yielding the string ∆(Ax1

1 · · ·Axn
n Y t) in membrane p+

1 . After that rule
a.1.1 is applied yielding string ∆(Ax1

1 · · ·Axk+1
k · · ·Axn

n Y t) in membrane p+
2 . After

that one of rules a.2.1 or a.2.1′ is applied; then rule a.1.2 yields one of strings
∆(zAx1

1 · · ·Axk+1
k · · ·Axn

n Y t+1), z ∈ {q, s}, which is in the simulating form.
Now suppose that there is an instruction p : (SUB(k), q, s) ∈ P . Then the

only applicable rule in Π is 3.2 which yields the string ∆(Ax1
1 · · ·Axn

n Y t) in mem-
brane p−1 . Now if xk > 0, then, due to the priority, rule e.1.1 will be applied
followed by application of rules e.2.4, e.2.1 and e.1.3 which yields the string
∆(qAx1

1 · · ·Axk−1
k · · ·Axn

n Y t′) that is in the simulating form. If xk = 0, then rule
e.1.2 will be applied (provided that all symbols Y were previously deleted by rule
3.3), followed by rules e.3.1 and e.1.3 which leads to the string ∆(sAx1

1 · · ·Axn
n )

that is in the simulating form.
To show that membrane 3 is empty during the intermediate steps, we prove

the following invariant:

Invariant 1 During a successful computation, any visited membrane p+
1 or p−1 is

visited an even number of times as follows: first a string coming from membrane 3
is sent to an inner membrane (p+

2 , p−2 or p0
2) and after that a string coming from

an inner membrane is sent to membrane 3.

Indeed, since there is only one string in the initial configuration, it is enough to
follow only its evolution. Hence, a string may visit the node p+

1 or p−1 only if in the
previous step symbol p was deleted by one of rules 3.1 or 3.2. If one of rules a.1.2 or
e.1.3 is applied, then membrane 3 will contain a string of form ∆(Ax1

1 · · ·Axn
n Y t)

which cannot evolve anymore because all rules in membrane 3 imply the presence
of a symbol from the set Q. Hence, the string is sent to an inner membrane. In
the next step the string will return from the inner membrane by one of rules
a.2.1, a.2.1′, e.2.1 or e.3.1 inserting a symbol from Q. If the string enters an inner
membrane again, then it will be sent to a trap membrane (p+

3 , p−3 or p0
3) by rules

deleting symbols from Q. Hence the only possibility is to go to membrane 3 (a
string that visited membrane p−2 will additionally use rule e.2.4).

For the second claim, it suffices to observe that the invariant above ensures
that in membrane 3 only one symbol from Q can be present in the string.

The third claim holds since a string may move to membrane 2 if and only if
the final label h of M appears in membrane 3. Then, the string is checked for
the absence of symbols Y by rule 2.2 (note that symbols Y can be erased in
membrane 3 by rule 3.3) and sent to the environment by rules 2.1 and 1.
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By induction on the number of computational steps we obtain that Π simulates
any computation in M . Claim 1 and 2 imply it is not possible to generate other
strings and Claim 3 implies that the same result is obtained.

We remark that an empty string may be obtained during the proof. This string
can still evolve using insertion rules. If we would like to forbid such evolutions,
it suffices to use a new symbol, e.g., X, in the initial configuration, add new
surrounding membrane and a rule that deletes X from it.

4 Small Contextual Insertion-Deletion P Systems

Although Theorem 5 shows that the systems from the previous section are quite
powerful, they cannot generate RE without control on the place where a symbol
is inserted. Once we allow a context in insertion and deletion rules, they can.

Theorem 6. LSP (ins0,1
1 < del0,0

1 ) = RE.

Proof. We simulate a register machine with WRITE instructions. We implement
this instruction as an ADD instruction, except the added symbol has to be inserted
to the left of a special marker, deleted at the end, as follows:

• Replace any writing instruction p : (WRITE(A), q, s), A ∈ T , of the machine
by instructions p : (ADD(A), q, s), considering output symbols A like new
dummy registers. Construct the system Π as in Theorem 5.

• Change the initial string in membrane 3 to q0M ;
• Replace rules a.1.1 ((λ,A, λ; inp+

2
)a ∈ Rp+

1
) by (λ,A,M ; inp+

2
)a for A ∈ T ;

• Surround membrane 1 by a new skin membrane s and add to it the following
rule Rs = {(λ,M, λ; out)e}.

It is easy to see that the above construction permits to correctly simulate the
register machine with writing instructions.

Taking M in the left context yields the mirror language. Since RE is closed with
respect to the mirror operation we get the following corollary:

Corollary 2. LSP (ins1,0
1 < del0,0

1 ) = RE.

A similar result holds if contextual deleting operation is allowed.

Theorem 7. LSP∗(ins0,0
1 < del1,0

1 ) = RE.

Proof. As in Theorem 6, we use the construction from Theorem 5. However, an
additional membrane is needed to simulate the writing instructions.

We modify the construction of Theorem 5 as follows. Let Qs be the set of labels
of WRITE instructions of a register machine. We add the following substructures
µ〈ps〉 inside membrane 3 (shown in Figure 3):
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µ = [ [ [
∏

p∈Q+

µ〈p+〉
∏

p∈Q−

µ〈p−〉
∏

p∈Qs

µ〈ps〉 ]
3

]
2

]
1
, where

µ〈p+〉, µ〈p−〉 are defined as in Theorem 5 and,

µ〈ps〉 = [ [ [ [ [ ]ps
7

]ps
4
[ ]ps

6
]ps

3
[ ]ps

5
]ps

2
]ps

1
.

/.-,()*+
3

VVVVVVVVVVVVV

/.-,()*+
ps
1

/.-,()*+
ps
2

qqqqqq

/.-,()*+
p−5

/.-,()*+
ps
3

qqqqqq

/.-,()*+
p−6

/.-,()*+
ps
4

qqqqqq

/.-,()*+
ps
7

_ _ _ _ _Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

_ _ _ _ _

structure
µ from

Theorem 5

Fig. 3. Membrane structure for Theorem 7.

As in Theorem 5 the initial configuration contains a single string q0 in region 3.
The system contains sets of rules R1, R2, Rp+

1
, Rp+

2
, Rp+

3
, Rp−1

, Rp−2
, Rp−3

, Rp0
2
, Rp0

3

defined as in Theorem 5. There are also following additional rules for instructions
p : (WRITE(A), q) (the ruleset R′3 shall be added to R3).

R′3 = { 3.5 :(λ, p, λ; inps
1
)e | p ∈ Qs},

Rps
1

= { w.1.1 :(λ, M, λ; inps
2
)a, w.1.2 :(λ, M, λ; out)e},

Rps
2

= { w.2.1 :(λ, M ′, λ; inps
3
)a, w.2.2 :(λ, M ′, λ; out)e}

∪ { w.2.3 :(M, x, λ; inps
5
)e | x ∈ O},

Rps
3

= { w.3.1 :(λ, A, λ; inps
4
)a, w.3.2 :(λ, Y, λ; out)a}

∪ { w.3.3 :(x, M, λ; inps
6
)e | x ∈ O \ {M ′, q}},

Rps
4

= { w.4.1 :(λ, q, λ; out)a, w.4.2 :(M ′, M, λ; inps
7
)e},

Rps
5

= ∅, Rps
6

= ∅, Rps
7

= ∅.

We simulate the WRITE instruction as follows. Suppose the configuration of
register machine is pAx1

1 · · ·Axd

d and the word a1 · · · an is written on the output
tape. The corresponding simulating string in Π will be of form p∆w, where w =
∆(Ax1

1 · · ·Axd

d Y t) t⊥ a1 · · · an, t ≥ 0. After the deletion of the state symbol p, a
marker M is inserted in the string by rule w.1.1. If M is not inserted at the right
end of the string, in the next step rule w.2.3 is applicable and the string enters the
trap membrane ps

5. In the next step symbol M ′ is inserted in the string. If it is not
inserted before M , then the string is sent to membrane ps

6 by rule w.3.3. Hence, at
this moment the contents of membrane ps

3 is wM ′M . If rule w.3.2 is used, then the
string Y t⊥ w reaches membrane 3 and no rule is applicable anymore. Otherwise,
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symbol A is inserted by rule w.3.1. If it is not between M ′ and M , then rule w.4.2
is applicable and the string enters membrane ps

7. After that q is inserted between
A and M , otherwise the trapping rule w.3.3 is applicable. At this moment, the
configuration of the system consists of the string wtM

′AqM in membrane ps
3. Now

if the rule w.3.1 is used, then the string is sent to the trap membrane by rule
w.4.1. Otherwise, rule w.3.2 should be used followed by the application of rules
w.2.2 and w.1.2, leading to string Y t⊥ wAq in membrane 3. Hence, the symbol A
is appended at the end of the string. At the end of the computation, all symbols
from O − T are deleted and a word generated by M is obtained.

Since RE is closed with respect to the mirror operation we obtain:

Corollary 3. LSP (ins0,0
1 < del0,1

1 ) = RE.

We remark that the contextual deletion was used only to check for erroneous
evolutions. Therefore we can replace it by a context-free deletion of two symbols.

Theorem 8. LSP∗(ins0,0
1 < del0,0

2 ) = RE.

Proof. We modify the proof of Theorem 7 as follows.

• Replace rules w.2.3 ((M, x, λ; inps
5
)e ∈ Rps

2
) by rules (λ,Mx, λ; inps

5
)e,

• Replace rules w.3.3 ((M, x, λ; inps
6
)e ∈ Rps

3
) by rules (λ, xM, λ; inps

6
)e,

• Replace rules w.4.2 ((M ′,M, λ; inps
7
)e ∈ Rps

4
) by rules (λ,M ′M, λ; inps

7
)e.

The role of the new rules is the same as the role of the rules that were replaced.
More exactly, the system checks whether two certain symbols are consecutive and
if so, the string is blocked in a non-output region.

We mention that the counterpart of Theorem 8 obtained by interchanging para-
meters insertion and deletion rules is not true, see Theorem 2.

5 Conclusions

We showed several results concerning P systems with insertion and deletion rules
of small size. Surprisingly, systems with context-free rules inserting and deleting
only one symbol are quite powerful and generate PsRE if the priority of deletion
over insertion is used. From the language generation viewpoint such systems are
not too powerful and no language specifying the order of symbols can be generated.
To be able to generate more complicated languages we considered systems with
one-symbol one-sided insertion or deletion contexts. In both cases we obtained
that any recursively enumerable language can be generated. The same result holds
if a context-free deletion of two symbols is allowed. The counterpart of the last
result is not true, moreover Theorem 2 shows that the insertion of strings of an
arbitrary size still cannot lead to generating languages like a∗b∗.

We also have considered one-symbol context-free insertion-deletion P systems
without the priority relations and we showed that in terms of Parikh sets these
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systems characterize the PsMAT family. However, in terms of the generated lan-
guage such systems are strictly included in MAT .

Most of results above were obtained using rules with target indicators. It is
interesting to investigate the computational power of systems with non-specific
target indicators in or go. Another open problem is to replace the priority relation
by some other mechanism without decreasing the computational power.
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9. L. Kari, Gh. Păun, G. Thierrin, S. Yu: At the crossroads of DNA computing and
formal languages: Characterizing RE using insertion-deletion systems. Proc. DNA
Based Computers, 1997, Philadelphia, 318–333.

10. L. Kari, G. Thierrin: Contextual insertion/deletion and computability. Information
and Computation, 131, 1 (1996), 47–61.



P Systems with Minimal Insertion and Deletion 21

11. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: Further results on insertion-deletion sys-
tems with one-sided contexts. Proc. LATA 2008, LNCS 5196, Springer, 2008, 347–
358.

12. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: One-sided insertion and deletion: Tradi-
tional and P systems case. Proc. CBM 2008, Vienna, 53–64.

13. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: Computational power of P systems with
small size insertion and deletion rules. Proc. CSP 2008, Cork, 137–148.

14. S. Marcus: Contextual grammars. Rev. Roum. Math. Pures Appl., 14 (1969), 1525–
1534.
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Summary. Membrane computing is a formal framework of distributed parallel comput-
ing. In this paper we study the reversibility and maximal parallelism of P systems from
the computability point of view. The notions of reversible and strongly reversible systems
are considered. The universality is shown for one class and a negative conjecture is stated
for a more restricted class of reversible P systems. For one class of strongly reversible P
systems, a very strong limitation is found, and it is shown that this limitation does not
hold for a less restricted class.

1 Introduction

Reversibility is an important property of computational systems. It has been well
studied for circuits of logical elements ([3]), circuits of memory elements ([7]), cellu-
lar automata ([8]), Turing machines ([1], [10]), register machines ([6]). Reversibility
as a syntactical property is closely related to the microscopic reversibility, so it
implies that the computation does not increase the entropy of the system, which
in turn assume better miniaturization possibilities for potential implementation.

A slightly different view on reversible systems is given for type-0 grammars
([9]). The so-called uniquely parsable grammars are studied. In very simple words,
this property (still being syntactical) implies that the generation of any word in
the language is unique (modulo the order of applying the rules in case when the
composition of applying them is commutative). The advantage of having such a
property is that it is easier to analyze their behavior.

Clearly, this reason remains valid even if the property of reversibility becomes
undecidable (just like the property of determinism in certain membrane systems).
Moreover, reversibility essentially is backward determinism. Reversible P systems
already were considered ([4]), but the model is energy-based (so the parallelism
is invariant-driven rather than maximal) and the main result is the simulation of
the Fredkin gate (so construction of a universal system in this way would use an
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infinite structure). In this paper we focus on the interplay between reversibility
and maximal parallelism, from the viewpoint of computability.

2 Definitions

In this paper we illustrate the reversibility concepts on P systems with sym-
port/antiport and one membrane, sometimes with inhibitors or priorities. For
simplicity, we also assume that the environment contains an unbounded supply
of all objects. The system thus can be defined by the alphabet, the initial multi-
set, the set of rules associated to the membrane, and the set of terminal objects.
Throughout this paper we represent multisets by strings. We write an antiport
rule sending a multiset x out and bringing a multiset y in as x/y, and the symport
case corresponds to y = λ. If a rule has inhibitor a, we write it as x/y|¬a. The
priority relationship is denoted by >. It is not difficult to generalize the definitions
for the models with multiple membranes and changing membrane structure, but
it is not important here.

Consider a P system Π with alphabet O. In our setting, a configuration is de-
fined by the multiset of objects inside the membrane, represented by some string
u ∈ O∗. The space C of configurations is essentially |O|-dimensional space with
non-negative integer coordinates. We use the usual definitions of maximally par-
allel transition ([11]). It induces an infinite graph of C. Notice that the halting
configurations (and only them) have out-degree zero.

We call Π strongly reversible if every configuration has in-degree at most
one. We call Π reversible if every reachable configuration has in-degree at most
one.

A property equivalent to reversibility is determinism of a dual P system ([2]).
The result of a halting computation is the number of terminal objects inside

the membrane when the system halts. The set N(Π) of numbers generated by a
P system Π is the set of results of all its computations. The family of number
sets generated by reversible P systems with features α is denoted by NrOP1(α)T ,
where α ⊆ {sym∗, anti∗, inh, Pri} and the braces of the set notation are omitted.
Subscript T means that only terminal objects contribute to the result of compu-
tations; if T = O, we may omit specifying it in the description and we then also
omit the subscript T in the notation. To bound the weight (i.e., maximal number
of objects sent in a direction) of symport or antiport rule, associated ∗ is replaced
by the actual number. For strong reversible systems, we replace in the notation r
by rs.

2.1 Register machines

In this paper we consider register machines with increment, unconditional decre-
ment and test instructions, see also [6].

A register machine is a tuple M = (n,Q, q0, qf , I) where
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• n is the number of registers;
• I is a set of instructions labeled by elements of Q;
• q0 ∈ Q is the initial label;
• qf ∈ Q is the final label.

The allowed instructions are:

• (q : i?, q′, q′′) - jump to instruction q′′ if the contents of register i is zero,
otherwise proceed to instruction q′;

• (q : i+, q′, q′′) - add one to the contents of register i and proceed to either
instruction q′ or q′′, non-deterministically;

• (q : i−, q′, q′′) - subtract one from the contents of register i and proceed to
either instruction q′ or q′′, non-deterministically;

• (qf : halt) - finish the computation; it is a unique instruction with label qf .

If q′ = q′′ for every instruction (q : i+, q′, q′′) and for every instruction (q :
i−, q′, q′′), then the machine is called deterministic.

A register machine is called reversible if for some state q there is more than
one instruction leading to it, then exactly two exist, they test the same register,
one leads to q if the register is zero and the other one leads to q if the register
is positive. More formally, for any two different instructions (q1 : i1α1, q

′
1, q

′′
1 ) and

(q2 : i2α2, q
′
2, q

′′
2 ), it holds that q′1 6= q′2 and q′′1 6= q′′2 . Moreover,

if q′1 = q′′2 or q′′1 = q′2, then α1 = α2 =? and i1 = i2.

It has been shown ([6]) that reversible register machines are universal. It follows
that non-deterministic reversible register machines can generate any recursively
enumerable set of non-negative integers as a value of the first register by all its
possible computations starting from all registers having zero value.

3 Examples and Universality

We now present a few examples to illustrate the definitions.
Example 0: Consider a P system Π0 = ({a, b}, a, {a/ab}). It is strongly re-

versible (for a preimage, remove as many copies of b as there are copies of a, in
case it is possible and there is at least one copy of a), but no halting configuration
is reachable. Therefore, ∅ ∈ NrsOP1(anti∗).

Example 1: Consider a P system Π1 = ({a, b, c}, a, {a/ab, a/c}). It generates
the set of positive integers and it is reversible (for the preimage, replace c with
a or ab with b), but not strongly reversible (e.g., aa ⇒ cc and ac ⇒ cc). Hence,
N+ ∈ NrOP (anti2).

Example 2: Consider a P system Π2 = ({a, b}, aa, {aa/ab, ab/bbb}). It is re-
versible (aa has in-degree 0, while ab and bbb have in-degree 1, and no other configu-
ration is reachable), but not strongly reversible (e.g., aab ⇒ abbb and aabb ⇒ abbb).
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Example 3: Any P system with a rule x/λ, x ∈ O+, is not reversible. There-
fore, symport rules cannot be actually used in a reversible P systems with one
membrane.

Example 4: Any P system with rules x1/y, x2/y that applied at least one of
them in some computation is not reversible.

We now show that reversible P systems with either inhibitors or priorities are
universal.

Theorem 1. NrOP1(anti2, P ri)T = NrOP1(anti2, inh)T = NRE.

Proof. We reduce the theorem statement to the claim that such P systems simulate
the work of any reversible register machine M = (n,Q, q0, qf , I). Consider a P
system

Π = (O, q0, R, {r1}), where
O = {ri | 1 ≤ i ≤ n} ∪Q,

R = {q/q′ri, q/q′′ri | (q : i+, q′, q′′) ∈ I}
∪ {qri/q′, qri/q′′ | (q : i−, q′, q′′) ∈ I} ∪Rt,

Rt = {q/q′′|¬ri , qri/q′ri | (q : i?, q′, q′′) ∈ I}.
Inhibitors can be replaced by priorities by redefining Rt as follows.

Rt = {qri/q′ri > q/q′′ | (q : i?, q′, q′′) ∈ I}.
Since there is a bijection between the configurations of Π containing one sym-

bol from Q and the configurations of M , the reversibility of Π follows from the
correctness of simulation, the reversibility of M , and from the fact that the number
of symbols from Q is preserved by transitions of Π.

4 Limitations

The construction in the theorem above uses both cooperation and additional con-
trol. It is natural to ask whether both inhibitors and priorities can be avoided.
Yet, consider the following situation. Let (p : i?, s, q′′), (q : i?, q′, s) ∈ I. It is usual
for reversible register machines to have this, since the preimage of configuration
sC depends on register i. Nevertheless, P systems with maximal parallelism with-
out additional control can only implement a zero-test by try-and-wait-then-check
strategy. In this case, the object containing the information about the register p
finds out the result of checking after a possible action of the object related to the
register. Therefore, when the state represented in the configuration of the system
changes to s, it obtains an erroneous preimage representing state q. This leads to
the following

Conjecture 1. Reversible P systems without priorities and without inhibitors are
not universal.
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Now consider a strongly reversible P system. The following theorem establishes
a very serious limitation on such systems if no additional control is used.

Theorem 2. In strongly reversible P systems without inhibitors and without prior-
ities, every configuration is either halting or induces only infinite computation(s).

Proof. If the right-hand side of every rule contains a left-hand side of some rule,
then the claim holds. Otherwise, let x/y be a rule of the system such that y does not
contain the left-hand side of any rule. Then x ⇒ y and y is a halting configuration.
It is not difficult to see that xy ⇒ yy (objects y are idle) and xx ⇒ yy (the rule
can be applied twice). Therefore, such a system is not strongly reversible, which
proves the theorem.

Therefore, the strongly universal systems without additional control can only gen-
erate singletons, i.e., NrsOP1(anti∗)T = {{n} | n ∈ N}, and only in a degenerate
way, i.e., without actually computing.

It turns out that the theorem above does not hold if inhibitors are used. Con-
sider a system Π3 = ({a, b}, a, {a/b|¬b}). If at least one object b is present or no
objects a are present, such a configuration is a halting one. Otherwise, all objects
a are exchanged by objects b. Therefore, the only possible transitions in the space
of all configurations are of the form an ⇒ bn, n > 1, and the system is strongly
reversible.

5 Discussion

We outlined the concepts of reversibility and strong reversibility for P systems,
concentrating on the case of symport/antiport rules (possibly with control such
as priorities or inhibitors) with one membrane, assuming that the environment
contains an unbounded supply of all objects.

We showed that reversible P systems with control are universal, and we con-
jectured that this result does not hold without control. Moreover, the strongly
reversible P systems without control do not halt unless the starting configuration
is halting, but this is no longer true if inhibitors are used.

Showing related characterizations might be quite interesting. Many other prob-
lems are still open, e.g., reversibility of P systems with active membranes.
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Summary. In this paper we introduce mutual mobile membranes with surface objects,
systems which have biological motivation. In P systems with mobile membranes with
surface objects, a membrane may enter or exit another membrane. The second membrane
just undergoes the action, meaning that it has no control on when the movement takes
place. This kind of movement illustrates the lack of an agreement (synchronization)
similar to an asynchronous evolution. In mutual mobile membranes with surface objects
this aspect is adjusted: any movement takes place only if both participants agree by
synchronizing their evolution. In membranes two kinds of competition can occur: resource
competition and location competition. Resource competition refers to rules which request
the same resources, and the available resources can only be allocated to some of the rules.
Location competition refers to the movement of a membrane in the hierarchical structure
of the membrane systems under the request of some conflict rules. We use the two variants
of membrane systems in order to describe and explain these kinds of competition, and
introduce synchronizing objects in mutual mobile membranes which will help to solve
the resource and location competitions.

1 Introduction

Two recent computational models have been inspired from the structure and the
functioning of the living cell: membrane systems [16, 17] and brane calculus [8].
Although the models start from the same observation, they are build having in
mind different goals: membrane systems investigate formally the computational
nature and power of various features of membranes, while the brane calculus is in-
tended to give a faithful and intuitive representation of the biological reality. In [9]
the initiators of these two formalisms describe the goals they had in mind: “While
membrane computing is a branch of natural computing which tries to abstract
computing models, in the Turing sense, from the structure and the functioning of
the cell, making use especially of automata, language, and complexity theoretic
tools, brane calculi pay more attention to the fidelity to the biological reality, have
as a primary target systems biology, and use especially the framework of process
algebra.”
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A membrane system consists of a hierarchy of membranes which do not inter-
sect, with a distinguishable membrane called skin surrounding all of them. A mem-
brane without any other membranes inside is elementary, while a non-elementary
membrane is a composite membrane. The membranes define demarcations between
regions; for each membrane there is a unique associated region. Since we have a
one-to-one correspondence, we sometimes use membrane instead of region, and
vice-versa. The space outside the skin membrane is called the environment. Re-
gions contain multisets of objects, evolution rules and possibly other membranes.
Only rules in a region delimited by a membrane act on the objects in that region.
More details about membrane systems can be found in [17].

Exocytosis is the movement of materials out of a cell via membranous vesicles.
These processes allow patches of membrane to flow from compartment to compart-
ment, and require us to think of a cell as a dynamic, rather than static, structure.
Endocytosis is a general term for a group of processes that bring macromolecules,
large particles, small molecules, and even small cells into the eukaryotic cell. There
are three types of endocytosis: pinocytosis, phagocytosis and receptor-mediated en-
docytosis. In all three, the plasma membrane folds inward around materials from
the environment, forming a small pocket. The pocket deepens, forming a vesicle.
This vesicle separates from the plasma membrane and migrates with its contents
to the cell interior.

In brane calculus we have a membrane structure, in which the membranes rep-
resent the sites of activity. Opposite to the initial classes of membrane systems in
which a computation took place inside the membranes, in brane calculi a compu-
tation happens on the membrane. The operations of the two basic brane calculi
are directly inspired by biologic processes such as endocytosis, exocytosis and mi-
tosis. The calculus formed using pino, exo, phago operations is more expressive
then the calculus formed by mate, drip, bud, because we can simulate the latter
operations using the former ones. Another difference regarding the semantics is
expressed in [6]: ”whereas brane calculi are usually equipped with an interleaving,
sequential semantics (each computational step consists of the execution of a single
instruction), the usual semantics in membrane computing is based on maximal
parallelism (a computational step is composed of a maximal set of independent
interactions).”

Some work was done trying to relate these two models [6, 7, 10, 11]. Inspired
by brane calculus, a model of the membrane system having objects attached to the
membranes has been introduced in [9]. In [5], a class of membrane systems con-
taining both free floating objects and objects attached to membranes have been
proposed, while in [20] a simulation of a bounded symport antiport membrane sys-
tem using brane calculus is proposed. In [2] we have related membrane computing
with brane calculi, namely a translation of the PEP class into a special class of
membrane systems, while in this paper we introduce a membrane system having
objects and co-objects attached to the membrane.

The structure of the paper is as follows. In Section 2 we define the class of
membrane systems with surface objects and co-objects together with the biological
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motivation for the rules used. In Section 3 we present the notions of competitions
in membrane systems. Conclusions and references end the paper.

2 Mutual Membrane Systems with Surface Objects

The phospholipid bilayer serves as a lipid “lake” in which some proteins “float”
(see Figure 1).

Fig. 1. The Fluid Mosaic Model: The general molecular structure of biological mem-
branes is a continuous phospholipid bilayer in which proteins are embedded.

2.1 Endocytosis and Exocytosis in Biology

Endocytosis is a general term for a group of processes that bring macromolecules,
large particles, small molecules, and even small cells into another cell. There are
three types of endocytosis: phagocytosis, pinocytosis, and receptor-mediated en-
docytosis. In all three, the membrane invaginates (folds inward) around materials
from the environment, forming a small pocket. The pocket deepens, forming a
vesicle. This vesicle separates from the membrane and migrates with its contents
to the cell’s interior.

In phagocytosis (“cellular eating”), part of the membrane engulfs large par-
ticles or even entire cells. Phagocytosis is used as a cellular feeding process by



32 B. Aman, G. Ciobanu

unicellular protists and by some white blood cells that defend the body by en-
gulfing foreign cells and substances. In pinocytosis (“cellular drinking”), vesicles
also form. However, these vesicles are smaller, and the process operates to bring
small dissolved substances or fluids into the cell. Like phagocytosis, pinocytosis is
relatively nonspecific as to what it brings into the cell.

Receptor-mediated endocytosis (Figure 2) is used by animal cells to capture
specific macromolecules from the cell’s environment. This process depends on re-
ceptor proteins, integral membrane proteins that can bind to a specific molecule in
the cell’s environment. The uptake process is similar to nonspecific endocytosis, as
already described. However, in receptor-mediated endocytosis, receptor proteins
at particular sites on the extracellular surface of the plasma membrane bind to
specific substances. These sites are called coated pits because they form a slight
depression in the plasma membrane. The cytoplasmic surface of a coated pit is
coated by proteins, such as clathrin.

When a receptor protein binds to its specific macromolecule outside the cell,
its coated pit invaginates and forms a coated vesicle around the bound macro-
molecule. Strengthened and stabilized by clathrin molecules, this vesicle carries
the macromolecule into the cell.

Since only the receptor-mediated endocytosis uses receptors and co-receptors
we are interested only in modeling this process.

Fig. 2. Receptor-mediated endocytosis

Exocytosis (Figure 3) is the movement of materials out of a cell via membranous
vesicles. These processes allow patches of membrane to flow from compartment to
compartment, and require us to think of a cell as a dynamic, rather than static,
structure. SNARES (Soluble NSF (N-ethylmaleimide Sensitive Factor) Attach-
ment Protein Receptor) located on the vesicles (v-SNARES) and on the target
membranes (t-SNARES) interact to form a stable complex that holds the vesicle
very close to the target membrane.

The B lymphocyte cell searches for antigen matching its receptors. If it finds
such antigen, it connects to it, and inside the B cell a triggering signal is set off.
In order to become fully activated a B cell needs proteins produced by helper T
cells. This is simulated using mutual contextual evolution (Figure 4).
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Fig. 3. SNARE-mediated exocytosis

Fig. 4. Contextual evolution

This provides a biological motivation of using objects and co-objects for the
exo, endo and contextual evolution rules.

We define now the membrane systems with surface objects and co-objects. Let
N be a set of positive integers, and consider a finite alphabet Γ of symbols. A
multiset over Γ is a mapping u : Γ → N. The empty multiset is represented
by λ. For any a ∈ Γ , the value u(a) denotes the multiplicity of a in u (i.e., the
number of occurrences of symbol a in u). Given two multisets u, v over Γ , for any
a ∈ Γ , we have (u ] v)(a) = u(a) + v(a) as the multiset union, and (u\v)(a) =
max{0, u(a) − v(a)} as the multiset difference. We use the string representation
of multisets used in the membrane systems. An example of such a representation
u = aabca, where u(a) = 3, u(b) = 1, u(c) = 1. Using such a representation, the
operations over multisets are defined as operations over strings.
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2.2 Definition

Definition 1. A mutual mobile membrane system with surface objects is a con-
struct

Π = (P, µ,w1, . . . , wn, R, iO)
where:

1. n ≥ 1 (the initial degree of the system);
2. P is an alphabet of proteins (its elements are called objects);
3. iO is the output membrane;
4. µ is a membrane structure, consisting of n membranes. A membrane struc-

ture is a hierarchically arranged set of membranes, where we distinguish the
external membrane (usually called the “skin” membrane) and several internal
membranes; a membrane without any other membrane inside it is said to be
elementary;

5. w1, . . . , wn are strings over V , describing the initial markings of the n mem-
branes of µ;

6. R is a finite set of developmental rules, of the following forms:
a) [ ]uv[ ]uv′→ [[ ]w]w′ for u, u, w, w′ ∈ P+; v, v′ ∈ P ∗

mutual endocytosis
An elementary membrane containing the multiset uv on the membrane en-
ters the adjacent membrane containing the multiset uv′ on the membrane;
the multisets uv and uv′ are transformed into multisets w and w′ during
the evolution;

b) [[ ]uv]uv′→ [ ]uw[ ]uw′ , u, u, w,w′ ∈ P+; v, v′ ∈ P ∗

mutual exocytosis
An elementary membrane containing the multiset uv on the membrane
exits the adjacent membrane containing the multiset uv′ on the membrane;
the multisets uv and uv′ are transformed into multisets w and w′ during
the evolution;

c) [ ]uv[ ]uv′ → [ ]w[ ]w′ , u, u, w, w′ ∈ P+; v, v′ ∈ P ∗

mutual contextual evolution
The multisets of objects uv and uv′ placed on two sibling membranes are
transformed into the multisets w and w′.

The rules are applied according to the following principles:

1. All rules are applied in parallel, non-deterministically choosing the rules, the
membranes, and the objects, but in such a way that the parallelism is maximal;
this means that in each step we apply a set of rules such that no further rule
can be added to the set.

2. The membrane containing the multiset u on it from the rules of type (a)− (b)
is said to be active, while the membrane containing the multiset u on it is
said to be passive. In any step of a computation, any object and any active
membrane can be involved in at most one rule, but the passive membranes
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are not considered involved in the use of the rules (hence they can be used by
several rules at the same time as passive membranes).

3. When a membrane is moved across another membrane, by endocytosis or ex-
ocytosis, its whole contents (its objects) are moved.

4. If a membrane exits the system (by exocytosis), then its evolution stops.
5. All objects and membranes which do not evolve at a given step (for a given

choice of rules which is maximal) are passed unchanged to the next configura-
tion of the system.

3 Competitions

We start with an example from [19] which motivates biologically the study of
competitions.

Example 1. Bacteriophage λ is a temperate phage, meaning that it can undergo
either a lytic or a lysogenic cycle (see Figure 5). When there is a rich medium
available and its host bacterium is growing rapidly, the prophage takes advantage
of its favorable cellular environment and remains lysogenic. When the host bacteria
are not as healthy, the prophage senses this and, as a survival mechanism, leaves
the host chromosome and becomes lytic.

The phage makes this decision by means of a “genetic switch”: Two regulatory
viral proteins, labeled cI and Cro, compete for two operator/promoter sites on
phage DNA. The two operator/promoter sites control the transcription of the
viral genes involved in the lytic and the lysogenic cycles, respectively, and the two
regulatory proteins have opposite effects on the two operators (Figure 2). Phage
infection is essentially a “race” between these two regulatory proteins. In a healthy
E. coli host cell, Cro synthesis is low, so cI “wins” and the phage enters a lysogenic
cycle. If the host cell is damaged by mutagens or other stress, Cro synthesis is high,
promoters for phage DNA and viral coat proteins are activated, and bacterial lysis
ensues.

Remark 1. Rarely, two viruses infect a cell at the same time. This is an unusual
event, as once an infection cycle is under way, there is usually not enough time for
an additional infection. In addition, an early protein prevents further infections in
some cases. In this case the protein is the one who prevents further races inside
the infected cell.

In concurrency, a competition occurs when more than one rule are engaged for
the same resources. Here is an example:

Example 2. Suppose at a given moment of computation we have a membrane con-
taining the multiset of objects aa and two rules: aa → b and aa → c. We observe
that the rules have similar left objects. The application of one of the rules blocks
the application of the other rule.
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Fig. 5. The Lytic and Lysogenic Cycles of Bacteriophage: Infection by viral DNA leads
to the multiplication of the virus and lysis of the host bacterial cell. In the lysogenic
cycle, an inactive prophage is replicated as part of the host’s chromosome.

This kind of competitions are called resource competitions. Such a competition
occurs when two rules try to use at least one common resource. Resource com-
petitions are desirable in membrane computing for simulating non-deterministic
behaviors. In mutual mobile membranes we also find a different form of competi-
tion, namely the location competition. Consider the following example:

Example 3. Suppose at a given moment of the computation we have the following
membrane configuration: [ ][ ]a[ ]b, and two rules: [ ][ ]a → [[ ]c] and [ ][ ]b → [[ ]d].
We observe that membrane containing a is included in the left part of both rules.
We have two possible evolutions:

• If we first apply the rule [ ][ ]a → [[ ]c], we obtain the membrane structure
[[ ]c][ ]b and the other rule cannot be applied anymore.

• If we first apply the rule [ ][ ]b → [[ ]d] we obtain the membrane structure
[ ][[ ]d]a and the other rule cannot be applied since now membrane n is not
elementary. We refer to the rules of mobile membrane systems in which only
elementary membranes can pass through other membranes [12].

The choice of which rule is applied first makes the other rule useless, so the sys-
tem should be described initially with only one of these rules, depending on the
expected evolution.
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Fig. 6. Control of Phage λ Lysis and Lysogeny: Cro and cI compete for the opera-
tor/promoter sites controlling the gene transcription for viral lysis and lysogeny.

The movement in mutual mobile membrane systems is local, namely a mem-
brane can only interact with neighboring membranes. Locality of movement implies
that a membrane written to accomplish a certain task in a given membrane, it shall
not work correctly in another membrane.

The location competition raises some problem:

1. it is difficult to describe membrane systems which behave as expected in all
contexts;

2. it is difficult to prove behavioral properties of membrane systems.

The rules of mobile membranes allow a membrane to enter, or to exit another
membrane. The second membrane just undergoes the action, meaning that it has
no control on when the movement takes place. As a consequence, it is hard to
control the resources inside a given membrane. By defining mutual mobile mem-
branes this is rectified: any movement takes place only if both participants agree.
This is achieved by using objects and co-objects to control the movement. The
inspiration comes from biology where we have receptors and co-receptors which
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control the interaction between membranes. Location competitions also exist in
mutual mobile membranes, but they are easier to detect.

4 Conclusion

In the area of membrane computing the authors usually consider that a system is
synchronous if the rules are applied in a maximally parallel manner, otherwise it
is asynchronous. On the other hand, in process algebra the authors consider that
two processes are synchronized if they interact by using actions and co-actions.
We adapt the second approach to membrane systems, by replacing the actions and
co-actions with objects and co-objects.

As related work we can mention [13] and [14] where the authors study the
plain and grave interferences which appear in mobile ambients, and try to remove
them by defining safe mobile ambients and an appropriate type system. The work
presented in this paper corresponds to the first step described in their work, more
exactly we define the competitions in mutual mobile membranes. Further work
will include the use of a type system for mutual mobile membranes in order to
limit the competitions which appear during the evolution of a membrane system.

Regarding the asynchronous aspects, we define in [4] a compositional asynchro-
nous membrane system based on a handshake mechanism implemented by using
antiport rules and promoters. Such a system is used to evaluate arithmetical ex-
pressions starting from simple membranes for addition, subtraction, multiplication
and division.
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Summary. Intercellular communication between bacterial cells belonging to the same
population is well documented in Microbiology, sporulation and cannibalism in B. Subtilis
and genetic competence and fratricide in S. pneumoniae being deeply studied in the
last years. The investigation of individual cell behavior has revealed that populations of
these bacteria sometimes bifurcate into phenotypically distinct, but genetically identical,
subpopulations by random switching mechanisms. The probabilistic nature of the random
switching mechanisms, the occurrence of some biochemical processes related to it at
plasma membrane and the need to study the processes at the level of each individual cell
make intercellular communication and stochastic processes very suitable to be modeled
by P systems.

Motto: But a system which has spherical symmetry, and whose state is changing
because of chemical reactions and diffusion, will remain spherically symmetrical
for ever.(...) It certainly cannot result in an organism such a horse, which is not
spherically symmetrical. [Turing, 1952]

1 Introduction

The concept of intercellular communication within a bacterial population belong-
ing to the same species originates in the discovery of genetic competence in Strep-
tococcus pneumoniae (1965) and of quorum sensing (1970) in Vibrio (Bassler and
Losick, 2006). In the last decades, with special emphasis in the last years intercellu-
lar communication within a bacterial population started to be deeply documented
in such a copious way that the scientific community started to introduce within
their scientific language expressions such as “bacterially speaking”, competence
and “fratricide”, “sporulation and cannibalism” (Bassler and Losick, 2006; Dub-
nau and Losick, 2006; Claverys and Havarstein, 2007) whereas few scientists put
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forward and claim that bacterial communication includes assignment of contextual
meaning and sentences (semantic/syntax functions) and conduction of “dialogue”
– the fundamental aspects of linguistic communication (Ben Jacob et al., 2006,
and citations herein), the same authors seeking for the foundation of cognition in
bacteria (Ben Jacob et al., 2006). (It is to be noticed that for dialogue the authors
used the commas, whereas for cognition they did not.)

In this short report we focus on some of these new research on intercellular
communication within a bacterial population because:

• Communication and stochastic processes become more deeply known when they
started to be studied at the level of individual bacterial cell, trend belonging
to the so-called single cell microbiology (SCM) which opens a new vision on
bacterial world (Brehm-Stecher and Johnson, 2004; Kearns and Losick, 2005;
Claverys and Havarstein, 2007); furthermore it was put forward that P systems
could become a specific tool to study single bacterial cells as each cell contain a
relative small number of important signalling molecules whose behavior could
be better described by a discrete systems than by a continuous one (Ardelean,
2006).

• SCM investigation by improved techniques has revealed that populations of
certain bacteria sometimes bifurcate into phenotypically distinct, but geneti-
cally identical, subpopulations, bifurcation which is called bistability (Dubnau
and Losick, 2006). The need to study the processes in the each individual cell
was originally put forward by Turing (Turing, 1952) who wrote: “To find the
rate of change due to chemical reactions only needs to know the concentration
of all morphogens at that moment in the one cell concerned” (my underline),
a suggestion largely ignored (forgotten?) for decades.

• Bistability in our opinion could be appropriately modeled by P systems because
of their probabilistic nature of the processes occurring within plasma membrane
(as well as in a bulk phase).

• Bistability is a random mechanism that switches on different genetic pro-
grammes within identical bacteria grown under the same conditions (Dubnau
and Losick, 2006). This passage from homogeneity to heterogeneity, this bi-
furcation both at the level of biochemical reaction and at the level of cell
population remembers the bifurcation of chemical reaction (starting from o ho-
mogenous medium) mathematically first demonstrated by Turing in his inter-
disciplinary scientific paper on chemical basis of morphogenesis (Turing, 1952).
This type of bifurcation named by Prigogine “Turing bifurcation” (Prigogine,
1977) is one of the tools used by Prigogine (Nobel Prize 1977) to physically
explain how biological life (an anti-entropic process) is physically possible in
an Universe whose overall entropy is under increase.



Communication in Some Bacterial Populations 43

2 Communication and Stochastic Processes in Some
Bacterial Populations

The recent advent of techniques like flow cytometry and fluorescence microscopy
that facilitate the investigation of individual cell behavior has revealed that pop-
ulations of certain bacteria sometimes bifurcate into phenotypically distinct, but
genetically identical, subpopulations by random switching mechanisms. This bifur-
cation of genetically identical bacterial populations, also called clonal populations
exhibit (unimodal) variation in the expression of a given gene, due to random
fluctuations in the rates of synthesis and degradation of the cognate gene prod-
uct, which is referred to as ’noise’ and we will employ this usage. Sometimes, the
noise gives rise to another type of variation that is non-unimodal, meaning that
the population bifurcates into subpopulations, phenotypic phenomenon known as
’bistability’ (Dubnau and Losick, 2006). For example, when Bacillus Subtilis cells
encounter conditions of nutrient deprivation or reach a critical cell density, the
cell can choose between two type of bifurcation involving entirely different genetic
programmes, according to culture conditions. They can fully induce motility and
enter stationary growth, enter sporulation, which cumulates in the formation of
an enduring spore or enter the state of competence, in which they are able to take
up DNA from the environment for integration into their chromosome via homol-
ogous recombination. Both programmes, competence and sporulation, involve the
formation of a bistable culture; about 20% of cells will become competent, or a
maximum of 80% of the cells will initiate sporulation. The remaining 80% or 20%
of the cells, respectively, simply enter stationary phase and, in the case of sporula-
tion, are even killed by the sporulating cells, which secrete a specific toxin, to serve
as a nutrient source (Gonzalez-Pastor et al., 2003). Thus, even though all cells en-
counter identical culture conditions, only a (relatively well-defined) subpopulation
fully throws the switch towards the new mode of development. Nevertheless, the
non-competent or non-sporulating cells can switch to a new developmental state
at a later time (Graumann, 2006). It could be important from P systems the fact
that bistability arise stochastically in populations of genetically identical cells,
grown in homogeneous and theoretically identical environments (e.g. in liquid me-
dia in well-stirred flasks), the choice of which individual cells exhibit altered gene
expression being random (Dubnau and Losick, 2006). So far, there are several ex-
amples communication and stochastic processes in some bacterial populations but
for the sick of simplicity in this paper we will briefly focus only on two of them
which involve bistability: sporulation and cannibalism in B. Subtilis and genetic
competence and fratricide in S. pneumoniae.

2.1 Sporulation and cannibalism

When the nutrients are limited many types of bacteria including B. subtilis entry
into sporulation, an elaborate developmental process that culminates in the for-
mation of a specialized cell called spore or endospore. The spore is a dormant cell
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type being able to resist environmental extremes: it is involved in the propagation
in time and space not in the multiplication of the bacterial population to which
it belongs. The master regulator for spore formation is Spo0A, a protein response
regulator whose activity is governed by phosphorylation Spo0A is activated under
conditions in which cells are limited for nutrients, but as demonstrated over a
decade ago by flow cytometry some cells in a population of nutrient-limited cells
activate the master regulator (Spo0A-ON cells) and some do not (Spo0A-OFF
cells).

The results show that nutrient limitation is a prerequisite for entry into sporu-
lation, but during nutrient limitation not all the bacterial cells starts the sporula-
tion process because the activation of Spo0A is additionally subject to a bistable
switch.

The scientists ask about the biological significance of subjecting entry into
sporulation to bistability (Bassler and Losick, 2006; Claverys and Havarstein,
2007). One possible explanation comes from the fact that spore formation is an
energy intensive process that becomes irreversible at an early stage. Thus, if the
nutrient scarcity that triggers the activation of Spo0A in a population of cells
proves to be fleeting, cells that have not entered the pathway to sporulate (Spo0A-
OFF cells) will be able to rapidly resume growth when nutrients become available
again. Studies of cells under conditions of high cell-population density reinforce
the view that a mixed population of Spo0A-ON and Spo0A-OFF cells is a mecha-
nism to cope with uncertainty in the future availability of nutrients. Furthermore,
clonal colonies of B. subtilis cells are observed to exhibit a behavior referred to
as cannibalism in which the Spo0A-ON cells in the population trigger the lysis of
non-sporulating siblings (Spo0A-OFF cells) via the elaboration of a killing factor
and a toxin (Gonzalez-Pastor et al., 2003) (Figure 1). Nutrients released from the
non-sporulating siblings arrest or slow further progression into sporulation by the
Spo0A-ON cells, impeding those cells from entering the irreversible phases of spore
formation. Cannibalism is therefore a delaying tactic that helps the population to
certify that lack of nutrients is not a fleeting condition. According to this view, the
cost of fratricide is off set by the advantage of delaying commitment for as long as
possible (Bassler and Losick, 2006; Claverys and Havarstein, 2007).

2.2 Competence and fratricide

The interplay between bacteria and antibiotics is very complex and very important
for mankind both fundamentally and practically. It is universally accepted that
the use of antibiotics will lead to antimicrobial resistance. Traditionally, the ex-
planation to this phenomenon was based on : i) random mutation; ii) exchange of
genetic information by horizontal gene transfer and iii) amplification by selective
pressure. Subsequently, others mechanisms of antibiotic-induced antimicrobial re-
sistance acquisition were proposed, based on the expected occurrence of bacterial
transformation with DNA still present in antibiotic even after its purification (Woo
et al., 2006) or on the fratricide behavior (Claverys and Havarstein, 2007). Bacteria
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Spo0A-OFFSpo0A-ON

Fig. 1. Sporulation and canibalism in Bacillus subtilis. In the medium with nutrient
limitation a clonal population of Bacillus subtilis, as an expression of bistability, bifur-
cate in two subpopulations: one in which the master regulator of sporulation is activated
(Spo0A-ON) and the other one in which the master regulator of sporulation remains in-
activated (Spo0A-OFF). The subpopulation entering the sporulation synthesize a toxin
(killing factor - illustrated in the figure as a star) and the corresponding immunity device
(illustrated in the figure as square located at the cell surface). The molecules of toxin de-
stroy the nonsporulating cells whose chemical constituents become available (interrupted
arrow in the figure) as nutrients for the cells in which the master regulator of sporulation
is activated (Spo0A-ON) (modified after Claverys and Havarstein, 2007).

exchange genetic information either through the direct uptake of DNA (transfor-
mation), phage-mediated transduction, through inter-organism contact with DNA
exchange (conjugation) or mobilization of DNA within organisms’ genomes (trans-
position). Genetic transformation is possible when a cell has the ability to take up
foreign DNA from the medium, ability which is named competence. Conjugation
is one type of mechanism to transfer genes from one living bacterium to another
living bacterium, the physical contact between the donor cell (called male type)
and the recipient cell (called female type) being essential for gene transfer. Conju-
gation depends on the presence of certain plasmids, DNA closed molecules which
are physically independent with respect to bacterial chromosome.
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The ability of bacteria to sense some chemicals in the medium and to process
this information is further illustrated by another bacterium S. pneumoniae. Trans-
formation (the uptake and genomic integration of exogenous DNA) in S. pneumo-
niae can only occur when the bacteria are competent, which is a transitory state
in bacteria. Although the competence state regulation is rather well understood,
the signals that trigger it remain elusive. Recent evidence suggests that in S. pneu-
moniae competence is a stress response to environmental change (Prudhomme et
al., 2006), who wondered whether antibiotic-induced stress might trigger compe-
tence. Out of the dozen or so antibiotics that they checked, six up-regulated the
competence pathway when used at concentrations that killed approximately 50%
of the bacteria. These antibiotics kill bacteria by either damaging DNA, inhibit-
ing protein synthesis, or blocking DNA synthesis. The main conclusion is that
the mechanism of action of a particular antibiotic cannot be used to predict its
ability to induce competence further complicated the realities related to the gen-
eration of antibiotic-resistant bacteria; however the choose for clinical treatment
of those antibiotics that do not promote genetic exchange may help to minimize
future problems. These new findings (Prudhomme et al., 2006) which show that
some bacteria become competent (able to take up foreign DNA from the external
medium) as a response to the presence of an antibiotic in the external medium,
further argue that bacteria posses a complex behavior. The molecular mechanism
is not yet known but it could be speculated that it should involve signal trans-
duction machinery which activity in other bacterial processes has already been
modeled in the framework of P systems (Ardelean et al., 2006).

What it is really interesting is the fact that during the installation of compe-
tence, the competent cells synthesize a substance which is lethal for non-competent
cells, which release in the growth medium their intracellular constituents, includ-
ing nutrients and DNA. This type of killing is called fratricide and is a new type
of bacterial behavior which further argue for the diversity of the interactions be-
tween bacterial cell and environment. The biological significance of fratricide re-
lated to environmental signal (e.g. antibiotic) induced competence is based on the
hypothesis which invokes the provision of genetically diverse DNA molecules in
the extra-cellular space to generate diversity by genetic transformation (Claverys
and Havarstein, 2007). In Enterococcus faecalis, a Gram-positive species that com-
monly resides in the human intestine, it was discovered (Dunny et al. 1978) that
gene transfer by conjugation can reach a very high frequency (102) compared with
conjugative gene transfer in all other bacteria (frequency 104). It was shown that
this significant difference is determined by the ability of some cells to synthesize
and secrete in the extra-cellular medium a specific peptide. This peptide is called
sex pheromone because it is involved in the attraction between donor and recipient
bacterial cells, thus enhancing the frequency of conjugation. The pheromones are
hydrophobic octa- or hepta-peptides and nowadays there are known more than
four types, each pheromone being encoded by a gene located on the chromosome.
All Enterococcus faecalis cells contain on their chromosome one type of gene for
one type of pheromone but not all these gene are active. The pheromone gene
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is active only when in that particular bacterial cell the corresponding plasmid is
missing, because the plasmid contains a gene whose product inhibit pheromone
synthesis. Each type of pheromone acts as a sex pheromone on bacterial cells which
have a plasmid specific for that pheromone, plasmid encoding the resistance to a
given antibiotic. To simplify the biological notations, the bacterial cell able to
synthesize the sex pheromone A will attract cells belonging to the same species
(population) which have the corresponding plasmid alpha; this last type of cells
can not synthesize the sex pheromone A whereas the cells able to synthesize the
sex pheromone A have not the plasmid alpha. The pheromone response is char-
acterized by an induced aggregation of donor and recipient (plasmid-free) cells,
which can lead to mating frequencies greater than 102 per donor cell within a
few hours. In a liquid environment, pheromone induces donor cells to synthesize
a plasmid-encoded “aggregation substance” (AS), a surface protein that binds to
recipients and initiates the contact necessary for transfer of plasmid DNA. How-
ever, the pheromone induces the synthesis of several additional plasmid-encoded
products necessary for DNA transfer by conjugation (Clewell, 1989; 2004). When
a recipient strain acquires a copy of the plasmid there is a “shutdown” of the
corresponding pheromone activity, as transconjugant themselves become donors.
When a former recipient cell receive the plasmid alfa it stops the synthesis of A
pheromone, but not the synthesis of other type of pheromones for which there
are no corresponding plasmids in the cell. Thus, transconjugants (the former re-
cipient cell), continue to secrete other different pheromones specific for donors
carrying conjugative plasmids which confer resistance to other type of antibiotics.
Gene transfer by conjugation is essential for those bacterial cells, devoid of a given
plasmid carrying the gene for the resistance to a given (class) of antibiotics, to
survive in media where antibiotics are present; this is the case of human body
under clinical treatment, Enterococcus faecalis being one of the most common bac-
teria involved in nosocomial (hospital-acquired) infections and are notorious for
being resistant to multiple antibiotics. The production of sex pheromones is an-
other type of example of chemical communication between bacterial cells, enabling
them to announce other cells that they are ready to receive foreign genetic ma-
terial conferring them resistance to antibiotic 1, (especially?) when the recipient
cells are in the presence of antibiotic 1 to which they are sensitive. Furthermore,
the increase in the frequency of conjugation could be one possible explanation on
those results concerning antibiotic-induced enterococcal expansion in the mouse
intestine which correlates poorly with suppression of competing bacteria already
present in the intestine as “normal” bacteria, suggesting that other factors favor
the adherence and multiplication of E. faecium in the gastrointestinal tract of
antibiotic-treated mammals (Woo et al., 2006). This biological phenomenon could
probably be modeled by P systems with so- called query symbols in the string (E.
Csuhaj-Varju and G. Vaszil, personal communication).

In my opinion, the recently discovered bistability in some bacterial popula-
tions is an example of biochemical bifurcation, which was first studied as a basic
process in living cells more than half a century ago by Turing (Turing, 1952). This
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bifurcation would deserve further mathematical approach. The probabilistic na-
ture of bacterial bistability, the occurrence of some biochemical processes related
to bistability at plasma membrane and the need to study the processes at the level
of each individual cell make bistability very suitable to be modeled by P systems.
The biologists involved in the study of intercellular communication and stochas-
tic processes in some bacterial populations as it is illustrated by bistability could
benefit from the collaboration with scientists working on P systems to start the
mathematical modeling of these discrete biological processes and to understand
what kind of biological experiments are still needed to further reach the full power
of modeling and calculation of P systems.
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Summary. P Systems are computing devices inspired by the structure and the func-
tioning of a living cell. A P System consists of a hierarchy of membranes, each of them
containing a multiset of objects, a set of evolution rules, and possibly other membranes.
Evolution rules are applied to the objects of the same membrane with maximal par-
allelism. In this paper we present an extension of P Systems, called P Systems with
Endosomes (PE Systems), in which endosomes can be explicitly modeled. We show that
PE Systems are universal even if only the simplest form of evolution rules is considered,
and we give one application examples.

1 Introduction

P Systems were introduced by Pǎun in [10] as distributed parallel computing
devices inspired by the structure and the functioning of a living cell. A P System
consists of a hierarchy of membranes, each of them containing a multiset of objects,
representing molecules, a set of evolution rules, representing chemical reactions,
and possibly other membranes. For each evolution rule there are two multisets
of objects, describing the reactants and the products of the chemical reaction. A
rule in a membrane can be applied only to objects in the same membrane. Some
objects produced by the rule remain in the same membrane, others are sent out of
the membrane, others are sent into the inner membranes, which are identified by
their labels. Evolution rules are applied with maximal parallelism, meaning that
it cannot happen that some evolution rule is not applied when the objects needed
for its triggering are available.

Many variants and extensions of P Systems exist that include features to in-
crease their expressiveness and that are based on different evolution strategies.
Among the most common extensions we mention P Systems with dissolution rules
that allow a membrane to disappear and release in the environment all the ob-
jects it contains. We mention also P Systems with priorities, in which a priority
relationship exists among the evolution rules of each membrane and can influence
the applicability of such rules, and P Systems with promoters and inhibitors, in
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which the applicability of evolution rules depends on the presence of at least one
occurrence and on the absence, respectively, of a specific object. See [2, 11] for the
definition of these (and other) variants of P Systems and [13] for a complete list
of references to the bibliography of P Systems.

In this paper we present another extension of P Systems, called P Systems with
Endosomes (PE Systems), with these features:

• objects can be contained both inside and on the surfaces of the membranes (as
in P Systems with peripheral proteins [5, 9]);

• rules are contained on the surfaces of the membranes (they can rewrite objects
outside/on/into the membranes);

• endosomes can be explicitly created in order to model a biologically inspired
transportation mechanism.

The definition of this extension of P Systems has a biological inspiration. In
fact, the endocytosis of macromolecules is the process by which cells absorb mate-
rial (molecules such as proteins) from outside the cell by engulfing it with their cell
membrane. It is used by all cells of the body because most substances important to
them are large polar molecules that cannot pass through the hydrophobic plasma
membrane or cell membrane. There exist three kind of endocytosis: phagocytosis,
pinocytosis and receptor–mediated endocytosis. In particular, phagocytosis (liter-
ally, cell–eating) is the process by which cells ingest large objects, such as cells
which have undergone apoptosis, bacteria, or viruses. The membrane folds around
the object, and the object is sealed off into a large vacuole known as a phago-
some. Pinocytosis (literally, cell–drinking) is concerned with the uptake of solutes
and single molecules such as proteins, and, finally, receptor–mediated endocytosis
is a more specific active event where the cytoplasm membrane folds inward to
form coated pits. These inward budding vesicles bud to form cytoplasmic vesi-
cles. Figure 11 summarizes the kinds of endocytosis. By the point of view of the
modeler, these three processes are made possible by vesicles (in fact this trans-
portation mechanism is known as vesicle–mediated transportation) which, in the
most general case, engulf the macromolecules together with molecules from the
surface of the membranes (i.e. receptors). This leads to the creation of endosomes

containing the engulfed molecules. The endosomes transfer their content inside
the cell by possibly interacting with other components. The endosomes could also
be degraded by the interaction with the lysosomes. We define an extension of P
Systems (PE Systems) which can explicitly model the creation of endosomes and
their interaction inside the cells and, consequently, can easily model these three
kind of endocytosis.

This variant of P Systems, together with other modeling features such as the
modeling of exocytosis (the biologically counterpart of endocytosis), and enriched
with channel–mediated communication [1], would provide a powerful and complete
modeling language for naturally describing transportation mechanism of molecules
inside cells.

1 Pictures taken from http://cellbiology.med.unsw.edu.au/units/science/lecture0806.htm



P Systems with Endosomes 53

Fig. 1. Three kind of endocytosis: phagocytosis, pinocytosis and receptor–mediated en-

docytosis.

We show that PE Systems are universal even if only the simplest form of
evolution rules is considered, namely non–cooperative rules. Finally, we give one
application examples to show that endosomes can ease the description of biological
systems when PE Systems are used as a modeling formalism.

2 P Systems with Endosomes

In this section we recall the definition of standard P Systems, and then we define
their extension with endosomes. We will denote multisets over a finite alphabet as
strings of alphabet symbols. More precisely, let V ∗ be the set of all strings over
an alphabet V , including the empty one, denoted by λ. For a ∈ V and x in V ∗

we denote by |x|a the number of occurrences of a in x. If V = {a1, . . . , an} (the
ordering is important here), then the Parikh mapping of x is defined by ΨV (x) =
(|x|a1

, . . . , |x|an
). The definition is extended in the natural way to languages. A

string x represents the multiset over V with the multiplicities of objects a1, . . . , an

as given by ΨV (x).

2.1 P Systems

A P System consists of a hierarchy of membranes that do not intersect, with a
distinguishable membrane, called the skin membrane, surrounding them all. As
usual, we assume membranes to be labeled by natural numbers. Given a set of
objects V , a membrane m contains a multiset of objects in V ∗, a set of evolution

rules, and possibly other membranes, called child membranes (m is also called
the parent of its child membranes). Objects represent molecules swimming in a
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chemical solution, and evolution rules represent chemical reactions that may occur
inside the membrane containing them. For each evolution rule there is a multiset
of objects representing the reactants, and a multiset of objects representing the
products of the chemical reaction. A rule in a membrane m can be applied only
to objects in m, meaning that the reactants should be precisely in m, and not
in its child membranes. The rule must contain target indications, specifying the
membranes where the new objects produced by applying the rule are sent. The
new objects either remain in m, or can be sent out of m, or can be sent into one
of its child membranes, precisely identified by its label. Formally, the products of
a rule are denoted with a multiset of messages of the forms:

• (v, here), meaning that the multiset of objects v produced by the rule remain
in the same membrane m;

• (v, out), meaning that the multiset of objects v produced by the rule are sent
out of m;

• (v, inl), meaning that the multiset of objects v produced by the rule are sent
into the child membrane l.

Let TAR be the set of message targets {here, out} ∪ {ini | i ∈ N}. Given a set
of objects O we denote with Otar the corresponding set of messages O×TAR. As
a consequence, we denote with Vtar the set of all messages and we can define an
evolution rule as a rule u → v such that u ∈ V ∗ and v ∈ V ∗

tar.
The size of the left–hand side u of an evolution rule is also called the radius

of such a rule. If a P System contains rules of radius greater than one, then it is
called a cooperative system. Otherwise, it is called non–cooperative.

Application of evolution rules is done with maximal parallelism, namely at
each evolution step a multiset of instances of evolution rules is chosen non–
deterministically such that no other rule can be applied to the system obtained by
removing all the objects necessary to apply all the chosen rules.

A P System has a tree–structure in which the skin membrane is the root and the
membranes containing no other membranes are the leaves. We assume membranes
labels to be unique. A membrane structure can be represented as a balanced
sequence of labeled brackets and, graphically, as a Venn diagram.

Definition 1. A P System is a tuple (V, µ,w1, . . . , wn, R1, . . . , Rn) where:

• V is a finite alphabet whose elements are called objects;
• µ ⊂ N × N is a membrane structure, such that (i, j) ∈ µ denotes that the

membrane labeled by j is contained in the membrane labeled by i;

• wi with 1 ≤ i ≤ n are strings from V ∗ representing multisets over V associated

with the membranes 1, 2, . . . , n of µ;

• Ri with 1 ≤ i ≤ n are finite sets of evolution rules associated with the mem-

branes 1, 2, . . . , n of µ;

A sequence of transitions between configurations of a given P System Π is called
a computation. A computation is successful if and only if it reaches a configuration
in which no rule is applicable. The result of a successful computation is the multiset
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1

EDa → (ED, here)(aa, in2)

aD → (#, here)

FDa → (FD, here)(a, out)

2

E → (G, here)(ED, in2)

# → (#, here)

a

EDa → (ED, here)(a, out)

aD → (#, out)

E → (G, here)(FD, out)

E → (G, here)(ED, out)

GD → λ

ED

GD → λ

Fig. 2. Example of P System that computes {a2
n

| n ∈ N}.

of objects sent out of the skin membrane during the computation. Unsuccessful
computations (computations which never halt) yield no result. Given a P System
Π whose set of object is V , the result x ∈ V ∗ of a computation of Π can be
represented as the vector of natural numbers ΦV (x). The set of all vectors of
natural numbers computed by Π is denoted Ps(Π).

In Fig. 2 we show an example of P System Π1 computing {a2n

| n ∈ N},
namely such that Ps(Π1) = {2n | n ∈ N}. Initially, only in membrane 2 there
are rules which are applicable and send either objects F and D or objects E and
D into membrane 1. In the former case the object a in membrane 1 is sent out
and the computation halts. In the latter case object a in membrane 1 is consumed
and two occurrences of a are sent into membrane 2. Subsequently, E is consumed
and sent into membrane 2 together with D. Note that the rule which sends ED

into membrane 2 cannot be applied while there are still objects a in membrane 1,
otherwise by the maximal parallelism also the rule producing # would be applied
giving rise to an infinite (unsuccessful) computation. Objects a sent into membrane
2 are then sent back into membrane 1. The process of doubling and sending into
membrane 2 we have explained, could be repeated an arbitrary number of times.
Note that all the rules consuming a act on a single occurrence of a at a time and
hence the time complexity of the computation is proportional to 2n+2.

2.2 Extension with Endosomes

In this section we formally define P Systems with endosomes (PE Systems). To this
extent, we start by assuming the same membrane structure µ of a P System. As
regards objects, similarly to P Systems with peripheral proteins [5, 9], we assume
that objects can be contained inside a membrane (as in classical P Systems) and
on the surface of a membrane. In order to qualify a position of an object with
respect to a membrane, we use in to identify the object inside the membrane, out

to identify the object outside the membrane and here to identify the object on the
surface of the membrane. Let TAR be the set of message targets {in, out, here};
given a set of objects O we denote with Otar the corresponding set of messages
O × TAR, and we denote with Vtar the set of all messages.
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We can now introduce the evolution rules of PE Systems; rules are conceptually
divided in evolutionary rules (in the same sense of P Systems) and rules for the
creation of endosomes. We recall that, differently from P Systems, the rules of
PE Systems are conceptually associated with the surfaces of the membranes of
the system. The former class of rules are of the form u → v where u ∈ V +

tar and
v ∈ V ∗

tar. The definition of cooperative and non–cooperative rules are the same as
for P Systems.

Notice that this format for evolutionary rules, which are syntactically different
from those of P Systems, may seem to be less expressive than the one of P Sys-
tems, in particular for rule moving objects into specific membranes (communica-
tion rules). In order to show that this is not the case, let us assume an hypothetical
membrane structure µ such that (l, l′) ∈ µ, namely a membrane structure in which
l′ is nested into l. In order to give a rule which moves an object inside membrane
l′ we cannot use the identifier inl′ in a rule of the surface of the membrane l (as in
P Systems) because we cannot use the identifier l′ as subscript to in. However, the
same behavior can be obtained by replacing the rule u → (v, inl′) in the membrane
l, as in usual P Systesm, with the PE System rule (u, out) → (v, in) on the surface
of the membrane l′. The behavior modeled by this rule, which is in some sense
an “attraction” by the nested membrane rather than the “sending” from the top
membrane, leads to result analogous to those obtained by P Systems, namely to
the transportation of the object inside the nested membranes.

The rules for creating endosomes are of the form endoE(u ∈ V ∗, v ∈ V ∗) where:

• E is a set of evolutionary rules for the endosome;
• u is the multiset of objects that must appear on the surface of the membrane

containing the rule;
• v is the multiset of objects that must appear outside the membrane containing

the rule.

Notice that each endosome has got its own evolutionary rules in set E. These rules
model the behavior of the endosome. As regards the creation of an endosome, it is
necessary that objects in u are present on the surface of the membranes (in some
sense they can be seen as the receptors) and that objects in v are present outside
of the membrane creating the endosome (in some sense they can be seen as the
molecules to be engulfed). More formally, the applicability of the endosome rule is
possible in the following general case: let (j, i) ∈ µ and let endoE(u, v) be a rule
belonging to the surface of the membrane i, than it can be applied only if u is a
submultiset of the objects contained on the surface of the membrane i, and only
if v is a submultiset of the objects contained inside the membrane j. The result
of the application of such a rule is a creation of an endosome inside membrane i

containing u on its surface and containing v inside. The endosome itself behaves
like a membrane having on its surface rules E.

We can now formally define a PE System as follows.

Definition 2. A PE System is a tuple (V, µ,w1, . . . , wn, z1, . . . , zn, R1, . . . , Rn)
where:
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• V is an alphabet whose elements are called objects;
• µ ⊂ N × N is a membrane structure, such that (i, j) ∈ µ denotes that the

membrane labeled by j is contained in the membrane labeled by i;

• wi with 1 ≤ i ≤ n are strings from V ∗ representing multisets over V associated

with the content of membranes 1, 2, . . . , n of µ;

• zi with 1 ≤ i ≤ n are strings from V ∗ representing multisets over V associated

with the surfaces of membranes 1, 2, . . . , n of µ;

• Ri with 1 ≤ i ≤ n are finite sets of evolution rules associated with the surfaces

of the membranes 1, 2, . . . , n of µ.

The notions of (successful) computation and of result of computations of PE
Systems are the same as for standard P Systems.

3 Universality of PE Systems

In this section we prove a universality result for PE Systems by showing that any
matrix grammar with appearance checking can be simulated by a PE System.
As a consequence, before giving the result and its proof, we recall from [11] the
definition of such variant of matrix grammars and some related notions.

3.1 Matrix grammars with appearance checking

A (context-free) matrix grammar with appearance checking is a tuple G =
(N,T, S,M,F ), where N and T are disjoint alphabets of non–terminals and ter-
minals, respectively, S ∈ N is the axiom, M is a finite set of matrices, namely
sequences of the form (A1 → x1, . . . , An → xn) of context–free rules over N ∪ T

with n ≥ 1, and F is a set of occurrences of rules in the matrices of M . For a string
w, a matrix m : (r1, . . . rn) can be executed by applying its rules to w sequentially
in the order in which the appear in m. Rules of a matrix occurring in F can be
skipped during the execution of the matrix if they cannot be applied, namely if
the symbol in their left–hand side is not present in the string.

Formally, given w, z ∈ (N ∪ T )∗, we write w =⇒ z if there is a matrix (A1 →
x1, . . . , An → xn) in M and the strings wi ∈ (N ∪ T )∗ with 1 ≤ i ≤ n + 1 such
that w = w1, z = wn+1 and, for all 1 ≤ i ≤ n, either (1) wi = w′

iAiw
′′

i and
wi+1 = w′

ixiw
′′

i , for some w′

i, w
′′

i ∈ (N ∪T )∗, or (2) wi = wi+1, Ai does not appear
in wi and the rule Ai → xi appears in F . We remark that F consists of occurrences

of rules in M , that is, if the same rule appears several times in the matrices, it is
possible that only some of these occurrences are contained in F .

The language generated by a matrix grammar with appearance checking G is
defined as L(G) = {w ∈ T ∗ | S =⇒∗ w}, where =⇒∗ w is the reflexive and tran-
sitive closure of =⇒. The family of languages of this form is denoted by MATλ

ac,
when rules having the empty string λ as right hand side (λ–rules) are allowed, and
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by MATac when such rules are not allowed. Moreover, the family of languages gen-
erated by matrix grammars without appearance checking (i.e. with F = ∅) is de-
noted by MATλ, when λ–rules are allowed, and by MAT , when such rules are not
allowed. It is known that (i) MAT ⊂ MATac ⊂ CS; (ii) MATλ ⊂ MATλ

ac = RE,
where CS and RE are the families of languages generated by context–sensitive
and arbitrary grammars, respectively.

Let ac(G) be the cardinality of F in G and let |x| denote the length of the
string x. A matrix grammar with appearance checking G = (N,T, S,M,F ) is said
to be in the strong binary normal form if N = N1 ∪ N2 ∪ {S,#}, with these sets
mutually disjoint, and the matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2;
2. (X → Y,A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2;
3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2;
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1, F consists exactly of all rules A → #
appearing in matrices of type 3 and ac(G) ≤ 2. We remark that # is a trap symbol,
namely once introduced it cannot be removed, and a matrix of type 4 is used only
once, in the last step of a derivation.

For each matrix grammar (with or without appearance checking) there exists
an equivalent matrix grammar in the strong binary normal form. Consequently, for
each language L ∈ RE there exists a matrix grammar with appearance checking
G satisfying the strong binary normal form and such that L(G) = L.

Conventions

A matrix grammar with appearance checking in the strong binary normal form
is always given as G = (N,T, S,M,F ), with N = N1 ∪ N2 ∪ {S,#} and with
n + 1 matrices in M , injectively labeled with m0,m1, . . . ,mn. The matrix m0 :
(S → XinitAinit) is the initial one, with Xinit a given symbol from N1 and Ainit

a given symbol from N2; the next k matrices are without appearance checking
rules, mi : (X → α,A → x), with 1 ≤ i ≤ k, where X ∈ N1, α ∈ N1 ∪ {λ}, A ∈
N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2 (if α = λ, then x ∈ T ∗); the last n − k matrices have
rules to be applied in the appearance checking mode, mi : (X → Y,A → #), with
k + 1 ≤ i ≤ n,X, Y ∈ N1, and A ∈ N2.

Since the grammar is in the strong binary normal form, we have (at most)
two symbols B(1) and B(2) in N2 such that the rules B(j) → # appear in
matrices mi with k + 1 ≤ i ≤ n. For j ∈ {1, 2}, we denote with ℓj the set
{i | the matix mi contains the rule B(j) → #}. For uniformity, we also denote
ℓ0 = {1, 2, . . . , k} and ℓ = ℓ0 ∪ ℓ1 ∪ ℓ2 = {1, 2, . . . , n} (note that 0 6∈ ℓ). Clearly,
the sets ℓ0, ℓ1 and ℓ2 are disjoint.

We remark that in matrix grammars in strong binary normal forms we can
assume that all symbols X ∈ N1 appear as the left-hand side of a rule from
a matrix: otherwise, the derivation is blocked after introducing such a symbol,
hence we can remove these symbols and the matrices involving them.
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3.2 Universality

We prove that PMC Systems are universal by showing that the family, denoted
PsE2(ncoo), of sets Ps(Πe) of results computed by PE Systems with at least two
membranes and with non–cooperative rules is equivalent to the family, denoted
PsRE, of the images of all the languages in RE obtained through the Parikh
mapping (this is the family of recursively enumerable sets of vectors of natural
numbers). As P Systems with non-cooperative rules are not universal, our result
implies that universality is due to the presence of endosomes.

Theorem 1. PsE2(ncoo) = PsRE.

Proof. It is enough to show that for a G in strong binary normal form there is a
PE System ΠG such that Ps(ΠG) = ΨT (L(G)). We assume that the output of this
PE System is given by the objects sent out from the skin membrane. The alphabet
we take into consideration is given by T ∪N1 ∪N2 ∪{c}∪ {ci, di, d

′

i | i = 1, 2}. We
build ΠG as a system with a root membrane, labeled 1, and one child membrane
labeled 2. All the objects encoding the grammar will be stored inside membrane
1 and the matrixes will be simulated by membrane 2. The initial configuration is
given by the objects corresponding to Xinit and Ainit contained in membrane 1,
namely objects of w1, and by the token c contained on the surface of membrane
2, namely z2 = {c}.

This PE System works as follows: it has a cyclic behavior such that, at the
beginning of the cycle, at most one endosome in membrane 2 can be created and, if
possible, all terminal symbols inside membrane 1 are sent out as output symbols.
The created endosome can start a series of steps resulting in the interpretation
of the application of a matrix or, differently, it can start a checking phase to
model the fact that, if there exist non terminal symbols which cannot be rewritten
by any grammar, than the computation has not to halt. In the case in which
it starts the interpretation of a matrix of type 2 or 4 (a matrix mi with 1 ≤
i ≤ k), the involved non terminals are taken by the endosome which contains as
rules the ones interpreting the matrix. Objects will be sent into membrane 2 by
these rules creating the result of applying the corresponding matrix to the non
terminals. Subsequently, these objects are sent out to membrane 1 to restart the
cyclic behavior. We recall that during this process no other endosomes can be
created, so no other matrixes can be simulated. Differently, in the case in which a
matrix of type 3 (a matrix mi with k+1 ≤ i ≤ n) is applied, the single non terminal
of N1 is taken into the endosome. The endosome will work in the same sense of
the endosomes interpreting matrixes of type 2 and 4 even though, at the end
of the application of this matrix, instead of restarting with the cyclic behavior,
a checking process is started. This process checks, by creating endosomes, the
presence of the proper non terminal symbol B(j). If this symbol is found, a special
endosome is created which will introduce a trap symbol in this PE System so that
the computation will not halt. Analogously, if it is not found, an endosome will
restore the configuration of this PE System so that the cyclic behavior can start
again.
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We list now the rules of ΠG. Membrane 1 contains just one single set of rules
to create the output of the PE System:

1. {(a, here) → (a, out) | ∀a ∈ T} . All terminal objects in membrane 1 are sent
out as output.

All the interpretation of any matrix is done by the rules of the membrane 2
which are the following:

1. ∀X ∈ N1 ∪ N2. endo(X,in)→(#,out)(c,X). If any non terminal is present in
membrane 1, ΠG will always be able to create, by using an endosome, a trap
symbol inside membrane 2. This will ensure that, if a derivation of G reaches
a deadlock configuration, then ΠG can always enter an endless configuration.

2. ∀a ∈ N1 ∪N2 ∪T. (a, in) → (a, out). Every terminal and non terminal present
inside membrane 2 is sent out to membrane 1.

3. (c, in) → (c, here). Object c inside membrane 2 is restored on the surface of
membrane 2 so that other endosomes can be created.

4. (#, in) → (#, in). The trap symbol lets this computation not to be recognized
such.

5. ∀(X → α,A → x) ∈ {mi | 1 ≤ i ≤ k}.
endo(X,in)→(α,out),(A,in)→(x,out),(c,here)→(c,out)(c,XA). For any rule of type 2
and 4, we create an endosome by taking XA from membrane 1 and c from
the surface of membrane 2 (this locks the creation of other endosomes). The
endosome contains rules to rewrite X and A with the result of applying the
matrix. Object c is not consumed and sent out to membrane 2 together with
α and x.

6. ∀(X → Y,A → #) ∈ {mi | k + 1 ≤ i ≤ n}.
endo(X,in)→(Y,out),(c,here)→(ci,out)(c,X). For any rule with appearance check-
ing, we create an endosome by taking only X from membrane 1 and c from
the surface of membrane 2 (this locks the creation of other endosomes). The
endosome contains rules to rewrite X with Y and c with ci. Both the objects
are sent out to membrane 2.

7. (ci, in) → (ci, here)(di, here). Object ci, together with a new object di, is
moved on the surface of membrane 2.

8. endo(B(i),in)→(#,out)(ci, B
(i)). This implements the appearance checking of

grammar G. We create, if possible, an endosome by taking only B(i) from
membrane 1 and ci from the surface of membrane 2. The endosome creates a
trap symbol in membrane 2; this will make ΠG start an endless computation.

9. (di, here) → (d′i, here). The symbol di is rewritten in the same place as d′i.
This is done even if also rule 8 can be applied. However, in the case that rule
8 cannot be applied (namely B(i) was not present), this completes the appear-
ance checking operation and lets ΠG start an operation which will restart its
cyclic behavior.

10. endo(ci,here)→(c,out),(d′

i
,here)→λ(cid

′

i, ∅). This endosome lets ΠG restart its cyclic
behavior. We create an endosome by simply taking both the control symbols
only c1 and d′i from the surface of membrane 2. The endosome destroys d′i and
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Fig. 3. The EGF signaling pathway.

rewrites ci with c in membrane 2 (restarting ΠG will be obtained by applying
rule 3).

It is clear that these rules, applied in a proper order, provide the correct inter-
pretation of the application of any matrix to the starting symbols of the grammar
and, consequently, we get Ps(ΠG) = ΨT (L(G)) which concludes the proof.

4 An Application: the EGF Signaling Pathway

In this section we give an application of PE systems to the description of the initial
phases of the EGFR signalling cascade.

In Biology, signal transduction refers to any process by which a cell converts
one kind of signal or stimulus into another. Signals are typically proteins that
may be present in the environment of the cell. In order to be able to receive
the signal, namely to recognize that the corresponding protein is available in the
environment, a cell exposes some receptors on its external membrane. A receptor
is a transmembrane protein that can bind to a signal protein on its extracellular
end. When such a binding is established, the intracellular end of the receptor
undergoes a conformational change that enables interaction with other proteins
inside the cell. This typically causes an ordered sequence of biochemical reactions
inside the cell, usually called signalling pathway, that are carried out by enzymes
and may produce different effects on the cell behavior.

A complex signal transduction cascade, that modulates cell proliferation, sur-
vival, adhesion, migration and differentiation, is based on a family of receptors
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Fig. 4. A PE systems model of the EGF signaling pathway.

called epidermal growth factor receptors (EGFRs). While EGFR signalling is es-
sential for many normal morphogenic processes, the aberrant activity of these re-
ceptors has been shown to play a fundamental role in proliferation of tumor cells.
Epidermal growth factor receptors (EGFR) are produced by specific genes in the
DNA (through the RNA) and they are located on the cell surface. Receptors are
activated by the binding with a specific ligand (epidermal growth factor, EGF ) to
form a EGFR (ligand-receptor) complex (COM). Upon activation, EGFR under-
goes a transition from a monomeric form to an active dimeric one (DIM). EGFR
dimerization stimulates its intracellular phosphorylation (DIMp) which activates
signalling proteins. These activated signalling proteins (effector proteins) initiate
several signal transduction cascades, leading to DNA synthesis and cell prolifera-
tion. After the activation of effector proteins, ligand-receptor dimers are internal-
ized in endosomes. An ubiquitin ligase, known as Cbl, binds an ubiquitin protein
(UB) to the dimer (ubiquitination). The ubiquitin protein targets the dimers for
lysosomal degradation (see Figure 3).

The PE system modeling the EGF is given in Figure 4. The rules which describe
its behaviour are the following for membrane 2:

1. (EGFR, in) → (EGFR, here)
2. (EGF, out)(EGFR, here) → (COM,here)
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3. (COM,here)(COM,here) → (DIM,here)
4. (DIM,here)(P, in) → (DIMp, here)
5. (DIMp, here)(SHC, in) → ...

6. (rna, in) → (EGFR, in)
7. endo(DIMp,here)(UB,out)→(P,out),(DIMp,here)→(EGFR2,out)(DIMp, ∅)

Notice that rule 5 is not complete in the sense that it should rewrite the DIMp

on the surface of the membrane and the contained SHC into a complex in order
to start a sequence of intra–cellular events leading to the duplication of the cell.
However, for the explanatory aim of this application example, it is not of interest
to fully describe this part of the model.

Finally, membrane 3 contains just one rule (dna, in) → (dna, in)(rna, out).
The behavior of this PE System is straightforward, membrane 1 models the

environment external to the cell, membrane 2 represents the cell surface and mem-
brane 3 is the nucleus. In the external environment EGF corresponds to the epi-
dermal growth factor EGF which can bind the receptor on the surface of the cell.
The receptor is modeled by EGFR in membrane 2, which can move on the surface
of the membrane. The complex of EGF with the receptor is obtained by rewriting
EGF and EGFR with the complex COM on the surface of membrane 2. After
the binding of two complexes we can bind them leading to a dimer DIM . Such a
dimer, present on the surface of the membrane, can be phosphorylated by a phos-
phorus P inside the cell. Such phosphorilated dimer DIMp could start a chain
of actions we do not model here. Furthermore, it can be enclosed in an endosome
which could, in presence of ubiquitin UB, reproduce the phosphorus inside the cell
or, differently, the two receptors. The nucleus of the cell (membrane 3) is responsi-
ble for the production of EGFR through the DNA and RNA (dna and rna). The
rna reaches the cell cytoplasm and there it produces EGFR which is sent, again,
to the cell surface.

5 Future Work and Conclusions

In this paper we presented an extension of P Systems, called P Systems with En-
dosomes (PE Systems), in which endosomes can be explicitly modeled. P Systems
are computing devices inspired by the structure and the functioning of a living cell.
A P System consists of a hierarchy of membranes, each of them containing a mul-
tiset of objects, a set of evolution rules, and possibly other membranes. Evolution
rules are applied to the objects of the same membrane with maximal parallelism.
PE Systems extend P Systems maintaining the main features of the formalism but
adding the possibility of explicitly modeling endosomes. Modeling endosomes is
the basis for modeling vesicle–mediated transportation mechanisms, in particular
endocytosis, which can be divided in three main forms (pynocytosis, phagocytosis
and receptor–mediated endocytosis) can be clearly modeled by using PE Systems.
PE Systems uses some ideas taken from other variants of P Systems, in particular
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as regards objects which can be stored on the surface of the membranes we got in-
spiration by the works on P System with peripheral proteins [5, 9]. Furthermore, as
regards other calculi, operations for modeling transportation mechanism already
have been introduced in Brane Calculi [3]. Although similar, PE Systems permit
to model in a clearer way these mechanisms. An analysis of PE Systems and Brane
Calculi [3] (and also some of their variants like projective Brane Calculi [6]) could
be done along the line of the one done in [4, 12] for P Systems and Brane Calculi.

As regards expressiveness of this formalism, we showed that PE Systems are
universal even if only the simplest form of evolution rules is considered, namely
non–cooperative rules. This expressiveness is achieved by the use of endosomes as
classical P Systems with this kind of rules are shown not to be universal [10].

At the end of the paper we have given an application example describing the
modeling of the of the initial phases of the EGFR signalling cascade.
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Summary. The Bearded Vulture (Gypaetus Barbatus) is an endangered species in Eu-
rope that feeds almost exclusively on bone remains provided by wild and domestic ungu-
lates. In [1], we presented a P system in order to study the evolution of these species in
the Pyrenees (NE Spain). Here, we present a new model that overcomes some limitations
of the previous work incorporating other scavenger species (predatory) and additional
prey species that provide food for the scavenger intraguild and interact with the Bearded
Vulture in the ecosystem. After the validation, the new model can be a useful tool for
the study of the evolution and management of the ecosystem. P systems provide a high
level computational modelling framework which integrates the structural and dynamical
aspects of ecosystems in a compressive and relevant way. The inherent stochasticity and
uncertainty in ecosystems is captured by using probabilistic strategies.

1 Introduction

Since nature is very complex, the perfect model that explain it will be complex
too. A complex model is not practical or good to use, so we should obtain a simple
model that keeps the most important natural factors and consequently will be
useful.



66 M. Cardona et al.

The P system presented in [1] gives good results in order to study the evolution
of the ecosystem based on the Bearded Vulture in the Catalan Pyrenees, but it
does not take into account important factors such as the population density or the
feeding limitations.

In the Catalan Pyrenees, in the North-east of Spain, three vulture species
inhabits sharing the geographic space and the existent food resources so in this
work, we present a P system for modelling an ecosystem based on three vulture
species and the prey species present from which scavengers obtain their food.
The present model improves the results presented in [1]. Apart from adding two
new predator species (the Egyptian Vulture Neophron percnopterus and Eurasian
Griffon Vulture Gyps fulvus), we introduce new prey species (making a total of
12 species) in the new model that provide feeding resources for the scavenger
community. Besides, new rules are introduced to limit the maximum amount of
animals that can be supported by the ecosystem as well as the amount of grass
available for the herbivorous species.

For a good and efficient management of the ecosystems, it is necessary to know
the quantity and the evolution of the biomass that reaches every species. One of
the contributions the P system presents is the evolution of the quantity of annual
biomass that is left by every species.

The paper is organized as follows: First, an ecosystem, which is located in the
Catalan Pyrenees and is to be modelled, is described. Section 3 shows a formal
framework to model ecosystems by means of probabilistic P systems, and a P
system modelling the above mentioned ecosystem is presented. In Section 4, we
discuss the results obtained and we compare the model presented in this paper to
the one presented in [1], using a P-lingua simulator [4].

2 Modelling the Ecosystem

The ecosystem to be modelled is located in the Catalan Pyrenees (NE Spain). This
area contains a total of 36 breeding territories of the Bearded Vulture, 65 of the
Egyptian Vulture and 525 of the Eurasian Griffon Vulture.

In addition to the three vultures, the ecosystem to be modelled is also com-
posed of 9 prey species: the Pyrenean Chamois (Rupicapra pyrenaica), the Red
Deer (Cervus elaphus), the Fallow Deer (Dama dama), the Roe Deer (Capreolus
capreolus), sheep (Ovis aries), the cow (Bos taurus), the horse (Equus caballus),
the goat (Capra hircus) and the wild boar (Sus scrofa). Prey species remains
constitutes the basic feeding source for the vultures in the area under study.

The three vultures are cliff-nesting and long-lived species characterized by their
low fecundity [3]. Concerning their diet, the Bearded Vulture is the only vertebrate
that feeds almost exclusively on bone remains of medium size ungulates (see re-
views in [6], [5]), whereas the Egyptian vulture feeds on dead small animals and
the Eurasian Griffon vultures on medium and large sized animals [3].
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The Bearded Vulture has a mind lifespan in wild birds of 21 years [2]. The
mean age of first breeding is 8 years. The number of decedents for breeding is one
chick. The female’s annual fertility rate in Catalonia in the last years is estimated
to be around 38%.

The Egyptian Vulture and the Griffon Vulture has a mind lifespan in wild birds
of 25 years. The mean age of first breeding is 5 years. The number of descendants
per breeding is one chick. The female’s annual fertility rate in Catalonia in the
last years is estimated to be around 59% for the Egyptian Vulture and 75% for
the Griffon Vulture ([3],[5]).

It is accepted that there is the same proportion of females than males in the
three types of vultures.

The ecosystem modelled in [1] is characterized by the presence of the domestic
species, sheep. We considered that species stay all year in the mountain and thus,
the bones they left when they die is available for the vultures. The real situation
is that there are some domestic animals which live permanently in the mountain
whereas others only spend the summer season there. This fact is assumed in the
present paper.

Taking all this background information into consideration, the following data
are required for each species:

• I1: age at which adult size is reached. Age at which the animal eats like an
adult animal does. Moreover, at this age it will have surpassed the critical early
phase during which the mortality rate is high;

• I2: age at which it starts to be fertile;

• I3: age at which it stops being fertile;

• I4: average life expectancy;

• I5: fertility ratio (number of descendants by 100 fertile female);

• I6: mortality ratio in the first years, age < I1 (per cent);

• I7: mortality ratio in adult animals, age ≥ I1 (per cent);

• I8: ratio of females in the population (per cent).

• I9: amount of bones from young animals when they die (kg)

• I10: amount of bones from adult animals when they die (kg)

• I11: amount of meet from young animals when they die (kg)

• I12: amount of meet from adult animals when they die (kg)

• I13: amount of bones necessary per year and animal (kg)

• I14: amount of meet necessary per year and adult animal (kg)
• I15: amount of grass necessary per year and adult animal (kg)

The required information about each species is shown in Table 4 (see Ap-
pendix).
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3 A formal framework: A P System Based Model of the

Ecosystem

In this section, we present a model of the ecosystem described in Section 2 by
means of probabilistic P systems. We will study the behaviour of this ecosystem
under different initial conditions.

First, we define the P systems based framework (probabilistic P systems),
where additional features such as electrical charges which describe specific prop-
erties in a better way, are used.

Definition 1. A probabilistic P system of degree q is a tuple

Π = (Γ, µ,M1, . . . ,Mq, R, {cr}r∈R)

where:

• Γ is the alphabet (finite and nonempty) of objects (the working alphabet);

• µ is a membrane structure (a rooted tree), consisting of q membranes, labelled
1, 2, . . . , q. The skin membrane is labelled by 1. We also associate electrical
charges with membranes from the set {0,+,−}, neutral and positive;

• M1, . . . ,Mq are strings over Γ , describing the multisets of objects initially
placed in the n regions of µ;

• R is a finite set of evolution rules. An evolution rule associated with the mem-
brane labelled by i is of the form

r : u[ v ]αi
cr−→u′[ v′ ]α

′

i

where u, v, u′, v′ are multisets over Γ , α, α′ ∈ {0,+,−}, and cr is a real number
between 0 and 1. Besides, for each u, v ∈ M(Γ ), i ∈ {1, 2, . . . , q} and α ∈
{0,+,−}, it must verify

∑t

j=1 crj
= 1, being r1, . . . , rt the rules whose left-

hand side is u[ v ]αi .

We denote by [ v → v′ ]αi the rule u[ v ]αi → u′[ v′ ]α
′

i in the case u = u′ = λ,
and α = α′.

We assume that a global clock exists, marking the time for the whole system
(for all compartments of the system); that is, all membranes and the application
of all the rules are synchronized.

The multisets of objects present at any moment in the n regions of the system
constitutes the configuration of the system at that moment. Particularly, tuple
(M1, . . . ,Mq) is the initial configuration of the system.

The P system can pass from one configuration to another one by using the
rules from R as follows:

• A rule u[ v ]αi
cr−→u′[ v′ ]α

′

i is applicable (with a probability cr) to a membrane
labelled by i, and with α as electrical charge, when the multiset u is contained
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in the father of membrane i, and the multiset v is contained in membrane i.
When rule u[ v ]αi

cr−→u′[ v′ ]α
′

i is applied, multiset u (resp. v) in the father of
membrane i (resp. membrane i) is removed of that membrane and multiset u′

(resp. v’) is produced in that membrane.

• The rules are applied in a maximal consistent parallelism, that is, all those
rules of type u1[ v1 ]αi → u′

1[ v′

1 ]α
′

i and u2[ v2 ]αi → u′

2[ v′

2 ]α
′

i might be applied
simultaneously in a maximal way.

• The constants cr associated with the rules indicate the affinity of the above
mentioned rule for its application.

3.1 The model

The model proposed consists in the following probabilistic P system of degree 2
with two electrical charges (neutral and positive):

Π = (Γ, µ,M1,M2, R, {cr}r∈R)

where:

• Γ = {Xij , Yij , Vij , Zij : 1 ≤ i ≤ n, 0 ≤ j ≤ gi,7} ∪ {b0i, bi : 1 ≤ i ≤ n} ∪
{B, G, M, B′, G′, M ′, C, C ′} ∪ {Hi, H ′

i, Fi, F ′

i , Ti, di, ai : 1 ≤ i ≤ n}
is the working alphabet.

In our model, n = 17 represents the different types of animals (according to
the management) of the 12 species which compose the ecosystem under study.
Symbols X, Y , V and Z represent the same animal but in different states.
Index i is associated with the species and index j is associated with their age.
It also contains the auxiliary symbols B, B′, which represent 0.5 kg of bones,
M, M ′, which represent 0.5 kg of meet and G, G′, which represent 0.5 kg
of grass. Objects Hi, H ′

i represent 0.5 kg of biomass of bones, and objects
Fi, F ′

i represent 0.5 kg of biomass meet left by specie i in different states.
Ti is an object that is used for counting the existing animals of species i. If
a species overcomes the maximum density, values will be regulated. At the
moment when a regulation takes place, object ai allows us to eliminate the
number of animals of species i that exceed the maximum density. Object di

is used to put under control domestic animals that are withdrawn from the
ecosystem for their marketing.

• µ = [ [ ]2 ]1 is the membrane structure. We represent two regions, the skin and
an inner membrane. The first is important to check the densities of every species
do not overcome the threshold of the ecosystem. Animals reproduce, feed and
die in the inner membrane. For the sake of simplicity, neutral polarization will
be omitted.

• M1 and M2 are strings over Γ , describing the multisets of objects initially
placed in the regions of µ (encoding the initial population and the initial food);
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– M1 = {b0i, X
qij

ij : 1 ≤ i ≤ n, 0 ≤ j ≤ gi,7}, where the multiplicity qij

indicates the number of animals of species i whose age is j that are initially
present in the ecosystem;

– M2 = {C},

• The set R of evolution rules consists of:

r0 ≡ [C → G′βC ′]02.

r1 ≡ [b0,i → bi]
0
1.

– Reproduction-rules.

· Adult males:

r2 ≡ [Xij

(1−ki,1)·(1−ki,4)

−−−→ Yij ]
0
1, 1 ≤ i ≤ n, gi,5 ≤ j ≤ gi,7.

· Adult females that reproduce:

r3 ≡ [Xij

ki,2·ki,1·(1−ki,4)

−−−→ YijY
ki,3

i0 ]01, 1 ≤ i ≤ n, i 6= 5, gi,5 ≤ j < gi,6.

r4 ≡ [X5j

0.5·k5,1
−−−→Y5jY

ki,3

50 ]01, g5,5 ≤ j < g5,6.

r5 ≡ [X5j

0.5·k5,1
−−−→Y5jY

ki,3

60 ]01, g5,5 ≤ j < g5,6.

· Adult females that do not reproduce:

r6 ≡ [Xij

(1−ki,2)·ki,1·(1−ki,4)

−−−→ Yij ]
0
1, 1 ≤ i ≤ n, gi,5 ≤ j < gi,6.

r7 ≡ [Xij

ki,1·(1−ki,4)

−−−→ Yij ]
0
1, 1 ≤ i ≤ n, gi,6 ≤ j ≤ gi,7.

· Young animals that do not reproduce:

r8 ≡ [Xij

1−ki,4
−−−→Yij ]

0
1, 1 ≤ i ≤ n, 1 ≤ j < gi,5.

– Growth rules.
r9 ≡ [Xij

ki,5·ki,4
−−−→Yi(gi,5−1)Yij ]

0
1, 1 ≤ i ≤ n, gi,5 ≤ j ≤ gi,7.

r10 ≡ [Xij

(1−ki,5)·ki,4
−−−→ Yij ]

0
1, 1 ≤ i ≤ n, gi,5 ≤ j ≤ gi,7.

– Mortality rules.

r11 ≡ bi[ ]02 → [bia
gi,8

i ]+2 : 1 ≤ i ≤ n.

· Young animals that survive:

r12 ≡ Yij [ ]02
1−mi,1−mi,3
−−−→ [VijTi]

+
2 : 1 ≤ i ≤ n, 0 ≤ j < gi,4.

· Young animals that die:

r13 ≡ Yij [ ]02
mi,1

−−−→[H
′fi,1·gi,3

i F
′fi,2·gi,3

i B′fi,1·gi,3M ′fi,2·gi,3 ]+2 : 1 ≤ i ≤
n, 0 ≤ j < gi,4.
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· Young animals that are retired from the ecosystem:

r14 ≡ [Yij

mi,3
−−−→λ]01 : 1 ≤ i ≤ n, 0 ≤ j < gi,4.

· Adult animals that do not reach an average life expectancy and survive:

r15 ≡ Yij [ ]02
1−mi,2
−−−→[VijTi]

+
2 : 1 ≤ i ≤ n, gi,4 ≤ j < gi,7.

· Adult animals that do not reach an average life expectancy and die:

r16 ≡ Yij [ ]02
mi,2

−−−→[H
′fi,3·gi,3

i F
′fi,4·gi,3

i B′fi,3·gi,3M ′fi,4·gi,3V
ki,4

i,gi,5−1T
ki,4

i ]+2 :
1 ≤ i ≤ n, gi,4 ≤ j < gi,7.

· Animals that reach an average life expectancy and die in the ecosystem:

r17 ≡ Yigi,7
[ ]02

c17−−−→[H
′fi,3·gi,3

i F
′fi,4·gi,3

i B′fi,3·gi,3M ′fi,4·gi,3V
ki,4

i,gi,5−1T
ki,4

i ]+2 :

1 ≤ i ≤ n, being c17 = ki,4 + (1 − ki,4) · (mi,4 + (1 − mi,4) · mi,2).

· Animals that reach an average life expectancy and retire from the ecosys-
tem:

r18 ≡ [Yigi,7

(1−ki,4)·(1−mi,4)·(1−mi,2)

−−−→ λ]1 : 1 ≤ i ≤ n.

– Regulation rules.

r19 ≡ [G′ → G]+2 .

r20 ≡ [B′ → B]+2 .

r21 ≡ [M ′ → M ]+2 .

r22 ≡ [C ′ → C]+2 .

r23 ≡ [H ′

i → Hi]
+
2 : 1 ≤ i ≤ n.

r24 ≡ [F ′

i → Fi]
+
2 : 1 ≤ i ≤ n.

– Evaluation of the density of the different species in the ecosystem

r25 ≡ [T
gi,8

i a
gi,8−gi,9

i → λ]+2 : 1 ≤ i ≤ n.

r26 ≡ [Vij → Zij ]
+
2 : 1 ≤ i ≤ n, 0 ≤ j < gi,7.

– Feeding rules.

r27 ≡ [ZijaiB
fi,5·gi,3Gfi,6·gi,3Mfi,7·gi,3 ]+2 → Xi(j+1)[ ]02 : 1 ≤ i ≤ n, 0 ≤

j ≤ gi,7.

– Balance rules. The purpose of these rules is to make a balance at the end
of the year. That is, the leftover food is not useful for the next year, so it
is necessary to eliminate it. But if the amount of food not is enough, some
animals die.

· Elimination of the remaining bones, meet and grass:

r28 ≡ [B → λ]02.
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r29 ≡ [G → λ]02.

r30 ≡ [M → λ]02.

r31 ≡ [Ti → λ]02 : 1 ≤ i ≤ n.

r32 ≡ [ai → λ]02 : 1 ≤ i ≤ n.

r33 ≡ [bi]
0
2 → bi[ ]02 : 1 ≤ i ≤ n.

r34 ≡ [Hi]
0
2 → Hi[ ]02 : 1 ≤ i ≤ n.

r35 ≡ [Fi]
0
2 → Fi[ ]02 : 1 ≤ i ≤ n.

· Young animals mortality:

r36 ≡ [Zij

gi,1
−−−→H

′fi,1

i F
′fi,2

i B′fi,1M ′fi,2 ]02 : 1 ≤ i ≤ n, 0 ≤ j < gi,4.

r37 ≡ [Zij ]
0
2

1−gi,1
−−−→ di[ ]02 : 1 ≤ i ≤ n, 0 ≤ j < gi,4.

· Adult animals mortality:

r38 ≡ [Zij

gi,1
−−−→H

′fi,3

i F
′fi,4

i B′fi,3M ′fi,4 ]02 : 1 ≤ i ≤ n, gi,4 ≤ j ≤ gi,7.

r39 ≡ [Zij

1−gi,1
−−−→λ]02 : 1 ≤ i ≤ n, gi,4 ≤ j ≤ gi,7.

r40 ≡ [Hi → λ]01 : 1 ≤ i ≤ n.

r41 ≡ [Fi → λ]01 : 1 ≤ i ≤ n.

The constants associated with the rules have the following meaning:

• gi,1: 1 for wild animals and 0 for domestic animals.

• gi,2: 1 for carnivorous animals and 0 otherwise.

• gi,3: proportion of time that they remain in the mountain during the year.

• gi,4: age at which adult size is reached. This is the age at which the animal eats
like and adult does, and at which if the animal dies, the amount of biomass it
leaves is similar to the total one left by an adult. Moreover, at this age it will
have surpassed the critical early phase during which the mortality rate is high.

• gi,5: age at which it starts to be fertile.

• gi,6: age at which it stops being fertile.

• gi,7: average life expectancy in the ecosystem.

• gi,8: maximum density of the ecosystem.

• gi,9: number of animals that survive after reaching maximum density of the
ecosystem.

• ki,1: proportion of females in the population (per one).

• ki,2: fertility ratio (proportion of fertile female that reproduce).

• ki,3: number of descendants per each fertile female that reproduce.
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• ki,4: it is equal to 0 when the species go through a natural growth (animals
which remain in the same territory throughout their lives) and it is equal to
1 when animals are nomadic (the Bearded Vulture moves from one place to
another until it is 6–7 years old, when it settles down).

• ki,5: population growth (per one).

• mi,1: natural mortality ratio in first years, age < gi,4 (per one).

• mi,2: mortality ratio in adult animals, age ≥ gi,4 (per one).

• mi,3: percentage of domestic animals withdrawn in the first ages of the not
stabilized populations.

• mi,4: is equal to 1 if the animal dies at the age of gi,7 and it is not retired, and
it is equal to 0 if the animal not dies at the age of gi,7 but it is retired from
the ecosystem.

• fi,1: amount of bones from young animals when they die, age < gi,4 .

• fi,2: amount of meet from young animals when they die, age < gi,4 .

• fi,3: amount of bones from adult animals when they die, age ≥ gi,4.

• fi,4: amount of meet from adult animals when they die, age ≥ gi,4.

• fi,5: amount of bones necessary per year and animal (1 unit is equal 0.5 kg of
bones).

• fi,6: amount of grass necessary per year and animal.

• fi,7: amount of meet necessary per year and animal.

The constants used in this work are the same than those of [1], except for
those referring to the maximum density of the population, the meet or the grass.
However, they have been renamed in this work in order to be able to group them
according to their characteristics. Thus, general characteristics are now named
with g, those of reproduction with k, those corresponding to mortality with m and
those of feeding with f . See Appendix in table 5.

3.2 Structure of the P system running

The model presented in [1], shows some restrictions which produce undesired effects
for the study of the ecosystem evolution. Thus, in the first version of the model, it
was not born in mind the resources for the feeding of herbivorous species, that is, it
was assumed that there was enough grass at the ecosystem for all the population.
Similarly, the maximum density of certain species in some areas of the ecosystem
was not taken into consideration. It has been experimentally proved that, when
the number of animals of a species exceeds a threshold, a phenomenon of auto-
regulation of the population takes place.

In this paper, we present a new model of the ecosystem that includes new
ingredients with the aim to overcome the limitations previously described. More
specifically, the modifications made are the following:
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• It has been added new species which have active roles in the ecosystem under
study, although their roles are perhaps less relevant that those of the first
species studied. These species are the wild boar, the horse, the goat and the
cow. Besides, it has been included greedy species such as the Egyptian Vulture
and the Griffon Vulture which compete with the Bearded Vulture.

• A new module has been added in order to regulate the population density of
the ecosystem.

• The mortality module has been modified in order to consider that after an
animal dies, in addition to the bones it leaves at the ecosystem, its meet serves
as food for other animals.

• The feeding module has also been modified because the feeding resources for
the species at the ecosystem have been modelled in this new approach. For this
reason, new objects have been introduced representing, apart from the bones,
the amount of meet and grass available at the ecosystem.

In the model presented in Section 3.1, a new module devoted to control the
density has been introduced. From the point of view of the execution of the system,
the new module has been incorporated between the Mortality and the Feeding
modules. These are depicted in Figure 1.

Fig. 1. Modules of the P systems

Let us recall that in the model presented in [1], objects X represent the diffe-
rent species along the execution of the reproduction module. Objects X evolve to
objects Y when they pass to the mortality module, and these objects Y evolve to
objects Z when they pass to the feeding module. Finally, the cycle is completed
when objects Z evolve to objects X.

In order to keep the representation of the species at the different modules, we
have used objects V to describe the species at the density module. For that pur-
pose, objects Y (mortality module) evolve to objects V (density module), together
with objects T which represent the number of individuals per each species. Then,
objects V evolve to objects Z (feeding module). By the way, objects T will allow
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the activation of the process of auto–regulation of the ecosystem when the num-
ber of individuals of a species exceed the threshold of maximum density, which is
codified by objects a.

When a cycle is produced, all objects which are not associated with species
are eliminated, except the biomass generated by the animals that have died due
to the process of regulation.

4 Results and discussions

The software tool used for the purposes of this paper is based on P-Lingua 2.0
[4], P-Lingua is a new programming language able to define P systems of different
types (from now on, frameworks). For instance, P-Lingua can define any P system
within the probabilistic framework mentioned in this paper.

Next, we describe how to implement in P–Lingua the applicability of the rules
to a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have
the same left–hand side.

(b) Let {r1, . . . , rt} be one of the said sets of rules. Let us suppose that the com-
mon left-hand side is u [v]αi and their respective probabilistic constants are
cr1

, . . . , crt
. In order to determine how these rules are applied to a give config-

uration, we proceed as follows:

– It is computed the greatest number N so that uN appears in the father
membrane of i and vN appears in membrane i.

– N random numbers x such that 0 ≤ x < 1 are generated.

– For each k (1 ≤ k ≤ t) let nk be the amount of numbers generated belonging

to interval [
∑k−1

j=0 crj
,

∑k

j=0 crj
) (assuming that cr0

= 0).

– For each k (1 ≤ k ≤ t), rule rk is applied nk times.

P-Lingua 2.0 provides a JAVA library that defines algorithms in order to sim-
ulate P system computations for each supported framework, so we are using a
common algorithm for all P systems within the probabilistic framework.

By defining the ecosystem model by a P system written in P-Lingua, it is
possible to check, validate and improve the model in a flexible way, instead of
developing a new “ad hoc” simulator for each new model.

The application has a friendly user-interface, which sits on the P-Lingua JAVA
library, allowing the user to change the initial parameters of the ecosystem in an
easy way without special knowledge about the P system or the initial multisets.
The main objective is to make virtual experiments over the ecosystem.

The current version of this software is a prototype GPL licensed [8].
In order to compare the model presented in this work to the one presented in [1],

it has been used the P-lingua simulator [4]. We have simulated the evolution of the
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Fig. 2. A tool for simulating ecosystems

Bearded Vulture, Red Deer, Fallow Deer, Roe Deer and Pyrenean Chamois species,
in a period of 25 years. The starting information is the population registered in
the year 2008. Some of the results are shown in Figure 3.
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Fig. 3. Result of the simulation in 25 years time

It is observed that during the first years, the obtained values are almost equal.
However, from a certain moment on, the population of the ecosystem experiments
an exponential growth according to the P system [1] (P system I in the picture)
whereas it maintains stable according to P systems II. The results of the new P
system (P system II in the picture) are closer to the real situation.

The first step that will be taken is to validate the P system presented with
real information, including all the proposed species with its specifications. When
the model is validated, it will be able to apply it for the study of the evolution
of an ecosystem under different situations. The model can be a useful tool for the
management of the species.

In order to obtain a more realistic model, the following step should be to include
possible movements of species among adjacent zones of the ecosystem.

5 Conclusions and Future works

A probabilistic P System which models an ecosystem related with Scavenger birds,
and that is located in the Catalan Pyrenees, has been presented. By using this
kind of P System, it has been possible to study the dynamics of the mentioned
ecosystem adding new ingredients. That framework allows us to analyze how the
ecosystem would evolve when different biological factors were modified either by
nature or through human intervention, improving the results presented in [1].

A new JAVA software tool with a friendly user-interface sitting on the P-
Lingua 2.0 JAVA library [4] has been developed in this paper. This application
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provides a flexible way to check, validate and improve computational models of
ecosystem based on P systems instead of designing new software tools each time
new ingredients are added to the models. Furthermore, it is possible to change
the initial parameters of the modelled ecosystem in order to make the virtual
experiments suggested by experts. These experiments will provide results that can
be interpreted in terms of hypotheses. Finally, some of these hypotheses will be
selected by the experts in order to be checked in real experiments.

In a future work, we will try to model neighbouring ecosystems with existing
interactions among them, so it will be necessary to modify the scenario. Multi-
environment P systems introduced in [7] could provides a friendly and flexible
framework to get a new approach.
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Bearded Vulture 1 8 20 21 38 6 12 50 0 0 0 0 460 0 0

Egyptian Vulture 1 5 24 25 59.3 21 25 50 0 0 0 0 0 166 0

Griffon Vulture 1 5 24 25 75 14 1 50 0 0 0 0 0 400 0

Pyrenean Chamois 1 2 18 18 75 60 6 55 3 6 4 24 0 0 275

Red Deer 1 2 17 17-20 75 34 6 50 10 20 15 90 0 1270 0

Fallow Deer 1 2 12 12 55 50 6 75 1 2 14 37 0 550 0

Roe Deer 1 1 10 10 100 58 6 67 0.5 1 4 19 0 300 0

Wild Board 1 1 4 11 3.5 62-79 30-40 50 4 12 6 60 0 365 0

Sheep 1 2 8 8 75 15 3 96 3.5 7 4 28 0 660 0

Bovine 2 2 9 14 90 5.7 0.45 90 10.5 6 59.5 519 0 5500 0

Goat 1 2 8 6 90 12 2 97 3.5 9.5 4 37.5 0 700 0

Horse 3 3 9 20 90 3.4 1.42 97 10.5 9 59.5 891 0 6000 0
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Species i gi,1 gi,2 gi,3 gi,4 gi,5 gi,6 gi,7 gi,8 gi,9 ki,1 ki,2 ki,3 ki,4 ki,5 mi,1 mi,2 mi,3 mi,4 fi,1 fi,2 fi,3 fi,4 fi,5 fi,6 fi,7

Bearded Vulture 1 1 0 1 1 8 20 21 120 120 0.5 0.08 1 1 0.04 0.06 0.12 0 1 0 0 0 0 460 0 0

Egyptian Vulture 2 1 0 0.5 1 5 24 25 160 160 0.5 0.593 1 0 0 0.17 0.07 0 1 0 0 0 0 0 0 332

Griffon Vulture 3 1 0 1 1 5 24 25 1400 1400 0.5 0.75 1 0 0 0.03 0.01 0 1 0 0 0 0 0 0 800

P. chamois 4 1 0 1 1 2 18 18 15000 7500 0.55 0.75 1 0 0 0.6 0.06 0 1 6 8 12 48 0 550 0

Red deer female 5 1 0 1 1 2 17 17 4615 3230 1 0.75 1 0 0 0.34 0.06 0 1 15 26 30 120 0 2540 0

Red deer male 6 1 0 1 1 2 20 20 2885 2020 0 0 0 0 0 0.34 0.36 0 1 24 30 48 192 0 2540 0

Fallow deer 7 1 0 1 1 2 12 12 3000 2400 0.75 0.55 1 0 0 0.5 0.06 0 1 2 28 4 74 0 1100 0

Roe deer 8 1 0 1 1 1 10 10 15000 7500 0.67 1 1 0 0 0.58 0.06 0 1 1 8 2 38 0 600 0

Wild Board 9 1 0 1 1 1 4 11 200000 200000 0.5 0.035 3 0 0 0.705 0.035 0 0 8 12 24 120 0 730 0

Sheep A 10 0 0 1 1 2 8 8 200000 200000 0.96 0.75 1 0 0 0.15 0.030 0.59 0 7 8 14 56 0 1320 0

Sheep P 11 0 0 0.5 1 2 8 8 50000 50000 0.96 0.75 1 0 0 0.15 0.030 0.59 0 7 8 14 56 0 1320 0

Bovine A 12 0 0 1 2 2 9 14 168500 168500 0.9 0.9 1 0 0 0.057 0.045 0 0 21 119 12 1038 0 11000 0

Bovine P 13 0 0 0.5 2 2 9 14 168500 168500 0.9 0.9 1 0 0 0.057 0.045 0 0 21 119 12 1038 0 11000 0

Goat A 14 0 0 1 1 2 8 6 17000 17000 0.97 0.9 1 0 0 0.12 0.015 0.59 0 7 8 19 75 0 1400 0

Goat P 15 0 0 0.5 1 2 8 6 17000 17000 0.97 0.9 1 0 0 0.12 0.015 0.59 0 7 8 19 75 0 1400 0

Horse A 16 0 0 1 3 3 9 20 6600 6600 0.97 0.9 1 0 0 0.034 0.014 0 0 21 119 18 1782 0 12000 0

Horses P 17 0 0 0.5 3 3 9 20 6600 6600 0.97 0.9 1 0 0 0.034 0.014 0 0 21 119 18 1782 0 12000 0
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Summary. It is well known that any irreducible and aperiodic Markov chain has exactly
one stationary distribution, and for any arbitrary initial distribution, the sequence of
distributions at time n converges to the stationary distribution, that is, the Markov
chain is approaching equilibrium as n → ∞.

In this paper, a characterization of the aperiodicity in existential terms of some state
is given. At the same time, a P system with external output is associated with any
irreducible Markov chain. The designed system provides the aperiodicity of that Markov
chain and spends a polynomial amount of resources with respect to the size of the input.
A formal verification of this solution is presented and a comparative analysis with respect
to another known solution is described.

1 Introduction

A discrete-time Markov chain is a stochastic process such that the past time is
irrelevant to predict the future, given knowledge of the present time. That is, given
the present time, the future does not depend on the past time: the result of each
event depends only on the result of the previous event.

In order to study the evolution in time of a Markov chain as well as the existence
of the stationary distribution, it is suitable to classify its states. This classification
depends on the path structure of the chain.

One of the central issues in Markov Theory is the study of the asymptotic
behavior of Markov chains. It is well known that for any irreducible and aperi-
odic Markov chain: (a) there exists at least one stationary distribution (that is, a
probability distribution on the state space which is an invariant for the transition
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matrix associated with the chain), and (b) for any initial distribution, µ(0) and for
any stationary distribution π for the Markov chain, the sequence (µ(n))n∈N con-
verges to π in total variation as n → ∞ (that is, the Markov chain is approaching
equilibrium as n → ∞).

In the paper [2], a classification of states of a finite and homogeneous Markov
chain is provided by using P systems. Moreover, the period was calculated for
recurrent classes. The design of the P systems was inspired in properties used in
classic algorithms that deal with the problem of the classification. Especially, this
solution allows us to decide whether an irreducible Markov chain is aperiodic or
not.

The main goal of this paper is to design a P system associated with an irre-
ducible Markov chain which provides an answer to the aperiodicity of the chain.
If the answer is negative, then the system provides the period of the chain. The
solution presented is based on a characterization of the aperiodicity in existen-
tial terms of some state and a natural number, and it is semi–uniform, in the
sense that for each Markov chain, a P system associated with it is constructed.
Besides, the solution spends a polynomial amount of resources in the sense of the
computational complexity theory in Membrane Computing.

The solution presented in the paper improves the solution obtained in [2],
because less computational resources are used.

The paper is organized as follows. In the following section, we recall some basic
notions and results that we use in the paper. In Section 3, a P system associated
with an irreducible Markov chain is designed in order to study the periodicity
of that class. Section 4 shows a formal verification of the designed P system. In
Section 5, the solution presented is compared with another solution obtained from
[2]. Finally some conclusions are presented.

2 Preliminaries

A discrete Markov chain is a sequence {Xt | t ∈ N} of random variables whose
values are called states, that verifies the following property:

P (Xt+1 = j/X0 = i0,X1 = i1, . . . ,Xt = it) = P (Xt+1 = j/Xt = it)

Without loss of generality, we can suppose that the state space is the set of non-
negative integers.

The value of variable Xt is interpreted as the state of the process at instant t. In
this paper we work with Markov chains having a finite state space S = {s1, . . . , sk}.

A discrete Markov chain is characterized by the transition probability

pij(t) = P (Xt = sj/Xt−1 = si), ∀t ≥ 1

where pij(t) provides the transition from state si to state sj at time t − 1.
The matrix of transition probabilities
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P (t) = (pij(t))1≤i,j≤k

is a stochastic matrix, that is, is nonnegative for all t and the sum of each arrow
is equal to 1,

∑k

j=1 pij(t) = 1.
We say that the chain is time homogeneous or stationary if pij(t) = pij for each

t and it verifies the Kolmogorov-Chapman equation:

p
(1)
ij = pij , p

(2)
ij =

k∑

l=1

pilplj , . . . , p
(n)
ij =

k∑

l=1

pilp
(n−1)
lj ,

where p
(n)
ij is the transition probability of state si to state sj at time n.

We denote the initial distribution by means of the vector

µ(0) = (µ
(0)
1 , . . . , µ

(0)
k ) = (P (X0 = s1), P (X0 = s2), . . . , P (X0 = sk))

and the distribution of the Markov chain at time n is

µ(n) = (µ
(n)
1 , . . . , µ

(n)
k ) = (P (Xn = s1), P (Xn = s2), . . . , P (Xn = sk))

Then, µ(n) = µ(0) · P (n), where P = (pij) is the transition matrix of the homoge-
neous Markov chain.

Next, we introduce some concepts and results related to the states of a homo-
geneous Markov chain.

We say that a state sj communicates with another state si (and we denote it

by si → sj), if there exists a natural number n > 0 such that p
(n)
ij > 0 (that is, if

the chain has a positive probability of ever reaching sj when we start from si. We
say that the states si and sj intercommunicate (and we denote it by si ↔ sj) if
si → sj and sj → si.

In the finite state space S = {s1, . . . , sk} of a Markov chain, the relation ↔
is an equivalence relation and we can consider the corresponding quotient set
{s1, . . . , sk}/ ↔ whose elements are the classes of equivalence by ↔.

A Markov chain with state space S = {s1, . . . , sk} is said to be irreducible if
there exists only one class of equivalence by ↔; that is, if for all si, sj ∈ E we have
si ↔ sj . Otherwise, the chain is said to be reducible.

We say that a state si is recurrent or essential if for each natural number m

and for each state sj verifying p
(m)
ij > 0 there exists a natural number n such

that p
(n)
ji > 0. Otherwise, the state is said to be transient. A recurrent class is the

equivalence class determined by a recurrent state.
It is easy to prove that from a recurrent state, only recurrent states belonging

to the same class are reachable.
A recurrence time of si is a natural number n > 0 such that p

(n)
ii > 0. The

period of a state si is defined as d(i) = g.c.d. {n ≥ 1 | p
(n)
ii > 0}, that is, it is

the greatest common divisor of the recurrence times associated with it. All states
belonging to the same class have the same period.

Then, we can define the period of a class of a given Markov chain in a natural
manner: it is the period of any state of the class (see [3] and [4] for more details).
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Definition 1. A Markov chain is said to be aperiodic if all its states are aperiodic;
that is, their periods are equal to 1. Otherwise, the chain is said to be periodic.

Next, we provide a method to compute the period of a recurrent class and a
characterization of the periodicity of a class.

Theorem 1. Let A = {s1, . . . , sr} be a recurrent class. The period of A is

d = g.c.d. {n | p
(n)
ii > 0; 1 ≤ i, n ≤ r}.

That is, the period of A is the greatest common divisor of all times of recurrences
of the states of that class, smaller than or equal to r.

Proof. By definition, given a state si (1 ≤ i ≤ r) its period is

d(i) = g.c.d. {n ≥ 1 | p
(n)
ii > 0}.

As all states have the same period d, we have

d = d(1) = d(2) = . . . = d(r) = g.c.d. {n ≥ 1 | p
(n)
ii > 0; 1 ≤ i ≤ r}.

Let d′ = g.c.d.{n| p
(n)
ii > 0; 1 ≤ i, n ≤ r}. Let us see that d = d′. For that, we

will check that any trajectory from a state si ∈ A to itself, with the length bigger
than r, is the composition of trajectories with length smaller than or equal to r
between the same states.

Let n > r be a time of recurrence associated with a state si ∈ A, that is,

p
(n)
ii > 0. There exists a state si0 such that p

(n)
ii ≥ p

(n′)
ii0

· p
(n0)
i0i0

· p
(n′′)
i0i > 0, being

n = n′ + n0 + n′′. Thus, n0 and n′ + n′′ are also times of recurrence.
If n0 > r or n′ + n′′ > r, then we repeat the process until we obtain a decom-

position

p
(n)
ii ≥ p

(n′)
ii0

· p
(n0)
i0i0

· p
(n1)
i1i1

. . . p
(nr)
irir

· p
(n′′)
iri > 0

with 1 ≤ i1, . . . , ir ≤ r, n = n′ + n1 + . . . + nr + n′′ verifying n′ + n′′ ≤ r and
n1, . . . , nr ≤ r.

Finally, let us notice that substituting p
(n)
ii , with n > k, by a suitable sequence

of p
(m)
ii , with m ≤ k, the g.c.d. is the same. ¤

Lemma 1. Let A = {a1, · · · , ar} be a set of natural numbers. Let us suppose g.c.d.
{a1, · · · , ar} = 1. Let us denote by A+ the set of all positive linear combinations

λ1a1 + · · · , λrar, with λi ∈ Z+, 1 ≤ i ≤ r.

Then, there exists a natural number N such that n ∈ A+ for all n ≥ N .

Proof. See, e.g., the appendix of [1] ¤

Next, we characterize the aperiodicity of a recurrent class of a finite Markov
chain through the existence of a state sj reachable from each state si.
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Theorem 2. Let {Xt | t ∈ N} be a Markov chain with state space S = {s1, . . . , sk}
and transition matrix P = (pij).

(1) If {Xt | t ∈ N} is aperiodic, then there exists a natural number N such that

p
(n)
ii > 0, for all i (1 ≤ i ≤ k) and all n ≥ N .

(2) If {Xt | t ∈ N} is irreducible and aperiodic, then there exists a natural number

M such that p
(n)
ij > 0, for all i, j (1 ≤ i, j ≤ k) and all n ≥ M .

Proof. See, e.g., Chapter 4 from [3] ¤

Theorem 3. Let A = {s1, . . . , sr} be a recurrent class of a finite Markov chain.
The following are equivalent:

(1)Class A is aperiodic.

(2)There exists a state sj ∈ A and a natural number m0 ∈ N such that p
(m0)
ij > 0

for all state si ∈ A.

Proof. Let us suppose that class A is aperiodic. Then all states in A have the
same period d = 1. From Theorem 2 there exists a natural number N such that

p
(n)
ii > 0, for all i (1 ≤ i ≤ r) and all n ≥ N . Given j (1 ≤ j ≤ r), we define

ni(j) = min{n | p
(n)
ij > 0}, for each si ∈ A, n(j) = max{n1(j), . . . , nr(j)}, and

m0 = N + n(j). Let us see that p
(m0)
ij > 0, for each i (1 ≤ i ≤ r). We have

p
(m0)
ij ≥ p

(ni(j))
ij p

(m0−ni(j))
jj > 0 because of p

(ni(j))
ij > 0 by definition of ni(j), and

p
(m0−ni(j))
jj > 0 by Theorem 2.

Conversely, let us suppose that there exists m0 ≥ 1 and a state sj ∈ A such

that ∀ si ∈ A we have p
(m0)
ij > 0. In particular, p

(m0)
jj > 0 so m0 is a recurrence

time. On the one hand, if d is the period of the class, then m0 is a multiple of d. On

the other hand, if si ∈ A is a state such that pji > 0, then 0 < p
(m0)
ij pji ≤ p

(m0+1)
ii ,

so m0 + 1 is a multiple of d. Hence, d = 1. ¤

3 A P System Associated with an Irreducible Markov Chain

The goal of this paper is to study the aperiodicity of an irreducible Markov chain
with state space S = {s1, . . . , sk}, k ≥ 2, by using P systems. In the affirmative
case, the answer of the system is Y ES, on the contrary, the system sends an object
encoding the period of the class to the environment.

3.1 The Design of the P System

Let Pk = (pij)1≤i,j≤k be a Boolean matrix associated with a class with a finite
and homogeneous Markov chain of order k such that pij = 1 if the transition from
si to sj is possible, and pij = 0 otherwise; that is, Pk is the adjacency matrix of
the directed graph associated with the recurrent class.
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The solution presented in this paper is a semi–uniform one in the following
sense: we give a family Π = {Π(Pk) | k ∈ N}, associating with Pk a P system
with external output, such that:

• There exists a deterministic Turing machine working in polynomial time which
constructs the system Π(Pk) from Pk.

• The output of the P system Π(Pk) provides the classification of the recurrent
class of the Markov chain as well as the period of the states.

We associate with the matrix Pk the P system of degree 4 with external output,

Π(Pk) = (Γ (Pk), µ(Pk),M1,M2,M3,M4, R)

defined as follows:

• Working alphabet:

Γ (Pk) = {sij , tij , τij | 1 ≤ i, j ≤ k} ∪ {sijr | 1 ≤ i, j, r ≤ k} ∪
{Tr | 0 ≤ r ≤ k} ∪ {βl | 0 ≤ l ≤ k − 1} ∪ {bi | 1 ≤ i ≤ k} ∪
{pr | 1 ≤ r ≤ k} ∪ {ci, di | 0 ≤ i ≤ α} ∪ {yes, Y ES, σ, }

where α = 3k + ⌈k
2 ⌉.

In the working alphabet the objects:
– sii represents (at the initial configuration) the state si of the chain.
– tij and τij represent the elements pij of the Boolean matrix associated with

the transition matrix of the Markov chain.
– sijr represents the existence of a path of length r from the state si to state

sj .
– Tr and pr represent the existence of a recurrence time equal to r in different

configurations.
– τij represents that the state sj is reachable from state si.

• Membrane structure: µ(Pk) = [ [ [ [ ]1 ]2 ]3]4.
• Initial multisets:

M1 = {t
pij

ij | 1 ≤ i, j ≤ k} ∪ {β0}
M2 = {sii | 1 ≤ i ≤ k}
M3 = {bi | 1 ≤ i ≤ k} ∪ {d0}
M4 = ∅

• The set R of evolution rules consists of the following rules:

r1(ij) ≡ [tij → τijt
k
ij ]1, 1 ≤ i, j ≤ k

r2(i) ≡ [βi → βi+1]1, 0 ≤ i ≤ k − 2

r3 ≡ [βk−1]1 → ck
0

r4(rij) ≡ [crsijτ
pj1

j1 . . . τ
pjk

jk ]2 → [s
pj1

i1 . . . s
pjk

ik c
γj

r+1]2s
pj1

i1r+1 . . . s
pjk

ikr+1T
pji

r+1,

1 ≤ i, j ≤ k, 0 ≤ r ≤ α − 1, γj =
∑k

l=1 pjl
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r5 ≡ [σ]2 → σ
r6(jr) ≡ [s1jr . . . skjr]3 → [σ]2 yes, 1 ≤ j ≤ k, 1 ≤ r ≤ α

r7(r) ≡ [Trbr → pr]3, 1 ≤ r ≤ k

r8(il) ≡ [pipi+l → pipl]3, 1 ≤ i ≤ k, 1 ≤ l ≤ k − i

r9(i) ≡ [p2
i → pi]3, 1 ≤ i ≤ k

r10(i) ≡ [di → di+1]3, 0 ≤ i ≤ α − 1

r11(r) ≡ [dαpr]3 → pr[ ]3, 2 ≤ r ≤ k

r12 ≡ [dαp1]3 → yes[ ]3

r13 ≡ [yes]4 → Y ES[ ]4

r14(r) ≡ [pr]4 → pr[ ]4, 1 ≤ r ≤ k

3.2 An Overview of Computations

Initially, membrane 1 contains objects tij that codify the elements pij of the
Boolean matrix associated with the transition matrix of the Markov chain, to-
gether with the counter β0. This counter allows us to dissolve membrane 1 at a
certain instant. Membrane 2 contains initially objects sii that codify the states si

of the chain. Membrane 3 contains objects bi that will be used in order to avoid
that repeated recurrence times smaller than or equal to k appear. The counter d
in membrane 2 will be used to trigger the answer at the suitable instant.

The design of the P system Π(Pk) implements a process that is structured by
stages. The first one consists of k steps which allow the production of sufficiently
many new copies τij of objects tij . This is done by applying rules of type r1 and
r2 in membrane 1 at k − 1 first steps and applying at step k rule r3 that dissolves
membrane 1.

At the second stage, all paths between states with length at most k, as well
as recurrence times smaller than or equal to k, are generated. This stage starts
at step k + 1 and it spends at most k steps. First, rules of type r4 are applied
producing objects sijr in membrane 3 that codify the existence of a path with
length r from state si to state sj , as well as the objects Tr codifying the existence
of a recurrence time equal to r. Simultaneously, it is checked if there exists a state

sj and a natural number m0 such that p
(m0)
ij > 0, for all states si. In that case, an

object σ is produced in membrane 2 and the system expels an object Y ES to the
environment.

The third stage is only applied if an object Y ES has not been expelled to
the environment. At this stage, the period of the class is computed and it takes
k + ⌈k

2 ⌉ steps. By applying rules of type r7, objects pr encoding recurrence times
smaller than or equal to k, are obtained. Such recurrence times are different from
each other. By applying rules of types r8 and r9, the greatest common divisor of
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these times is computed. If the period of the class is equal to 1, then the system
sends an object Y ES to the environment, otherwise, the system expels an object
pn that encodes the period of the class to the environment.

4 Formal Verification

Given a computation C of the P system Π(Pk), for each m ∈ N we denote by
Cm the configuration of the system obtained after the execution of m steps. For
each label l ∈ {1, 2, 3}, we denote by Cm(l) the multiset of objects contained in
membrane l in the configuration Cm. Besides, we denote by Cm(env) the content
of the environment of the system in the configuration Cm.

Proposition 1. (First stage) We have the following:

(1) For each m, 1 ≤ m ≤ k − 1, we denote ψm = 1 + k + k2 + . . . + km =
(km+1 − 1)/(k − 1). Then

Cm(1) = {βm t
km·pij

ij τ
ψm−1·pij

ij }.

(2) Ck(2) = {ck
0 , sii, τ

ψk−1·pij

ij , t
(kk)·pij

ij | 1 ≤ i, j ≤ k}

Proof. (1) By induction on m.
Let us see the result for m = 1. First, we notice that rule r2(0) is applicable to
configuration C0, so β1 ∈ C1(1). Rule r1(ij) is applicable to configuration C0 if

and only if pij = 1. Hence, C1(1) = {β1 t
k·pij

ij τ
pij

ij }.

Let m be such that 1 ≤ m < k − 1 and Cm(1) = {βm t
km·pij

ij τ
ψm−1·pij

ij }. Then,
rule r2(m) is applicable to configuration Cm, so βm+1 ∈ Cm+1(1). Rule r1(ij)
is applicable to configuration Cm if and only if pij = 1. Hence, Cm+1(1) =

{βm+1 t
km·k·pij

ij τ
(ψm−1+km)·pij

ij }.

(2) From (1), we have Ck−1(1) = {βk−1 t
kk−1·pij

ij τ
ψk−2·pij

ij }. Next, rule r1(ij) pro-
duces k objects tij and an object τij for each object tij ∈ Ck−1(1). Moreover,
rule r3 produces k copies of c0 dissolving membrane 1. ¤

Remark: Let us notice that condition τij ∈ Cr(1), 1 ≤ r ≤ k − 1, means that state
sj is reachable from state si.

Lemma 2. For each i, j, r (1 ≤ i, j, r ≤ k) we have the following:

• The sum of the multiplicities of objects s1j . . . skj in Ck+r(2) is, at most, kr.
• There exists, at most, kr+1 objects cr in Ck+r(2).

• τ
(ψk−1−ψr−1)·pij

ij ∈ Ck+r(2).
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Proof. By induction on r.
Let us suppose that r = 1, Let i, j be such that 1 ≤ i, j ≤ k. From (2)

in Proposition 1 we have Ck(2) = {ck
0 , sii, τ

ψk−1·pij

ij } ⊆ Ck(2). Then, rules
r4(0, 1, 1), . . . , r4(0, k, k) must be applied.

If pij = 1, then an object sij (resp. an object τij) is produced (resp. is con-
sumed) by the application of rule r4(0, i, i) (besides, these objects can only be
spent/produced by the application of that rules). Hence, the sum of multiplicities
of objects s1j , . . . , skj will be p1j + . . . + pkj ≤ k, there exists at most k2 objects

c1 in Ck+1(2), and τ
(ψk−1−1)
ij ∈ Ck+1(2).

Let r ≥ 1, r < k, and let us suppose that the result holds for r. Let i, j be
such that 1 ≤ i, j ≤ k. By the induction hypothesis the sum of the multiplicities
of objects s1i, . . . , ski in Ck+r(2) is, at most, kr, there exists, at most, kr+1 objects

cr in Ck+r(2), and τ
(ψk−1−ψr−1)·pij

ij ∈ Ck+r(2). For each i (1 ≤ i ≤ k) the rules
r4(r1i), . . . , r4(rki) will be applied to configuration Ck+r(2) at most kr times, so
at most kr objects τij will be spent and kr ·k objects cr+1 will be produced. Then,

there exists at most kr+2 objects cr+1 in Ck+r+1(2), and τ
(ψk−1−ψr−1−kr)·pij

ij ∈
Ck+r+1(2).

Moreover, each object siq (1 ≤ q ≤ k) produces, at most, an object sij in
Ck+r+1(2). Hence, the sum of multiplicities of s1j , . . . , skj in Ck+r+1(2) will be, at
most, kr + . . . + kr = k · kr = kr+1. ¤

Proposition 2. (Second stage) For each i, j, r (1 ≤ i, j, r ≤ k) we have:

(1)Objects sij and cr belong to Ck+r(2) if and only if there exists a trajectory from
state si to state sj with a length r.

(2)A state s of the Markov chain has a recurrence time r if and only if Tr ∈
Ck+r(3).

Proof. (1) By induction on r.
Let us suppose that r = 1. If sij , c1 ∈ Ck+1(2), then rule r4(0, i, i) must be
applied by using objects c0, sii, τij ∈ Ck(2). Then, pij = 1, otherwise pij = 0 ⇒
τij /∈ Ck(2) (from Proposition 1).
Let i0, j0 (1 ≤ i0, j0 ≤ k) and let us suppose that there exists a trajectory
from state si0 to state sj0 with a length 1. Then, pi0j0 = 1. From Proposition

1 we deduce that Ck(2) = {ck
0 , sii, τ

ψk−1·pij

ij , t
(kk)·pij

ij | 1 ≤ i, j ≤ k}, so for
each i (1 ≤ i ≤ k) rule r4(0ii) is applied once to configuration Ck(2). Then,
{c1, si0j0} ⊆ Ck+1(2).
Let r ≥ 1, r < k, and let us suppose that the result holds for r. Let i, j (1 ≤
i, j ≤ k) be such that sij , cr+1 ∈ Ck+r+1(2). On the one hand, rule r4(ril) has
been applied, at least once, to configuration Ck+r by using objects cr, sil, τlj

(for some l, 1 ≤ l ≤ k). So, plj = 1. On the other hand, cr, sil ∈ Ck+r(2).
Then, by induction hypothesis we deduce that there exists a trajectory with
a length r from state si to state sl. Hence, there exists a trajectory with the
length r + 1 from state si to state sj .
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Let i0, j0 (1 ≤ i0, j0 ≤ k) and let us suppose that there exists a trajectory from
state si0 to state sj0 with a length r + 1. Then, there exists a trajectory from
state si0 to state sn0

with a length r (for some n0, 1 ≤ n0 ≤ k) such that
pn0j0 = 1. From the induction hypothesis we have si0n0

, cr ∈ Ck+r(2), and
from Lemma 2 we deduce that

{τ
(ψk−1−ψr−1)·pn0j

n0j | 1 ≤ j ≤ k} ⊆ Ck+r(2)

Then, by applying rule r4(r, i0, n0) once, we obtain {cr+1, s
pn0j

i0j : 1 ≤ j ≤
k} ⊆ Ck+r+1(2). Hence, si0j0 ∈ Ck+r+1(2) because of pn0j0 = 1.

(2) Let r (1 ≤ r ≤ k) be the recurrence time of a state si. From (1), we deduce
that sii, cr ∈ Ck+r(2). Therefore, rule r4(rij) has been applied to configuration
Ck+r−1, for some j, 1 ≤ j ≤ k, such that pji = 1, and some object cr−1 ∈
Ck+r−1(2). Then, T

pji
r = Tr ∈ Ck+r(3).

Let r (1 ≤ r ≤ k) such that Tr ∈ Ck+r(3). Then rule r4(r − 1, i, j) has been
applied to configuration Ck+r−1, for some objects sij , cr−1 such that pji = 1.
From (1) there exists a trajectory with a length r− 1 from state si to state sj .
Hence, there exists a trajectory with a length r from state si to state si. ¤

Theorem 4. (Output of the system)
Let S be an irreducible homogeneous Markov chain of order k. Let α = 3k + ⌈k

2 ⌉.
We have the following:

(1)The class S is aperiodic if and only if there exists r (1 ≤ r ≤ α − k) such that
configuration Ck+r+2 of Π(Pk) is a halting configuration and Ck+r+2(env) =
{Y ES}.

(2)The class S is periodic with period equal to n > 1 if and only if configuration
Cα+2 of Π(Pk) is a halting configuration and Cα+2(env) = {pn}.

Proof. Let S be an irreducible homogeneous Markov chain.

(1) Let us suppose that S is aperiodic. From Theorem 3, there exists a state sj0

and a natural number q > 0 such that ∀i (1 ≤ i ≤ k ⇒ p
(q)
ij0

> 0). Then, for
each i, 1 ≤ i ≤ k, there exists a trajectory with a length q from state si to
state sj0 .
- If q ≤ k, from (1) Proposition 2 we deduce that s1j0 , . . . , skj0 , cq ∈

Ck+q(2). These objects have been produced by the application of rules
r4(q−1, 1, j1), . . . , r4(q−1, k, jk) to configuration Ck+q−1, for some j1, . . . , jk

such that pj1,j0 = · · · = pjk,j0 = 1. So, s1j0q, . . . , skj0q ∈ Ck+q(3). So, by ap-
plying the rule r6(j0, q) to configuration Ck+q, we have {yes} ∈ Ck+q+1(4)
and σ ∈ Ck+q+1(2). At the next step, rules r5 and r13 are applied. Then,
Ck+q+2(env) = {Y ES}, membrane 2 is dissolved and the system halts.

- If q > k, then any rule of the type r6 is not applicable. From Proposition
2 we have encoded the recurrence times (smaller than or equal to k) in
membrane 3 by objects T . Then, some rule of the type r7 produces objects
p corresponding to objects T . Next, by applying suitable rules r8 and r9
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we compute the greatest common divisor of these recurrence times (from
Theorem 1 we know that g.c.d. is equal to the period of the class). From
the aperiodicity of the class S, we deduce that object p1 belongs to Cα(3).
Then, the rule r12 produces an object yes in Cα+1(4), and we obtain that
Cα+2(env) = {Y ES} by applying the rule r13. Then, the system halts.

Let us suppose that there exists r (1 ≤ r ≤ α − k) such that configuration
Ck+r+2 is a halting configuration and Ck+r+2(env) = {Y ES}. Then, rule r13

has been applied to configuration Ck+r+1(4), and yes ∈ Ck+r+1(4).

- If r ≤ k, then the rule r6(jr) (for some j, 1 ≤ j ≤ k) has been applied
to configuration Ck+r, with s1jr, . . . , skjr ∈ Ck+r(3), and s1j , . . . , skj , cr ∈
Ck+r(2). From (1) in Proposition 2, there exists a trajectory with a length
r from state si to state sj , for each i (1 ≤ i ≤ k). From Theorem 3 we
conclude that class S is aperiodic.

- If r > k, object yes has been sent to membrane 4 by applying the rule r12

using objects dα and p1. But object p1 has been produced by the iterated
application of rules r8 and r9. As these rules compute the greatest common
divisor of recurrence times, we deduce that the period of S is equal to 1.

(2) Now, let us suppose that the period of S is n > 1. From Theorem 3 we deduce
that for each j, 1 ≤ j ≤ k, and for each n′ > 0 there exists i, 1 ≤ i ≤ k,

such that p
(n′)
ij = 0. From (1) in Proposition 2 we have {sij , cn′} * Ck+n′(2).

So, sijn′ /∈ Ck+n′(3) and any rule of the type r6 is applicable to configuration
Ck+n′+1. Next, rules of type r7, r8, r9 compute the g.c.d. of the recurrence times.
Finally, object pn is sent to the environment after α+2 steps by applying rules
r11 and r14. Then, the system halts.
Let us suppose that configuration Cα+2 is a halting configuration and
Cα+2(env) = {pn}. Then, any rule of the type r6 will not be applied, so rules
r7, r8, and r9 will be applied computing the g.c.d of the recurrence times
(smaller than or equal to k) of states si. Hence, class S is periodic and its
period is equal to n. ¤

5 Results and Discussions

In [2] a P system was constructed which allows us to classify the states of a Markov
chain. Thus, that P system can be adapted to characterize the aperiodicity of such
a chain. Specifically, if Pk = (pij)1≤i,j≤k is the Boolean matrix associated with the
states of a recurrent class of a finite and homogeneous Markov chain of order k,
then we define the system

Π ′(Pk) = (Γ ′(Pk), µ′(Pk),M′
1,M

′
2,M

′
3,M

′
4, R

′, ρ′)

as follows:

• Working alphabet:
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Γ ′(Pk) = {dij , tij | 1 ≤ i, j ≤ k, } ∪ {cr | 0 ≤ r ≤ 2k + 2} ∪
{tijur | 1 ≤ i, j, u ≤ k, 0 ≤ r ≤ k} ∪ {βi | 0 ≤ i ≤ α + 1} ∪
{sijr | 1 ≤ i, j ≤ k, 0 ≤ r ≤ k} ∪ {Ai1, Rij | 1 ≤ i, j ≤ k}

where γ = 2k + 4 + ⌈lg2k⌉ + (k−1)(k+2)
2 .

• Membrane structure: µ′(Pk) = [ [ [ [ ]4 ]3 ]2 ]1.
• Initial multisets:

M′
1 = ∅; M′

2 = {β0}; M
′
3 = {c0};

M′
4 = {sii0 t

pij(k−1)
ij | 1 ≤ i, j ≤ k}.

• The set R of evolution rules consists of the following rules:

– Rules in the skin membrane labeled by 1:
r1 = {dip → (Rip, out) | 1 ≤ i ≤ k, 1 < p ≤ k}
r2 = {di1 → (Ai1, out) | 1 ≤ i ≤ k}

– Rules in the membrane labeled by 2:
r3 = {βi → βi+1 | 0 ≤ i ≤ γ} ∪ {βγ+1 → λ}.
r4 = {d2

j → dj | 1 ≤ j ≤ k}
r5 = {djdj+l → djdl | 1 ≤ j ≤ k, 2 ≤ j + l ≤ k}

– Rules in the membrane labeled by 3:
r6 = {tijur → (tijsuj(r+1), in4) | pij = 1, u 6= j, 1 ≤ i, j, u ≤ k, 0 ≤ r <
3(k − 1)}
r7 = {tiju(3k−3) → (tij , in4) | pij = 1, u 6= j, 1 ≤ i, j, u ≤ k}
r8 = {tijjr → (tij , in4) dr+1 | pij = 1, 1 ≤ i, j ≤ k, 0 ≤ r < 3(k − 1)}
r9 = {tijj(3k−3) → (tij , in4) | pij = 1, 1 ≤ i, j ≤ k}
r10 = {cr → cr+1 | 0 ≤ r ≤ 6(k − 1) + 1} ∪ {c6(k−1)+2 → λ}

– Rules in the membrane labeled by 4:
r11 = {suirt

pi1
i1 . . . t

pik

ik → (tpi1
i1ur . . . t

pik

ikur, out) | 1 ≤ u, i ≤ k, 0 ≤ r ≤ 3(k − 1)}.

• The partial order relation ρ′ over R′ consists of the following relations on the
rules of R′:

– Priority relation in the skin membrane: ∅.
– Priority relation in the membrane labeled by 2: {r4 > r5}
– Priority relation in the membranes labeled by 3: ∅.
– Priority relation in membrane 4: ∅.

In order to study the efficiency of the P system Π(Pk) constructed in this
work, we will compare the results with those obtained by the P system Π ′(Pk)
described above. For that purpose, a comparative analysis of the computational
resources required in both P systems is given firstly. Secondly, an analysis of the
times of execution obtained on designed simulators for both P systems with some
case studies is presented.

5.1 Computational Resources Required

The resources required initially to construct the systems Π(Pk) and Π ′(Pk), and
the number of steps taken for the systems, are the following:
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Π(Pk) Π ′(Pk)

Size of the alphabet Θ(k3) Θ(k4)

Initial number of membranes 4 4

Sum of the sizes of initial multisets Θ(k2) Θ(k4)

Number of rules Θ(k3) Θ(k4)

Maximal length of a rule Θ(k) Θ(k)

Number of priority relations 0 Θ(k2)

Number of steps Θ(k) Θ(k)

In the previous table, let us notice that the amount of resources requested
by Π(Pk) is smaller than the ones requested by Π ′(Pk). Indeed, the size of the
alphabet and the number of rules pass from power 3 to power 4, and the system
Π(Pk) has no priority relation. The number of steps is of the same asymptotic
order.

5.2 Case Studies

We have designed a simulator for each system Π(Pk) and Π ′(Pk). These simulators
have been written in C++ language and they have been executed on a Pentium 4
computer with 512 Mb RAM and 3.20 GHz.

In both simulators objects tij have been represented by means of arrays of
dimension 2; objects sij have been represented by vectors of dimension 2 and
recurrent times have been represented by one-dimensional vectors.

The simulator of the system Π(Pk) generates the trajectories with a length at
most 3k+⌈k/2⌉ in a sequential way, keeping the times of recurrence smaller than or
equal to k. If assertion (2) in Theorem 3 is fulfilled, the simulator halts displaying
the time of execution and the aperiodicity of the Markov chain. Otherwise the
simulator computes the g.c.d. of the recurrence times obtained where all of them
are different.

Similarly, a simulator for the system Π ′(Pk) has been implemented. The main
difference with respect to the previously mentioned one is that it can keep more
than a copy of the times of recurrence. All trajectories of the Markov chain with a
length smaller than or equal to 3(k − 1) and their recurrence time are computed.
Then the g.c.d. of these times is obtained.

When the Markov chain is aperiodic, the P system Π(Pk) can finish before
all trajectories with a length 3k + ⌈k/2⌉ are computed. In case it is necessary to
calculate the period, bearing in mind that all recurrence times are different, system
Π(Pk) is faster than Π ′(Pk) in computing the g.c.d. of these times.

When the Markov chain is periodic the length of the trajectories computed
by Π(Pk) are longer than those computed by Π ′(Pk). Nonetheless, in order to
compute the period, recurrence times used in Π(Pk) are all different.

The simulators designed have been executed on eight recurrent Markov chains
with 100 states. Four of these Markov chains are periodic and the others are
aperiodic. Table 1 shows the values equal to 1 of the adjacency matrix of the graph
associated with the recurrent Markov chains. The execution times are described
in Table 2.
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Example

1 pi,i+1 = 1 1 ≤ i ≤ 99
p100,1 = 1

2 pi,i+1 = 1 1 ≤ i ≤ 99
pi,1 = 1 1 ≤ i ≤ 100

3 p10j+i,10j+i+1 = 1 1 ≤ i ≤ 9 0 ≤ j ≤ 9
p10j,10j−9 = 1 1 ≤ j ≤ 10
p10j+1,10j+11 = 1 0 ≤ j ≤ 8
p91,1 = 1

4 p10j+i,10j+i+1 = 1 1 ≤ i ≤ 9 0 ≤ j ≤ 9
p10j,10j−9 = 1 1 ≤ j ≤ 10
p10j+1,10j+11 = 1 0 ≤ j ≤ 8
p91,1 = 1
p1,1 = 1

5 p10j+i,10j+i+1 = 1 1 ≤ i ≤ 9 0 ≤ j ≤ 9
p10j,10j−9 = 1 1 ≤ j ≤ 10
p10j+1,10j+11 = 1 0 ≤ j ≤ 8
p91,1 = 1
p2,2 = 1

6 p5j+i,5j+i+1 = 1 1 ≤ i ≤ 4 0 ≤ j ≤ 19
p5j,5j−4 = 1 1 ≤ j ≤ 20
p5j+1,5j+6 = 1 0 ≤ j ≤ 18
p96,1 = 1

7 pi,i+1 = 1 1 ≤ i ≤ 100
pi+1,i = 1 1 ≤ i ≤ 100
p1+3i,4+3i = 1 0 ≤ i ≤ 32

8 pi,i+1 = 1 1 ≤ i ≤ 100
pi+1,i = 1 1 ≤ i ≤ 100
p1+3i,4+3i = 1 0 ≤ i ≤ 32
p1,1 = 1

Table 1. Adjacency values of the examples

6 Conclusions

Markov chains have applications in different fields such as physics, economics,
biology, statistics, social sciences. . . In these applications it is important to know
whether the Markov chain associated with the process is convergent or not. When
the Markov chain is aperiodic, the transition matrix converges and the process
becomes stable. In other cases, the process does not reach an equilibrium.

In this work, a characterization of the aperiodicity of a Markov chain has been
given in terms of the existence of a state reachable from any other state. Based
on this property, a computational P system has been constructed that allows us
to know whether the Markov chain is aperiodic and calculate its period if not.
A formal verification of P system using the methodology based on the search of
invariant formulae has been presented.
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Example period Previous New

1 100 0 0

2 1 146 0

3 10 0 0

4 1 122 35

5 1 1 2

6 5 11 20

7 2 381 169

8 1 1101 104

Table 2. Observed run times

In [2], every finite and homogeneous Markov chain has associated a P system
that provides a classification of its recurrent classes. That P system can be adapted
to study the aperiodicity of a Markov chain and then its period can be calculated.
The solution presented in this work improves the solution derived from the P
system described in [2]. For that purpose, simulators have been constructed for
these P systems and the respective times of execution on eight examples have been
analyzed.

For the computational study of the aperiodicity of a Markov chain it would
be interesting to design new P systems that incorporate additional features such
as electrical charges, active membranes, etc. and that improve quantitatively the
amount of computational resources used.
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Summary. We study two very simple variants of P colonies: systems with only one
object inside the cells, and systems with insertion-deletion programs, so called P colonies
with senders and consumers. We show that both of these extremely simple types of
systems are able to compute any recursively enumerable set of vectors of non-negative
integers.

1 Introduction

P colonies form a class of abstract computing devices modeling a community of
simple agents acting and evolving in a shared environment. They were introduced
in [5] as very simple membrane systems, similar in simplicity and architecture to
so called colonies of formal grammars. (See [7] for more information on membrane
systems and [2, 4] for details on grammar systems theory.)

A P colony consists of a collection of cells, each having a number of objects
inside and an associated set of rules through which it can process these objects.
Communication between the cells is only possible indirectly through the environ-
ment which is common to all of them.

The capabilities of the computing agents are very restricted, and the number
of objects present inside a cell during the functioning of the system is previously
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fixed: it is usually one, two or three. The rules are also of a very simple form.
As we will see, they allow the transformation of objects inside the cells and the
transportation of objects between the cells and the environment. The rules are
grouped into programs. A program contains exactly as many rules, as the number
of objects allowed to be present inside the cell. The rules of the programs are
applied to the objects inside the associated cells in parallel, and this also affects
the objects which are in the environment.

The P colony executes a computation by synchronously applying the programs
to the objects inside the cells and outside in the environment until a halting con-
figuration is reached. The result of the computation is obtained as the vector of
copies of certain “final” objects present in the environment after the system halts.

In the following, after providing the formal definitions, we first give a short
overview of results on the computational completeness of the different P colony
variants. Then we present new results about two types of systems: first about the
simplest possible P colonies, those which only have one object inside every cell,
and then about a new type called P colonies with senders and consumers, which
have special rules for insertion-deletion. We show that both kinds of these very
simple devices are able to compute any recursively enumerable set of vectors of
non-negative integers.

2 Preliminaries

Let V be an alphabet, let V ∗ be the set of all words over V , and let ε denote the
empty word. We denote the number of occurrences of a symbol a ∈ V in w by
|w|a. The set of non-negative integers is denoted by N.

A multiset over an arbitrary (not necessarily finite) set V is a mapping M :
V → N which assigns to each object a ∈ V its multiplicity M(a) in M . The support
of M is the set supp(M) = {a | M(a) ≥ 1}. If V is a finite set, then M is called a
finite multiset. A multiset M is empty if its support is empty, supp(M) = ∅. We
will represent a finite multiset M over V by a string w over the alphabet V with
|w|a = M(a), a ∈ V , and ε will represent the empty multiset.

We will also need the notion of a register machine which consists of a finite
number of registers each of which can hold an arbitrarily large non-negative integer
(we say that the register is empty if it holds zero), and a set of labeled instructions
which specify how the numbers stored in the registers can be changed.

Formally, a register machine is a construct M = (m,H, l0, lh, R), where m is
the number of registers, H is the set of instruction labels, l0 is the start label, lh
is the halting label, and R is the set of instructions. Each label from H labels only
one instruction from R. There are several types of instructions which can be used.
For li, lj , lk ∈ H and r ∈ {1, . . . , m} we have

• li : (ADD(r), lj , lk) - nondeterministic add: Add one to register r and then go
to one of the instructions with labels lj or lk, non-deterministically chosen.
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• li : (SUB(r), lj , lk) - subtract: If register r is non-empty, then subtract one from
it and go to the instruction with label lj , if the value of register r is zero, go
to instruction lk.

• lh : HALT - halt: Stop the machine.

A register machine M computes a set N(M) of numbers in the following way: It
starts with empty registers by executing the instruction with label l0 and proceeds
by applying instructions as indicated by the labels (and made possible by the
contents of the registers). If the halt instruction is reached, then the number stored
at that time in register 1 is said to be computed by M . Because of the non-
determinism in choosing the continuation of the computation in the case of ADD
instructions, N(M) can be an infinite set.

It is known (see, e.g., [6]) that in this way we can compute all sets of numbers
which are Turing computable.

If a set of output registers i1, . . . , ir, 1 ≤ r ≤ m, ij ∈ {1, . . . , m} is specified,
then M computes a set of vectors of non-negative integers as follows. If the halt
instruction is reached, then (v1, . . . , vr), where vk is the number stored in register
ik, 1 ≤ k ≤ r, is the vector of numbers computed by M, i.e., the result of that
computation.

Now we recall the definition of a P colony from [5]. A P colony is a construct
Π = (V, e, F, C1, . . . , Cn), n ≥ 1, where V is an alphabet (its elements are called
objects). There are two kinds of distinguished objects: e ∈ V (the environmental
object), and the objects in F ⊆ V (the set final objects). The cells of the colony are
denoted by C1, . . . , Cn. Each cell is a pair Ci = (Oi, Pi), where Oi is a multiset over
{e} having the same cardinality called capacity (here we only consider |Oi| ∈ {1, 2})
for all i, 1 ≤ i ≤ n (the initial state of the cell), and Pi is a finite set of programs.
Each program consists of rules of the following forms:

• a → b (internal point mutation), specifying that an object a ∈ V inside the
cell is changed to b ∈ V .

• c ↔ d (one object exchange with the environment), specifying that if c ∈ V
is contained inside the cell and d ∈ V is present in the environment, then c is
sent out of the cell while d is brought inside.

• c ↔ d/c ↔ d′ (checking rule for one object exchange with the environment),
specifying that if c ∈ V is inside the cell then it is exchanged with d ∈ V from
the environment, or if there is no d outside but d′ ∈ V is present, then c is
exchanged with d′.

• c ↔ d/c → d′ (checking rule for one object exchange with the environment or
internal point mutation), specifying that if the exchange of c ∈ V inside and
d ∈ V outside is not possible, then c is changed to d′ ∈ V .

The programs contain one rule for each element of Oi, thus, the number of rules
of a program coincides with the cardinality of Oi, 1 ≤ i ≤ n.

In addition, P colonies with capacity of two may have programs of the form
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• 〈a, in; bc → d〉 with a, b, c, d ∈ V (deletion programs), specifying that if bc is
present inside the cell and a is present in the environment, then the objects
inside are changed to d and a is brought in.

• 〈a, out; b → cd〉 with a, b, c, d ∈ V (insertion programs), specifying that if ab is
inside the cell, then a is sent out and b is changed to cd.

The programs of the cells are used in the non-deterministic maximally parallel
manner: in each time unit, each cell which is able to use one of its programs should
use one. The use of a program means the application of the rule(s) of the program
to the object(s) in the cell.

This way, transitions among the configurations of the colony are obtained. A
sequence of transitions is a computation which is halting if it reaches a configuration
where no cell can use any program. The result of a halting computation is obtained
from the number of copies of objects from F present in the environment in the
halting configuration. Because of the non-determinism in choosing the programs,
several computations can be obtained from a given initial configuration, hence with
a P colony Π we can associate a set of vectors of non-negative integers computed
by all possible halting computations of Π.

Initially, the environment contains arbitrarily many copies of the environmental
object e, and the cells also contain one or two copies of e inside, depending on the
capacity of the P colony.

For a P colony Π = (V, e, F, C1, . . . , Cn) as above, a configuration can be
formally written as an (n + 1)-tuple

(w1, . . . , wn; wE),

where wi ∈ V ∗ represents the multiset of objects from cell Ci, 1 ≤ i ≤ n, and
wE ∈ (V −{e})∗ represents the multiset of objects from the environment different
from the environmental object e. The initial configuration is (ei, . . . , ei; ε) where
i ∈ {1, 2} is the capacity of the cells.

A transition from a configuration to another is denoted as

(w1, . . . , wn;wE) ⇒ (w′1, . . . , w
′
n;w′E)

where w′E and each w′i is obtained from wi, 1 ≤ i ≤ n by executing one of the
programs of Pi.

The set of vectors in Nm, m = |F |, F = {o1, . . . , om} computed by a P colony
Π is defined as

N(Π) = {(|vE |o1 , . . . , |vE |om) | (ei, . . . , ei; ε) ⇒∗ (v1, . . . , vn, vE)}

where (ei, . . . , ei, ε), i ∈ {1, 2}, is the initial configuration, (v1, . . . , vn, vE) is a
halting configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Let us denote by PCOL(i, j, k, check) and PCOL(i, j, k, no-check) the classes
of sets of vectors generated by P colonies with j ≥ 1 cells of capacity i ∈ {1, 2},
having at most k ≥ 1 programs associated to a cell which contain or do not contain
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checking rules, respectively. If a numerical parameter is unbounded, we denote it
by a ∗.

P colonies can simulate register machines with a rather limited number of
programs per cell. In [3], it was shown that

PCOL(2, ∗, 4, check) = PCOL(3, ∗, 3, check) = NRE

where NRE denotes the class of recursively enumerable sets of integer vectors.
Even one cell is enough, if it may have an arbitrarily large number of programs,
that is,

PCOL(2, 1, ∗, check) = NRE.

Similar results were also obtained without the use of checking rules. In this
case we have

PCOL(2, ∗, 8, no-check) = PCOL(3, ∗, 7, no-check) = NRE.

3 P Colonies with One Object

In [1] it was shown that if checking rules are allowed to be used, then all recursively
enumerable sets of vectors can even be generated by P colonies with capacity one,
that is,

PCOL(1, 4, ∗, check) = NRE.

In the following we strengthen this result by showing that P colonies with six
components generate all vectors even if checking rules are not used.

Theorem 1. PCOL(1, 6, ∗, no-check) = NRE.

Proof. We construct a P colony simulating the computations of a register ma-
chine. Let us consider an m-register machine M = (m,H, l0, lh, P ) and represent
the content of the register i by the number of copies of a specific object ai in the en-
vironment. We construct the P colony Π = (V, e, F, C1, . . . , C6) with:

V = {li, l′i, l′′i , l̄i,Ki, Li, L
′
i, L

′′
i , L′′′i , Ei, Fi, $i | for each li ∈ H} ∪

{ai, ai,j | 1 ≤ i ≤ m, 1 ≤ j ≤ |H|} ∪ {D,D′, T},
F = {ai | register i is an output register}, and
Ci = (e, Pi), for 1 ≤ i ≤ 6.

Because initially there are only copies of e in the environment and inside the cells,
we have to initialize the simulation of the computation of M by generating the
initial the label l0, and an arbitrary number of l′i, l

′′
i for all li ∈ H. These symbols

are generated by C1 and C2 with the following programs:

P1 ⊃ {〈e → l′r〉, 〈l′r ↔ e〉, 〈e → l′′r 〉, 〈l′′r ↔ e〉 | lr ∈ H} ∪
{〈e ↔ D′〉, 〈D′ → l0〉, 〈l0 ↔ D〉},

P2 ⊃ {〈e → D′〉, 〈D′ → D′〉, 〈D′ ↔ l′1〉, 〈l′1 → D〉, 〈D ↔ l′′1 〉}.
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With these programs, from the configuration (e, e, e, e, e, e; ε), we obtain
(D, l′′1 , e, e, e, e; l0w) where the environment contains the label of the initial in-
struction, l0, and w, a multiset of primed and double primed instruction labels.

To simulate the instruction li : (ADD(r), lj , lk), cells C1 and C3 cooperate to
add one copy of object ar and object lj or lk to the environment.

P1 : P3

i1 : 〈D ↔ ar,i〉 i1 : 〈e ↔ li〉
i2 : 〈ar,i → ar〉 i2 : 〈li → ar,i〉
i3 : 〈ar ↔ Kj〉 i3 : 〈ar,i ↔ l′i〉
i4 : 〈ar ↔ Kk〉 i4 : 〈ar,i → t〉
i5 : 〈Kj → lj〉 i5 : 〈l′i → Kj〉
i6 : 〈Kk → lk〉 i6 : 〈l′i → Kk〉
i7 : 〈lj ↔ D〉 i7 : 〈Kj ↔ e〉
i8 : 〈lk ↔ D〉 i8 : 〈Kk ↔ e〉

i9 : 〈t → t〉

It is not difficult to follow how the interplay of these two cells produce the con-
figuration (D, l′′1 , e, e, e, e; ljarw

′) or (D, l′′1 , e, e, e, e; lkarw
′) from a configuration

(D, l′′1 , e, e, e, e; liw) where w,w′ are multisets of l′i, l
′′
i for li ∈ H and ar 1 ≤ r ≤ m.

If there is no l′i present in the environment when the program i3 of cell C3 should
be used, then the programs i4 and i9 do not allow the halting of the computation.

For each subtract instruction lf : (SUB(r), lg, ln) there are the following pro-
grams in P1, P4, P5 and in P6:

P1 P4 P5 P6

f1 : 〈D ↔ Lf 〉 f1 : 〈e ↔ lf 〉 f1 : 〈e ↔ L′f 〉 f1 : 〈e ↔ L′′f 〉
f2 : 〈Lf → Ef 〉 f2 : 〈lf → Lf 〉 f2 : 〈L′f → l′f 〉 f2 : 〈L′′f → l′f 〉
f3 : 〈Ef → Ff 〉 f3 : 〈Lf ↔ l′f 〉 f3 : 〈l′f ↔ ar〉 f3 : 〈l′f ↔ $f 〉
f4 : 〈Ff → $f 〉 f4 : 〈l′f → L′f 〉 f4 : 〈l′f ↔ $f 〉 f4 : 〈$f → lg〉
f5 : 〈$f ↔ D〉 f5 : 〈L′f ↔ l′′f 〉 f5 : 〈$f → l̄n〉 f5 : 〈lg ↔ e〉

f6 : 〈l′′f → L′′′f 〉 f6 : 〈ar → e〉 f6 : 〈l′f ↔ l̄n〉
f7 : 〈L′′′f → L′′f 〉 f7 : 〈l̄n ↔ e〉 f7 : 〈l̄n → ln〉
f8 : 〈L′′f ↔ e〉 f8 : 〈ln ↔ e〉
f9 : 〈Lf → t〉
f10 : 〈L′f → t〉
f11 : 〈t → t〉

In the following table we show how a subtract instruction can be simulated by
the programs above. Since C2 and C3 cannot apply any of their rules in any step of
the following simulation, we omit them from the table. The multiset of objects in
the environment is denoted by [. . .], and for now we assume that it always contains
a sufficient amount of l′i, l

′′
i objects for any li ∈ H.

First we consider the case when there is at least one object ar in the environ-
ment, that is, if the simulation starts in a configuration (D, l′′1 , e, e, e, e; lfar[. . .]).
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configuration of Π programs to be applied
C1 C4 C5 C6 Env P1 P4 P5 P6

1. D e e e lfar[. . .] − f1 − −
2. D lf e e ar[. . .] − f2 − −
3. D Lf e e ar[. . .] − f3 − −
4. D l′f e e Lfar[. . .] f1 f4 − −
5. Lf L′f e e Dar[. . .] f2 f5 − −
6. Ef l′′f e e L′fDar[. . .] f3 f6 f1 −
7. Ff L′′′f L′f e Dar[. . .] f4 f7 f2 −
8. $f L′′f l′f e Dar[. . .] f5 f8 f3 −
9. D e ar e $fL′′f [. . .] − − f6 f1

10. D e e L′′f $f [. . .] − − − f2

11. D e e l′f $f [. . .] − − − f3

12. D e e $f [. . .] − − − f4

13. D e e lg [. . .] − − − f5

14. D e e e lg[. . .] − g1 − −

In 13 steps we obtain from a configuration (D, l′′1 , e, e, e, e; lfar[. . .]) a new one
(D, l′′1 , e, e, e, e; lg[. . .]) where lg is the label of the instruction which should follow
the successful decrease of the value of the nonempty register r, and the environment
contains a multiset of objects l′i, l

′′
i for li ∈ H.

Now we consider the case when register r, which is the register to be
decremented stores zero, that is, if the simulation starts in a configuration
(D, l′′1 , e, e, e, e; lf [. . .]) where the environment does not contain any object ar.

configuration of Π programs to be applied
C1 C4 C5 C6 Env P1 P4 P5 P6

1. D e e e lf [. . .] − f1 − −
2. D lf e e [. . .] − f2 − −
3. D Lf e e [. . .] − f3 − −
4. D l′f e e Lf [. . .] f1 f4 − −
5. Lf L′f e e D[. . .] f2 f5 − −
6. Ef l′′f e e L′fD[. . .] f3 f6 f1 −
7. Ff L′′′f L′f e D[. . .] f4 f7 f2 −
8. $f L′′f l′f e D[. . .] f5 f8 − −
9. D e l′f e $fL′′f [. . .] − − f4 f1

10. D e $f L′′f [. . .] − − f5 f2

11. D e l̄n l′f [. . .] − − f7 −
12. D e e l′f l̄n[. . .] − − − f6

13. D e e l̄n [. . .] − − − f7

14. D e e ln [. . .] − − − f8

15. D e e e ln[. . .] − n1 − −
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Similarly to the previous case, in 14 steps we obtain a configuration
(D, l′′1 , e, e, e, e; ln[. . .]) where ln is the label of the instruction which should fol-
low lf if register r is empty, that is, if the decrease of its value is not possible.

Consider now what happens if there is an insufficient amount of objects l′i, l
′′
i

for li ∈ H is present in the environment. Notice that such symbols are needed in
step 3 and 5 by cell C4. If there is no more available (not enough of them were
produced in the initial phase by C1 and C2), then the programs f9 f10 and f11 do
not allow the halting of the computation.

From these considerations we can see that after the initialization phase, all
instructions of the register machine M can be simulated by the P colony. If the
label of the halt instruction, lh is produced, the computation halts since there is
no program for processing the object lh. The reader can immediately see that Π
computes the same set of vectors as M.

4 P Colonies with Senders and Consumers

Now we continue with the investigation of two object P colonies with insertion-
deletion programs. It is not too difficult to see that if we allow a cell to contain
both types of programs, then we can simulate the other types of programs in two
steps, thus, it is more interesting to consider P colonies having cells which contain
either insertion or deletion programs, but not both types at the same time. We
call these systems P colonies with senders and consumers. A sender is a cell with
only insertion programs, a consumer is a cell with only deletion programs.

Let us denote by PCOL(s-c, i, j) the class of sets of numbers generated by P
colonies with senders and consumers having at most i ≥ 1 cells with at most j ≥ 1
program each.

Example 1. (a) Every sender cell in a P colony can generate the Parikh set of a
regular language L ⊆ T ∗. Let G = (N, T, P, S) be a regular grammar such that
L(G) = L.

For accepting the Parikh vectors of the words in L, we use the programs

〈e, out; e → eS〉, 〈e, out; S → aB〉
for each S → aB of P , and then

〈x, out; A → aB〉, x ∈ T

for every A → aB in P . Finally, for every rule of the form A → a we need

〈x, out; A → aF 〉, x ∈ T, 〈a, out; F → FF 〉,
where F /∈ T ∪N .

(b) Every consumer cell in a P colony can consume the Parikh set of a regular
language L. To see this, let M = (Q, T, δ, q0, F ) be a deterministic finite automaton
such that L(M) = L.
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We need the program
〈e, in; ee → q0〉,

and to every transition δ(qi, a) = qj in M

〈a, in; xqi → qj〉, x ∈ T ∪ {e}.
If qj ∈ F in δ(qi, a) = qj we have to add the programs

〈a, in;xqi → F 〉, x ∈ T

where F /∈ Q ∪ T .

Now we show that three cells, one sender and two consumers are sufficient to
generate all recursively enumerable sets of integer vectors.

Theorem 2. PCol(s-c, 3, ∗) = NRE.

Proof. We simulate the computations of an m-register machine M =
(m,H, l0, lh, P ), m ≥ 1, by representing the content of the register i by the num-
ber of copies of a specific object ai in the environment. We construct the P colony
Π = (V, e, F, C1, C2, C3) with:

V = {l, l′, l′′, l′′′, liv, lv, l̄, ¯̄l | l ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪
{K,T1, T2, T3, T4, T5},

F = {ai | register i is an output register}, and
Ci = (ee, Pi) for 1 ≤ i ≤ 3.

The P colony Π starts its computation in the initial configuration (ee, ee, ee; ε).
We initialize the computation by generating the initial label l0 with a program
from P1,

〈e, out; e → l0l0〉 ∈ P1

obtaining (l0l0, ee, ee; ε).
The simulation of an instruction with label li starts from a configuration

(lili, ee, ee; w) where w ∈ V ∗, the multiset of objects in the environment, rep-
resents the counter contents of M .

To simulate an ADD instruction, we use the programs of P1 and P3. For each
li, lj , lk ∈ H with li being the label of an instruction li : (ADD(r), lj , lk), we have
the following programs:

P1 P3

i1 : 〈li, out; li → arlj〉 i1 : 〈li, in; ee → T1〉
i2 : 〈li, out; li → arlk〉 i2 : 〈e, in; liT1 → e〉
i3 : 〈ar, out; lj → lj lj〉 i3 : 〈li, in; ¯̄liT5 → T1〉
i4 : 〈ar, out; lk → lklk〉

Using these programs, we obtain a sequence of configurations
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(lili, ee, ee; w) ⇒ (arl, ee, ee; liw) ⇒ (ll, ee, liT1; arw)

where l is the label of the next instruction, that is, we either have (lj lj , ee, liT1; arw)
or to (lklk, ee, liT1; arw). The contents of cell C3, liT1, will change in the next step
to ee independently of the several ways of the continuation of the computation, as
we shall see later.

The program labeled with i3 is used if the instruction simulated before li was
a SUB instruction (see below). In this case, the configuration in which the simu-
lation of li starts is (lili, ee, l̄iT4; ¯̄liw) and we need the steps (lili, ee, l̄iT4; ¯̄liw) ⇒
(arl, ee,

¯̄liT5; liw) ⇒ (ll, ee, liT1; arw) and program i3 to obtain the same configu-
ration as before.

Now we show how to simulate a SUB instruction. For each lj , lk, ll ∈ H with
lj being the label of an instruction lj : (SUB(r), lk, ll), and for all labels lr ∈ H,
we have the following programs.

P1 P2 P3

j1 : 〈lj , out; lj → l′j l
′
j〉 j1 : 〈lj , in; ee → e〉 j1 : 〈l′j , in; ee → T1〉

j2 : 〈l′j , out; l′j → l′′j l′′j 〉 j2 : 〈ar, in; elj → e〉 j2 : 〈e, in; l′jT1 → T2〉
j3 : 〈l′′j , out; l′′j → l′′′j livj 〉 j3 : 〈l′′j , in; elj → e〉 j3 : 〈l′′j , in; eT2 → T3〉
j4 : 〈l′′′j , out; livj → l̄k l̄k〉 j4 : 〈l′′′j , in; are → e〉 j4,r : 〈l̄r, in; l′′j T3 → T4〉
j5 : 〈livj , out; l′′′j → l̄l l̄l〉 j5 : 〈e, in; l′′′j e → e〉 j5,r : 〈l̄r, in; eT2 → T4〉
j6 : 〈l̄k, out; l̄k → ¯̄lk¯̄lk〉 j6 : 〈livj , in; are → K〉 j6,r : 〈¯̄lr, in; l̄rT4 → T5〉
j7 : 〈¯̄lk, out; ¯̄lk → lklk〉 j7 : 〈e, in; livj K → K〉 j7,r : 〈e, in; ¯̄lrT5 → e〉
j8 : 〈l̄l, out; l̄l → ¯̄ll¯̄ll〉 j8 : 〈e, in; eK → K〉
j9 : 〈¯̄ll, out; ¯̄lk → llll〉 j9 : 〈l′′′j , in; l′′j e → K〉

j10 : 〈e, in; l′′′j K → K〉
j11 : 〈livj , in; l′′j e → e〉
j12 : 〈e, in; livj e → e〉

In the following table we show how the programs above simulate the execution of
the instruction lj : (SUB(r), lk, ll). To save space, we use the sign “/” to separate
the different possible multisets which might appear in the same row of the table.

First we consider the case when register r is not empty, that is, when there is
at least one object ar present in the environment.
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configuration of Π programs to be applied
C1 C2 C3 Env P1 P2 P3

1. lj lj ee ? arw
′ j1 − ?

2. l′j l
′
j ee ? ljarw

′′ j2 j1 ?
3. l′′j l′′j lje ee l′jarw j3 j2 j1
4. l′′′j livj are l′jT1 l′′j w j4/j5 − j2
5. l̄k l̄k/l̄l l̄l are eT2 (l′′′j /livj )l′′j w j6/j8 j4/j6 j3
6. ¯̄lk¯̄lk/¯̄ll¯̄ll l′′′j e/livj K l′′j T3 (l̄k/l̄l)w j7/j9 j5/j7 j4,k/j4,l

7. lklk/llll ee/eK (l̄k/l̄l)T4 (¯̄lk/¯̄ll)w k1/l1 −/j8 j6,k/j6,l

8. l′kl′k/l′ll
′
l ee/eK (¯̄lk/¯̄ll)T5 (lk/ll)w k2/l2 k1/j8 j7,k/j7,l

9. l′′k l′′k/l′′l l′′l (lk/ll)e/eK ee (l′k/l′l)w k3/l3 k2/j8 j1

We see that starting with a configuration where C1 contains the objects lj lj and the
environment contains ar, in six steps we obtain a configuration where the object
ar is removed from the environment, and C1 either contains the label of the next
instruction lk, or because of the presence of program j8, in P2, the computation
will never be able to halt.

Now we show the simulation of the lj : (SUB(r), lk, ll) instruction when there
is no object ar is present in the environment, that is, when register r is empty.

configuration of Π rules to be applied
C1 C2 C3 Env P1 P2 P3

1. lj lj ee ? w j1 − ?
2. l′j l

′
j ee ? ljw j2 j1 ?

3. l′′j l′′j lje ee l′jw j3 − j1
4. l′′′j livj lje l′jT1 l′′j w j4/j5 j3 j2
5. l̄k l̄k/l̄l l̄l l′′j e eT2 (l′′′j /livj )w j6/j8 j9/j11 −
6. ¯̄lk¯̄lk/¯̄ll¯̄ll l′′′j K/livj e eT2 (l̄k/l̄l)w j7/j9 j10/j12 j5,k/j5,l

7. lklk/llll eK/ee (l̄k/l̄l)T4 (¯̄lk/¯̄ll)w k1/l1 j8/− j6,k/j6,l

8. l′kl′k/l′ll
′
l eK/ee (¯̄lk/¯̄ll)T5 (lk/ll)w k2/l2 j8/k1 j7,k/j7,l

9. l′′k l′′k/l′′l l′′l eK/(lk/ll)e ee (l′k/l′l)w k3/l3 j8/k2 j1

In this case, similarly to the previous one, we either get the objects lklk in the cell
C1, or the computation will not be able to halt.

The rules to be applied and the objects contained by the cell C3 in row 1. and
row 2. of the tables above depend on the instruction li which was simulated before
lj . If li is an ADD instruction, then we have liT1 in the first row, and applying
the program i2 from P3 we get ee in the second row, where no program is applied
until the next step. Also, w = w′ = w′′ in this case.

If li is a SUB instruction, then (as we can also see from row 7. and row 8.) the
contents of the cell C3 is l̄jT4 and ¯̄ljT5 in the first two rows where the programs
i6,j and i7,j are applied. In this case w′′ = ¯̄ljw, and w′ = w.
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As we have seen above, the P colony successfully simulates each instruction of
M and since there is no program to process lh, the label of the halt instruction,
it also halts when the computation of M is finished. It is also easy to see that M
and Π compute the same set of vectors of non-negative integers.

5 Conclusion

We have examined extremely simplified variants of P colonies: P colonies of ca-
pacity one with no checking rules, and P colonies with capacity two, but only
with senders and consumers. We have shown that even these very simple variants
are able to simulate arbitrary register machines, that is, to compute all Turing
computable sets of vectors.
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7. Gh. Păun. Membrane Computing – An Introduction. Springer, Berlin, 2002.



Cell-like Versus Tissue-like P Systems by Means

of Sevilla Carpets

Daniel Dı́az-Pernil1, Pilar Gallego-Ortiz2, Miguel A. Gutiérrez-Naranjo2,
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Summary. Sevilla Carpets are a handy tool for comparing computations performed
by different systems solving the same problem. Such Sevilla Carpets provide on one
hand quantitative information through parameters such as Weight, Surface and Average
weight, and on the other hand they also provide a fast glimpse on the complexity of the
computation thanks to their graphical representation.

Up to now, Sevilla Carpets were only used on Cell-like P systems. In this paper
we present a first comparison by means of Sevilla Carpets of the computations of three
P systems (designed within different models), all of them solving the same instance of
the Subset Sum problem. Two of these solutions use Cell-like P systems with active
membranes, while the third one uses Tissue-like P systems with cell division.

1 Introduction

Comparing two cellular designs that solve the same problem is not an easy task,
as there are many ingredients to be taken into account. Moreover, in the case
of P systems where the number of membranes increases along the computation,
the problem of describing the complexity of the computational process becomes
specially hard. The complexity in time (number of parallel cellular steps) of these
solutions is polynomial, but it is clear that the time is not the unique variable
that we need to consider in order to evaluate the complexity of the process. This
fact has been observed previously in the literature of P systems. The first paper
related to this problem was [1], where Ciobanu, Păun and Ştefănescu presented a
new way to describe the complexity of a computation in a P system. The so-called
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Sevilla Carpet was introduced as an extension of the notion of Szilard language
from grammars to the case when several rules are used at the same time.

In [4], the problem was revisited, introducing new parameters for the study of
the descriptive complexity of P systems. Besides, several examples of a graphical
representation were provided, and the utility of these parameters for comparing
different solutions to a given problem was discussed. In that paper two different
solutions of the Subset Sum problem, running on the same instance, were compared
by using these parameters.

In this paper we adapt Sevilla Carpets to tissue-like models, in order to describe
the complexity of the computations.

Note that given two Sevilla Carpets corresponding to P systems from different
models designed to solve a decision problem, we can obtain detailed information
about two single computations, but this is not enough to compare the efficiency
of the two models in general.

Nonetheless, the numerical parameters obtained from these two Sevilla Carpets
can give us some hints to compare the corresponding designs of solutions to the
problem.

The paper is organized as follows. In Section 2 we recall the definition of tissue-
like P systems with cell division. Section 3 shows a solution of the Subset Sum
problem in the model above presented. In Section 4 we revisit the definition of
Sevilla Carpets and its associated parameters. Section 5 shows a comparison among
two different solutions to the Subset Sum problem in the framework of P systems
with active membranes and one solution designed with tissue-like P systems with
cell division, all of them running on the same instance. Some final remarks are also
provided.

2 Tissue-like P Systems with Cell Division

Tissue-like P systems with cell division is a well-established P system model pre-
sented by Gh. Păun et al. in [8]. In this section we briefly recall its main features.
The biological inspiration for this model is that alive tissues are not static network
of cells, since cells are duplicated via mitosis in a natural way.

Formally, a tissue-like P system with cell division of degree q ≥ 1 is a tuple of
the form

Π = (Γ, E , w1, . . . , wq,R, i0),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. E ⊆ Γ .
3. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration.
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗.
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(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .
5. i0 ∈ {0, 1, 2, . . . , q}.

A tissue-like P system with cell division of degree q ≥ 1 can be seen as a set of q
cells (each one consisting of an elementary membrane) labeled by 1, 2, . . . , q. We
will use 0 to refer to the label of the environment, and i0 denotes the output region
(which can be the region inside a cell or the environment).

The communication rules determine a virtual graph, where the nodes are the
cells and the edges indicate if it is possible for pairs of cells to communicate
directly. This is a dynamical graph, because new nodes can appear produced by
the application of division rules.

The strings w1, . . . , wq describe the multisets of objects initially placed in the
q cells of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of this rule
means that the objects of the multisets represented by u and v are interchanged
between the two cells.

The division rule [a]i → [b]i[c]i is applied over a cell i containing object a. The
application of this rule divides this cell into two new cells with the same label. All
the objects in the original cell are replicated and copied in each of the new cells,
with the exception of the object a, which is replaced by the object b in the first
one and by c in the other one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules. This way
of applying rules has only one restriction when a cell is divided, the division rule
is the only one which is applied for that cell in that step; the objects inside that
cell cannot be communicated in that step.

The main features of this model, from the computational point of view, are that
cells have not polarizations (the contrary holds in the cell-like model of P systems
with active membranes); the cells obtained by division have the same labels as
the original cell and if a cell is divided, its interaction with other cells or with the
environment is blocked during the mitosis process. In some sense, this means that
while a cell is dividing it closes the communication channels with other cells and
with the environment.

2.1 Recognizer Tissue-like P Systems with Cell Division

Complexity classes within Membrane Computing have been usually studied in the
framework of decision problems. Let us recall that a decision problem is a pair
(IX , θX) where IX is a language over a finite alphabet (whose elements are called
instances) and θX is a total boolean function over IX .
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In order to study the computational efficiency for solving NP-complete decision
problems, a special class of tissue P systems with cell division is introduced in [8]:
recognizer tissue P systems. The key idea of such recognizer systems is the same
one as from recognizer P systems with cell-like structure.

Recognizer cell-like P systems were introduced in [10] and they are the natural
framework to study and solve decision problems within Membrane Computing,
since deciding whether an instance of a given problem has an affirmative or negative
answer is equivalent to deciding if a string belongs or not to the language associated
with the problem.

In the literature, recognizer cell-like P systems are associated with P systems
with input in a natural way. The data encoding to an instance of the decision
problem has to be provided to the P system in order to compute the appropriate
answer. This is done by codifying each instance as a multiset placed in an input
membrane. The output of the computation (yes or no) is sent to the environment,
in the last step of the computation. In this way, cell-like P systems with input and
external output are devices which can be seen as black boxes, in the sense that
the user provides the data before the computation starts, and then waits outside
the P system until it sends to the environment the output in the last step of the
computation.

A recognizer tissue-like P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E , w1, . . . , wq,R, iin, i0)

where

• (Γ, E , w1, . . . , wq,R, i0) is a tissue-like P system with cell division of degree
q ≥ 1 (as defined in the previous section), i0 = env and w1, . . . , wq strings over
Γ \ Σ.

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets w1, . . . , wq, but not present in E .

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a configura-
tion of the form (w1, w2, . . . , wiin

w, . . . , wq; E), that is, after adding the multiset
w to the contents of the input cell iin. We say that the multiset w is recognized by
Π if and only if the object yes is sent to the environment, in the last step of the
corresponding computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
environment associated to the corresponding halting configuration of C.
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Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) | n ∈ N} of recognizer tissue-like P systems
with cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

In the above definition we have defined every P system Π(n) to be confluent, in
the following sense: every computation of a system with the same input multiset
must always give the same answer.

3 A Solution for the Subset Sum Problem

For the study of the Sevilla Carpet in tissue-like P systems with Cell division we
take the computation of one P systems of the family presented in [2]. In such a
paper a uniform family of tissue-like P systems with cell division solving the Subset
Sum problem was presented.

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there exists
a subset B ⊆ A such that w(B) = k.

The Subset Sum problem was solved in a linear time by a family of recognizer
tissue P systems with cell division. The resolution was addressed via a brute force
algorithm.

A tuple (n, (w1, . . . , wn), k) was used to represent an instance of the problem,
where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and k is the constant
given as input for the problem.

Let A = {a1, . . . , an} be a finite set, w : A −→ N a weight function with n = |A|
and k ∈ N. Let g : N × N → N be a function defined by g(n, k) = ((n + k)(n +
k + 1/2)) + n. This function is primitive recursive and bijective between N

2 and
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N and computable in polynomial time. Let us denote by u = (n, (w1, . . . , wn), k),
where wi = w(ai), 1 ≤ i ≤ n, the given instance of the problem. We define the
polynomially computable function s(u) = g(n, k).

We will provide a family of tissue P systems where each P system solves all
the instances of the SUBSET SUM problem with the same size. The weight function
w of the concrete instance will be provided via an input multiset determined via
the function cod(u) = {{vj

i : w(ai) = j ∧ 1 ≤ i ≤ n}} ∪ {{qk}}, where vj
i (i.e., j

copies of object vi) represents that j is the weight of the element ai.
Next, we will provide a family of recognizer tissue P systems with cell division

which solve the SUBSET SUM problem in linear time. For each (n, k) ∈ N
2 we will

consider the system Π(n, k) = (Γ,Σ, ω1, ω2,R, E , iin, i0), where

• Γ = Σ(n) ∪ {Ai, Bi | 1 ≤ i ≤ n}
∪ {ai | 1 ≤ i ≤ n + ⌈log n⌉ + ⌈log(k + 1)⌉ + 11}
∪ {ci | 1 ≤ i ≤ n + 1}
∪ {di | 1 ≤ i ≤ ⌈log n⌉ + ⌈log(k + 1)⌉ + 4}
∪ {ei | 1 ≤ i ≤ ⌈log n⌉ + 1}
∪ {Bij | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ ⌈log(k + 1)⌉ + 1}
∪ {b,D, p, q, g1, g2, f1, T, S,N, yes, no}

• Σ = {vi | 1 ≤ i ≤ n}
• ω1 = a1 b c1 yes no

• ω2 = DA1 · · ·An

• R is the following set of rules:
1. Division rules:

r1,i ≡ [Ai]2 → [Bi]2[λ]2 for i = 1, . . . , n
2. Communication rules:

r2,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , n + ⌈log n⌉ + ⌈log(k + 1)⌉ + 10
r3,i ≡ (1, ci/c2

i+1, 0) for i = 1, . . . , n
r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/d1e1, 0)
r6,i ≡ (2, ei/e2

i+1, 0) for i = 1, . . . , ⌈log n⌉
r7,i ≡ (2, di/di+1, 0) for i = 1, . . . , ⌈log n⌉ + ⌈log(k + 1)⌉ + 3
r8,i ≡ (2, e⌈log n⌉+1Bi/Bi1, 0) for i = 1, . . . , n
r9,i,j ≡ (2, Bij/B2

ij+1, 0) for i = 1, . . . , n, j = 1, . . . , ⌈log(k + 1)⌉
r10,i ≡ (2, Bi⌈log(k+1)⌉+1vi/p, 0) for i = 1, . . . , n
r11 ≡ (2, pq/λ, 0)
r12 ≡ (2, d⌈log n⌉+⌈log(k+1)⌉+4/g1f1, 0)
r13 ≡ (2, f1p/λ, 0)
r14 ≡ (2, f1q/λ, 0)
r15 ≡ (2, g1/g2, 0)
r16 ≡ (2, g2f1/T, 0)
r17 ≡ (2, T/λ, 1)
r18 ≡ (1, bT/S, 0)
r19 ≡ (1, Syes/λ, 0)
r20 ≡ (1, an+⌈log n⌉+⌈log(k+1)⌉+11b/N, 0)
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r21 ≡ (1, Nno/λ, 0)

• E = Γ − {yes, no}
• iin = 2, is the input cell
• i0 = env, is the output cell

An overview of the computation and more details of the design can be read in [2].

4 Sevilla Carpets

Sevilla Carpets were presented in [1] as an extension of the Szilard language, which
consists of all strings of rule labels describing correct derivations in a given gram-
mar (see e.g., [6, 7] or [11]). The Szilard language is usually defined for grammars
in the Chomsky hierarchy where only a single rule is used in each derivation step,
so a derivation can be represented as the string of the labels of the rules used
in the derivation (the labeling is supposed to be one-to-one). Sevilla Carpets are
a Szilard-way to describe a computation in a P system. The main difference is
that a multiset of rules can be used in each evolution step of a P system. In [1] a
bidimensional writing is proposed to describe a computation of a P system. The
(Sevilla) Carpet associated with a computation of a P system is a table with the
time on the horizontal axis and the rules explicitly mentioned along the vertical
axis; then, for each rule, in each step, a piece of information is given. Depending
on the amount of information given to describe the evolution, Ciobanu, Păun and
Ştefănescu propose five variants for the Sevilla Carpets:

1. Specifying in each time unit for each membrane whether at least one rule was
used in its region or not;

2. Specifying in each time unit for each rule whether it was used or not;
3. Mentioning in each time unit the number of applications of each rule; this is

0 when the rule is not used and can be arbitrarily large when the rules are
dealing with arbitrarily large multisets;

4. We can also distinguish three cases: that a rule cannot be used, that a rule can
be used but it is not because of the nondeterministic choice and that a rule is
actually used;

5. A further possibility is to assign a cost to each rule, and to multiply the number
of times a rule is used with its cost.

They also propose two parameters (weight and surface) to study Sevilla Carpets.
In [4] two new parameters (height and average weight) were proposed.

4.1 Parameters for the Descriptive Complexity

Many times we will not be interested only in the number of cellular steps of the
computation, but also in other type of resources required to perform the com-
putation. Specially if we want to implement in silico a P system, we need to be
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careful with the number of times that a rule is applied, maybe with the number
of membranes and/or the number of objects present in a given configuration.

In order to describe the complexity of the computation, the following parame-
ters are proposed:

• Weight: It is defined in [1] as the sum of all the elements in the carpet,
i.e., as the total number of applications of rules along the computation. The
application of a rule has a cost and the weight measures the total cost of the
computation.

• Surface: It is the multiplication of the number of steps by the total number of
the rules used by the P system. It can be considered as the potential size of the
computation. From a computational point of view we are not only interested
on P systems which halt in a small number of steps, but in P systems which
use a small amount of resources. The surface measures the resources used in
the design of the P system. Graphically, it represents the surface where the
Sevilla Carpet lies on.

• Height: It is the maximum number of applications of any rule in a step along
the computation. Graphically, it represents the highest point reached by the
Sevilla Carpet.

• Average Weight: It is calculated by dividing the weight to the surface of
the Sevilla Carpet. This concept provides a relation between both parameters
which gives an index on how the P system exploits its massive parallelism.

5 Comparing the Solutions

In [4], two uniform families of P systems with active membranes solving the Subset
Sum were presented. In both solutions, a tuple (n, (w1, . . . , wn), k) is used to rep-
resent an instance of the problem, where n stands for the size of A = {a1, . . . , an},
wi = w(ai), and k is the constant given as input for the problem. Both solutions
are based on a brute force algorithm implemented in the framework of P systems
with active membranes. The idea of the design can be divided into several stages:

• Generation stage: for every subset of A, a membrane is generated via membrane
division.

• Weight calculation stage: in each membrane the weight of the associated subset
is calculated. This stage will take place in parallel with the previous one.

• Checking stage: in each membrane it is checked whether or not the weight of its
associated subset is exactly k. This stage cannot start in a membrane before
the previous ones are over in that membrane.

• Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer to the environment.

The first family can be found in [9]. Let us recall that the instance u =
(n, (w1, . . . , wn), k) is processed by the P system Π1(〈n, k〉) with input the multiset
xw1

1 xw2

2 . . . xwn

n .
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This design depends on the two constants that are given as input in the prob-
lem: n and k. It consists on 5n + 5k + 18 evolution rules, and if an appropriate
input multiset is introduced inside membrane e before starting the computation,
the system will stop and output an answer in 2n + 2k + 6 steps (if the answer is
No) or in 2n + 2k + 5 steps (if the answer is Y es).

The second family is inspired in the previous one. Some modifications were
made following the design presented in [3]. In this solution the instance u =
(n, (w1, . . . , wn), k) is processed by the P system Π2(n) with input the multiset
xw1

1 xw2

2 . . . xwn

n .
The above design depends only on one of the constants that are given as input

in the problem: n. It is quite similar to the previous one, the difference lies in the
checking stage and the answer stage. In this case we avoid the use of counters that
require knowing the constant k.

The number of evolution rules is 5n + 41, and the number of steps of the
computation depends on the concrete instance that we need to solve, but it is
linearly bounded.

We compare these solutions with the solution described in Section 3. As pointed
out in [2], the number of rules for a set A = {a1 . . . , an} of size n is . . . and the
number of steps is ... if the answer is Yes and ... if the answer is No.

5.1 Descriptive Complexity

We present some detailed statistics about the previous designs, trying to com-
pare them on a more general basis than just looking the number of steps that the
computation performs. Following this scheme, we present the Sevilla Carpets as-
sociated with the computations of the three different solutions to the Subset Sum
problem working on the same instance: u = (5, (3, 5, 3, 2, 5), 9). That is, n = 5,
k = 9 and the list of weights is w1 = 3, w2 = 5, w3 = 3, w4 = 2, w5 = 5.

The P system Π1(〈5, 9〉) has 88 evolution rules, and all of them are applied
with the exception of the rules: [q19]

−
e → [ ]0eY es, [q3]

−
e → [ ]−e #, [q9]

−
e → [ ]−e #

and [Y es]−s → [ ]0sY es. The P system Π1(5, 9) stops at step 33 and sends an object
No to the environment.

The weight of the Sevilla Carpet (the total number of rule applications along
the computation) is 2179. The height of the Sevilla Carpet (the maximal number
of times that a rule is applied in one evolution step) is 82 and it is reached at
Step 9. The surface of the Sevilla Carpet is 2904. The average weight of the Sevilla
Carpet is 0.749656

The P system Π2(5) has 65 evolution rules, and all of them are applied with
the exception of the rules: [q3]

0
e → [ ]+e Y es and [Y es]−s → [ ]0sY es. The P system

Π2(5) stops at step 38 and sends an object No to the environment.
The weight of the Sevilla Carpet is 3368. The height of the Sevilla Carpet is

108 and it is reached at step 10. The surface of the Sevilla Carpet is 2470. The
average weight of the Sevilla Carpet is 1.36275

Finally, the solution with tissue-like P systems with cell division has 88 rules
and 84 of them are applied in this computation. The P system stops at step 24.
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Fig. 1. Sevilla Carpet for solution 1

The surface of the Sevilla Carpet is 2112 and its weight is 2405. The height is 128
and it is reached at steps 10, 12, 13, 14 and 15. The average weight of the Sevilla
Carpet is 1.13873.

The following table shows the parameters of both solutions:

Sol. 1 Sol.2 Sol. 3
Rules 88 65 88
Steps 33 38 24
Surface 2904 2470 2112
Weight 2179 3368 2405
Height 82 108 128
Average Weight 0.749656 1.36275 1.13873

If we consider the number of steps as a complexity measure to compare the
designs, then we conclude that the third solution is better than the other ones,
since it needs less steps.

Moreover, concerning the weight of the Sevilla Carpet, solution 1 is better than
the other ones, because it uses less resources during the computation.

Nonetheless, the key point of a design of a solution in Membrane Computing
is the use of the massive parallelism. As pointed out in [5],

a bad design of a P system consists of a P system which does not exploit
its parallelism, that is, working as a sequential machine: in each step only
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Fig. 2. Sevilla Carpet for solution 2

one object evolve in one membrane whereas the remaining objects do not
evolve. On the other hand, a good design consists of a P system in which
a huge amount of objects are evolving simultaneously in all membranes. If
both P systems perform the same task, it is obvious that the second one is
a better design that the first one.

In this line, the fact that the average weight of solution 2 is larger than the
average weight of the other solutions can be interpreted saying that the second
design makes a better use of the parallelism in P systems.

6 Conclusions and Future Work

It is important to remark that these are not asymptotical comparisons, as we focus
only on the data corresponding to one instance. Indeed, due to the exponential
number of membranes created during the generation stage, we believe that con-
sidering another instance with a greater size will stress the differences between the
design based only on n and the other one, based on n and k. The bound on the
size of the instances that can be studied is imposed by the necessity to use a P
systems simulator to obtain the detailed description of the computation: number
of rules, number of cellular steps, and number of times that the rules are applied
in each step.
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Fig. 3. Sevilla Carpet for solution 3
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Junta de Andalućıa, grant P08-TIC-04200.

References
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In M. Cavaliere, C. Mart́ın–Vide and Gh. Păun (eds.), Proceedings of the Brainstorm-

ing Week on Membrane Computing, Tarragona, Spain, 2003, Report RGML 26/03,
135–140.

2. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: Solv-
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ming language in cellular computing. Proceedings of the 11th Workshop on Logic,

Language, Information and Computation (WoLLIC’2004), July 19-22, 2004, 1-16
Campus de Univ. Paris 12, Paris, France. A preliminary version in Gh. Păun, A.
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ond Brainstorming Week on Membrane Computing, Sevilla, Report RGNC 01/2004,
2004, 380–386.
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Summary. Lately, some studies linked the computational power of abstract computing
systems based on multiset rewriting to Petri nets and the computation power of these
nets to their topology. In turn, the computational power of these abstract computing
devices can be understood just looking at their topology, that is, information flow.

This line of research is very promising for several aspects:

its results are valid for a broad range of systems based on multiset rewriting;
it allows to know the computational power of abstract computing devices without te-

dious proofs based on simulations;
it links computational power to topology and, in this way, it opens a broad range of

questions.

In this note we summarize the known result on this topic and we list a few suggestions
for research together with the relevance of possible outcomes.

1 Introduction

Imagine that a computing device based on multiset rewriting is defined. Let us
call this computing device S1. This could be a P system with symport/antiport,
or with catalysts, of with conformons, or it could be a definition of Diophantine
equations, or some model of Brane calculi of whatever else you like.

What would you do in order to know the computing power of such a system?
Probably you would try to simulate with S1 another computing system, say

S2 with known computational power. If this is possible, than you can say that S1

can compute at least as much as S2 can compute. Then you would probably try to
simulate S1 with S2, if this is possible, then you know that the two systems have the
same computational power. This is the standard way to know the computational
power of a computing system.

There is another way to know the computational power of S1. This new way is
based on the fact that a computing system has a way to store information and a
way to manipulate it. This other way looks at how such a system stores information
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and how it manipulates it and it deducts (in between other things) the computing
power of S1.

From a point of view this is not a new idea: this is a very well establish concept
in formal grammars. If somebody gives you a formal grammar S1 and asks what
it can compute, probably you would not try to simulate with S1 another grammar
S2 of known computing power. Instead, you would simply look at the productions
of S1 and from this (because of the Chomsky hierarchy) you would be able to
deduct what it can be generated by S1.

The approach that we are going to consider in this paper is about this: it shows
how to know the computing power of a formal system based on multiset rewriting
without running simulations but simply looking at the kind of operations that the
formal system can perform.

The suggestions for research present in Section 7 have been in part inspired
by conversations taking place during the 7th Brainstorming Week on Membrane
Computing (February 2 - 6, 2009, Seville, Spain). This note is not self contained,
it has been written having in a mind readers knowledgeable in P systems and with
a strong interest in Petri nets. Citation indicate where the used but not defined
concepts can be found.

2 About Simulations

If you are familiar with formal language theory, then you know that productions
in a formal grammar are all of the same form: α → β with α and β strings over
a certain alphabet. There is not much confusion about what such a production
does and about the language generated by a grammar. On the other hand, formal
systems based on multiset rewriting do not have ‘standard’ way to operate and do
not have ‘standard’ ways to get the result of their computation. For this reason, if
we want to ‘reduce’ the way these systems operate to just one way (on which we
can analyze the topology), then we have to use a definition of simulation.

Let S and S′ be two formal systems with O and O′ their respective sets of
operations and C = {c1, c2, . . .} and C

′ = {c′1, c
′

2, . . .} their respective sets of

configurations. We denote with
σ
⇒ (

σ′

), σ multiset over O (σ′ multiset over O′), the
transition from one configuration to another in a computation of S (S′) according

to the application of the operations in σ (σ′). With
σ1,...,σn

⇒+ (
σ′

1
,...,σ′

n

+ ) we denote non-
empty sequences of transitions from one configuration to another in a computation
of S (S′) according to the application of the operations in σ1, . . . , σn (σ′

1, . . . , σ
′

n)

in sequence. So, for instance, if c1

σ1⇒ c2

σ2⇒ c3, then we can write c1

σ1,σ2

⇒+ c3.
It should be clear that, depending on the operational mode of S, the multiset

σ can be a multiset of a specific kind. For instance, σ can be such that it returns
at most 1.
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Definition 1. Let S and S′ be two formal systems with O and O′ their respective
sets of operations, C and C

′ their respective sets of configurations and cinit and
c′init their respective initial configurations.

We say that S simulates S′ if there are two relations α ⊆ C × C
′ and β ⊆

On × O′m, n,m ∈ N, such that:

i) (cinit, c
′

init) ∈ α;

ii) for all c1, c2 ∈ C, c′1 ∈ C
′ and σ ∈ On: if c1

σ

⇒+ c2 and (c1, c
′

1) ∈ α, then there

is c′2 ∈ C
′ such that c′1

σ′

+ c′2 with (c2, c
′

2) ∈ α and (σ, σ′) ∈ β;

iii) for all c′1, c
′

2 ∈ C
′, c1 ∈ C and σ′ ∈ On: if c′1

σ′

+ c′2 and (c1, c
′

1) ∈ α, then

there is c2 ∈ C such that c1

σ

⇒+ c2 with (c2, c
′

2) ∈ α and (σ, σ′) ∈ β.

If S αβ simulates S′, then S is called the simulating system while S′ is called
the simulated system.

It is important to stress that in this paper the accepted or generated languages
of simulations are related to the configurations, not to the labels associated to
the operations (as in other definitions of simulation). Moreover, we have to point
out that the just given definition of simulation differs substantially from the ones
present in [11, 12] and from other similar definitions (specific to EN systems) as
in [14].

3 Petri Nets

If we want to study how the topology of formal system based on multiset rewriting
is related to their computational power, then we need one such system in which
topology is clearly present. Place/transition system (P/T systems) are the ideal
candidate. They are a type of Petri nets and, as such, are a (bipartite) graph.
Similarly to grammars, one of the nice features of P/T systems is their simplicity:
the operations that can be performed by them are very basic, no complexity hidden
in the way they operate. In this way, the set of numbers that can be generated
a P/T systems can be directly related to its topology, similarly to the way the
language generated by a grammar can be directly related to its kind of productions.

Given an P/T system it is possible to ‘run’ it (that is, the way it fires) in
different ways. This is different than other formal systems for which their way to
run is embedded in their definition. For instance, in a grammar the productions
are applied once per time (that is, given a sentential form at most one production
is applied in order to pass to another sentential form) while in an L system pro-
ductions are applied in parallel. So, if someone would give you a grammar, then
you would also know the way it runs. This means that if together with a grammar
you are also given a language, then it can either be that the grammar generates
that language or not.



126 P. Frisco

P/T systems (and Petri nets in general) do not have a unique way to run. If
someone would give you a P/T system, then you could run it in different ways
(each of these ways generates a configuration graph of a certain kind). This means
that if together with the P/T system you are also given a set of numbers, then
the P/T system can generate or not that set of numbers depending on the way it
runs.

This separation between a P/T system and the way it runs is important to us
as some of the results indicated in the following depend on a specific way to run
while others are independent of the way to run.

For us it is important to say that we consider three types of Petri nets: EN
system, P/T systems and P/T′ systems and we consider two ways they can run:
SCG and MSCG. It is improper to refer to SCG and MSCG as ‘ways to run’.
Here we use this improper language because we want to use a very simple termi-
nology. The readers who are not familiar with these Petri nets concepts can find
their definitions in [13, 5]. These concepts are important for understanding what
in the following sections.

4 Building Blocks and Their Composition

Let us introduce the nets depicted in Fig. 1 and call them building blocks, join and
fork in particular, as depicted in that figure. The places present in each building
block are distinct.

join fork

Fig. 1. Building blocks: join and fork. c© With kind permission of Springer Science and
Business Media [4].

Definition 2. Let x, y ∈ {join, fork} be building blocks and let t̄x and t̂y be the
transitions present in x and y respectively.

We say that y comes after x (or x is followed by y, or x comes before y or x
and y are in sequence) if t̄•x ∩ •t̂y 6= ∅ and •t̄x ∩ •t̂y = ∅. We say that x and y are
in parallel if •t̄x ∩ •t̂y 6= ∅ and t̄•x ∩ •t̂y = ∅.

We say that a net is composed by building blocks (it is composed by x) if
it can be defined by building blocks (it is defined by x) sharing places but not
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transitions. Consequently, we say that a Petri net is composed by building blocks
(it is composed by x) if its underlying net is composed by building blocks (it is
composed by x).

In Fig. 2 a join and a fork are depicted in parallel, while in Fig. 3.a and Fig.
3.b join and fork are depicted in sequence.

tx

p1

p3

p2

ty

p4 p5

Fig. 2. A join and a fork in parallel.
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p1 p2

p1

⇔ t3

p5

p2

p4

t2

p4

p5

⇔

p2

t2

p3

Fig. 3. (a) join and fork in sequence and (b) fork and join in sequence.

5 Known Results

Table 1 lists the known results linking topology to accepted/generated vectors of
numbers.
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n. system build. blocks composition n. places way to run acc./gen. class

1 P/T join, fork any finite SCG acc. = part. blind r.m.

2 P/T join, fork as Fig. 3.a finite MSCG acc. = restricted r.m.

3 P/T join, fork any finite MSCG acc./gen. = N·RE

4 EN join any finite SCG acc. = N·FIN

5 P/T′ join any infinite SCG acc./gen. = N·RE

6 P/T join any finite SCG acc. N·REG ⊂ J ⊂ N·CS

Table 1. Summary of known results

In Table 1:

n. refers to the row in the table;
system indicates the kind of Petri net;
build. blocks indicated the kinds of building blocks present in the system;
composition indicates how the building blocks are composed in the system;
n. places indicates the number of places present in the system;
way to run indicates the way the system is run;
acc./gen. indicates if known results refers to the accepting or generating model;
class indicates the class of numbers accepted/generated by the considered system.

Moreover:

part. blind r.m. means partially blind register machines [8];
restricted r.m. means restricted register machines [9];
N·FIN, N·REG, N·CS, N·RE denote classes of numbers [15].

Because of Theorem 2 in [5] row 3 in Table 1 holds true also for other ways
to run the P/T system included P/T systems having an infinite number of places
and running according to SCG.

6 Links with P Systems with Catalysts

In the introduction we hinted to a novel approach to study the computational
power of abstract computing devices. This novel approach is based on the simula-
tion (according to Definition 1) of join and fork and their composition. Once this
is known, then the results listed in Table 1 can be used to deduct the computing
power of the abstract computing device under investigation.

This has been performed for catalytic P systems. Here we list the results ob-
tained using this novel approach for this model of P system. The following results
can be found in [5] together with the definitions of the used notation and termi-
nology.

Lemma 1. The building blocks join and fork can be simulated by generating P
systems with catalysts of degree 1 and with 2 catalysts.
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Lemma 2. Generating P systems with 2 catalysts and one compartment can sim-
ulate the 0-test P/T system.

From these two lemmas and the results in Table 1 the following holds true:

Theorem 1. N02 · aCP (1, 2) = N02 · aCatP (1, 3) = N2 ·RE;
N · gCP (2, 2) = N · gCatP (2, 3) = N · aCP−c(1, 2) = N · aCatP−c(1, 3) = N·RE.

Theorem 2. The families N · gCP (2, 2), N · gCatP (2, 3), N02 · aCP (1, 2), N02 ·
aCatP (1, 3), N · aCP−c(1, 2), N · aCatP−c(1, 3), when maximal parallelism is not
present, are the ones generated also by partially blind register machines.

Corollary 1. Accepting catalytic-P systems with only rules of the kind cx → c, c ∈
C and x ∈ V \ C can accept only finite languages.

Corollary 2. Restricted P systems with catalysts of degree 2 and two catalysts and
restricted catalytic-P systems of degree 2 and three catalysts can simulate restricted
register machines.

Moreover:

Corollary 3. The class of numbers accepted by P systems with catalysts of degree
2 and 2 catalysts not using rules of the kind a → b1b2 is J;

The class of numbers accepted by purely catalytic P systems of degree 2 and 3
catalysts not using rules of the kind a → b1b2 is J.

Where J is a class of numbers such that N·REG ⊂ J ⊂ N·CS (that is, the one
in row 6 of Table 1).

Some of the results in this section (as, for instance, Theorem 1) have previ-
ously been obtained using ‘classical’ (that is, simulating other devices of known
computing power) methodologies [2, 10].

7 Suggestions for Research

The results in Section 6 show how far reaching the simulation of join and fork can
be in respect to the direct simulation of a specific computational model. We say
‘can be’ and not ‘is’ because it is not always the case that some features considered
for building blocks can be naturally translated in features of the simulating system
(P systems with catalysts, in this case). Corollary 2 is an example of the difficulties
in this ‘translation’. How to translate in natural terms for P systems with catalysts
the fact that join and fork are composed as in Fig. 3.a?

The definition of restricted P systems with catalysts considered for Corollary
2 is a very simple way to perform such a translation, but still it did not allow to
say that the computational power of such P systems is equivalent to the one of
restricted register machines. For this reason we formulate:
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Suggestion for research 1 Define a model of P systems with catalysts having
computational power equivalent to the one of restricted register machines.

Line 6 in Table 1 refers to the class of numbers accepted by P/T systems com-
posed only by join and having a finite number of places when they run according
to SCG. This class of number, called J in [7], is well defined: it is proved that this
kind of P/T systems can only accept J . What it is not well known is how J relates
to other classes of numbers.

Suggestion for research 2 As indicated in Table 1, it is known that N·REG ⊂
J ⊂ N·CS. Restrict this (rather broad) interval.

A solution to this suggestion does not necessarily mean to have a result of the
kind: A ⊂ J ⊂ B where A and B are classes of numbers. The indication of what
part of N·CS is in J and what not, would be already of interest.

In the Introduction we said: “it shows how to know the computing power of a
formal system based on multiset rewriting without running simulations but simply
looking at the kind of operations that the formal system can perform”. What do
we mean with ‘looking’?

In this case ‘looking’ means the way Definition 1 is implemented, that is what
it is considered as configuration of the simulated system. Given a configuration
of a formal system it is possible to ‘look’ at it in different ways. For instance, we
could ignore some elements in the configuration, we could group different elements
in the configuration, etc. This concept of ‘looking’ (observing) has been formalized
(see, for instance, [1]). As a consequence of this, given a formal system, we could
implement Definition 1 in different ways, leading to different models of Petri nets
and, possibly, to different accepted/generated languages.

Suggestion for research 3 Study how different implementations of Definition 1
in a given formal system change the class of numbers accepted/generated by it. Is
it possible to link these results to the topology as presented in this paper?

The previous suggestion for research can go beyond the study of a few formal
systems ‘observed’ in different ways. It can include more general studies as the
classification of systems that can be ‘observed’ in only one way, or in an unbounded
number of ways, or that can accept/generate the same language independently of
the way they are observed, etc. For instance, we could obtain results of the kind:
the ‘observation’ of the systems in row 4 of Table 1 can only accept/generate finite
classes of numbers, etc.

If we look at rows 2 and 3 in Table 1 you notice that the difference on the ac-
cepted class of numbers is due to the allowed composition. Here one could imagine
that if the composition would be something in between what present in these two
rows, then the accepted language would also be ‘in between’. We try to clarify
this point. In row 2 we deal with systems in which join and fork can only be in
sequence as in Fig. 3.a, while in row 3 we deal with systems in which the two
building blocks can be composed in any way. What language can be accepted by
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P/T systems having a finite number of join and fork in which only a few are in
sequence as in Fig. 3.a?

This line of research could be called “language generated by pseudo-random
Petri nets” where ‘random’ refers to the fact that the Petri net is created composing
building blocks in a random way, while ‘pseudo’ refers to the fact that we impose
some limitations to this randomness as, for instance, the fact that a few join and
fork have to be in a specific sequence.

Suggestion for research 4 Study languages generated by pseudo-random Petri
nets.

This line of research requires the creation of some computer programs (or the
use of already available computer programs). Of course, a similar line of research
can be pursued for P systems and any other kind of computing device that can be
build in a pseudo-random way.

In Section 6 we indicated how the results in Table 1 have been used on P
systems with catalysts. We tried to use similar results on other models of P systems
(symport/antiport, conformons, etc., see [6]) and all went as we expected. This
means that using Definition 1 and the results in Table 1 we obtained results similar,
in terms of descriptional complexity, to the ones already known. The exception to
this were spiking P systems. We did not succeed in defining a simulation (as in
Definition 1) that let us re-obtain the known results on this model of P systems
with the same descriptional complexity. The results we got needed more features
(more compartments, the presence of forgetting rules, etc.) not present in direct
proofs.

This fact is particularly intriguing because it could suggest some limits in the
approach considered in this note. For this reason we propose:

Suggestion for research 5 Use the approach considered in this paper on spiking
P systems, analyzing advantages and limitations of it.

Only row 2 in Table 1 considers P/T system in which the underlying net has
one kind of limitations in its composition. What about other limitations in the
arrangement?

Suggestion for research 6 Study further the computational power of P/T sys-
tems whose relative arrangement of pairs of fork and join is limited.

In particular one could focus on the limitations needed to generate semilinear sets.
The relevance of the following suggestion should be straightforward:

Suggestion for research 7 Are join and fork the only building blocks that lead
to the result in Table 1? Are there other building blocks leading to the same or
different results?

The overall aim of the approach considered in this paper is:
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Suggestion for research 8 Create a full hierarchies of accepting and generating
computational processes in terms of sets of building blocks, compositions of ele-
ments in these sets and the functions W and K (present in the definition of P/T
systems in [13, 5]).

References

1. M. Cavaliere: Computing by observing: A brief survey. In A. Beckmann, C. Dim-
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Summary. Recently it has been shown that simulations of complex biological systems
using conformon P systems and cellular automata do not necessarily give the same pre-
dictions. To further elucidate these differences we simulate a simple model of intracellular
reactions involving a single bimolecular reaction occurring on a biological membrane us-
ing conformon P systems.

We find that the predictions broadly agree with results from both the theory of ran-
dom walks in low-dimensional environments and with previously published simulations
using cellular automata. Moreover, a re-analysis of the data enables us to deduce novel
rate laws for the kinetics of reactions occurring on biological membranes.

1 Introduction

A recent publication [3] reported that simulations of HIV dynamics differ in their
results according to the simulation platform used. In particular it is found that
cellular automata (CA) models produce qualitatively correct dynamics only for a
narrow range of rule probabilities and for particular initial conditions whereas con-
formon P (cP) models [2] derived from the CA model display significant robustness
of qualitatively correct dynamics over a wide range of conditions.

Presently the reasons for these differences are not understood. The complexity
of the system under study precludes a rigorous analysis of these discrepancies.

In this paper we consider a much simpler biological process at the base of an
simpler model. For such model its rigorous analytical results are known for some
cases.

The paper is divided as follows: in Section 2 we describe the biology behind
the model and its implementation using CA and cP, in Section 3 we analyze the
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data generated by cP, compare with theory and CA results and also deduce some
new biologically relevant kinetic laws and in Section 4 we draw some conclusion.

2 A Simple Biological Model: Implementation Using CA
and cP

There is growing evidence of the importance of reaction kinetics for the structural
organization of the intracellular environment, which is far from the homogeneous,
well mixed solution typical of in vitro experiments. A high degree of molecular
crowding as well as the presence of indigenous obstacles in cellular media have
important consequences in the physico-chemistry of the cell. The consequences
of this in some process are only now becoming to be more generally understood.
One of these consequences is that it is not clear what are the rate laws governing
reactions occurring in vivo [7]. To tackle this problem biochemists have been us-
ing various computational frameworks to extract rate laws or empirical reaction
equations from direct numerical simulations. Among these approaches, simulations
based on CA are the most popular (see, for example, [5]).

The biological process we considered in our investigations regards biochem-
ical reactions occurring on cell membranes. It in known that about half of the
proteins inside cells are membrane-associated [8] and thus biochemical reactions
must necessarily function within the constraints imposed by the two-dimensional
environment of the biological membrane. Prominent examples of such reactions
are those involving enzymes called lipases which play key roles in fat metabolism
and digestion and which occur on two-dimensional interfaces rather than in three-
dimensional solution. The simplest model of such dimensionally-restricted reaction
kinetics consists of two types of particles, denoted with A and B, which perform
random walks on a two-dimensional plane and which upon encounter react with
some probability and produce a single new inert particle C. This mathematical
construct represents the physical process of the reaction of two molecules of two
different types which normally perform Brownian motion (modelled by the ran-
dom walks) and which react upon encounter to form some new product molecule
[4]. Such elementary reactions form the backbone of all biochemical reaction net-
works, independent of their complexity and are particularly ideal for a comparison
between CA and cP models because of the existence of rigorous analytical results
from the theory of random walks in low-dimensions.

The biological process indicated above simplifies the biological membrane to
a homogeneous quasi-two dimensional environment. In reality it is found that
the heterogeneous micro-structure of the membrane significantly hinders the free
diffusion of molecules on its surface. In particular it is known that transmembrane
proteins (denoted with B in the above) impose relatively static barriers to the
smaller and more mobile molecules (denoted with A in the above). This is due
because transmembrane proteins are anchored to the cytoskeleton of the cell. These
obstacles are incorporated in the models considered by us by making some parts
of the plane inaccessible to particle motion.
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A general CA model which describes both cases above (with and without ob-
stacles to particle motion) has been described in [4]. The algorithm is the follows.
Initially, particles of two different kinds A and B are uniformly distributed on
a two-dimensional lattice with unit spacing and periodic boundary conditions (a
torus). Particles A can move, while particles B are static. One A and one B parti-
cle can react when in the same location of the lattice and produce one particle C.
Particles C are static and inert. Some of the tests considered another type of static
and inert particle, an obstacle, uniformly distributed in the lattice in the initial
configuration. At each time step, a particle of type A or B is randomly chosen and
either moved or subject to a reaction according to the following:

the particle can move from the location in the lattice in which it is to a randomly
chosen neighbor location only if the chosen neighbor location does not contain
any other particle of the same kind or an obstacle;

if instead the chosen neighbor lattice location contains a particle of the other kind
(that is, if A is subject to be moved, then B is the other kind; if B is subject
to be moved, then A is the other kind), then the particle can react with the
particle of the other kind with probability P . If this occurs both particles A
and B are removed and a C particle is placed in the chosen neighbor location,
otherwise nothing occurs.

It is important to note that the algorithm does not allow more than one particle
of any type to be in the same location of the lattice, thus enforcing a hard-sphere
molecular repulsion. The above two steps are repeated ntot(t) times, where ntot(t)
is the current number of distinct particles on the lattice (excluding obstacles) at
time t. After one such sequence the time is incremented by one. The simulations are
performed with two different lattice types: square (von Neumann) and triangular
neighborhoods.

Models of cP systems have been derived by the just described CA model.
Particles of type A and B have been modeled with [A, 1] and [B, 1] conformons,
respectively. Their eventual interaction (with probability P ) creates [B, 2] confor-
mons representing the C particles. A lattice location of the CA has been modeled
with a (membrane) compartment in the cP model. The presence of obstacles has
been modeled with compartments in the lattice having no incoming edge (in this
way no conformon could move in these compartments). The simulations have been
performed using the cP simulator available from [9] modifying it in a way that in-
teraction rules have priority on passage rules. Moreover, ad hoc programs to create
the lattices and to analyze the data have been also used. These programs can be
requested to the authors. The cP models and the simulations are such that more
than one particle can be at the same time in one compartment.

3 Data Analysis

Data produced by the simulations consisted of the number of A and B particles as
a function of time. For each set of parameter values, ten independent simulations
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were run on 300×300 lattices until the time (denoted by T ) at which there remained
only 1% of the minority particle species (that is, the one whose initial concentration
is the smallest, which in our case are particles of type A [4]). The majority species
is static, the minority species is mobile and their probability of interaction is P .
We run the tests with two different values of P : 1 and 0.1. We consider two cases:
presence and absence of obstacles uniformly distributed throughout the lattice so
to occupy at most 0.4 of the available lattice locations (denoted by [O] = 0.4).
The data from these ten copies were then averaged to reduce the inherent noise,
yielding an array of values [A(t)], [B(t)], t, t = 0...T .

The simulation data for the absence of obstacles case can be directly compared
to rigorous theoretical results from the theory of random walks [1]. Here it is shown
that in a two-dimensional space where the majority particle species is immobile
(B) and minority species is mobile (A) and the reaction probability is 1, then
for sufficiently long time runs, the rate of change of the concentrations of mobile
particles is described by the effective ordinary differential equation:

d[A(t)]/dt ∼ −t−1/2[A(t)][B(t)], (1)

where [A(t)] denotes the total number of particles of type A at time t divided by
the total number of lattice locations defining the two-dimensional space. Thus the
most basic test of our cP simulations is to use the data obtained for the case of
no obstacles and P = 1 to extract the time exponent in the above equation.

The method used to obtain this exponent is the one reported in [4] where
it is shown that for general differential equations of the type d[A(t)]/dt ∼
−t−(1−p)[A(t)][B(t)], the exponent p is equal to the gradient of the graph of
G = Log[−Log(B0[A(t)]/(A0(B0−A0 +[A(t)])))] versus Log(t). Figure 1, bottom
curve, shows the variation of the slope (that is, p) with time for the just indicated
cP simulations. It is found that p = 0.6. This implies that the ordinary differential
equation satisfied by the cP simulation data is d[A(t)]/dt ∼ −t−0.4[A(t)][B(t)].
This result is fairly close to the rigorous theoretical value given above and also
agrees with previous CA simulations giving p = 0.5.

Figure 1, above curve, shows the results of the simulations for P = 0.1. No
rigorous theory exists for this case, but CA simulations [4] give p ∼ 0.85 whereas
with cP simulations we obtain p ∼ 0.92. Hence for the case of no obstacles, for
both high and low values of reaction probability P , the results of CA and cP
are in good quantitative agreement, though there is a consistent tendency of the
exponent for cP to be slightly larger than that of CA. The latter discrepancy could
be due to the fact that CA simulations impose the condition that only one particle
is allowed at a site whereas cP simulations make no such assumption. The lack of
such an assumption would necessarily imply a larger amount of “particle mixing”
inside each spatial element of cP simulations which from physical considerations
[4] would necessitate the exponent p to be closer to one, as observed.

To test this hypothesis we developed a cP model in which at most one particle
per compartment is allowed. Figure 2 shows the curve comparing the data obtained
by the cP models in which more than one particle and at most one particle per
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Fig. 1. Variation of the slope with no obstacles in the cP model

compartment is allowed. No discernible differences are observed between the two
models. This implies that either the effect occurs only in lower dimensions or the
possibility to have more than one particle in the same compartment is not the
reason for the small discrepancies between CA and cP simulations.

There are no rigorous analytical results for the case in which obstacles are
present. Anyhow, it has been traditionally assumed that the dynamics in this
case would be captured by an effective ordinary differential equation as (1), but
with a time exponent p which varies somewhere between 0 and 1. This is often
referred to as fractal kinetics [5, 7]. However, in [4] it is shown that this is not
the case. It is found from CA simulations that the slope is not constant but varies
considerably with time and apparently does not approach a constant value in the
limit of long time runs. Our cP simulations also confirm this result (Figure 3),
once again showing no evidence of a discrepancy between CA and cP simulations.

In the present paper we go one step beyond the work reported in [4] and, for
the case in which obstacles are present, we find a new effective ordinary equation
which captures the dynamics of the reaction. It can be shown [4] that the solution
of an ordinary differential equation of the type d[A(t)]/dt ∼ −k(t)[A(t)][B(t)] for
long time runs is of the form:

[A(t)] ∝ exp
[
− (B0 −A0)

∫ t

0

k(s)ds

]
. (2)
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Fig. 2. Curves comparing results from cP simulations. Blue and pink curves for A and
B when at most 1 particle per compartment is allowed. Yellow and cyan curves for A and
B when more than one particle per compartment is allowed. The graph shows that the
variation of particle concentration with time is independent of the one-particle constraint.

It is also known that k(t) = dS/dt where S is the mean number of distinct lattice
locations visited by a particle moving in a random walk [5]. It is found that S ∼
tds/2 for long time runs in a fractal space of spectral dimension ds. This would
imply (for long time runs) the dynamics to follow an effective equation of the form
d[A(t)]/dt ∼ −t−(1−ds/2)[A(t)][B(t)] which implies a constant time exponent p.
However note that to arrive at this conclusion one implicitly assumes that the
long time regime is being observed. Actuality one may only observe the early and
intermediate time regimes since the simulation halts after 99% of the particle A
has been consumed.

Inspired by the theoretical results reported in [4], we surmise that the interme-
diate time scaling for S would be of the general form: S ∼ tαLn(1/Ln(tα)) where
the exponent α is introduced to take into account the heterogeneity of space im-
posed by the presence of obstacles. Interestingly, it is found that the cP data is in
good agreement with this conjectured law, see Figure 4.

Thus our simulations and data analysis suggest a new kinetic equation for
describing bimolecular reactions in obstacle-ridden low dimensional media, namely
d[A(t)]/dt ∼ −k(t)[A(t)][B(t)] with k(t) = ∂/∂ttαLn(1/Ln(tα)) instead of the
customary k(t) = tα.
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Fig. 3. G value for the cP tests with more than one particle per compartment and no
obstacles

4 Conclusion

In this paper we report a preliminary study aiming to understand what kind of
biological processes are better fit to be modeled with CA or with cP. In particular,
we focused on the possibility offered by cP to model the presence of more than one
particle in a compartment. From the tests we run we conclude that this possibility
does not always make a difference in the obtained results.

Some differences between the results obtained by similar CA and cP models
occurs only if obstacles, locations in the lattice limiting the mobility of the par-
ticles, are present. Anyhow, the found differences are not yet sufficient to draw
general conclusions.

One line of further research is to compare the fluctuations from the average
values in CA and cP simulations.

Acknowledgements: R. Grima gratefully acknowledges support from SULSA
(Scottish Universities Life Sciences Alliance).
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Fig. 4. Results for the cP tests with more than one particle per compartment and
obstacles
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Summary. P-Lingua is a programming language for membrane computing. It was first
presented in Edinburgh, during the Ninth Workshop on Membrane Computing (WMC9).
In this paper, the models, simulators and formats included in P-Lingua in version 2.0 are
explained. We focus on the stochastic model, associated simulators and updated features.
Finally, we present two new applications based on P-Lingua 2.0: a tool for describing and
simulating ecosystems and a framework (currently under development) for P systems
design.

1 Introduction

Membrane computing (or cellular computing) is a branch of Natural Computing
that was introduced by Gh. Păun [14]. The main idea is to consider biochemical
processes taking place inside living cells from a computational point of view, in a
way that provides a new nondeterministic model of computation.

The initial definition of this computing paradigm is very flexible, and many
different models have been defined and investigated in the area: P systems with
symport/antiport rules, with active membranes, with catalysts, with promot-
ers/inhibitors, etc. There were some attempts to establish a common formalization
covering most of the existing models (see e.g. [5]), but the membrane computing
community is still using specific syntax and semantics depending on the model
they work with.

1.1 Introduction to P-Lingua

When designing software simulators for membrane computing, one has to precisely
define the P system that is to be simulated. This task is hard if we need to handle
families of P systems where the set of rules, the alphabet, the initial contents
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and even the membrane structure depend on the value assigned to some initial
parameters. Current software applications are usually focused on, and adapted
for, particular cases, making it difficult to get interoperability.

In [3] it was introduced a programming language, called P-Lingua, whose pro-
grammes define active membrane P systems with division rules in a parametric
and modular way. In this sense, it is possible to define a family of P systems with
the use of parameters. After assigning values to the initial parameters, the com-
pilation tool generates an XML document associated with the corresponding P
system from the family, and furthermore it checks possible programming errors
(both lexical/syntactical and semantical). Such documents can be integrated into
other applications, thus guaranteeing interoperability by using the same P system
definition in different software environments.

P-Lingua 2.0 is able to define P systems within different models, at this stage:
active membrane P systems with membrane division rules or membrane creation
rules, transition P systems, symport/antiport P systems, stochastic P systems and
probabilistic P systems. Each model follows semantics restrictions, which define
several constraints which rules in the model’s P systems should follow (number of
objects on each side, if membrane creation and/or membrane division are allowed,
and so on) and the way rules are applied on configurations to evolve to other ones.
Additional models can be added to the P-Lingua framework, but it is important
to say that P-Lingua 2.0 supports only P systems whose configurations have a
cell-like structure.

P-Lingua 2.0 defines several algorithms (from now on, simulators) to simulate
P system configuration computations for each supported model, so every compu-
tation on a configuration whose P system belongs to a model can be performed by
any simulator defined for the model.

P-Lingua 2.0 also supports different formats. For the purpose of this paper,
a format is a way of representing P systems on a file. P-Lingua 2.0 supported
formats range from XML and P-Lingua language to binary, and it provides a
standard mechanism to add new formats, if needed.

1.2 An input standard for simulators

Each model displays characteristic semantic constraints entailing the rules applied,
such as number of objects specified on the left-hand side, membrane creation, po-
larization, and so on. Hence, the need for simulators capable of taking into account
different scenarios when simulating P system computations comes to the fore. An
initial approach could be defining inputs for each simulator specifically, so that
it is able to carry out computations. Nevertheless, this approach involves defin-
ing new input formats for each simulator, so designing simulators would take a
great amount of effort as a new input format needs to be defined for each new
developed simulator. A second approach could be standardizing the simulator in-
put, so all simulators need to process inputs specified in the same format. These
two approaches raise up a trade-off: On the one hand, specific simulator inputs
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could be defined in a more straightforward way, as the used format is closer to
the P system features to simulate. Besides, the former point of view would spare
researchers from analyzing different models and P systems in order to extract
common patterns out of them. On the other hand, although the latter approach
involves analyzing different P systems and models to develop a standard format,
it allows to use common simulators for different P systems. In this way, there is no
need to develop a new simulator every time a new P system should be simulated,
as it is possible to specify it in the standard input format and simulate computa-
tions by using simulators able to process it. Moreover, researches would not have
to devise a new input format every time they specify a P system; they would use
the standard format instead. In addition, researchers would not need to change
the way to specify P systems which need to be simulated every time they move on
to another model, as they would keep on using the standard input format. This
second approach is the one considered on P-Lingua 2.0.

PLingua
File

XML
file

Binary
file

Another
format

Simulator

Compiler Simulator

Simulator

The input

Fig. 1. The standard input format

2 Models

2.1 Contemplating new models

As mentioned, P-Lingua 1.0 provided support for active membrane P systems
with division rules. However, as P-Lingua is intended to become a standard for P
systems definition, it should contemplate other models. The supported models so
far are enumerated below, but a standard mechanism for defining new models and
simulators for each model has been defined on P-Lingua 2.0, easing those tasks.
This mechanism has been used on all the existent models and simulators.

2.2 Transition P system model

The basic P systems were introduced in [14].
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A transition P system of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, (R1, ρ1), . . . , (Rq, ρq), io)

where:

• Γ is an alphabet whose elements are called objects.
• L is a finite set of labels.
• µ is a membrane structure consisting of q membranes with the membranes

(and hence the regions, the space between a membrane and the immediately
inner membranes, if any) injectively labeled with elements of L; as usual, we
represent the membrane structures by strings of matching labeled parentheses.

• Mi, 1 ≤ i ≤ q, are strings which represent multisets over Γ associated with
the q membranes of µ.

• Ri, 1 ≤ i ≤ q, are finite sets of evolution rules over Γ , associated with the
membranes of µ. An evolution rule is of the form u → v, where u is a string
over Γ and v = v′ or v = v′δ, being v′ a string over Γ × ({here, out} ∪ {inj :
1 ≤ j ≤ q}).

• ρi, 1 ≤ i ≤ q, are strict partial orders over Ri.
• io, 1 ≤ io ≤ q, is the label of an elementary membrane (the output membrane).

The objects to evolve in a step and the rules by which they evolve are chosen
in a non–deterministic manner, but in such a way that in each region we have
a maximally parallel application of rules. This means that we assign objects to
rules, non–deterministically choosing the rules and the objects assigned to each
rule, but in such a way that after this assignation no further rule can be applied
to the remaining objects.

2.3 Symport/antiport P system model

Symport/antiport rules were incorporated in the framework of P systems in [13].

A P system with symport/antiport rules of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, E,R1, . . . , Rq, io)

where:

• Γ is the alphabet of objects,
• L is the finite set of labels for membranes (in general, one uses natural numbers

as labels), µ is the membrane structure (of degree q ≥ 1, with the membranes
labeled in a one-to-one manner with elements of L,

• M1, . . . ,Mq are strings over Γ representing the multisets of objects present in
the q compartments of µ in the initial configuration of the system.

• E ⊆ Γ is the set of objects supposed to appear in the environment in arbitrarily
many copies.
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• Ri, 1 ≤ i ≤ q, are finite sets of rules associated with the q membranes of µ. The
rules from R can be of two types (by Γ+ we denote the set of all non-empty
strings over Γ , with λ denoting the empty string):
– Symport rules, of the form (x, in) or (x, out), where x ∈ Γ+. When using

such a rule, the objects specified by x enter or exit, respectively, the mem-
brane with which the rule is associated. In this way, objects are sent to or
imported from the surrounding region – which is the environment in the
case of the skin membrane.

– Antiport rules, of the form (x, out; y, in), where x, y ∈ Γ+. When using such
a rule for a membrane i, the objects specified by x exit the membrane and
those specified by y enter from the region surrounding membrane i; this is
the environment in the case of the skin membrane.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

The rules are used in the non-deterministic maximally parallel manner, stan-
dard in membrane computing.

2.4 Active membranes P system model

2.4.1 With membrane division rules

P systems with membrane division were introduced in [15], and in this model the
number of membranes can increase exponentially in polynomial time. Next, we de-
fine P systems with active membranes using 2-division for elementary membranes,
with polarizations, but without cooperation and without priorities (and without
permitting the change of membrane labels by means of any rule).

A P system with active membranes using 2-division for elementary membranes of
degree q ≥ 1 is a tuple Π = (Γ,L, µ,M1, . . . ,Mq, R, io), where:

• Γ is an alphabet of symbol-objects.
• L is a finite set of labels for membranes.
• µ is a membrane structure, of m membranes, labeled (not necessarily in a

one-to-one manner) with elements of L.
• M1, . . . ,Mq are strings over Γ , describing the initial multisets of objects placed

in the m regions of µ.
• R is a finite set of rules, of the following forms:

(a) [ a→ ω ]αh for h ∈ L,α ∈ {+,−, 0}, a ∈ Γ , ω ∈ Γ ∗: This is an object evolu-
tion rule, associated with a membrane labeled with h and depending on the
polarization of that membrane, but not directly involving the membrane.

(b) a [ ]α1
h → [ b ]α2

h for h ∈ L, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ : An object from the
region immediately outside a membrane labeled with h is introduced in this
membrane, possibly transformed into another object, and, simultaneously,
the polarization of the membrane can be changed.
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(c) [ a ]α1
h → b [ ]α2

h for h ∈ L, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ : An object is sent out
from membrane labeled with h to the region immediately outside, possibly
transformed into another object, and, simultaneously, the polarity of the
membrane can be changed.

(d) [ a ]αh → b for h ∈ L, α ∈ {+,−, 0}, a, b ∈ Γ : A membrane labeled with h is
dissolved in reaction with an object. The skin is never dissolved.

(e) [ a ]α1
h → [ b ]α2

h [ c ]α3
h for h ∈ L, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ : An

elementary membrane can be divided into two membranes with the same
label, possibly transforming some objects and their polarities.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must do it.

• If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

• If at the same time a membrane labeled by h is divided by a rule of type (e)
and there are objects in this membrane which evolve by means of rules of type
(a), then we suppose that the evolution rules of type (a) are used, and before
division is produced. Of course, this process takes only one step.

• The rules associated with membranes labeled by h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

2.4.2 With membrane creation rules

Membrane creation rules were first considered in [9, 10].

A P system with membrane creation of degree q ≥ 1 is a tuple of the form

Π = (Γ,L, µ,M1, . . . ,Mq, R, io)

where:

• Γ is the alphabet of objects.
• L is a finite set of labels for membranes.
• µ is a membrane structure consisting of q membranes labeled (not necessarily

in a one-to-one manner) with elements of L.
• M1, . . . ,Mq are strings over Γ , describing the initial multisets of objects placed

in the q regions of µ.
• R is a finite set of rules of the following forms:
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(a) [a→ v]h where h ∈ L, a ∈ Γ , and v is a string over Γ describing a multiset
of objects. These are object evolution rules associated with membranes and
depending only on the label of the membrane.

(b) a[ ]h → [b]h where h ∈ L, a, b ∈ Γ . These are send-in communication rules.
An object is introduced in the membrane possibly modified.

(c) [a]h → [ ]h b where h ∈ L, a, b ∈ Γ . These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a]h → b where h ∈ L, a, b ∈ Γ . These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in the
rule can be modified.

(e) [a → [v]h2 ]h1 where h1, h2 ∈ L, a ∈ Γ , and v is a string over Γ describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an initial
multiset and a label.

• io ∈ L is the label of a membrane of µ, which indicates the output region of
the system.

Rules are applied according to the following principles:

• Rules from (a) to (d) are used as usual in the framework of membrane compu-
ting, that is, in a maximally parallel way. In one step, each object in a mem-
brane can only be used for applying one rule (non-deterministically chosen
when there are several possibilities), but any object which can evolve by a rule
of any form must do it (with the restrictions below indicated).

• Rules of type (e) are used also in a maximally parallel way. Each object a in a
membrane labeled with h1 produces a new membrane with label h2 placing in
it the multiset of objects described by the string v.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin membrane is never dis-
solved.

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• The rules associated with the label h are used for all membranes with this
label, independently of whether or not the membrane is an initial one or it was
obtained by creation.

• Several rules can be applied to different objects in the same membrane simul-
taneously. The exception are the rules of type (d) since a membrane can be
dissolved only once.

2.5 Probabilistic P system model

A probabilistic approach in the framework of P systems was first considered by A.
Obtulowicz in [12].

A probabilistic P system of degree q ≥ 1 is a tuple
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Π = (Γ, µ,M1, . . . ,Mq, R, {cr}r∈R, io)

where:

• Γ is the alphabet (finite and nonempty) of objects (the working alphabet).
• µ is a membrane structure, consisting of q membranes, labeled 1, 2, . . . , q. The

skin membrane is labeled by 0. We also associate electrical charges with mem-
branes from the set {0,+,−}, neutral and positive.

• M1, . . . ,Mq are strings over Γ , describing the multisets of objects initially
placed in the q regions of µ.

• R is a finite set of evolution rules. An evolution rule associated with the mem-
brane labeled by i is of the form r : u[ v ]αi

cr−→u′[ v′ ]βi , where u, v, u′, v′ are
a multiset over Γ , α, β ∈ {0,+,−} and cr is a real number between 0 and 1
associated with the rule such that:
– for each u, v ∈ M(Γ ), h ∈ H and α ∈ {0,+}, if r1, . . . , rt are the rules

whose left–hand side is u[ v ]αh , then
∑t
j=1 crj

= 1
• io ∈ L is the label of a membrane of µ, which indicates the output region of

the system.

We assume that a global clock exists, marking the time for the whole system
(for all compartments of the system); that is, all membranes and the application
of all rules are synchronized.

The q-tuple of multisets of objects present at any moment in the q regions of
the system constitutes the configuration of the system at that moment. The tuple
(M1, . . . ,Mq) is the initial configuration of the system.

We can pass from one configuration to another one by using the rules from R
as follows: at each transition step, the rules to be applied are selected according to
the probabilities assigned to them, all applicable rules are simultaneously applied,
and all occurrences of the left–hand side of the rules are consumed, as usual. Rules
with the same left–hand side and whose right–hand side has the same polarization
can be applied simultaneously.

2.6 Stochastic P system model

The original motivation of P systems was not to provide a comprehensive and accu-
rate model of the living cell, but to imitate the computational nature of operations
that take place in cell membranes. Most P system models have been proved to be
Turing complete and computationally efficient, in the sense that they can solve
computationally hard problems in polynomial time, by trading time for space.
Most research in P systems focus on complexity classes and computational power.

However, P systems have been used recently to model biological phenomena
very successfully. Models of oscillatory systems [4], signal transduction [18], gene
regulation control [16], quorum sensing [17] and metapopulations [19] have been
presented.
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We introduce in this section the specification of stochastic P systems, that
constitute the framework for modeling biological phenomena.
A stochastic P system of degree q ≥ 1 is a tuple

Π = (Γ,L, µ,M1, . . . ,Mq, Rl1 , . . . , Rlm)

where:

• Γ is a finite alphabet of symbols representing objects.
• L = {l1, . . . , lm} is a finite alphabet of symbols representing labels for the

membranes.
• µ is a membrane structure containing q ≥ 1 membranes identified in a one to

one manner with values in {1, . . . , q} and labeled with elements from L.
• Mi = (li, wi, si), for each 1 ≤ i ≤ q, initial configuration of the membrane i,

li ∈ L is the label, wi ∈ Γ ∗ is a finite multiset of objects and si is a finite set
of strings over Γ .

• Rlt = {rlt1 , . . . , r
lt
klt
}, for each 1 ≤ t ≤ m, is a finite set of rewriting rules

associated with membranes of label lt ∈ L. Rules are of one of the following
two forms:
– Multiset rewriting rules:

rltj : u[w]l
c

lt
j−→ u′[w′]l

with u,w, u′, w′ ∈ Γ ∗ some finite multisets of objects and l a label from L. A
multiset of objects, u is represented as u = a1 + · · ·+am, with a1, . . . , am ∈
Γ . The empty multiset will be denoted by λ and we will write on instead

of
n︷ ︸︸ ︷

o+ · · ·+ o. The multiset u placed outside of the membrane labeled with
l and the multiset w placed inside of that membrane are simultaneously
replaced with a multiset u′ and w′ respectively.

– String rewriting rules:

rltj : [u1+s1; . . . ;up+sp]l
c

lt
j−→ [u′1+s′1,1+· · ·+s′1,i1 ; . . . ;u′p+s′p,1+· · ·+s′p,ip ]

A string s is represented as s = 〈o1.o2. · · · .oj〉, where o1, o2, . . . , oj ∈ Γ .
Each multiset of objects uj and string sj , 1 ≤ j ≤ p, are replaced by a
multiset of objects u′j and strings s′j,1, . . . , sj,ij .

A constant cltj is associated with each rule and will be referred to as stochastic
constant and is needed to calculate the propensity of the rule according to the
current context of the membrane to which this rule corresponds.

Rules in stochastic P systems model biochemical reactions. The propensity aj
of a reaction Rj is defined so that ajdt represents the probability that Rj will
occur in the infinitesimal time interval [t, t+ dt] [7].
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Applications of the rules and the semantics of stochastic P systems can vary,
depending on which algorithm is used to simulate the model. At the present stage,
two algorithms have been implemented and integrated as simulators within the
pLinguaCore library. They will be discussed in Section 3.2.

3 Simulators

3.1 Contemplating new simulators

In P-Lingua 1.0, only one simulator was supported, since there was only one model
to simulate. However, as new models have been included, new simulators have been
developed, providing at least one simulator for each supported model. Furthermore,
P-Lingua 2.0 provides translation and error detection services for the supported
models.

All simulators in P-Lingua 2.0 can step backwards (as well as the simulator in
P-Lingua 1.0), but this option should be set before the simulation starts.

P-Lingua 2.0 also takes into account the existence of different simulation algo-
rithms for the same model and provides a means for selecting a simulator among
the ones which are suitable to simulate the P system, by checking its model. So
far, only the stochastic P system model counts on several simulation algorithms
to choose, but P-Lingua 2.0 provides a mechanism to include new simulators for
defined models.

3.2 Simulators for stochastic P systems

In the original approach to membrane computing P systems evolve in a non-
deterministic and maximally parallel manner (that is, all the objects in every
membrane that can evolve by a rule must do it [14]). When trying to simulate
biological phenomena, like living cells, the classical non-deterministic and maxi-
mally parallel approach is not valid anymore. First, biochemical reactions, which
are modeled by rules, occur at a specific rate (determined by the propensity of
the rule), therefore they can not be selected in an arbitrary and non-deterministic
way. Second, in the classical approach all time step are equal and this does not
represent the time evolution of a real cell system.

The strategies to replace the original approach are based on Gillespie’s Theory
of Stochastic Kinetics [7]. As mentioned in Section 2.6, a constant cltj is associated
to each rule. This provides P systems with a stochastic extension. The constant
cltj depends on the physical properties of the molecules involved in the reaction
modeled by the rule and other physical parameters of the system and it represents
the probability per time unit that the reaction takes place. Also, it is used to
calculate the propensity of each rule which determines the probability and time
needed to apply the rule.

Two different algorithms based on the principles stated above have been im-
plemented and integrated in pLinguaCore. The plugin-oriented architecture of P-
Lingua allows easily to encode new simulators.
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3.2.1 Multicompartmental Gillespie algorithm

The Gillespie [7] algorithm or SSA (Stochastic Simulation Algorithm) was devel-
oped for a single, well-mixed and fixed volume/compartment. P systems generally
contain several compartments or membranes. For that reason, an adaptation of
this algorithm was presented in [20] and it can be applied in the different regions
defined by the compartmentalized structure of a P system model. The next rule
to be applied in each compartment and the waiting time for this application is
computed using a local Gillespie algorithm. The Multicompartmental Gillespie
Algorithm can be broadly summarized as follows:

Repeat until a prefixed simulation time is reached:

1. Calculate for each membrane i, 1 ≤ i ≤ m and for each rule rj ∈ Rli the
propensity, aj , by multiplying the stochastic constant clij associated to rj by
the number of distinct possible combinations of the objects and substrings
present of the left-side of the rule with respect to the current contents of
membranes involved in the rule.

2. Compute the sum of all propensities

a0 =
m∑
i=1

∑
rj∈Rli

aj

3. Generate two random numbers r1 and r2 from the uniform distribution in the
unit interval and select τi and ji according to

τi =
1
a0

ln(
1
r1

)

ji = the smallest integer satisfying
ji∑
j=1

aj > r2a0

In this way, we choose τi according to an exponential distribution with param-
eter a0.

4. The next rule to be applied is rji and the waiting time for this rule is τi. As
a result of the application of this rule, the state of one or two compartments
may be changed and has to be updated.

3.2.2 Multicompartmental Next Reaction method

The Gillespie Algorithm is an exact numerical simulation method appropriate for
systems with a small number of reactions, since it takes time proportional to the
number of reactions (i.e., the number of rules). An exact algorithm which is also
efficient is presented in [6], the Next Reaction Method. It uses only a single random
number per simulation event (instead of two) and takes time proportional to the
logarithm of the number of reactions. We have adapted this algorithm to make it
compartmental.
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The idea of this method is to be extremely sensitive in recalculating aj and ti,
recalculate them only if they change. In order to do that, a data structure called
dependency graph [6] is introduced.

Let r : u[v]l
c−→ u′[v′]l be a given rule with propensity ar and let the parent

membrane of l be labeled with l′. We define the following sets:

• DependsOn(ar) = {(b, t) | b is an object or string whose quantity affect the
value ar and t = l if b ∈ v and t = l′ if b ∈ u}.
Generally, DependsOn(ar) = {(b, l) | b ∈ v} ∪ {(b, l′) | b ∈ u}

• Affects(r) = {(b, t) | b is an object or string whose quantity is changed when
the rule is executed and t = l if b ∈ v ∨ b ∈ v′ and t = l′ if b ∈ u ∨ b ∈ u′}.
Generally, Affects(r) = {(b, l) | b ∈ v ∨ b ∈ v′} ∪ {(b, l′) | b ∈ u ∨ b ∈ u′}.

Definition 1. Given a set of rules R = Rl1 ∪ · · · ∪ Rlm , the dependency graph is
a directed graph G = (V,E), with vertex set V = R and edge set E = {(vi, vj) |
Affects(vi) ∩DependsOn(avj

) 6= ∅}.

In this way, if there exists an edge (vi, vj) ∈ E and vi is executed, as some ob-
jects affected by this execution are involved in the calculation of avj , this propensity
would have to be recalculated. The dependency graph depends only on the rules
of the system and is static, so it is built only once.

The times τi, that represent the waiting time for each rule to be applied, are
stored in an indexed priority queue. This data structure, discussed in detail in [6],
has nice properties: finding the minimum element takes constant time, the number
of nodes is the number of rules |R|, because of the indexing scheme it is possible to
find any arbitrary reaction in constant time and finally, the operation of updating
a node (only when τi is changed, which we can detect using to the dependency
graph) takes log |R| operations.

The Multicompartmental Next Reaction Method can be broadly summarized
as follows:

1. Build the dependency graph, calculate the propensity ar for every rule r ∈ R
and generate τi for every rule according to an exponential distribution with
parameter ar. All the values τr are stored in a priority queue. Set t← 0 (this
is the global time of the system).

2. Get the minimum τµ from the priority queue, t ← t + τµ. Execute the rule
rµ (this is the next rule scheduled to be executed, because its waiting time is
least).

3. For each edge (µ, α) in the dependency graph recalculate and update the
propensity aα and
• if α 6= µ, set

τα ←
aα,old(τα − τµ)

aα,new
+ τµ

• if α = µ, generate a random number r1, according to an exponential dis-
tribution with parameter aµ and set τµ ← τµ + r1
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Update the node in the indexed priority queue that holds τα.
4. Go to 2 and repeat until a prefixed simulation time is reached.

Both Multicompartmental Gillespie Algorithm and Multicompartmental Next
Reaction Method are the core of the Direct Stochastic Simulator and Efficient
Stochastic Simulator, respectively. One of them, which can be chosen in runtime,
will be executed when compiling and simulating a P-Lingua file that starts with
@model<stochastic>. See Section 4.2 for more details about the syntax.

3.3 Simulator for probabilistic P systems

Next, we describe how the simulator for probabilistic P systems implements the
applicability of the rules to a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have
the same left–hand side.

(b) Let {r1, . . . , rt} be one of the said sets of rules. Let us suppose that the com-
mon left-hand side is u [v]αi and their respective probabilistic constants are
cr1 , . . . , crt . In order to determine how these rules are applied to a give config-
uration, we proceed as follows:

– It is computed the greatest number N so that uN appears in the father
membrane of i and vN appears in membrane i.

– N random numbers x such that 0 ≤ x < 1 are generated.
– For each k (1 ≤ k ≤ t) let nk be the amount of numbers generated belonging

to interval [
∑k−1
j=0 crj

,
∑k
j=0 crj

) (assuming that cr0 = 0).
– For each k (1 ≤ k ≤ t), rule rk is applied nk times.

4 Formats

4.1 Contemplating new formats

As well as models and simulators, new formats have been included in P-Lingua
2.0. P-Lingua 1.0 provided a P-Lingua language format and an XML file format
[3]. Those formats have been upgraded to allow representation of P systems which
have cell-like structure, so any P system which corresponds to an existing model
can be expressed via XML format or the P-Lingua 2.0 language. To accept the
new models, P-Lingua’s general syntax has changed, but it also supports backwards
compatibility, so any P system accepted by P-Lingua 1.0 is recognized by P-Lingua
2.0, whether it is expressed in XML format or the P-Lingua language. A new format
has been included as well: the binary format. This format is the input format for
the incoming parallel simulator [11], so it is possible to define a P system in P-
Lingua language and compile it to binary format.



154 M. Garćıa-Quismondo et al.

At this point, the concepts input format and output format should be intro-
duced. An input format is a file format which, if a P system is specified in a file by
following that format, the P system specified can be processed by pLinguaCore, a
JAVA [23] library described in Section 6 of this paper. An output format is a file
format which, if a P system is specified on a file by following that format, tat file
can be generated by pLinguaCore. These concepts are similar to the source code
and object code concepts [3].

For P-Lingua 2.0, P-Lingua language format is an input format, the binary
format is an output format and, eventually, XML is both an input and an output
format. This means that P-Lingua language files can be processed by pLinguaCore,
binary files can be generated by pLinguaCore and XML files can be both processed
and generated by pLinguaCore.

4.2 P-Lingua format

In the version of P-Lingua presented in [3] only P systems with active membranes
and division rules were considered and therefore, possible to be defined in the P-
Lingua language. New models have been added and consequently the syntax has
been modified and extended, in order to support them. The syntax of the P-Lingua
2.0 language is defined as follows.

4.2.1 Valid identifiers

We say that a sequence of characters forms a valid identifier if it does not
begin with a numeric character and it is composed by characters from the following:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Valid identifiers are widely used in the language: to define module names,
parameters, indexes, membrane labels, alphabet objects and strings.

The following text strings are reserved words in the language: def, call,
@mu, @ms, @model, @lambda, @d, let, @inf, @debug, main, -->, # and
they cannot be used as valid identifiers.

4.2.2 Variables

Four kind of variables are permitted in P-Lingua:

• Global variables

• Local variables

• indexes

• Parameters
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Variables are used to store numeric values and their names are valid identifiers.
We use 64 bits (signed) in double precision.

Global variables definition
Global variables must be declared out of any program module and they can be
accesed from all of the program modules (see 4.2.10). The name of a global variable
global variable name must be a valid identifier. The syntax to define a global
variable is the following:

global_variable_name = numeric_expression;

Local variables definition
Local variables can only be accessed from the module in which they were declared
and they must only be defined inside module definitions. The name of a local
variable local variable name must be a valid identifier. The syntax to define a
local variable is the following:

let local_variable_name = numeric_expression;

Indexes and parameters can be consider local variables used in 4.2.16 and 4.2.10
respectively.

4.2.3 Identifiers for electrical charges

In P-Lingua, we can consider electrical charges by using the + and - symbols for
positive and negative charges respectively, and no one for neutral charge. It is
worth mentioning that polarizationless P systems are included.

4.2.4 Membrane labels

There are three ways of writing membrane labels in P-Lingua: the first one is just
a natural number; the second one is to denote the label as a valid identifier and
the third one is by numeric expressions that represent natural numbers between
brackets.

4.2.5 Numeric expressions

Numeric expressions can be written by using * (multiplication), / (division), %
(module), + (addition), - (subtraction) operators with integer or real numbers
and/or variables, along with the use of parentheses. It is possible to write numbers
by using exponential notation. For example, 3 ∗ 10−5 is written 3e-5.
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4.2.6 Objects

The objects of the alphabet of a P system are written using valid identifiers, and
the inclusion of sub-indexes is permitted. For example, xi,2n+1 and Y es are written
as x{i,2*n+1} and Yes respectively.

The multiplicity of an object is represented by using the * operator. For ex-
ample, x2n+1

i is written as x{i}*(2*n+1).

4.2.7 Strings

Strings are enclosed between < and > and made by concatenating valid identifiers
with the character ., that is <identifier1. ... .identifierN>. For example,
<cap.RNAP.op>.

4.2.8 Substrings

Substrings are used in string rewriting rules and the syntax is similar to strings,
but it is possible to use the character ? to represent any arbitrary sequence of
valid identifiers concatenated by .. The empty sequence is included. For example,
<cap.?.NAP.op> is a substring of the string <cap.op.op.op.NAP.op> and of the
string <cap.NAP.op>.

4.2.9 Model specification

As this programming language supports more than one model, it is necessary to
specify in the beginning of the file which is the model of the P system defined. Not
each type of rule is allowed in every model, for example, membrane creation rules
are not permitted in P systems with symport/antiport rules. The built-in compiler
of P-Lingua detects such error. Models are specified by using @model<model name>
and at this stage, the allowed models are:

@model<membrane_division>

@model<membrane_creation>

@model<transition_psystem>

@model<probabilistic_psystem>

@model<stochastic_psystem>

@model<symport_antiport_psystem>
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4.2.10 Modules definition

Similarities between various solutions to NP-complete numerical problems by us-
ing families of recognizing P systems are discussed in [8]. Also, a cellular program-
ming language is proposed based on libraries of subroutines. Using these ideas,
a P-Lingua program consists of a set of programming modules that can be used
more times by the same, or other, programs.

The syntax to define a module is the following.

def module_name(param1,..., paramN)
{
sentence0;
sentence1;
...
sentenceM;

}

The name of a module, module name, must be a valid and unique identifier.
The parameters must be valid identifiers and cannot appear repeated. It is possible
to define a module without parameters. Parameters have a numerical value that
is assigned at the module call (see below).

All programs written in P-Lingua must contain a main module without param-
eters. The compiler will look for it when generating the output file.

In P-Lingua there are sentences to define the membrane structure of a P system,
to specify multisets, to define rules, to define variables and to call to other modules.
Next, let us see how such sentences are written.

4.2.11 Module calls

In P-Lingua, modules are executed by using calls. The format of an sentence that
calls a module for some specific values of its parameters is given next:

call module name(value1, ..., valueN);

where valuei is a numeric expression or a variable.

4.2.12 Definition of the initial membrane structure of a P system

In order to define the initial membrane structure of a P system, the following
sentence must be written:

@mu = expr;

where expr is a sequence of matching square brackets representing the membrane
structure, including some identifiers that specify the label and the electrical charge
of each membrane.

Examples:
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1. [[ ]02]01 ≡ @mu = [[]’2]’1

2. [[ ]0b [ ]−c ]+a ≡ @mu = +[[]’b, -[]’c]’a

4.2.13 Definition of multisets

The next sentence defines the initial multiset associated to the membrane labeled
by label.

@ms(label) = list of objects;

where label is a membrane label and list of objects is a comma-separated list
of objects. The character # is used to represent an empty multiset.

If a stochastic P system is being defined (that is, the file starts with
@model<stochastic>), strings are also permitted in the initial content of a mem-
brane:

@ms(label) = list of objects and strings;

list of objects and strings is a comma-separated list of objects and/or
strings.

4.2.14 Union of multisets

P-Lingua allows to define the union of two multisets (recall that the input multiset
is “added” to the initial multiset of the input membrane) by using a sentence with
the following format.

@ms(label) += list of objects;

For stochastic P systems, it would be

@ms(label) += list of objects and strings;

4.2.15 Definition of rules

The definition of rules has been significantly extended in this version of P-Lingua.
A general rule is defined as follow (most elements are optional):

u[v[w1]α1
h1
. . . [wn]αn

hn
]αh

k−→ x[y[z1]β1
h1
. . . [zn]βn

hn
]βh[s]γh

where u, v, w1, . . . , wn, x, y, z1, . . . , zn are multisets of objects or strings,
h, h1, . . . , hn are labels, α, α1, . . . , αn, β, β1, . . . , βn, γ are electrical charges and k
is a numerical value.

The P-Lingua syntax for such a rule is:

uα[vα1[w1]’h1. . . αn[wN]’hN]’h --> xβ[yβ1[z1]’h1. . . βn[zN]’hN]’h γ[s]’h :: k
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where u, v, w1. . . wN, x, y, z1. . . zN, s are comma-separated list of objects or
strings (it is possible to use the character # in order to represent the empty mul-
tiset), h,h1,..., hN are labels, α, α1, . . . , αn, β, β1, . . . , βn, γ are identifiers for
electrical charges and k is a numeric expression.

As mentioned before, not each type of rule is permitted in every model. Below
we enumerate the possible types of rules, classified by the model in which they are
allowed.

@model<mebrane division>

1. The format to define evolution rules of type [a → v]αh is given next:

α[a --> v]’h

2. The format to define send-in communication rules of type a [ ]αh → [b]βh is given
next:

aα[]’h -->β[b]

3. The format to define send-out communication rules of type [a]αh → b[ ]βh is
given next:

α[a]’h --> β[]b

4. The format to define division rules of type [a ]αh → [b]βh[c]γh is given next:

α[a]’h -->β[b]γ[c]

5. The format to define dissolution rules of type [a]αh → b is given next:

α[a]’h --> b

@model<membrane creation>

1. Rules 1, 2, 3 and 5 of @model<membrane division> can be defined in this
model, with the same format.

2. The format to define membrane creation rules of type [a]αh → [[b]βh1
]αh is given

next:

α[a]’h --> α[β[b]’h1]’h

@model<transition psystem>

1. The format to define evolution rules of type [u[u1]h1 , . . . , [uN ]hN
→

v[v1]h1 , . . . , [vN ]hN
, λ]h is given next:

[u [u1]’h1 . . . [uN]’hN --> v [v1]’h1, . . . [vN]’hN, @d]’h

@d is a new keyword representing the containing membrane is marked to dis-
solved.

@model<symport antiport psystem>
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1. The format to define symmetric communication rules of type a[b]αh → b[a]αh is
given next:

αa[b]’h --> βb[a]’h

@model<probabilistic psystem>

1. The format to define rules of type u[v]αh
p−→ u1[v1]βh is given next:

uα[v]’h --> u1β[v1]’h::p

@model<stochastic psystem>

1. The format to define multiset rewriting rules of type u[v]h
c−→ u1[v1]h is given

next:

u[v]’h --> u1[v1]’h::c

2. The format to define string rewriting rules of type [u+s]h
c−→ [v+r]h is given

next:

[u,s]’h --> [v,r]’h::c

• α, β and γ are identifiers for electrical charges.
• a, b and c are objects of the alphabet.
• u, u1, v, v1, . . . , vN are comma-separated lists of objects that represents

a multiset.
• s and r are comma-separated lists of substrings.
• h, h1, . . . , hN are labels.
• p and c are real numeric expressions. The result of evaluating p must be between

0 and 1, and the result of evaluating c must be greater or equal than 0.

Some examples:

• [xi,1 → r4i,1]+2 ≡ +[x{i,1} --> r{i,1}*4]’2

• dk[ ]02 → [dk+1]02 ≡ d{k}[]’2 --> [d{k+1}]

• [dk]+2 → []02dk ≡ +[d{k}]’2 --> []d{k}

• [dk]02 → [dk]+2 [dk]−2 ≡ [d{k}]’2 --> +[d{k}]-[d{k}]

• [a]−2 → b ≡ -[a]’2 --> b

• Yi,j []2
ki,8−→ [Bki,12]2 ≡ Y{i,j}[]’2 --> [B*k{i,12}]’2::k{i,8}

• [RNAP+ < cap.ω.op >]m
c−→ [< cap.ω.RNAP.op >]m ≡

[RNAP,<cap.?.op>]’m --> [<cap.?.RNAP.op>]’m::c
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4.2.16 Parametric sentences

In P-Lingua, it is possible to define parametric sentences by using the following
format:

sentence : range1, ..., rangeN;

where sentence is a sentence of the language, or a sequence of sentences in brack-
ets, and range1, ..., rangeN is a comma-separated list of ranges with the for-
mat:

min value <= index <= max value

where min value and max value are numeric expressions, integer numbers or vari-
ables, and index is a variable that can be used in the context of the sentence. It
is possible to use the operator < instead of <=.

The sentence will be repeated for each possible values of each index.
Some examples of parametric sentences:

1. [dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n ≡
[d{k}]’2 --> +[d{k}]-[d{k}] : 1<= k <= n;

2. [xi,j → xi,j−1]+2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n ≡
+[x{i,j} --> x{i,j-1}]’2 : 1<=i<=m,2<=j<=n;

4.2.17 Inclusion of comments

The programs in P-Lingua can be commented by writing phrases into the text
strings /* and */.

4.2.18 Inclusion of debug information

Each rule sentence can optionally include a debug message which will be presented
every time the rule is executed by the simulator. The syntax to write a debug
message associated to a rule definition is defined as follows:

rule definition @debug "debug message"

5 Command-line Tools

5.1 Command-line tools changes

P-Lingua 1.0 provided command-line tools for simulating P systems and compiling
files which specify P systems [3]. In P-Lingua 2.0, the command-line tool general
syntax has changed but, as it provides backwards compatibility, all valid actions
in P-Lingua 1.0 are still valid in P-Lingua 2.0, as well.
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5.2 Compilation command-line tool

The command-line tool general syntax for compiling input files is defined as follows:

plingua [-input format] input file [-output format]
output file [-v verbosity level] [-h]

The command header plingua reports the system to compile the P system
specified on a file to a file specified on another, whereas the file input file contains
the program that we want to be compiled, and output file is the name of the
file that is generated [3]. Optional arguments are in square brackets:

• The option -input format defines the format followed by input file, which
should be an input format.

• At this stage, valid input formats are:
– P-Lingua
– XML

• If no input format is set, the P-Lingua format is assumed.
• The option -output format defines the format followed by output file, which

should be an output format.
• At this stage, valid output formats are:

– XML
– bin

• If no input format is set, the XML format is assumed by default.
• The option -v verbosity level is a number between 0 and 5 indicating the level

of detail of the messages shown during the compilation process [3].
• The option -h displays some help information [3].

5.3 Simulation command-line tool

The simulations are launched from the command line as follows:

plingua sim input file -o output file [-v verbosity level]
[-h] [-to timeout] [-st steps] [-mode simulatorID] [-a] [-b]

The command header plingua sim reports the system to simulate the P system
specified on a file, whereas input xml is an XML document where a P system is
formatted on, and output file is the name of the file where the report about the
simulated computation will be saved [3]. Optional arguments are in brackets:

• The option -v verbosity level is a number between 0 and 5 indicating the level
of detail of the messages shown during the compilation process [3]. If no value
is specified, by default it is 3.

• The option -h displays some help information [3].
• The option -to sets a timeout for the simulation defined in timeout (in mil-

liseconds), so when the time out has elapsed the simulation is halted. If the
simulation has reached a halting configuration before the time out has elapsed
this option has no effect.
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• The option -st sets a maximum number of steps the simulation can take
(defined in steps), so when the time out has elapsed the simulation comes to
a halt. If the simulation has reached a halting configuration or the time out
has elapsed (in case the option -to is set) before the specified number of steps
have been taken this option has no effect.

• The option -mode sets the specific simulator to simulate the P system (defined
in simulatorID). This option reports an error in case the simulator defined by
simulatorID is not a valid simulator for the P system model.

• The option -a defines if the simulation can take alternative steps. This option
reports an error if the simulator does not support alternative steps.

• The option -b defines if the simulation can step backwards. As every simulator
supports stepping backwards, this option does not report errors.

6 pLinguaCore

pLinguaCore c© is a JAVA library which performs all functions supported by P-
Lingua 2.0, that is, models definition, simulators and formats. This library reports
the rules and membrane structure read from a file where a P system is defined,
detects errors in the file, reports them. And, if the P system is defined in P-Lingua
language, locates the error on the file. This library performs simulations by using
the simulators implemented as well as taking into account all options defined. It
reports the simulation process, by displaying the current configuration as text and
reporting the elapsed time. Eventually, this library translates files, which define a P
system, between formats, for instance, from P-Lingua language format to binary
format. For more information and library documentation, please browse the P-
Lingua website [25], currently under development. This library is free software
published under LGPL license [22], so everyone who is interested can change and
distribute this library respecting the license restrictions.

7 Tools for Simulating Ecosystems Based on P-Lingua

The Bearded Vulture (Gypaetus barbatus) is an endangered species in Europe
that feeds almost exclusively on bone remains of wild and domestic ungulates. In
[1], it is presented a first model of an ecosystem related to the Bearded Vulture
in the Pyrenees (NE Spain), by using probabilistic P systems where the inherent
stochasticity and uncertainty in ecosystems are captured by using probabilistic
strategies. In order to validate experimentally the designed P system (see figure 2)
the authors have developed a simulator that allows them to analyze the evolution
of the ecosystem under different initial conditions. That software application is
focused on a particular P system, specifically, the initial model of the ecosystem
presented in [1]. With the aim of improving the model, the authors are adding
ingredients to it, such as new species and a more complex behavior for the animals.
In this sense, a second version of the model is presented in [2]
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A new GPL [21] licensed JAVA application with a friendly user-interface sit-
ting on the pLinguaCore library has been developed. This application provides a
flexible way to check, validate and improve computational models of ecosystem
based on P systems instead of designing new software tools each time new ingre-
dients are added to the models. Furthermore, it is possible to change the initial
parameters of the modeled ecosystem in order to make the virtual experiments
suggested by experts (see figure 3). These experiments will provide results that
can be interpreted in terms of hypotheses. Finally, some of these hypotheses will
be selected by the experts in order to be checked in real experiments.

The current version of this application is a prototype (Figure 4), and we will
publish more information as soon as possible on the P-Lingua website.

8 Conclusions and Future Work

Creating a programming language to specify P systems is an important task in
order to facilitate the development of software applications for membrane comput-
ing.

In [3], P-Lingua was presented as a programming language to define active
membrane P systems with division rules. The present paper extends that lan-
guage to other models: transition P systems, symport/antiport P systems, active
membrane P systems with division or creation rules, probabilistic P systems and
stochastic P systems.

We have developed a JAVA library (pLinguaCore) that implements several
simulators for each mentioned model and defines different formats to encode P
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Fig. 4. A tool for simulating ecosystems

systems, like the P-Lingua one or a new binary format. This library can be ex-
panded to define new models, simulators and formats.

It is possible to select different algorithms to simulate a P system, for example,
there are two different algorithms for stochastic P systems. The library can be
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used inside other software applications, in this sense, we present a tool for virtual
experimentation of ecosystems.

An internet website [25], which is currently under development, will be available
to download the applications, libraries and source-code, as well as provide infor-
mation about the P-Lingua project. In addition, this site aims to be a meeting
point for users and developers through the use of web-tools such as forums.

The syntax of P-Lingua language is standard enough for specifying several
different models of cell–like P systems. However, a new version of the language
is necessary in order to specify tissue P systems and this will be aim of a future
work.

Although P-Lingua 2.0 provides a way to simulate and compile P systems,
command-line tools are usually not user-friendly. It means it is not easy and in-
tuitive to use them. For this purpose, P-Lingua 1.0 provided an Integrated Devel-
opment Environment (IDE) [3], which eased the way people could use P-Lingua
1.0. For P-Lingua 2.0, a new IDE is being developed. This one is integrated into
the Eclipse platform [24], so it makes the most of Eclipse’s capabilities to pro-
vide a framework for translating, developing and testing P systems. It aims to be
user-friendly and useful for P system researchers.
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Summary. In the framework of cell–like membrane systems it is well known that the
construction of exponential number of objects in polynomial time is not enough to ef-
ficiently solve NP–complete problems. Nonetheless, it may be sufficient to create an
exponential number of membranes in polynomial time. In the framework of recognizer
polarizationless P systems with active membranes, the construction of an exponential
workspace expressed in terms of number of membranes and objects may not suffice to
efficiently solve computationally hard problems.

In this paper we study the computational efficiency of recognizer tissue P systems
with communication (symport/antiport) rules and division rules. Some results have been
already obtained in this direction: (a) using communication rules and forbidding division
rules, only tractable problems can be efficiently solved; (b) using communication rules
with length three and division rules, NP–complete problems can be efficiently solved. In
this paper we show that the allowed length of communication rules plays a relevant role
from the efficiency point of view of the systems.

1 Introduction

Membrane Computing is a branch of Natural Computing and starts from the
assumption that the processes taking place within the compartmental structure of
a living cell can be interpreted as computations [9]. The computational devices in
Membrane Computing are called P systems. Roughly speaking, a P system consists
of a membrane structure. In the compartments of this structure are multisets of
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objects which evolve according to given rules in a synchronous, non–deterministic,
maximally parallel manner3.

In recent years, many different models of P systems have been proposed and
proved to be computationally universal. The most studied variants are character-
ized by a cell-like membrane structure, where the communication happens between
a membrane and the surrounding one. In this model the membrane structure is
hierarchical and the graph of the neighborhood relation between compartments is
a tree.

We shall focus here on another type of P systems, the so-called (because of
their membrane structure) tissue P Systems. Instead of considering a hierarchical
arrangement, membranes are modeled as nodes of an undirected graph. This vari-
ant has two biological inspirations: intercellular communication and cooperation
between neurons. The common mathematical model of these two mechanisms is
a net of processors dealing with symbols and communicating these symbols along
channels specified in advance. The communication between cells is based on sym-
port/antiport rules4. Symport rules move a number of objects across a membrane
together in the same direction, whereas antiport rules move objects across a mem-
brane in opposite directions.

Since the initial definition of tissue P systems several research lines have been
developed and other variants have arisen. One of the most interesting variants of
tissue P systems was presented in [12] where the definition of tissue P systems
is combined with the corresponding one of P systems with active membranes,
yielding the model of tissue P systems with cell division.

This model has been studied in depth in [1], where the importance of the cell
division rules regarding the computational power of the model is shown. Working
with tissue P systems without division rules it is not possible to solve computa-
tionally hard problems [2] (unless P=NP). We focus now on the influence of the
length of communication rules on the computational power of tissue P systems
with cell division. In particular, when limiting this length to 1, only tractable
problems can be efficiently solved. A proof of this result is presented here.

The paper is organized as follows. In Section 2 we recall some definitions related
to tissue P systems (further information can be found in the literature, see [15]).
Section 3 is devoted to formalizing the concept of polynomial solvability of decision
problems by recognizer tissue P systems. In Section 4 we introduce a dependency
graph for tissue P systems and use this technique to prove the main result of the
paper. Finally, the last section contains some remarks and raises open questions
and future work directions.

3 An informal overview can be found in [11] and further bibliography at [15].
4 This method of communication for P systems was introduced in [8].
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2 Recognizer Tissue P Systems

Firstly, the concept of tissue P system of degree q ≥ 1 with cell division is intro-
duced.

Definition 1. A tissue P system of degree q ≥ 1 with cell division is a tuple

Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin, iout)

where:

1. Γ is a finite alphabet (called working alphabet) whose elements are called ob-
jects;

2. Σ is a finite alphabet (called input alphabet) strictly contained in Γ ;
3. Ω ⊆ Γ \ Σ is a finite alphabet, describing the set of objects present in the

environment in arbitrarily many copies each;
4. M1, . . . ,Mq are strings over Γ , describing the multisets of objects placed in

the q cells of the system;
5. R is a finite set of rules, of the following forms:

a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, and u, v ∈ Γ ∗;
communication rules; 1, 2, . . . , q identify the cells of the system, 0 is the
environment; when applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and simultaneously the
objects of the multiset v are sent from region j to region i (we say that the
sum of the lengths of u and v is the length of the rule);

b) [ a ]
i
→ [ b ]

i
[ c ]

i
, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ ;

division rules; under the influence of object a, the cell with label i is divided
in two cells with the same label; in the first copy the object a is replaced
by b, in the second copy the object a is replaced by c; all other objects are
replicated and copies of them are placed in the two new cells.

6. iin ∈ {1, . . . , q} is the input cell, and iout ∈ {0, 1, . . . , q} is the output cell.

The rules of such a system are applied in a non-deterministic maximally parallel
manner as is customary in membrane computing. In each step, all cells which can
evolve must evolve in a maximally parallel way (in each step we apply a multiset of
rules which is maximal, no further rule can be added), with the following important
remark: if a cell divides, then the division rule is the only one which is applied for
that cell in that step, its objects do not evolve by means of communication rules. In
other words, before division a cell interrupts all its communication channels with
the other cells and with the environment; the new cells resulting from division will
interact with other cells or with the environment only in the next step – providing
that they do not divide once again. A cell’s label precisely identifies the rules which
can be applied to it.

A configuration of Π is a tuple C = (M0,M1, . . . ,Mq), where M0 is a multiset
of objects over Γ \ Ω (the objects in the environment which are in finitely many
copies), and M1, . . . ,Mq are multisets of objects over Γ (the objects in each cell of
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the system). For two configurations C1, C2 of Π we write C1 ⇒Π C2, and we say
that we have a transition from C1 to C2, if we can pass from C1 to C2 by applying
the rules from R.

The initial configuration of the system is (∅,M1, . . . ,Mq). For each multiset m
over the input alphabet, the initial configuration of the system associated with it is
(∅,M1, . . . ,Miin

∪ m, . . . ,Mq). Then, m is an input multiset of every computation
C = {Ci}i<r such that C0 is the initial configuration of Π associated with m.

All computations start from an initial configuration and proceeds as stated
above; only halting computations give a result, which is encoded by the number
of objects in the output cell iout in the last configuration. From now on, we will
consider that the output is collected in the environment (that is, iout = 0, and
thus we will omit iout in the definition of tissue P systems). This way, if Π is
a tissue P system and C = {Ci}i<r is a halting computation of Π, with Ci =
(Mi,0,Mi,1, . . . ,Mi,q), then the answer of the computation C is

Output(C) = ΨΓ\Ω(Mr−1,0)

where Ψ is the Parikh function.
Let us recall that NP–completeness has been usually studied in the framework

of decision problems, that is problems whose solution is either yes or no. More
formally, a decision problem is a pair (IX , θX) where IX is a language over a finite
alphabet whose elements are called instances, and θX is a total Boolean function
over IX .

Each decision problem X = (IX , θX) has a language LX over the alphabet of
IX associated with it, defined as follows: LX = {a ∈ IX | θX(a) = 1}. Reciprocally,
each language L over an alphabet Σ has a decision problem, XL associated with
it as follows: IXL

= Σ∗, and θXL
= {(x, 1) | x ∈ L} ∪ {(x, 0) | x /∈ L}.

Recognizer cell-like P systems were introduced in [14] and they are the natural
framework to study and solve decision problems within Membrane Computing,
since deciding whether an instance of a given problem has an affirmative or negative
answer is equivalent to deciding if a string belongs or not to the language associated
with the problem.

In the literature, recognizer cell-like P systems are associated with P systems
with input in a natural way. The data encoding an instance of the decision problem
has to be provided to the P system in order to compute the appropriate answer.
This is done by codifying each instance as a multiset placed in an input mem-
brane. The output of the computation (yes or no) is sent to the environment in
the last step of the computation. In this way, cell-like P systems with input and
external output are devices which can be seen as black boxes, in the sense that
the user provides the data before the computation starts, and then waits outside
the P system until it sends to the environment the output in the last step of the
computation.

In order to use these computational devices for solving decision problems, rec-
ognizer tissue P systems are introduced.
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Definition 2. A tissue P system with cell division of degree q ≥ 1

Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin)

is a recognizer system if the following holds:

1. The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets M1, . . . , Mq, but not present in Ω.

2. All computations halt.
3. If C = {Ci}i<r is a computation of Π, then either the object yes or the object

no (but not both) must have been released into the environment, and only in
the last step of the computation.

Given a recognizer tissue P system with cell division, and a computation C =
{Ci}i<r of Π (r ∈ N), we define the result of C as follows:

Output(C) =















yes, if Ψ{yes,no}(Mr−1,0) = (1, 0)
∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2

no, if Ψ{yes,no}(Mr−1,0) = (0, 1)
∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2

That is, C is an accepting computation (respectively, rejecting computation) if
the object yes (respectively, no) appears in the environment (only) in the halting
configuration of C.

3 Polynomial Solvability by Recognizer Tissue P systems

In this section, the definition of polynomial (uniform) solvability of decision prob-
lems by a family of cell–like P systems is extended to solvability by a family of
tissue P systems.

Definition 3. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue P systems with
cell division if the following hold:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:
– For each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u)).
– The family Π is polynomially bounded with regard to (X, cod, s); that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps.
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– The family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1.

– The family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

We denote by PMCTD the set of all decision problems which can be solved by
means of recognizer tissue P systems with cell division in polynomial time. This
class is closed under polynomial–time reduction and under complement (see [13]
for a similar result for cell-like P systems). We also denote by PMCTD(k) the set of
all decision problems which can be solved by means of recognizer tissue P systems
with cell division in polynomial time, by using communication rules whose length
is, at most, k.

4 Dependency Graph Associated with Tissue P Systems

Let Π be a tissue P system with cell division and let all communication rules
be of length 1. In this case, each rule of the system can be activated by a single
object. Hence, there exists in a certain sense, a dependency between the object
triggering the rule and the object or objects produced by its application. This
dependency allows to adapt the ideas developed in [5] for cell-like P systems with
active membranes to tissue P systems with cell division and communication rules
of length 1.

We can consider a general pattern (a, i) → (b1, j) . . . (bs, j) where i, j ∈
{0, 1, 2, . . . , q}, i 6= j, and a, b ∈ Γ . Communication rules correspond to the case
s = 1 and b1 = a, and division rules correspond to the case s = 2 and j = i 6= 0.
The above pattern can be interpreted as follows: from the object a in the cell (or
in the environment) labeled with i we can reach the objects b1, . . . , bs in the cell
(or in the environment) labeled with j.

Without loss of generality we can assume that all communication rules in the
system obey the syntax (i, a/λ, j), since every rule of the form (j, λ/a, i) can be
rewritten to follow the above syntax, with equivalent semantics.

Next, we formalize these ideas in the following definition.

Definition 4. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system of de-
gree q ≥ 1 with cell division. Let H = {0, 1, . . . , q}. The dependency graph associ-
ated with Π is the directed graph GΠ = (VΠ , EΠ) defined as follows:

VΠ = {(a, i) ∈ Γ × H : ∃j ∈ H ((i, a/λ, j) ∈ R ∨ (j, a/λ, i) ∈ R) ∨

∃b, c ∈ Γ ([a]i → [b]i[c]i ∈ R ∨ [b]i → [a]i[c]i ∈ R)},
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EΠ = {((a, i), (b, j)) : (a = b ∧ (i, a/λ, j) ∈ R) ∨

∃c ∈ Γ ([a]i → [b]i[c]i ∈ R ∧ j = i)}.

Proposition 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system
with cell division, in which the length of all communication rules is 1. Let
H = {0, 1, . . . , q}. There exists a deterministic Turing machine that constructs
the dependency graph GΠ associated with Π, in polynomial time (that is, in a
time bounded by a polynomial function depending on the total number of rules).

Proof. A deterministic algorithm that, given a P system Π with the set R of rules,
constructs the corresponding dependency graph, is the following:

Input: Π (with R as its set of rules)

VΠ ← ∅; EΠ ← ∅
for each rule r ∈ R of Π do

if r = (i, a/λ, j) then

VΠ ← VΠ ∪ {(a, i), (a, j)}; EΠ ← EΠ ∪ {((a, i), (a, j))}
if r = [a]i → [b]i[c]i then

VΠ ← VΠ ∪ {(a, i), (b, i), (c, i)};
EΠ ← EΠ ∪ {((a, i), (b, i)), ((a, i), (c, i))}

The running time of this algorithm is bounded by O(|R|). ¤

Proposition 2. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system
with cell division, in which the length of all communication rules is 1. Let
H = {0, 1, . . . , q}. Let ∆Π be defined as follows:

∆Π = {(a, i) ∈ Γ × H : there exists a path (within the dependency graph)
from (a, i) to (yes, 0)}.

Then, there exists a Turing machine that constructs the set ∆Π in polynomial time
(that is, in a time bounded by a polynomial function depending on the total number
of rules).

Proof. We can construct the set ∆Π from Π as follows:

• We construct the dependency graph GΠ associated with Π.
• Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
∆Π ← ∅
for each (a, i) ∈ VΠ do

if reachability (GΠ , (a, i), (yes, 0)) = yes then

∆Π ← ∆Π ∪ {(a, i)}
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The running time of this algorithm is of order O(|VΠ | · |VΠ |2), hence5 it is of order
O(|Γ |3 · |H|3). ¤

Notation: Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin, iout) be a tissue P system with
cell division. Let m be a multiset over Σ. Then we denote M∗

j = {(a, j) : a ∈ Mj},
for 1 ≤ j ≤ q, and m∗ = {(a, iin) : a ∈ m}.

Below we characterize accepting computations of a recognizer tissue P system
with cell division and communication rules of length 1 by distinguished paths in
the associated dependency graph.

Lemma 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a recognizer confluent tissue
P system with cell division in which the length of all communication rules is 1.
The following assertions are equivalent:

(1)There exists an accepting computation of Π.
(2)There exists (a0, i0) ∈

⋃q

j=1 M∗
j and a path in the dependency graph associated

with Π, from (a0, i0) to (yes, 0).

Proof. (1) ⇒ (2) First, we show that for each accepting computation C of Π there
exists (a0, i0) ∈

⋃q

j=1 M∗
j and a path γC in the dependency graph associated with

Π from (a0, i0) to (yes, 0). By induction on the length n of C.
If n = 1, a single step is performed in C from C0 to C1. A rule of the form

(j, yes/λ, 0), with a ∈ Γ, j 6= 0, has been applied in that step. Then, (yes, j) ∈ M∗
j ,

for some j = 1, . . . , q. Hence, ((yes, j), (yes, 0)) is a path in the dependency graph
associated with Π.

Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1) be
an accepting computation of Π. Then C′ = (C1, . . . , Cn, Cn+1) is an accepting
computation of the system Π ′ = (Γ,Σ,Ω,M′

1, . . . ,M
′
q,R, iin), being M′

j the
contents of cell j in configuration C1, for 1 ≤ j ≤ q. By induction hypothesis
there exists an object b0 in a cell i0 from C1, and a path in the dependency graph
associated with Π ′ from (b0, i0) to (yes, 0). If (b0, i0) is an element of configuration
C0 (that means that in the first step a division rule has been applied to cell i0), then
the result holds. Otherwise, there is an element (a0, j0) in C0 producing (b0, i0).
So, there exists a path γC in the dependency graph associated with Π from (a0, j0)
to (yes, 0).

5 The Reachability Problem is the following: given a (directed or undirected) graph, G,
and two nodes a, b, determine whether or not the node b is reachable from a, that
is, whether or not there exists a path in the graph from a to b. It is easy to design
an algorithm running in polynomial time solving this problem. For example, given a
(directed or undirected) graph, G, and two nodes a, b, we consider a depth–first–search
with source a, and we check if b is in the tree of the computation forest whose root
is a. The total running time of this algorithm is O(|V | + |E|), that is, in the worst
case is quadratic in the number of nodes. Moreover, this algorithm needs to store a
linear number of items (it can be proved that there exists another polynomial time
algorithm which uses O(log2(|V |)) space).
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(2) ⇒ (1). Let us see that for each (a0, i0) ∈
⋃q

j=1 M∗
j and for each path in

the dependency graph associated with Π from (a0, i0) to (yes, 0), there exists an
accepting computation of Π. By induction on the length n of the path.

If n = 1, we have a path ((a0, i0), (yes, 0)). Then, a0 = yes and the computa-
tion C = (C0, C1) where the rule (i0, yes/λ, 0) belongs to a multiset of rules m0

that produces configuration C1 from C0 is an accepting computation of Π.
Let us suppose that the result holds for n. Let

((a0, i0), (a1, i1), . . . (an, in), (yes, 0))
be a path in the dependency graph of length n + 1. If (a0, i0) = (a1, i1), then
the result holds by induction hypothesis. Otherwise, let C1 be the configuration
of Π reached from C0 by the application of a multiset of rules containing the rule
that produces (a1, i1) from (a0, i0). Then ((a1, i1), . . . (an, in), (yes, 0)) is a path
of length n in the dependency graph associated with the system

Π ′ = (Γ,Σ,Ω,M′
1, . . . ,M

′
q,R, iin)

being M′
j the content of cell j in configuration C1, for 1 ≤ j ≤ q. By induction

hypothesis, there exists an accepting computation C′ = (C1, . . . , Ct) of Π ′. Hence,
C = (C0, C1, . . . , Ct) is an accepting computation of Π. ¤

Next, given a family Π = (Π(n))n∈N of recognizer tissue P system with cell
division in which the length of all communication rules is 1, solving a decision
problem, we will characterize the acceptance of an instance of the problem, w,
using the set ∆Π(s(w)) associated with the system Π(s(w)), that processes the
given instance w. More precisely, the instance is accepted by the system if and
only if there is an object in the initial configuration of the system Π(s(w)) with
input cod(w) such that there exists a path in the associated dependency graph
starting from that object and reaching the object yes in the environment.

Proposition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer tissue P system with cell division in which the length of all
communication rules is 1 solving X, according to Definition 3. Let (cod, s) be the
polynomial encoding associated with that solution. Then, for each instance w of
the problem X the following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(s(w)) ∩ ( (cod(w))∗ ∪

p
⋃

j=1

M∗
j ) 6= ∅, where M1, . . . ,Mp are the initial mul-

tisets of the system Π(s(w)).

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) with input multiset cod(w). From Lemma 1
this condition is equivalent to the following: in the initial configuration of Π(s(w))
with input multiset cod(w) there exists at least one object a ∈ Γ in a cell labeled
with i such that in the dependency graph the node (yes, 0) is reachable from (a, i).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩M∗
j 6= ∅ for some j ∈ {1, . . . , p}, or

∆Π(s(w)) ∩ (cod(w))∗ 6= ∅. ¤
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Theorem 1. P = PMCTD(1)

Proof. We have P ⊆ PMCTD(1) because the class PMCTD(1) is closed un-
der polynomial time reduction. Next, we show that PMCTD(1) ⊆ P. Let X ∈
PMCTD(1) and let Π = (Π(n))n∈N be a family of recognizer tissue P systems
with cell division solving X, according to Definition 3. Let (cod, s) be the polyno-
mial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X
- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).
- Construct the set ∆Π(s(w)) as indicated in Proposition 2

answer ← no; j ← 1
while j ≤ p ∧ answer = no do

if ∆Π(s(w)) ∩M∗
j 6= ∅ then

answer ← yes

j ← j + 1
endwhile

if ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there exists a
pair (a, i) belonging to ∆Π(s(w)) such that the symbol a appears in the cell labeled
with i in the initial configuration (with input the multiset cod(w)).

On the other hand, a pair (a, i) belongs to ∆Π(s(w)) if and only if there exists
a path from (a, i) to (yes, 0), that is, if and only if we can obtain an accepting
computation of Π(s(w)) with input cod(w). Hence, the algorithm above described
solves the problem X.

The cost to determine whether or not ∆Π(s(w)) ∩ M∗
j 6= ∅ (or ∆Π(s(w)) ∩

(cod(w))∗ 6= ∅) is of order O(|Γ |2 · |H|2).
Hence, the running time of this algorithm can be bounded by f(|w|)+O(|R|)+

O(q · |Γ |2 ·n2), where f is the (total) cost of a polynomial encoding from X to Π,
R is the set of rules of Π(s(w)), and q is the number of (initial) cells of Π(s(w)).
But from Definition 3 we have that all involved parameters are polynomials in |w|.
That is, the algorithm is polynomial in the size |w| of the input. ¤

In [3] a polynomial time solution of the Vertex Cover problem was given by
using a family of recognizer tissue P systems with cell division and communication
rules of length at most 3. Then NP ∪ co − NP ⊆ PMCT D(3).

Hence, in the framework of recognizer tissue P systems with cell division the
length of the communication rules provides a borderline between efficiency and
non-efficiency. Specifically, a frontier is obtained when we pass from length 1 to
length 3.
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5 Final Remarks and Future Work

It is well known [2] that tissue P systems with communication rules and without
division rules can efficiently solve only tractable problems. It is also well known
that by adding division rules we can efficiently solve NP–complete problems in
linear time by using communication rules with length at most 3 [3].

In order to obtain new borderlines between tractability and intractability of
problems, we study the possibility to restrict the length of communication rules
to 1, allowing division rules. By using the dependency graph technique of cell–like
P systems, we have shown that only tractable problems can be efficiently solved
in that scenario.

Several questions regarding the role of the length remain open, for example:

• What happens if we consider tissue P systems using communication rules of
length at most 2?

• In the solution provided in [3], antiport rules of length at most 3 were used.
Would it be possible to provide another solution in which all rules of length 3
were symport?

Other open issues related to tissue P systems that may be interesting are:

• Analyzing a new role for the environment. More specifically, consider in the
initial configuration only permitting objects with finite multiplicity in the en-
vironment . It seems that this new scenario would be equivalent to tissue P
systems without environment, with a new distinct cell with no division rules
associated. Is it still possible to solve NP–complete problems in polynomial
time in this new framework, permitting division rules?

• Considering variations in the semantics of division rules, for example, dispens-
ing with replication or with evolution. Division rules without replication would
obey the syntax [ a ]

i
→ [ ]

i
[ u ]

i
, where i ∈ {1, 2, . . . , q}, a ∈ Γ and u ∈ Γ ∗,

meaning that under the influence of object a, the cell with label i is divided in
two cells with the same label. The first copy contains all objects of the origi-
nal cell except for a and in the second copy the content of the original cell is
replaced by the multiset u. Division rules without evolution would be either of
the form [ a ]

i
→ [ ]

i
[ ]

i
or [ a ]

i
→ [ a ]

i
[ a ]

i
, where i ∈ {1, 2, . . . , q} and

a ∈ Γ . In both cases, under the influence of object a, the cell with label i is
divided in two cells. All objects are replicated and copies of them are placed
in the two new cells, except for a in the first case.
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Summary. We consider spiking neural P systems as devices which can be used to per-
form some basic arithmetic operations, namely addition, subtraction, comparison and
multiplication by a fixed factor. The input to these systems are natural numbers ex-
pressed in binary form, encoded as appropriate sequences of spikes. A single system
accepts as inputs numbers of any size. The present work may be considered as a first
step towards the design of a CPU based on the working of spiking neural P systems.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [5] as
a new class of distributed and parallel computing devices. They were inspired by
membrane systems (also known as P systems) [9, 10, 12], in particular by tissue–
like P systems [8], and are based on the neurophysiological behavior of neurons
sending electrical impulses (spikes) along axons to other neurons.

In SN P systems the processing elements are called neurons, and are placed
in the nodes of a directed graph, called the synapse graph. The contents of each
neuron consists of a number of copies of a single object type, namely the spike.
Neurons may also contain firing and/or forgetting rules. The firing rules allow
a neuron to send information to other neurons in the form of electrical impulses
(also called spikes) which are accumulated at the target cell. The application of the
rules depends on the contents of the neuron; in the general case, applicability is
determined by checking the contents of the neuron against a regular set associated
with the rule. As inspired from biology, when a neuron sends out spikes it becomes
“closed” (inactive) for a specified period of time, that reflects the refractory period
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of biological neurons. During this period, the neuron does not accept new inputs
and cannot “fire” (that is, emit spikes). Another important feature of biological
neurons is that the length of the axon may cause a time delay before a spike
arrives at the target. In SN P systems this delay is modeled by associating a delay
parameter to each rule which occurs in the system. If no firing rule can be applied
in a neuron, there may be the possibility to apply a forgetting rule, that removes
from the neuron a predefined number of spikes.

Formally, an SN P system of degree m ≥ 1, as defined in [6], is a construct of
the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), with 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0
are integer numbers. If E = ac, then it is usually written in the following
simplified form: ac → a; d; similarly, if a rule E/ac → a; d has d = 0,
then we can simply write it as E/ac → a. Hence, if a rule E/ac → a; d
has E = ac and d = 0, then we can write ac → a;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d of
type (1) from Ri, we have as 6∈ L(E) (where L(E) denotes the regular
language defined by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π.

The rules of type (1) are called firing (also spiking) rules, and they are applied
as follows. If the neuron σi contains k ≥ c spikes, and ak ∈ L(E), then the rule
E/ac → a; d ∈ Ri can be applied. The execution of this rule removes c spikes from
σi (thus leaving k − c spikes), and prepares one spike to be delivered to all the
neurons σj such that (i, j) ∈ syn. If d = 0, then the spike is immediately emitted,
otherwise it is emitted after d computation steps of the system. (Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.)
If the rule is used in step t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d− 1 the
neuron is closed, so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send a spike along it, then that particular spike is
lost), and cannot fire new rules. In the step t + d, the neuron spikes and becomes
open again, so that it can receive spikes (which can be used starting with the step
t + d + 1) and select rules to be fired.

Rules of type (2) are called forgetting rules, and are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi. Note that, by definition, if a firing
rule is applicable then no forgetting rule is applicable, and vice versa.
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In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1 : ac1 → a; d1 and E2 : ac1 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in
a neuron. In such a case, only one of them is nondeterministically chosen. Thus,
the rules are used in the sequential manner in each neuron, but neurons function
in parallel with each other.

The initial configuration of the system is described by the numbers n1, n2, . . .,
nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the number of steps to wait until it becomes open (this
number is zero if the neuron is already open). A computation in a system as above
starts in the initial configuration. A positive integer number is given in input to a
specified input neuron. This number may be encoded in many different ways, for
example as the interval of time steps elapsed between the insertion of two spikes
into the neuron (note that this is a unary encoding). Other possible encodings are
discussed below. To pass from a configuration to another one, for each neuron a
rule is chosen among the set of applicable rules, and is executed. The computation
proceeds in a sequential way into each neuron, and in parallel among different
neurons. Generally, a computation may not halt. However, in any case the output
of the system is usually considered to be the time elapsed between the arrival of
two spikes in a designated output cell. Defined in this way, SN P systems compute
functions of the kind f : N→ N; they can also indirectly compute functions of the
kind f : Nk → N by using a bijection from Nk to N.

As discussed in [6], there are other possibilities to encode natural numbers read
from and/or emitted to the environment by SN P systems; for example, we can
consider the number of spikes contained in the input and in the output neuron,
respectively, or the number of spikes read/produced in a given interval of time.
Also, an alternative way to compute a function f : Nk → N is to introduce k
natural numbers n1, n2, . . . , nk in the system by “reading” from the environment
a binary sequence z = 0b10n110n21 . . . 10nk10g, for some b, g ≥ 0; this means that
the input neuron of Π receives a spike in each step corresponding to a digit 1 from
the string z. Note that we input exactly k+1 spikes, and that this is again a unary
encoding. Sometimes we may need to impose that the system outputs exactly two
spikes and halts (sometimes after the second spike) hence producing a spike train
of the form 0b′10r10g′ , for some b′, g′ ≥ 0 and with r = f(n1, n2, . . . , nk). In
what follows we will also consider systems which have k input neurons. For these
systems, the input values n1, n2, . . . , nk will arrive simultaneously to the system,
each one entering through the corresponding input neuron. Moreover, the input
numbers will be sometimes encoded in binary form, using the same number of bits
in order to synchronize the different parts of the systems: the sequence of bits that
encodes a natural number will be represented as a spike train such that, at each
time step, the presence of a spike denotes 1 in the corresponding position, whereas
the absence of a spike denotes 0. For further details, we refer the reader to the
next sections.
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If we do not specify an input neuron (hence no input is taken from the envi-
ronment) then we use SN P systems in the generative mode; we start from the
initial configuration, and the distance between the first two spikes of the output
neuron (or the number of spikes, etc.) is the result of the computation. Note that
generative SN P systems are inherently nondeterministic, otherwise they would
always reproduce the same sequence of computation steps, and hence the same
output. Dually, we can neglect the output neuron and use SN P systems in the
accepting mode; for k ≥ 1, the natural number n1, n2, . . . , nk are read in input
and, if the computation halts, then the numbers are accepted.

In [5] it was shown that generative SN P systems are universal, that is, can
generate any recursively enumerable set of natural numbers. Moreover, a char-
acterization of semilinear sets was obtained by spiking neural P systems with a
bounded number of spikes in the neurons. SN P systems are universal also in their
computing version (that is, when they compute functions f : N → N), as it can
be easily shown by simulating register machines [6]. These results can also be ob-
tained with even more restricted forms of spiking P systems; for example, [4] shows
that at least one of these features can be avoided while keeping universality: time
delay (refractory period) greater than 0, forgetting rules, outdegree of the synapse
graph greater than 2, and regular expressions of complex form. These results have
been further extended in [3], where it is shown that universality is kept even if we
remove some combinations of two of the above features. Finally, in [11] the behav-
ior of spiking neural P systems on infinite strings and the generation of infinite
sequences of 0 and 1 was investigated, whereas in [1] spiking neural P systems
were studied as language generators (over the binary alphabet {0, 1}).

Spiking neural P systems have also been used to solve decision problems, both
in a semi–uniform and in a uniform way [7]. When solving a problem Q in the
semi–uniform setting, for each specified instance I of Q we build in a polynomial
time (with respect to the size of I) an SN P system ΠQ,I , whose structure and
initial configuration depend upon I, that halts (or emits a specified number of
spikes in a given interval of time) if and only if I is a positive instance of Q. On
the other hand, a uniform solution of Q consists of a family {ΠQ(n)}n∈N of SN
P systems such that, when having an instance I ∈ Q of size n, we introduce a
polynomial (in n) number of spikes in a designated (set of) input neuron(s) of
ΠQ(n) and the computation halts (or, alternatively, a specified number of spikes
is emitted in a given interval of time) if and only if I is a positive instance.
The preference for uniform solutions over semi–uniform ones is given by the fact
that they are more strictly related to the structure of the problem, rather than
to specific instances. Indeed, in the semi–uniform setting we do not even need
any input neuron, as the instance of the problem is embedded into the structure
(number of spikes, graph of neurons and synapses, rules) from the very beginning.

In this paper, we consider SN P systems in a completely different way. We
will view SN P systems as components of a restricted Arithmetic Logic Unit in
which one or more natural numbers are provided in binary form, some arithmetic
operation is performed and the result is sent out (to the environment) also in bi-
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Fig. 1. An SN P system that performs the addition among two natural numbers expressed
in binary form

nary form. The arithmetic operations we will consider are addition, subtraction
and multiplication among natural numbers. Each number will be provided to the
system as a sequence of spikes: at each time step, zero or one spike will be sup-
plied to the input neuron, depending upon whether the corresponding bit of the
number is 0 or 1. Also the output neuron will emit the computed number to the
environment in binary form, encoded as a spike train.

The paper is organized as follows. In Section 2 we present an SN P system
which can be used to add two natural numbers expressed in binary form, of any
length (that is, composed of any number of bits). In Section 3 we present an anal-
ogous SN P system, that computes the difference (subtraction) among two natural
numbers. Section 4 contains the description of a very simple system that can be
used to compare two natural numbers. Section 5 first extends the system presented
in Section 2 to perform the addition of any given amount of natural numbers, and
then describes a spiking neural P system that performs the multiplication of any
natural number, given as input, by a fixed factor embedded into the system. Fi-
nally, section 6 concludes the paper and suggests some possible directions for future
research.

2 Addition

In this section we describe a simple SN P system that performs the addition of
two natural numbers. We call such a system the SN P system for 2-addition. It
is composed of three neurons (see Figure 1): two input neurons and an addition
neuron, which is also the output neuron. Both input neurons have a synapse to the
addition neuron. Each input neuron receives one of the numbers to be added as a
sequence of spikes, that encodes the number in binary form. As explained above,
no spike in the sequence at a given time instant means 0 in the corresponding po-
sition of the binary expansion, whereas one spike means 1. Note that the numbers
provided as input to the system may be arbitrarily long. The input neurons have
only one rule, a → a, which is used to forward the spikes to the addition neuron
as soon as they arrive. The addition neuron has three rules: a → a, a2/a → λ and
a3/a2 → a, which are used to compute the result.

Formally, the SN P system for 2-addition is defined as a structure:
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ΠAdd = (O, σInput1 , σInput2 , σAdd, syn, in1, in2, out)

where:

• O = {a};
• σInput1 = (0, RInput1), with RInput1 = {a → a};
• σInput2 = (0, RInput2), with RInput1 = {a → a};
• σAdd = (0, RAdd), with RAdd = {a → a, a2/a → λ, a3/a2 → a};
• syn = {(Input1, Add), (Input2, Add)};
• in1 = Input1, in2 = Input2;
• out = Add.

The following theorem holds.

Theorem 1. The SN P system for 2-addition outputs the addition in binary form
of two non-negative integers, provided to the neurons σInput1 and σInput2 in binary
form.

Proof. Let t denote the current time step. In the initial configuration (t = 0), the
system does not contain any spike. At t = 1, a binary digit has been provided
to each of the input neurons, in the form of absence or presence of a spike. Such
a digit is associated with the power 20 in the binary representation of the input
numbers. At t = 2 these spikes are placed in neuron σAdd. We can now divide the
future behavior of σAdd in three cases, depending upon the number of spikes it
contains, that may be 0, 1 or 2.

• If there are no spikes, no rules are activated and in the next step 0 spikes are
sent to the environment. This encodes the operation 0 + 0 = 0.

• If there is 1 spike, then the rule a → a is triggered. The spike is consumed and
one spike is sent out. This encodes 0 + 1 = 1 + 0 = 1.

• If there are 2 spikes, then the rule a2/a → λ is triggered. This means that no
spike is sent out, which can be interpreted as a 0 in the binary form of the
output. Note that only one spike is consumed in the application of the rule.
This means that in the next computation step the spikes in the addition neuron
will be the spikes provided from the input neuron plus the one which has not
been consumed. This encodes 1 + 1 = 10.

In the general case, we observe that the spikes in the addition neuron either
come from the input neurons or remain in the neuron from the previous step. Since
only one spike can remain, the number of spikes contained in σAdd can be 0, 1, 2 or
3 at each computation step. The cases for 0, 1, or 2 spikes are treated as described
above. If there are 3 spikes, then the rule a3/a2 → a is applied. One spike is sent
out, two of them are consumed and one remains for the next step. This encodes
the operation 1 + 1 + 1 = 11. ut

As an example, let us consider the addition 28 + 21 = 49, that in binary form
can be written as 111002 + 101012 = 1100012. Table 1 reports the number of
spikes contained in each neuron of ΠAdd, as well as the number of spikes sent to
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Time step Input1 Input2 Add Output

t = 0 0 0 0 0

t = 1 0 1 0 0

t = 2 0 0 1 0

t = 3 1 1 0 1

t = 4 1 0 2 0

t = 5 1 1 2 0

t = 6 0 0 3 0

t = 7 0 0 1 1

t = 8 0 0 0 1

Table 1. Number of spikes in each neuron of ΠAdd, and number of spikes sent to the
environment, at each time step during the computation of the addition 111002+101012 =
1100012

the environment, at each time step during the computation. The input and the
output sequences are written in bold. Note that the first instant of time for which
the output is valid is t = 3, due to the time needed for the first input bits to reach
the output neuron and to be processed.

3 Subtraction

The subtraction SN P system, illustrated in Figure 2, consists of ten neurons. The
first input number, the minuend, is provided to neuron σInput1 in binary form,
encoded as a spike train as described above. Similarly, the second input number
(the subtrahend) is supplied in binary form to neuron σInput2 . Neuron σInput1 is
linked to three auxiliary neurons, called σaux1 , σaux2 and σaux3 , whereas σInput2

is connected with another auxiliary neuron called σaux4 . The set of neurons σaux1 ,
σaux2 and σaux3 act as a multiplier of the minuend: they multiply by 3 the number
of spikes provided by neuron σInput1 . The system contains also a neuron called
σgen, which is connected with σaux flow and σaux5 . These latter neurons are also
mutually connected by two synapses. The target of the subsystem built by the
neurons σgen, σaux flow and σaux5 is to provide a constant flow of spikes to σSub.
All the neurons mentioned up to now have only one rule: a → a. The neurons
σauxi , for 1 ≤ i ≤ 5, are connected with neuron σSub; this is both the output
neuron and the neuron in which the result of the subtraction is computed, by
means of six rules: a → λ, a2/a → a, a3/a2 → λ, a4 → a, a5 → λ and a6/a5 → a.
At the beginning of the computation all neurons are empty except σgen, which
contains one spike.

Formally, the subtraction SN P system is defined as a structure:

ΠSub = (O, σInput1 , σInput2 , σaux1 , σaux2 , σaux3 , σaux4 , σaux5 , σgen,

σaux flow, σSub, syn, in1, in2, out)
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Fig. 2. An SN P system that performs the subtraction among two natural numbers
expressed in binary form

where:

• O = {a};
• σInput1 = (0, RInput1), with RInput1 = {a → a};
• σInput2 = (0, RInput2), with RInput1 = {a → a};
• σauxi = (0, Rauxi), with Rauxi = {a → a}, for all 1 ≤ i ≤ 5;
• σaux flow = (0, Raux flow), with Raux flow = {a → a};
• σgen = (1, Rgen), with Rgen = {a → a};
• σSub = (0, RSub), with RSub = {a → λ, a2/a → a, a3/a2 → λ, a4 → a, a5 → λ,

a6/a5 → a};
• syn = {(Input1, aux1), (Input1, aux2), (Input1, aux3), (Input2, aux4), (gen,

aux5), (gen, aux flow), (aux5, aux flow), (aux flow, aux5), (aux1, Sub),
(aux2, Sub), (aux3, Sub), (aux4, Sub), (aux5, Sub)};

• in1 = Input1, in2 = Input2;
• out = Sub.

The following theorem holds.

Theorem 2. The subtraction SN P system outputs the subtraction, in binary form,
of two non-negative integer numbers, provided in binary form to neurons σInput1

(the minuend) and σInput2 (the subtrahend).

Proof. At the beginning of the computation (time t = 0) all the neurons of the
system are empty but neuron σgen, that contains one spike. Let us focus first on
the subsystem composed of the neurons σgen, σaux flow and σaux5 . At time t = 1,
one spike is placed in each of the neurons σaux flow and σaux5 , whereas neuron σgen

contains no spikes. Since this neuron has no incoming synapses, it will not receive
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spikes and thus it will be empty along all the computation. At time t = 2, σaux5

has sent one spike to σSub and another one to σaux flow. Meanwhile, σaux flow

has sent a spike to σaux5 . This means that at t = 2 the spikes in both neurons
σaux flow and σaux 5 are the same as those at time t = 1, and one spike has been
sent to the subtraction neuron. Therefore, starting from t = 2, in each time unit
neuron σSub receives one spike from σaux5 .

Now let us focus on the input neurons. At the beginning of the computation
they are empty. At time t = 3, neuron σSub can receive 0 or 3 spikes from σInput1

(through σaux1 , σaux2 and σaux3), and 0 or 1 spike from σInput2 (through σaux4).
This means that, at time t = 3, σSub may contain 1, 2, 4 or 5 spikes. We can thus
consider the following four cases.

• If σSub contains 1 spike, then it comes from σaux5 . The rule a → λ is trig-
gered, so that the spike is consumed and no spike is sent out. This encodes the
operation 0− 0 = 0.

• If σSub contains 2 spikes, then one of them comes from σaux5 and the other
one from σaux4 . The rule a2/a → a is triggered; as a consequence, one spike is
sent out and one spike is consumed, so one spike remains in σSub for the next
step. This encodes x0− y1 = z1 where x, y and z are numbers in binary form
such that x− (y + 1) = z.

• If σSub contains 4 spikes, then one of them comes from σaux5 and the other
three from σaux1 , σaux2 and σaux3 . The rule a4 → a is triggered, so that all the
spikes are consumed and one spike is sent out. This encodes 1− 0 = 1.

• If σSub contains 5 spikes, then each of them comes from σaux1 to σaux5 . The
rule a5 → λ is triggered; as a consequence, all the spikes are consumed and no
spike is sent out. This encodes the operation 1− 1 = 0.

In the general case, we consider that the spikes in neuron σSub come from the
input neurons, or remains in the neuron from the previous step. Since only one
spike can remain at each computation step, the number of spikes can be 1, 2, 3,
4, 5 or 6.

• If σSub contains 1 spike, then it comes from σaux5 . No spike has remained
from the previous step, nor comes from the input neurons. The rule a → λ
is applied. As a result, the spike is consumed and no spike is sent out. This
encodes 0− 0 = 0.

• If σSub contains 2 spikes, then one of them comes from σaux5 and the other
one either comes from σaux4 or remains from the previous step (no both cases
may occur at the same time). The case in which the second spike comes from
σaux4 has already been considered above. If it remains from the previous step,
then it comes from the operation in the second digit in x00− y01 = z11 where
x− (y + 1) = z. The rule a2/a → a is triggered; as a consequence, one spike is
sent out and one spike is consumed, thus leaving one spike in the neuron for
the next step.

• If σSub contains 3 spikes, then one of them comes from σaux5 , the other one
from σaux4 and the last one remains from the previous step. This situation
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comes from the operation on the second digit of x00 − y11 = z01, where
x − (y + 1) = z1. The rule a3/a2 → λ is applied. This means that two spikes
are consumed, no spike is sent out and one spike remains in the neuron for the
next step.

• If σSub contains 4 spikes, then one of them comes from σaux5 and the other
three come from σaux1 , σaux2 and σaux3 . This case has been already considered
above: the rule a4 → a is triggered, which consumes all the spikes and sends
out one spike. This encodes 1− 0 = 1.

• If σSub contains 5 spikes, then one of them comes from σaux5 and three of them
come from σaux1 , σaux2 and σaux3 . The fifth spike can come from σaux4 or can
remain from the previous step (the two events cannot occur both at the same
time). The case in which it comes from σaux4 has already been considered
above. If it remains from the previous step, then the situation comes from
x10 − y01 = z01, where x − y = z1. The rule a5 → λ is applied, which
consumes all the spikes. No spike is sent out and no spike remains for the next
step.

• If σSub contains 6 spikes, then one of them remains from the previous step and
the others come from σaux1 , σaux5 , σaux2 and σaux3 . The situation comes from
x10 − y11 = z11 where x − (y + 1) = z. The rule a6/a5 → a is triggered; as
a consequence, five spikes are consumed, one spike is sent out and one spike
remains for the next step. ut

Time step Input1 Input2 aux1 aux2 aux3 aux4 aux5 Sub Output

t = 0 0 0 0 0 0 0 0 0 0

t = 1 0 1 0 0 0 0 1 0 0

t = 2 0 1 0 0 0 1 1 1 0

t = 3 1 0 0 0 0 1 1 2 0

t = 4 1 0 1 1 1 0 1 3 1

t = 5 0 1 1 1 1 0 1 5 0

t = 6 1 1 0 0 0 1 1 4 0

t = 7 1 0 1 1 1 1 1 2 1

t = 8 0 0 1 1 1 0 1 6 1

t = 9 0 0 0 0 0 0 1 5 1

t = 10 0 0 0 0 0 0 1 1 0

Table 2. Number of spikes in each neuron of ΠSub, and number of spikes sent to the
environment, at each time step during the computation of the subtraction 11011002 −
1100112 = 1110012

As an example let us calculate 108 − 51 = 57, that in binary form can be
written as 11011002 − 1100112 = 1110012. Table 2 reports the number of spikes
that occur in each neuron of ΠSub, at each time step during the computation.
Note that at each step only one rule is active in the subtraction neuron, and thus
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the computation is deterministic. At time t = 0, the eight neurons of ΠSub are
empty and the system has not yet emitted any spike to the environment. At time
t = 1, the minuend and the subtrahend start to be supplied to σInput1 and σInput2 ,
respectively. From this moment, σaux5 always contains one spike. At t = 4 the first
digit of the output is emitted to the environment. The computation continues until
the binary sequence 1110012, which is the binary representation of 57, has been
emitted.

4 Checking Equality

Checking the equality of two numbers is a different task with respect to computing
addition or subtraction. When comparing two numbers the output should be a
binary mark, which indicates whether they are equal or not. Since an SN P system
produces a spike train, we will encode the output as follows: starting from an
appropriate instant of time, at each computation step the system will emit a spike
if and only if the two corresponding input bits (that were inserted into the system
some time steps before) are equal. So doing, the system will emit no spike to the
environment if the input numbers are equal, and at least one spike if they are
different. Stated otherwise, if we compare two n-bit numbers then the output will
also be an n-bit number: if such an output number is 0, then the input numbers
are equal, otherwise they are different.

Bearing in mind these marks for equality and inequality, the design of the SN
P system is trivial. It consists of three neurons: two input neurons, having a → a
as the single rule, linked to a third neuron, the checking neuron. This checking
neuron is also the output neuron, and it has only two rules: a2 → λ and a → a.

Formally, the SN P system for checking equality is defined as a structure:

ΠComp = (O, σInput1 , σInput2 , σComp, syn, in1, in2, out)

where:

• O = {a};
• σInput1 = (0, RInput1), with RInput1 = {a → a};
• σInput2 = (0, RInput2), with RInput1 = {a → a};
• σComp = (0, RComp), with RComp = {a → a, a2 → λ};
• syn = {(Input1, Comp), (Input2, Comp)};
• in1 = Input1, in2 = Input2;
• out = Comp.

The system is illustrated in Figure 3. Due to its simplicity, we just give an
informal justification of its working and correctness.

Both σInput1 and σInput2 send the information of the corresponding input digits
simultaneously. Such information consist of 0 or 1 spike for each of the two inputs,
so at each computation step there can be 0, 1 or 2 spikes in neuron σComp. If there
are 0 or 2 spikes, then no difference has been found and no spike is sent to the
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Fig. 3. An SN P system that compares two natural numbers of any length, expressed in
binary form

environment. A spike is emitted only when a single spike is placed in σComp. As
explained above, this will be considered as a mark of inequality of the two binary
numbers given as input, independent of any following bits.

5 Multiplication

In this section we present a first approach to the problem of computing the mul-
tiplication of two binary numbers by means of SN P systems. The main difference
between multiplication and the addition or subtraction operations presented in the
previous sections is that in addition and subtraction the n-th digit in the binary
representation of the inputs is used exactly once, to compute the n-th digit of
the output, and then it can be discarded. On the contrary, in the usual algorithm
for multiplication the different digits of the inputs are reused several times; hence
the design of a device that executes such algorithm needs some kind of memory.
Other algorithms for multiplication, such as Booth’s algorithm (see, for example,
[2]) also need some kind of memory, to store the intermediate results.

We propose a family of SN P systems for performing the multiplication of two
non-negative integer numbers. In these systems only one number, the multiplicand,
is provided as input; the other number, the multiplier, is instead encoded in the
structure of the system. The family thus contains one SN P system for each possible
multiplier.

In the design of our systems, we exploit the following basic fact concerning
multiplication by one binary digit: any number remains the same if multiplied by
1, whereas it produces a 0 if multiplied by zero. Bearing this fact in mind, an SN
P system associated to a fixed multiplier only needs to add different copies of the
multiplicand, by feeding such copies to an addition device with the appropriate
delay. Before presenting this design, we extend the 2-addition SN P system from
section 2 to an n-addition SN P system.

5.1 Adding n numbers

In this section we present a family {ΠAdd(n)}n≥2 of SN P systems which allows
to add numbers expressed in binary form. Precisely, for any integer n ≥ 2 the
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Fig. 4. An SN P system that performs the addition among five natural numbers expressed
in binary form

system ΠAdd(n) computes the sum of n natural numbers. In what follows we will
call ΠAdd(n) the SN P system for n-addition. For n = 2 we will obtain the SN P
system for 2-addition that we have described in Section 2.

The system ΠAdd(n) consists of n+1 neurons: n input neurons and one addition
neuron, which is also the output neuron. Each input neuron has only one rule,
a → a, and is linked to the addition neuron. This latter neuron computes the
result of the computation by means of n rules ri, i ∈ {1, . . . , n}, which are defined
as follows:

ri ≡ ai/ak+1 → a if i is odd and i = 2k + 1
ri ≡ ai/ak → λ if i is even and i = 2k

Formally, the SN P system for n-addition is defined as a structure:

ΠAdd(n) = (O, σInput1 , . . . , σInputn , σAdd, syn, in1, . . . , inn, out)

where:

• O = {a};
• σInputi = (0, RInputi), with RInputi = {a → a} for all i ∈ {1, 2, . . . , n};
• σAdd = (0, RAdd), with RAdd =

⋃n
i=1{ri}, where:

– ri ≡ ai/ak+1 → a if i is odd and i = 2k + 1;
– ri ≡ ai/ak → λ if i is even and i = 2k;

• syn =
⋃n

i=1{(Inputi, Add)};
• ini = Inputi, for all i ∈ {1, 2, . . . , n};
• out = Add.

As an example, Figure 4 shows ΠAdd(5), the SN P system for 5-addition. The
following theorem holds.

Theorem 3. The SN P system for n-addition outputs the addition in binary form
of n non-negative integer numbers, provided to the neurons σInput 1, . . . , σInput n

in binary form.
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Proof. Let A1, . . . , An be the n numbers to be added, and let ap
i a

p−1
i . . . a0

i be
the binary expression of Ai, 1 ≤ i ≤ n, padded with zeros on the left to obtain
(p + 1)-digit numbers (where p + 1 is the maximum number of digits among the
binary representations of A1, . . . , An). Hence we can write Ai =

∑p
k=0 ak

i 2k for all
i ∈ {1, 2, . . . , n}.

For each i ∈ {1, . . . , n}, let A′i be the number with binary expression ap
i . . . a1

i ,
i.e., A′i =

∑p
k=1 ak

i 2k−1. Moreover, let U =
∑n

i=1 a0
i and let k ∈ N and α ∈ {0, 1}

such that U = 2k + α (α = 1 is U is odd and α = 0 if U is even). The addition of
A1, . . . , An can be written as:

n∑

i=1

Ai =
n∑

i=1

p∑

k=0

ak
i 2k =

(
n∑

i=1

p∑

k=1

ak
i 2k

)
+

n∑

i=1

a0
i

= 2

(
n∑

i=1

p∑

k=1

ak
i 2k−1

)
+ 2k + α = 2

(
n∑

i=1

A′i + k

)
+ α

According to this formula, if br . . . b0 is the binary expression of
∑n

i=1 Ai, then
b0 = α and br . . . b1 is the binary expression of

∑n
i=1 A′i + k.

Let us assume now that at the time instant t there are i spikes in neuron σAdd.
These spikes can come from the input neurons, or they may have remained from
the previous computation step. Let us compute the t-th digit bt of the output,
dividing the problem in the following two cases.

• Let us assume that i is odd and i = 2k + 1. Then, according to the previous
formula, bt = 1 and k units should be added to the computation of the next
digit. This operation is performed by the rule ai/ak+1 → a. By applying this
rule, one spike is sent to the environment (bt = 1) and k+1 spikes are consumed,
so that i− (k + 1) = 2k + 1− (k + 1) = k spikes remain for the next step.

• Let us assume that i is even and i = 2k. Then, according to the previous
formula, bt = 0 and k units should be added to the computation of the next
digit. This operation is performed by the rule ai/ak → λ. By applying this
rule, no spike is sent to the environment (bt = 1) and k spikes are consumed,
so that i− k = 2k − k = k spikes remain for the next step. ut
As an example, let us consider the addition of the numbers 3, 4, 2, 7 and 1,

whose binary representations are 112, 1002, 102, 1112 and 12, respectively. Table
3 shows the evolution of the number of spikes in the neurons of the SN P system
ΠAdd(5) (illustrated in Figure 4), as well as the number of spikes sent to the
environment at each computation step, when performing such an addition. The
input and the output sequences are written in bold. Note that the first instant of
time for which the output is valid is t = 3. According with the computation, the
result of the addition is 17 = 100012.

5.2 Multiplication by a fixed multiplier

We now describe a family {ΠMult(n)}n∈N of SN P systems, one for each natural
number n, that operate as multiplier devices. Precisely, the system ΠMult(n) takes
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Time step Input1 Input2 Input3 Input4 Input5 Add Output

t = 1 1 0 0 1 1 0 0

t = 2 1 0 1 1 0 3 0

t = 3 0 1 0 1 0 4 1

t = 4 0 0 0 0 0 4 0

t = 5 0 0 0 0 0 2 0

t = 6 0 0 0 0 0 1 0

t = 7 0 0 0 0 0 0 1

Table 3. Number of spikes in each neuron of ΠAdd(5) (the system illustrated in Figure 4)
and number of spikes sent to the environment, at each time step during the computation
of the addition 112 + 1002 + 102 + 1112 + 12 = 100012

as input a number in binary form, and outputs the input multiplied by n. The
output is also expressed in binary form.

Given a natural number n, the SN P system ΠMult(n) is described as follows.
It consists of one input neuron, σInput, linked to k neurons σaux11 , . . . , σauxk1 ,
where k is the number of occurrences of the digit 1 in the binary representation of
n. For each i ∈ {1, . . . , k}, neuron σauxi1 is connected with a new neuron σauxi2 ,
which is connected with σauxi3 , etc. This sequence of neurons is a path of linked
neurons that extends until reaching σauxiji

, where ji is the number of order of
the corresponding digit in the binary representation of n, where the first digit
corresponds to 20, the second one corresponds to 21, and so on. All the last neurons
of the k sequences are connected with a final neuron σAdd, which is the same as
the output neuron of the k-addition SN P system ΠAdd(k) described above. This
neuron has the rules for the addition of k natural numbers. All the other neurons
have only the rule a → a.

For example, let us consider n = 26, whose binary representation is 110102.
Such a representation has three digits equal to 1, at the positions 2, 4 and 5. The
system ΠMult(26), illustrated in Figure 5, has 13 neurons: σInput, σAdd, and three
sequences of neurons associated with the three digits equal to 1:

• σaux11 and σaux12 , corresponding to the 1 in the second position (corresponding
to the power 21);

• σaux21 , σaux22 , σaux23 and σaux24 , corresponding to the 1 in the fourth position
(corresponding to the power 23);

• σaux31 , σaux32 , σaux33 , σaux34 and σaux35 , corresponding to the 1 in the fifth
position (corresponding to the power 24).

The last neurons of these sequences, namely σaux12 , σaux24 and σaux35 , are linked
to neuron σAdd, which is also the output neuron. The rules of this neuron are
a → a, a2/a → λ and a3/a2 → a, which are the same as in the addition neuron of
the 3-addition SN P system ΠAdd(3) described in the previous section.

Theorem 4. The SN P system ΠMult(n) built as above takes as input a number
m in binary form and outputs the result of the multiplication m ·n in binary form.
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Fig. 5. An SN P system that computes the product among the natural number given as
input (in binary form) and the fixed multiplier 26 = 110102, encoded in the structure of
the system

Proof. Since we already proved that the neuron σAdd performs the addition of
several numbers in binary form, it only remains to transform the multiplication
m ·n (where n is a fixed parameter) into an appropriate addition. To this aim, let
n =

∑q
j=0 nj2j . Then we can write:

m · n = m ·



q∑

j=0

nj2j


 =

q∑

j=0

(
m · 2j

)
nj

=
∑ {

m · 2j | j ∈ {0, . . . , q} ∧ nj = 1
}

According to this expression, m · n can be calculated as the addition of as
many copies of m as the number of digits nj equal to 1 that appear in the binary
representation of n. Such copies have to be padded with j zeros on the right (that
is, they have to be multiplied by 2j), to take into account the correct weight of nj .
Hence, if k =

∑q
j=0 nj then to compute m ·n it suffices to provide k copies of m –

each shifted in time of a number of steps that corresponds to the weight of a bit
nj equal to 1 – to a neuron that computes the addition of k natural numbers. ut

We conclude this section with an example of multiplication. We will take n = 26
as the multiplier (hence the system ΠMult(26) illustrated in Figure 5) and we will
supply the number 29 = 111012 as input. Table 4 reports the number of spikes
contained in neurons σaux12 , σaux24 , σaux35 and σAdd of ΠMult(26) during the
computation, as well as the number of spikes sent to the environment. According
to this computation, the output of the multiplication is 10111100102, which is the
binary representation of 754.

6 Conclusion and Future Work

In this paper we have presented some simple SN P systems that perform the
following operations on natural numbers: addition, multiple addition, comparison,
and multiplication by a fixed factor. All the numbers given as inputs to these
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Time step Input aux12 aux24 aux35 Add Out

t = 1 1 0 0 0 0 0

t = 2 0 0 0 0 0 0

t = 3 1 1 0 0 0 0

t = 4 1 0 0 0 1 0

t = 5 1 1 1 0 0 1

t = 6 0 1 0 1 2 0

t = 7 0 1 1 0 3 0

t = 8 0 0 1 1 3 1

t = 9 0 0 1 1 3 1

t = 10 0 0 0 1 3 1

t = 11 0 0 0 0 2 1

t = 12 0 0 0 0 1 0

t = 13 0 0 0 0 0 1

Table 4. Number of spikes in neurons σaux12 , σaux24 , σaux35 and σAdd of ΠMult(26) (the
system illustrated in Figure 5) and number of spikes sent to the environment, at each
time step during the computation of the multiplication 111012 · 110102 = 10111100102

systems are expressed in binary form, encoded as a spike train in which at each
time instant the presence of a spike denotes 1, and the absence of a spike denotes
0. The outputs of the computations are also expelled to the environment in the
same form.

The motivation for this work lies in the fact that we would like to implement
a CPU using only spiking neural P systems. To this aim, the first step is to design
the Arithmetic Logic Unit of the CPU, and hence to study a compact way to
perform arithmetical and logical operations by means of spiking neural P systems.
Ours is certainly not the unique possible way to approach the problem: other two
possibilities, that we leave as two directions for future research, are:

• Simulating by means of SN P systems the widely known Boolean circuits that
perform the desired arithmetical and logical operations. However, so doing we
need one system for each possible input size: as an example, we need one system
to add 2-bit numbers, another one to add 3-bit numbers, and so on. On the
contrary, the systems presented in this paper are able to process inputs of any
length;

• Simulating by means of SN P systems the programs of register machines that
perform the desired arithmetical and logical operations. This solution would
overcome the need to have one system for each possible input size. But, on the
other hand, the simulating SN P systems would probably be much larger than
those presented in this paper.

In any case, an interesting extension to the present work is to try to design
an SN P system for the multiplication, where both the numbers m and n to be
multiplied are supplied as inputs. And, of course, we would also need a system
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to compute the integer division between two natural numbers; probably, this last
system is the most difficult to be designed.
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Summary. The N -queens puzzle consists on placing N queens on an N ×Ngrid in such
way that no two queens are on the same row, column or diagonal line. In this paper we
present a family of P systems with active membranes (one P system for each value of N)
that provides all the possible solutions to the puzzle.

1 Introduction

The N -queens puzzle is very popular among computer scientists. It is a generaliza-
tion of a classic puzzle known as the 8-queens puzzle. The original one is attributed
to the chess player Max Bezzel and it consists on putting eight queens on an 8× 8
chessboard in such way that none of them is able to capture any other using the
standard movement of the queens in chess, i.e., only one queen can be placed on
each row, column and diagonal line.

The 8-queens puzzle was later generalized to the N-queens puzzle, with the
same rules but placing N queens on a N × N board. The problem is compu-
tationally very expensive, since there exists 64!/(56! × 8!) ∼ 4.4 × 109 possible
arrangements of 8 queens in a 8× 8 chessboard and there are only 92 solutions. If
two solutions are considered the same when one of them can be obtained from the
other one via a rotation or a symmetry, then there are only 12 different solutions.

For this reason, the brute force algorithm is not useful with current computers.
In fact, this simple puzzle is usually presented in Computer Science as an standard
of use of heuristics which allows us discard options and deal with a little number
of candidate solutions.

In this paper, we present a first solution to the N -queens puzzle in Membrane
Computing. For that purpose, we propose a family of deterministic P systems with
active membranes (the N -th element of the family solves the N -queens puzzle) such
that the halting configuration encodes all the solutions of the puzzle. As usual, we
use the massive parallelism to check all the feasible solutions at the same time and
obtain the solution in a reduced number of steps.
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The paper is organized as follows: In Section 2 we show how an instance of
the N -queens puzzle can be expressed as a formula in conjunctive normal form. In
Section 3, we briefly recall the P systems with active membranes and in Section
4, we present our family of P systems that solve SAT. The difference with other
solutions is that in this case the P system does not only send Yes or No to the
environment by showing the existence or not of a solution to the problem, but
it keeps all the truth values that satisfy the formula. In section 5 we build the
family of P systems that solve the N -queens problem by choosing the appropriate
P systems from the previous family. Section 6 shows several experimental results
obtained by running these solutions in an updated version of the P-lingua [1]
simulator. Finally, some conclusions and new open research lines are presented.

2 Changing the Representation

The key idea of our solution is that an instance of the N -queens puzzle for a fixed
N can be represented as a formula in conjunctive normal form (CNF) in such way
that one truth assignment of the formula can be considered as a solution of the
puzzle. In Section 5 we will show a family of P systems with active membranes
associated to the N -queens puzzle which encodes the truth assignments of the
associate formula in the halting configuration.

The N -queens puzzle can be represented by a formula in CNF with N2 propo-
sitional variables sij , where sij stands for the cell (i, j) of the N ×N chessboard.
The variable sij is assigned true if and only if a queen is assigned to the cell (i, j).
The different constraints of the puzzle can be expressed with this representation
in the following way:

• There is at most one queen in each column.

ψ1 ≡
n∧

i=1

n∧

j=1

n∧

k=j+1

(¬sij ∨ ¬sik)

• There is at most one queen in each row.

ψ2 ≡
n∧

i=1

n∧

j=1

n∧

k=j+1

(¬sji ∨ ¬ski)

Next we deal with the restriction of diagonal lines. Let us call D1 the set of diag-
onal lines parallel to the bottom-left to up-right diagonal and D2 the set of diagonal
lines parallel to the bottom-right to up-left diagonal. It is easy to see that any line
of D1 is characterized by a number from {−(n− 1),−(n− 2), . . . ,−1, 0, 1, . . . , n−
2, n−1} which represents the difference i− j in the cell (i, j). In order to fix ideas,
let us consider an 8×8 and the diagonal line 〈(1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8)〉.
Cells (i, j) in this diagonal line are characterized by number −2, since in all of them
i− j = −2.

On the other hand, any line of D2 is characterized by a number from
{2, 3, . . . , 2n − 1, 2n} which represents the sum i + j. For example, in a 8 × 8
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chessboard diagonal line 〈(5, 8), (6, 7), (7, 6), (8, 5)〉 can be characterized by num-
ber 13 since in all of them i + j = 13.

Firstly, we consider the diagonal lines of D1 corresponding to the bottom semi-
square. Each of these lines is characterized by a number d in {0, . . . , n − 2}, and
each line is compounded by the cells (i, j) such that i−j = d. Notice that d = n−1
is not considered, since such a diagonal line has only one cell. The formula that
codifies that there must occur one queen at most in these lines is

ψ3 ≡
n−2∧

d=0

n−d∧

j=1

n−2∧

k=j+1

(¬sd+j j ∨ ¬sd+k k)

The remaining diagonal lines from D1 correspond to the values d from the set
{−(n− 2), . . . ,−1} and they are codified by the formula

ψ4 ≡
−1∧

d=−(n−2)

n+d∧

j=1

n+d∧

k=j+1

(¬sj j−d ∨ ¬sk k−d)

We also split the set D2 into two subsets. The first of them corresponds to
the lines associated with numbers d in {3, . . . , n + 1} which represents the bottom
semi-square. Notice that the line with only one cell (the corner) is removed. The
formula that codifies that there must appear one queen at most in these lines is

ψ5 ≡
n+1∧

d=3

d−1∧

j=1

d−1∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

Analogously, the upper semi-square is associated with numbers d in {n +
2, . . . , 2n− 1}. The formula associated to these lines is

ψ6 ≡
2n−1∧

d=n+2

n∧

j=d−n

d−1∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

The conjunction of the previous formula says that in each column, row and
diagonal line, there must be at most one queen. These conditions are satisfied
by the empty board or by a board with only one queen. In order to fulfill the
conditions of the N -queens puzzle we need to impose N queens to be placed.
Since ψ1 encodes that There is at most one queen in each column, it suffices to
add the restriction There is at least one queen in each column in order to get that
There is exactly one queen in each column. Since there are N columns, this leads
us to place exactly N queens.

• There is at least one queen in each column.

ψ7 ≡
n∧

i=1

n∨

j=1

sij

The conjunction of these seven formulae

Φ ≡ ψ1

∧
ψ2

∧
ψ3

∧
ψ4

∧
ψ5

∧
ψ6

∧
ψ7

is a formula in conjunctive normal form and each truth assignment which makes
it true represents a solution to the N -queens puzzle.
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3 The P System Model

P systems with active membranes is one of the most studied models on Membrane
Computing and it is very well-known by the P system community. It is one of the
first models presented by Gh. Păun in [4]. Here we provide a brief recall of its
features.

A P system with active membranes is a construct:

(V,H, µ,w1, . . . , wm, R)

where:

1. m ≥ 1, is the initial degree of the system;
2. V is the alphabet of symbol-objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure, of m membranes, bijectively labeled with elements

of H;
5. w1, . . . , wm are strings over V , describing the initial multisets of objects placed

in the m regions of µ;
6. R is a finite set of evolution rules, of the following forms:

a) [ x → y ]αh , for h ∈ H, α ∈ {+,−, 0}, x ∈ V , y ∈ V ∗. This is an object
evolution rule, associated with a membrane labeled with h and depending
on the polarity of that membrane. The empty string is represented by
λ ∈ V ∗.

b) x [ ]α1
h → [ y ]α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, x, y ∈ V . An object from the
region immediately outside a membrane labeled with h is introduced in this
membrane, possibly transformed into another object, and simultaneously,
the polarity of the membrane can be changed.

c) [ x ]α1
h → y [ ]α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, x, y ∈ V . An object is
sent out from membrane labeled with h to the region immediately outside,
possibly transformed into another object, and simultaneously, the polarity
of the membrane can be changed.

d) [ x ]αh → y, for h ∈ H, α ∈ {+,−, 0}, x, y ∈ V . A membrane labeled with h
is dissolved in reaction with an object. The skin is never dissolved.

e) [ x ]α1
h → [ y ]α2

h [ z ]α3
h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, x, y, z ∈ V . A mem-

brane can be divided into two membranes with the same label, possibly
transforming some objects and their polarities.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. At one step,
one object of a membrane can be used by only one rule (chosen in a non
deterministic way), but any object being able to evolve by one rule of any
form, should evolve.

• If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.
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• All objects and membranes not specified in a rule and which do not evolve
remain unchanged to the next step.

• At the same time, if a membrane h is divided by a rule of type (e) or dissolved
by a rule of type (d) and there are objects in this membrane which evolve by
means of rules of type (a), then we suppose that evolution rules of type (a) are
used first and then, the division is produced. This process takes of course only
one step.

• The rules associated with membranes labeled with h are used for all copies of
this membrane. At one step, a membrane labeled with h can be the subject of
only one rule of types (b)-(e).

4 A New Solution for the SAT Problem

Propositional Satisfiability is the problem to determine, for a formula of the propo-
sitional calculus, if there is an assignment of truth values to its variables for which
that formula evaluates to true. By SAT we mean the problem of propositional
satisfiability for formulas in conjunctive normal form.

According to Section 2, in order to solve the N-queens puzzle we need to find
a truth assignment such that it makes true a formula in CNF. This problem is
exactly SAT. In [3], we can find a uniform solution to the problem SAT. This
design takes SAT as a decision problem and each P system of the family sends a
Yes or No answer to the environment at the last step of computation specifying
whether the solution exists or not. In this paper, we are not interested in the
existence or not of a solution for the N-queens puzzle, but finding (and storing)
the truth assignment in an effective way.

In this section we present a uniform family of deterministic recognizer P sys-
tems1 which solves SAT as a decision problem (i.e., the P system sends a Yes or No
answer to the environment at the last computation step) but it also stores truth
assignments that make the formula true. We can find all the solutions to the N-
queens puzzle encoded in the elementary membranes of the halting configuration.

Let us suppose that ϕ = C1 ∧ · · · ∧ Cm in a formula in CNF, and V ar(ϕ) =
{x1, . . . , xn} is the set of variables in ϕ. Formula ϕ will be provided to the P
systems as the following input multiset

cod(ϕ) = {xji |xi ∈ Cj} ∪ {yji | ¬xi ∈ Cj}
Such initial multiset will be placed in the membrane with input label at the initial
configuration. For each (m,n) ∈ N2 we consider the recognizer P system

(Π(〈m, n〉), Σ(m,n), i(m,n))

where the input alphabet is
1 A detailed description of recognizer P systems can be found in [3].
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Σ(m,n) = {xij , yij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the input label is i(m,n) = 2 and the P system

Π(〈n,m〉) = (Γ (m,n), {1, 2}, [ [ ]2 ]1, w1, w2, R)

is defined as follows:
Γ (m,n) = Σ(m,n) ∪ {dk : 1 ≤ k ≤ 43n + 2m + 1} ∪ {sk : 1 ≤ k ≤ n} ∪
{tj , fj : 1 ≤ j ≤ n} ∪ {zij , hij : 1 ≤ i ≤ m 2 ≤ j ≤ n, } ∪
{rij , 1 ≤ i ≤ m, 1 ≤ j ≤ 2n, } ∪ {ck : 1 ≤ k ≤ m + 1} ∪
{vk : 1 ≤ k ≤ 6n + 2m− 1} ∪ {e, r, Yes, No}
The initial content of each membrane is w1 = ∅ y w2 = {d0, v0}. As usual, the
initial polarization is 0. The set of rules, R, is given by:

(a.1) [ dj ]02 → [ sj+1 ]+2 [ sj+1 ]−2 for all j ∈ {0, . . . , n− 1}.
(a.2) [ dj ]+2 → dj [ ]02 [ dj ]−2 → dj [ ]02 for all j ∈ {1, . . . , n}.
(a.3) dj [ ]02 → [ dj ]02 for all j ∈ {1, . . . , n− 1}.
(a.4) [ di → di+1]01 for all i ∈ {n, . . . , 3n− 4} ∪ {3n− 2, . . . , 3n + 2m}.
(a.5) [ d3n−3 → d3n−2e]01.
(a.6) [ d3n+2m+1 ]01 → No [ ]+1 .

By using these rules, a membrane with label 2 is divided into two membranes
with the same label, but with different polarizations. These rules allow us to du-
plicate, in one step, the total number of internal membranes. When object dn is
reached, the counter changes its function. From dn to d4n+2m−3 the sequence of
objects di is just a counter. If object d4n+2m−3 is reached in the membrane labeled
with 1 with polarization 0, then the answer No is sent to the environment.

(b) [ sj → tjdj ]+2 [ sj → fjdj ]−2 for all j ∈ {1, . . . , n}.
Instead of producing an object dj+1, objects dj (0 ≤ j ≤ n− 1) produce an object
sj+1 (see the set (a.1)). With this new set of rules (b) we get such dj from sj . We
also obtain markers tj (true) and fj (false) depending on the polarization of the
membranes.

(c.1)
{

[ xi1 → ri1 ]+2 [ yi1 → λ ]+2
[ xi1 → λ ]−2 [ yi1 → ri1 ]−2

}
for all i ∈ {1, . . . , m}.

(c.2)
{

[ xij → zij ]+2 [ yij → hij ]+2
[ xij → zij ]−2 [ yij → hij ]−2

}
for all i ∈ {1, . . . , m} and j ∈ {2, . . . , n}.

The rules of (c.1) implement a process allowing internal membranes to encode
the assignment of a variable and, simultaneously, to check the value of all clauses
by this assignment, in such a way that if the clause is true then an object ri,1

will appear in the membrane. In other cases, the object encoding the variable will
disappear. Rules from set (c.2) perform a technical renaming.
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(d)
{

[ zij → xij−1 ]+2 [ hij → yij−1 ]+2
[ zij → xij−1 ]−2 [ hij → yij−1 ]−2

}
for all i ∈ {1, . . . ,m} and j ∈ {2, . . . , n}.

The checking process previously described is always carried out with respect
to the first variable appearing in the internal membrane. Hence, the rules of (d)
take charge of making a cyclic path through all the variables to get that, initially,
the first variable is x1, then x2, and so on.

(e.1) [ rij → rij+1 ]02 for all i ∈ {1, . . . , m} and j ∈ {1, . . . , 2n− 1}.
(e.2) [ r1 2n ]+2 → r1 2n[ ]−2 .
(e.3) [ r1 2n → λ ]−2 .
(e.4) [ rj 2n → rj−1 2n ]−2 for all j ∈ {2, . . . , m}.
(e.5) r1 2n [ ]−2 → [ r ]+2 .

In objects rjk, index j represents a clause. Index i evolves in all the membranes
until reaching rj 2n for each j ∈ {1, . . . , m}. These objects rj 2n play their role at
the checking stage.

(f)e [ ]02 → [ c1 ]+2 .

Objects e are created in membrane 1 by objects d3n−3. They send objects c1

into the elementary membranes and start the checking stage.

(g.1) [ vi → vi+1 ]02 [ vi → vi+1 ]+2 [ vi → vi+1 ]−2 , for all i ∈ {0, . . . , 6n+2m−2}.
(g.2) [ v6n+2m−1 → λ]−2 .
(g.3) [ v6n+2m−1]+2 → r.

The sequence of objects vi is merely a counter. If object v6n+2m−1 appears in
an elementary membrane with negative polarization, it just disappears. Otherwise,
if the polarization is positive, it dissolves the membrane. The importance of this
counter is crucial since all the membranes which do not encode a solution are
dissolved.

(h.1) [ cj → cj+1 ]−2 for all j ∈ {1, . . . ,m}.
(h.2) [ cm+1 ]+2 → cm+1 [ ]−2 .
(h.3) [ cm+1 ]01 → Yes [ ]+1 .

Evolution from c1 to cm+1 is completed only in the elementary membranes
that represents truth assignments that make the whole formula true. If an object
cm+1 reaches the skin, then it sends out an object Yes.

(i) [ r → λ]+2 .

Just a cleaning rule.
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4.1 Some notes on the computation

All the P systems of the family are deterministic. The first stage of the compu-
tation finishes with configuration C4n−1. In such configuration, there are 2n ele-
mentary membranes, one for each possible truth assignment of the set of variables
{x1, . . . , xn}. We also have 2n copies of the object dn in the membrane labeled by
1. The checking stage starts with the configuration C6n−2. An object c1 appears in
every elementary membrane in such configuration. If the answer is Yes, then the
halting configuration is C6n+2m, otherwise, if the answer is No, then the halting
configuration is C6n+2m+1.

If the answer is No, all the elementary membranes have been dissolved and
the unique membrane in the halting configuration is the skin. If the answer is
Yes, at least one elementary membrane has not been dissolved. Each elementary
membrane in the halting configuration represents a truth assignment that makes
the formula true. The encoding is quite easy: for each i ∈ {1, . . . , n}, either object
ti or object fi belongs to the elementary membrane. Objects ti means that in this
assignment, variable xi takes the value true, and fi means that such variable is
false.

It is easy to check that if we have a formula with n variables and m clauses we
need 10mn + 26n + 5m + 6 rules.

5 A Family of P Systems

In Section 2, we have seen that an instance of the N -queens puzzle can be rep-
resented as a formula in CNF and in Section 4 we have shown that there exists
one P system with active membranes which is able to solve any instance of the
problem SAT with m clauses and n variables.

In this section, we will select one P system of the family for each N . Since there
exist one P system associated to each pair (m,n) where m is the number of clauses
and n the number of variables, it only remains to know how many variables and
how many clauses there are in the CNF formula associated to each instance on
the N-queens puzzle. Both amounts are fixed by the following theorem.

Theorem 1. Given an integer N ≥ 3, the formula Φ in conjunctive normal form
that encodes the N-queens puzzle according to the previous description has N2

variables and 1
3 (5N3 − 6N2 + 4N) clauses.

Proof. It is trivial to check that the number of variables is N2, since each variable
represents a cell in a N ×N chessboard. In order to obtain the number of clauses,
we will sum the number of clauses in clauses ψ1, . . . ,ψ7, since the global formula
Φ is the conjunction of these seven formulae in CNF.

• Clause 1: ψ1 ≡
n∧

i=1

n∧

j=1

n∧

k=j+1

(¬sij ∨ ¬sik)
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For each column i ∈ {1, . . . , n} we compare the cells pairwise, so, in the formula
∧n

j=1 ∧n
k=j+1 (¬sij ∨ ¬sik) there are 1 + 2 + · · ·+ N − 1 = N(N−1)

2 clauses and
in ψ1 the number of clauses is

M1 =
N2(N − 1)

2

• Clause 2: ψ2 ≡
n∧

i=1

n∧

j=1

n∧

k=j+1

(¬sji ∨ ¬ski)

The situation is symmetric to the previous one, but considering rows instead
of columns, so the number of clauses is the same

M2 =
N2(N − 1)

2

• Clause 3: ψ3 ≡
n−2∧

d=0

n−d∧

j=1

n−2∧

k=j+1

(¬sd+j j ∨ ¬sd+k k)

In this set of diagonal lines, the first one corresponds to d = 0. In this line
there are n cells. The number of pairwise comparisons between cells of this
line is Sn−1 = 1 + 2 + · · · + n − 1. The following line corresponds to d = 1.
In this line there are n − 1 cells and the number of pairwise comparisons is
Sn−2 = 1 + 2 + · · · + n − 2. The whole number of comparisons is the sum
M = S1 + S2 + · · ·+ Sn−1 where

Sk = 1 + · · ·+ k =
k(k + 1)

2
=

1
2
k2 +

1
2
k for all k ∈ {1, . . . , n− 1}

Bearing in mind that
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6

we have that

M3 =
n−1∑

k=1

Sk =
1
2

(
n−1∑

k=1

k2 +
n−1∑

k=1

k

)
=

1
2

(
(n− 1) n (2n− 1)

6
+

n(n− 1)
2

)

=
1
6

n (n + 1) (n− 1)

• Clause 4: ψ4 ≡
−1∧

d=−(n−2)

n+d∧

j=1

n+d∧

k=j+1

(¬sj j−d ∨ ¬sk k−d)

The reasoning for ψ3 is also valid in this case. The difference is that we sum
from S1 to Sn−2, so the number of clauses in this case is

M4 =
1
6

n (n− 1) (n− 2)
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• Clause 5: ψ5 ≡
n+1∧

d=3

d−1∧

j=1

d−1∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

• Clause 6: ψ6 ≡
2n−1∧

d=n+2

n∧

j=d−n

d−1∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

Due to the symmetry, the number of clauses in these formulae are the same
than in ψ3 and ψ4, which are

M5 =
1
6

n (n + 1) (n− 1) and M6 =
1
6

n (n− 1) (n− 2)

• Clause 7: ψ7 ≡
n∧

i=1

n∨

j=1

sij

Trivially ψ7 has n clauses, M7 = n.

Finally, a simple calculus show that the whole number of clauses is

M1 + M2 + · · ·+ M7 =
1
3
(5n3 − 6n2 + 4n)

From the previous theorem we have the set of all solutions of the N-queens
puzzle are encoded in the elementary membranes of the halting configuration of
the P system

Π(〈1
3
(5N3 − 6N2 + 4N), N2〉)

with input membrane i(〈 13 (5N3− 6N2 +4N), N2〉) = 2 and input the appropriate
multiset on Σ(〈 13 (5N3 − 6N2 + 4N), N2〉) = 2 encoding the formula Φ.

6 Experimental Results

In this section, we show a couple of experimental results obtained by running the
corresponding P systems with an updated version of the P-lingua simulator [1].
The experiments were performed on a one-processor Intel core2 Quad (with 4 cores
at 2,83Ghz), 8GB of RAM and using a C++ simulator over the operating system
Ubuntu Server 8.04.

The 3-queens puzzle. In this case the problem consists on putting three queens
on a 3×3 chessboard. According to our representation, the puzzle can be expressed
by a formula in CNF with 9 variables and 31 clauses. This means that we can use
the P system Π(〈31, 9〉) from the family that solves the SAT problem to obtain
the solution. The input multiset has 65 elements and the P system has 3185 rules.

Along the computation, 29 = 512 elementary membranes need to be considered
in parallel. Since the simulation is carried out in a one-processor computer, in the
simulation, these membranes are evaluated sequentially. It takes 7 seconds to reach
the halting configuration. It is the 117-th configuration and in this configuration
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Fig. 1. Solutions to the 4-queens puzzle

one object No appears in the environment. As expected, this means that we cannot
place three queens on a 3×3 chessboard satisfying the restriction of puzzle.

The 4-queens puzzle. In this case, we try to place four queens on a 4×4 chess-
board. According to our representation, the puzzle can be expressed by a formula
in CNF with 16 variables and 80 clauses. This means that we can use the P system
Π(〈80, 16〉) from the family that solves the SAT problem to obtain the solution.
The input multiset has 168 elements.

Along the computation, 216 = 65536 elementary membranes need to be con-
sidered in parallel and the P system has 13622 rules.

The simulation takes 20583 seconds (> 5 hours) to reach the halting config-
uration. It is the 256-th configuration and in this configuration one object Yes
appears in the environment. This means that there exists at least one solution to
the problem. In order to know such solutions, we check the multiset of the elemen-
tary membranes. In this case there are two elementary membranes in the halting
configuration with the following multisets:

w1 = {f1, f2, t3, f4, t5, f6, f7, f8, f9, f10, f11, t12, f13, t14, f15, f16}
w2 = {f1, t2, f3, f4, f5, f6, f7, t8, t9, f10, f11, f12, f13, f14, t15, f16}

Such multisets encode the solution showed in the Figure 1

7 Conclusions and Future Work

In this paper we have presented a first solution to the N -queens puzzle based on
Membrane Computing. The necessary resources and the number of computational
steps for obtaining all the solutions of the puzzle are polynomial in N . Nonetheless,
the simulation in one-processor computer needs an exponential amount of time.

Looking for solutions to toy puzzles as this one is not viable in the current
conditions. This leads to us to three reflections: The first one is the necessity of
giving the first steps for a wet implementation of P systems. The second aim, in
the short-term, is to explore the possibilities of the most recent hardware, able to
implement in parallel a big amount of simple rules as a realistic implementation
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of P systems [2]. A third research line is to follow the same path than other
computation models: To avoid brute force algorithms and start to go deeply in the
study of heuristics in the design of cellular solutions.

Acknowledgements

The authors acknowledge the support of the project TIN2006-13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the Project of Excellence with Investigador de Reconocida Vaĺıa of the
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Guerrero, J.M. Garćıa: Simulation of Recognizer P Systems by Using Manycore
GPUs. In these proceedings.
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Computing Backwards with P Systems

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez
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Summary. Searching all the configurations C′ such that produce a given configuration
C, or, in other words, computing backwards in Membrane Computing is an extremely
hard task. The current approximations are based in heavy hand-made calculus by consid-
ering the specific features of the given configuration. In this paper we present a general
method for characterizing all the configurations C′ such that produce a given configura-
tion C in transition P systems without cooperation and without dissolution.

1 Introduction

Given a computational model with a universal clock, where the time is considered
in a discrete way and the transition from a state to the next one is made by a set
of rules, it is usual to wonder about the previous state of a given one, or in other
words, to wonder about the possibility of computing backwards.

Note that the determinism of the model does not make the solution easier,
since the determinism of the computation does not lead to the determinism of the
reverse computation. One can go deterministically from S to S0 and from S′ to S0,
but given S0, the reversed computation is not deterministic. A special situation
is considered when the rules are reversible. In this case, it suffices to apply the
reversed rules to S1 according to the computational model to obtain the desired
states1.

In this paper we study the problem of characterizing the set of configurations
of a P systems that produce a given configuration in one computational step. We
study the case in which the P system is not necessarily deterministic and the rules
are not reversible in general. We will consider a restricted version of transition
P systems without cooperation where the membrane structure does not change
along the computation.

The paper is organized as follows: first we expose an example that shows the
necessity of finding a method for computing backwards, avoiding the heavy calculus

1 This case is studied for P systems in [1].
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based on specific features of the given configuration. Next, our P system model is
briefly introduced and we present our representation for configurations and rules
in such a P system. In Section 6 we prove our main result: The computation of all
the configurations C ′ such that produce a given configuration C can be reduced
to find solutions of a system of linear equations with values2 in N. In Section
7 we provide a general method of calculus based on our theorem. Finally, some
conclusions and new open research lines are presented.

2 Motivation

The reader is assumed to be familiar with basic elements of membrane computing,
e.g., from [4] Let us start with the P system Π with alphabet Γ = {a, b, c}, set of
labels H = {e, s}, membrane structure µ = [ [ ]e ]s and set of rules R

Rule 1: [ a → b2c ]e Rule 4: [ b → a ]s
Rule 2: [ a ]e → a [ ]e Rule 5: a [ ]e → [ c ]e
Rule 3: [ b → c2 ]s Rule 6: [ c → a ]e

In Section 3, we will give a detailed description of the P system model studied
in this paper, but by now it is enough to know that all the rules are applied in
a non-deterministic maximal parallel way as usual in the general framework of
Membrane Computing.

Let us consider now configuration C ′ = [ [a2b ]e a2c ]s, i.e., the configuration in
which the multiset placed in the membrane labeled by e is a2b and the multiset in
the membrane s is a2c. Our problem is to find the configuration (or configurations)
C such that we can go from C to C ′ in one computational step. In other words,
we want to compute backwards from C and characterize all the configurations C

such that produce C ′ in one computation step.
We can reason in the following way:

• We find two objects a in the membrane labeled by e in the configuration C ′.
Since rules 1 and 2 consume all the objects in the membrane e from the previous
configuration C, we conclude that such pair of objects a must be produced by
the application of rule(s) of Π. It is easy to check that only rule 6 produces
objects a in membrane e, then the number of objects c in configuration C

must be at least 2. If we look at the set of rules again, we observe that object
c in membrane e only triggers rule 6. Hence, if the number of objects c in e is
higher than 2 we conclude that the number of objects a in the membrane e in
the configuration C must be greater than 2. Therefore, we conclude that the
number of objects c in the membrane e in configuration C is equal to 2.

• We find one object b in the membrane labeled by e in configuration C ′. The
unique rule that can produce it is rule 1, but the application of the rule produces
at least two objects b in membrane e. Then we conclude that rule 1 is not

2 We represent by N = {0, 1, 2, . . . } the set of natural numbers.
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applied. The occurrence of such object b can only be explained by considering
its occurrence in configuration C. As one can check, no rule is triggered by
object b in the membrane e, then the number of objects b in membrane e in
the configuration C equals to 1.

• No object c are placed in the membrane e in C ′. All such objects from the
previous configuration C are consumed by rule 6, so no object c in the mem-
brane e imply that rules 1 and 5 have not been triggered. From the previous
paragraph, it is known that rule 5 has not been applied. Since all the objects
a in membrane s send objects e into membrane c by means of rule 5 and the
numbers of objects c in such membrane in configuration C ′ is zero, we conclude
that in configuration C no objects a are placed in the membrane s.

• We find one object c in the membrane labeled by s in configuration C ′. The
unique rule that can produce it is rule 3, but the application of the rule produces
at least two objects c in membrane s. Then we conclude that rule 3 is not
applied. The occurrence of such object b can only be explained by considering
its occurrence in configuration C. As one can check, no rule is triggered by the
object c in the membrane s, then the number of objects c in membrane s in
the configuration C equals 1.

• Finally, we find two objects a in the membrane labeled by s in the configuration
C ′. Since rule 5 consumes all the objects in the membrane e from the previous
configuration C, we conclude that such objects a must be produced by the
application of rule(s) of Π. Rules 2 and 4 produce objects a in membrane s.
Rule 2 is triggered by an object a in the membrane e and rule 4 is triggered
by an object b in membrane s. We can also check that all the objects b in
s produce objects a. Nonetheless, an object a in the membrane e can trigger
rules 1 and 2. Fortunately, we have seen that rule 1 is not triggered, so can
conclude that all the objects a in membrane e trigger rule 2. We conclude that
the number of objects a in membrane e in the configuration C and the number
of objects b in the membrane s must be less than or equal to 2 and the sum of
both numbers must be equal to 2.

Bearing in mind these considerations, there are three configurations C such
that produce C ′ in one computation step:

• C1 = [ [ bc2 ]e b2c ]s, i.e., we = bc2 and ws = b2c. It is easy to check that by
applying the rules 4 and 6 we obtain the configuration C ′ = [ [a2b ]e a2c ]s.

• C2 = [ [ abc2 ]e bc ]s, i.e., we = abc2 and ws = bc. In this case, C ′ is obtained by
applying the rules 2, 4 and 6.

• C3 = [ [ a2bc2 ]e c ]s, i.e., we = a2bc2 and ws = c. In this case, C ′ is obtained by
applying the rules 2 and 6.

A question arises in a natural way: Could this reasoning be automatic? In other
words, given a P system and a configuration C ′, is there an algorithm such that
outputs the set C of configurations C and produce C ′ in one computational step?

We can even go beyond. We wonder if there exists an algorithm such that
it takes a P system Π as input and it outputs a mapping RΠ which, for every
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configuration C ′ of Π, RΠ(C ′) is the set of all computations C such that C ′ is
obtained from C in one computational step. In this paper, we will give a positive
answer to both questions. Before, we need to recall the connections between P
systems and Linear Algebra.

3 The P System Model

Throughout this paper, we will consider a restricted form of transition P systems
without dissolution and without output membrane. Considering an output mem-
brane is irrelevant for our study, since we are not interested in the objects placed
in a particular membrane, but in the computation process itself. We also restrict
the type of rules. Cooperation is not allowed and then rules are triggered by only
one object.

Namely, along this paper a P system of degree m is a tuple

Π = (Γ,H, µ,w1, . . . , wm, R)

where:

• Γ is an alphabet whose elements are called objects;
• H is the set of m labels and m is called the degree of Π.
• µ is the membrane structure of the P system; membranes are bijectively labelled

with the elements of H;
• wh1

, . . . , whm
are strings that represent multisets over Γ associated with each

membrane of µ;
• R = {R1, . . . , Rm} is the set of sets of rules, where Ri with i ∈ {1, . . . ,m}

is a finite set of evolution rules over Γ . The type of evolution rules of Ri

depends on the membrane structure µ. Let j1, . . . , jr be the labels of membranes
immediately inside the membrane i. An evolution rule of Ri is of the form
a → v, where a is an object from Γ and v is an string over Γ i

tar, where Γ i
tar =

Γ × TARi, for TARi = {here, out} ∪ {injk
| k ∈ {1, . . . , r} }.

The symbols here, out and injk
are called target commands. The rules are

applied in a non-deterministic maximally parallel way. Given a rule a → v, the
effect of applying this rule in a compartment i is to remove the object a and to
insert the objects specified by v in the regions designated by the target commands
associated with the objects from v. In particular,

• if v contains (a, here), the object a will be placed in the same region where the
rule is applied;

• if v contains (a, out), the object a will be placed in the compartment that
surrounds the region where the rule is applied;

• if v contains (a, inj), the object a will be placed in compartment j, provided
that j is immediately inside i.
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In one step, each object in a membrane can only be used for one rule (non
deterministically chosen when there are several possibilities), but any object which
can evolve by a rule of any form must do it. All the elements which are not involved
in any of the rules to be applied remain unchanged. Several rules can be applied
to different objects in the same cell simultaneously.

Along the computation, the multisets associated with the membranes can
change, but the alphabet Γ , the set of labels H, the membrane structure µ and
the set of rules R are constant. We will call the 4-uple (Γ,H, µ,R) the skeleton of
the P system.

Notice that the P system presented in Section 2 is a particular case of this P
system model with a slight change of notation in the rules

1. Notation [a → v]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a → (v1, here) . . . (vn, here) belongs to the
set of rules Rh, with v = v1 . . . vn.

2. Notation a[ ]h → [v]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a → (v1, inh) . . . (vn, inh) belongs to the set
of rules Rh∗ , with h∗ the label of the membrane surrounding the membrane h

and v = v1 . . . vn.
3. Notation [a]h → v[ ]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short

notation to indicate that the rule a → (v1, out) . . . (vn, out) belongs to the set
of rules Rh, with v = v1 . . . vn.

4 Changing the Point of View

The key idea of the present paper is to consider an algebraic representation for the
configurations and the rules of a P system. The starting point is the representation
used in [2], but we introduce several changes.

First, our elementary objects are pairs of type (a, h) ∈ Γ × H meaning that
object a ∈ Γ is placed in the membrane (labeled by) h ∈ H. Roughly speaking,
transitions in P systems are performed by rules in which the occurrence of an
element a0 in a membrane h0 produces the occurrence of β1 copies of element a1

in membrane h1, β2 copies of element a2 in membrane h2, etc.
More formally, the rules in the P system model presented above can be refor-

mulated as follows:

(a0, h0) → (a1, h1)
β1(a2, h2)

β2 . . . (an, hn)βn

Note that, for all i ∈ {1, . . . , n}, if h0 = hi then, (ai, hi) is equivalent to the pair
(ai, here). Otherwise, if h0 6= hi both membranes must be adjacent (one membrane
is the father of the other one). If h0 is the father of hi, then the pair (ai, hi) is
equivalent to (ai, inhi

). Finally, if hi is the father of h0, then the pair (ai, hi) is
equivalent to (ai, out). For each i ∈ {1, . . . , n}, βi represents the multiplicity of
(ai, hi) in the right-hand side (RHS) of the rule.



216 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

The second basic idea in the representation appears in [3] too. It consists on
settling a total order in the set Γ × H. Along the paper, in order to simplify the
notation, given an alphabet Γ and a set of labels H, d will denote the cardinal
Γ ×H. Let us consider a total order O on the set Γ ×H, O : {1, . . . , d} → Γ ×H.
By using this order, we will represent Γ × H as the finite sequence 〈γ1, . . . , γd〉,
where γi is the i-th pair of Γ × H in the order O.

By using this order, each rule

(a0, h0) → (a1, h1)
β1(a2, h2)

β2 . . . (an, hn)βn

can be represented as
γ → γα1

1 γα2

2 . . . γαd

d

where (a0, h0) = γ and for all i ∈ {1, . . . , d}:

• If there exists j ∈ {1, . . . , n} such that γi = (aj , hj) then αi = βj .
• Otherwise αi = 0.

We will say that γ → γα1

1 γα2

2 . . . γαd

d is the pairwise representation of the rule.
The use of an order on Γ ×H leads us to a more homogeneous representation

of rule γ → γα1

1 γα2

2 . . . γαd

d . It can be represented by a pair 〈γ,~v〉 where γ (the LHS
of the rule) belongs to Γ × H, and ~v is a vector of dimension d whose arguments
are in N. Formally, we have the following definition:

Definition 1. Let us consider a P system Π with Γ the alphabet and H the set of

labels. Let Γ × H be the ordered set 〈γ1, . . . , γd〉. The algebraic representation of

the rule

γ → γα1

1 γα2

2 . . . γαd

d

is the pair (γ,~v) where ~v = (α1, . . . , αd). We will say that ~v represents the right-

hand side of the rule ri.

Remark 1: Given an order 〈γ1, . . . , γd〉 on Γ×H, a pair 〈γ,~v〉 where γ ∈ Γ×H

and ~v is a vector of dimension d (with values in N) defines a unique rule and vice-
versa, each rule having a unique algebraic representation.

Remark 2: If the P system is not deterministic, then there exists at least one
γ ∈ Γ × H such that there exists two different vectors ~v1 and ~v2 such that pairs
〈γ,~v1〉 and 〈γ,~v2〉 represent two different rules.

Let us see an example of this algebraic representation.

Example 1. Let us consider the skeleton of the P system considered in Section 2
with Γ = {a, b, c}, H = {e, s}, µ = [ [ ]e ]s and R the set of rules

Rule 1: [ a → b2c ]e Rule 4: [ b → a ]s
Rule 2: [ a ]e → a [ ]e Rule 5: a [ ]e → [ c ]e
Rule 3: [ b → c2 ]s Rule 6: [ c → a ]e

The set of objects is Γ = {a, b, c} and the set of labels is H = {e, s}. Let us
consider the following total order in Γ × H
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〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉

The six rules of the P system can be settled as

r1: (a, e) → (b, e)2(c, e) r4: (b, s) → (a, s)
r2: (a, e) → (a, s) r5: (a, s) → (c, e)
r3: (b, s) → (c, s)2 r6: (c, e) → (a, e)

By using the previous total order in Γ ×H, these rules have the following algebraic
representation

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉

4.1 Configurations

A configuration of such a P system is the description of the multiset placed in
the membranes of the P system in a given instant. Formally, given a P system
with working alphabet Γ and set of labels H, a configuration C is a multiset over
Γ × H, C : Γ × H → N, and we denote by C(a,m) the multiplicity of object a in
the membrane labeled by m of that configuration. The support of C, supp(C), is
defined as supp(C) = {(a,m) ∈ Γ × H |C(a,m) 6= 0} and, as usual in multisets
theory, C will be represented as {(a,m)C(a,m) | (a,m) ∈ supp(C)}. For example,
the configuration of our example [ [ b ]e c3 ]s can be represented as {(b, e), (c, s)3}.

From the idea of setting an order on Γ×H, the representation of a configuration
via a vector is quite natural.

Definition 2. Let us consider a P system Π with Γ the alphabet, H the set of labels

and order 〈γ1, . . . , γd〉 on Γ × H. An algebraic representation of a configuration

C : Γ × H → N is a vector

~C = (C(γ1), . . . , C(γd))

that is, the j-th element in ~C is a number representing the multiplicity of the j-th

element of Γ × H.

Let us remark that, if the order on Γ × H is set, then there exists a bijective
correspondence between a configuration C and its algebraic representation ~C.

Example 2. As we saw before, the initial configuration [ [ b ]e c3 ]s can be expressed
as the multiset C = {(b, e), (c, s)3}. If we consider order

〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉

then the algebraic representation of the configuration is ~C = (0, 1, 0, 0, 0, 3).
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In order to formalize the concept of computation with this new representation,
we will fix some notations. We denote by RHSr the right-hand side of rule r and
for all σ ∈ Γ ×H, |RHSr(σ)| denotes the multiplicity of σ in the multiset RHSr.

Example 3. Let us consider the pairwise representation of the rule r1 : (a, e) →
(b, e)2(c, e), then RHSr1

= (b, e)2(c, 2) and |RHSr1
|(b, e) = 2.

Definition 3. Let us consider an alphabet Γ , a set of labels H and the set of rules

R of a P system. We will denote by LHS(R) the set of all the pairs from Γ × H

that are the left-hand side of a rule from R. Formally

LHS(R) = {γ ∈ Γ × H | ∃r ∈ R (γ = LHS(r))}

Example 4. Let us consider Γ = {a, b, c}, H = {e, s} and R the set of rules

r1: (a, e) → (c, e)2 r2: (a, e) → (a, s) r3: (b, e) → (c, e)
r4: (a, s) → (b, s) r5: (a, s) → (b, s)(c, s)2

In this case LHS(R) = {(a, e), (b, e), (a, s)}.

Definition 4. Let us consider an alphabet Γ and a set of labels H of a P sys-

tem Π and let R = 〈r1, . . . , rp〉 be an enumeration of its set of rules with

rj = (LHS(rj), ~vj). Let C : Γ × H → N be a configuration of Π.

A partition of C with respect to R is a p-uple

P = 〈(r1, k1), . . . , (rp, kp)〉

such that for all j ∈ {1, . . . , p}, kj ≥ 0 and for all γ ∈ LHS(R)
∑

LHS(rj)=γ

kj = C(γ)

Example 5. Let us consider an alphabet Γ = {a, b, c} a set of labels H = {e, s},
µ = [ [ ]e ]s and R the set of rules from the example 4

r1: (a, e) → (c, e)2 r2: (a, e) → (a, s) r3: (b, e) → (c, e)
r4: (a, s) → (b, s) r5: (a, s) → (b, s)(c, s)2

Let us consider a configuration with algebraic representation ~C =
〈3, 0, 1, 7, 4, 1〉 associated with order 〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉 of Γ×H.
In this case, one possible partition of C with respect to R is

P = 〈(r1, 2), (r2, 1), (r3, 0), (r4, 2), (r5, 5)〉

the number associated to each rule is a natural number and LHS(R) =
{(a, e), (b, e), (a, s)}, so in order to check that P is a partition it suffices to check

∑

LHS(rj)=(a,e) kj = k1 + k2 = 2 + 1 = 3 = C(a, e)
∑

LHS(rj)=(b,e) kj = k3 = 0 = C(b, e)
∑

LHS(rj)=(a,s) kj = k4 + k5 = 2 + 5 = 7 = C(a, s)
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The different possible partitions capture the idea of different choice of rules in
the case of non-deterministic P system. Notice that in the case of a deterministic
P system, there exists only one partition

P = 〈(r1, C(LHS(r1))), (r2, C(LHS(r2))), . . . , (rp, C(LHS(rp)))〉

In order to obtain a new configuration C ′ from a given configuration C and from
the set of rules {r1, . . . , rp}, we need to describe the multiplicity of any σ ∈ Γ ×H

in C ′. For the calculus of such multiplicity we need

• A partition P = 〈(r1, k1), . . . , (rp, kp)〉 of C with respect to R.
• The set LHS(R)

In such multiplicity, each rule ri : γi → RHSri
adds the multiplicity of σ in

the right hand side of the rule multiplied by the value ki in the partition P. If the
object is not consumed by any rule, we also add the multiplicity in the original
configuration.

Formally, for every σ ∈ Γ × H we have:

C ′(σ) =

{∑i=p
i=1 ki · |RHSri

(σ)| if σ ∈ LHS(R)
∑i=p

i=1 ki · |RHSri
(σ)| + C(σ) if σ 6∈ LHS(R)

Example 6. Let us come back again to our P system Π with alphabet Γ = {a, b, c},
set of labels H = {e, s}, membrane structure µ = [ [ ]e ]s and the set of rules R

Rule 1: [ a → b2c ]e Rule 4: [ b → a ]s
Rule 2: [ a ]e → a [ ]e Rule 5: a [ ]e → [ c ]e
Rule 3: [ b → c2 ]s Rule 6: [ c → a ]e

Let us consider configuration C1 = [ [ bc2 ]e b2c ]s, i.e., we = bc2 and ws = b2c.
It is easy to check that by applying rules 4 and 6 we obtain configuration
C ′ = [ [a2b ]e a2c ]s. Such configuration can also be obtained by considering
the multiplicity of each pair in Γ × H and using the previous formula. First
we consider the partition P = 〈(r1, 0), (r2, 0), (r3, 0), (r4, 2), (r5, 0), (r6, 2)〉 and
LHS(R) = {(a, e), (b, s), (a, s), (c, e)}. Then, for example,

C ′(a, s) = k1 · 0 + k2 · 1 + k3 · 0 + k4 · 1 + k5 · 0 + k6 · 0 = 2 · 1 = 2
C ′(b, e) = k1 · 2 + k2 · 0 + k3 · 0 + k4 · 0 + k5 · 0 + k6 · 0 + C(b, e) = 0 · 2 + 1 = 1

the remaining multiplicities in configuration C ′ can be obtained in a similar way.

5 Matrix Associated with the Skeleton

After defining the algebraic representation of rules and configurations, we will
define a numerical matrix associated with the skeleton of a P system. The next
definition of extended set of rules will be used in the definition of the matrix.
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Definition 5. Let Γ be the alphabet, H the set of labels and R the set of rules of a

P system where R is a set of rules in its pairwise form. The extended set of rules

of R in this skeleton, R∗ is the set of rules R together with the identity rule γ → γ

for all the γ ∈ Γ × H such that there is no rule in R with γ in its left-hand side.

Considering identity rules, we obtain P systems whose computations never
stop. In this paper, we are interested only in the evolution of computation in time
and not in halting conditions. Let us remark two important considerations related
with the extended set of rules:

• If R∗ is the extended set of rules of R, then LHS(R∗) = Γ × H.
• Consequently, if C is a configuration of a P system Π with 〈γ1, . . . , γd〉 an order

on Γ × H and P∗ = 〈(r1, k1), . . . , (rp, kp)〉 is a partition of a configuration C

of a P system with respect to its extended set of rules, then configuration C ′

that can be obtained from C in one computation step following such partition
is C ′(γj) =

∑i=p
i=1 ki · |RHSri

(γj)| for all j ∈ {1, . . . , d}.

Example 7. Let us consider again the skeleton of example 1, and its set of rules,

r1: (a, e) → (b, e)2(c, e) r4: (b, s) → (a, s)
r2: (a, e) → (a, s) r5: (a, s) → (c, e)
r3: (b, s) → (c, s)2 r6: (c, e) → (a, e)

Note that the pairs γ from Γ ×H such that there is no rule in R with γ as its
left-hand side are (b, e) and (c, s), therefore to obtain R∗ we have to add to R the
rules

r7: (b, e) → (b, e) r8: (c, s) → (c, s)

Obviously, the set of rules R∗ has also an algebraic representation

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 7: 〈(b, e), (0, 1, 0, 0, 0, 0)〉
Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉 Rule 8: 〈(c, s), (0, 0, 0, 0, 0, 1)〉

With the help of the concept of extended set of rules, we define the matrix
associated with a skeleton.

Definition 6. Let us consider skeleton Sk = (Γ,H, µ,R) of a P system and let

〈r1, . . . , rp〉 be an enumeration of the extended set of rules R∗ of R in its algebraic

form. The matrix associated with skeleton Sk, MSk is the matrix whose rows are

vectors ~v1, . . . , ~vp, where for each i with 1 ≤ i ≤ p, ~vi is the vector which represents

the right-hand side of rule ri.

Before showing an example, some remarks are necessary.
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• The matrix associated with a skeleton depends on the skeleton, as well as on
the enumeration of the rules of the extended set and the order on Γ × H. A
different enumeration produces a different order in the rows of the matrix.

• In case of deterministic P systems, the number of rules in the extended set,
p, and the number of pairs in Γ × H, d are the same and we have a square
matrix3. In general, MSk is a d × p matrix with d ≤ p.

Example 8. If we consider the skeleton of example 7 and the enumeration
of the eight rules of the extended set R∗ and the usual order on Γ × H,
〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 7: 〈(b, e), (0, 1, 0, 0, 0, 0)〉
Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉 Rule 8: 〈(c, s), (0, 0, 0, 0, 0, 1)〉

we have the following matrix

MSk =

























0 2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

























6 Computing Backwards

The definition of these algebraic objects allows us to define an algebraic method
to characterize the set of configurations C which can produce a given configuration
C0 in one computation step. First, we need to find the solutions of a system of
linear equations.

Definition 7. Let Π be a P system, 〈r1, . . . , rp〉 a enumeration of its set of ex-

tended rules, MSk the matrix associated with the skeleton of Π based on that enu-

meration of R∗ and let ~C0 be the vectorial representation of a configuration C0. We

will define the solution set of MSk and ~C0 and we will denote it by SOL(MSk, ~C0)

the set of real-valued vectors ~x with dimension p such that ~C0 = ~x · MSk.

Notice that according to the definition, SOL(MSk, ~C0) can be the empty set.
It is well known in Linear Algebra that if the range of the matrix MSk and the

3 This kind of matrices were studied in [3].
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range of the matrix MSk augmented with the vector of coefficients ~C0 is not the
same, then the system of equations has no solution.4

SOL(MSk, ~C0) is a manifold of dimension p minus the range of the matrix
MSk embedded in a vectorial space of dimension p, but the study of the algebraic
properties of such manifold is out of the scope of this paper.

Example 9. Let us come back to our main example. If we take the matrix MSk

from example 8, configuration C ′ = [ [ a2b ]e a2c ]s from Section 2 and algebraic

representation ~C ′ = (2, 1, 0, 2, 0, 1), then in order to get SOL(MSk, ~C ′) we need to
solve the system

(2, 1, 0, 2, 0, 1) = (x1, x2, x3, x4, x5, x6, x7, x8)

























0 2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

























or equivalently,
x6 = 2 x2 + x4 = 2

2x1 + x7 = 1 2x3 + x8 = 1
x1 + x5 = 0

Then, SOL(MSk, ~C ′) is the following 3-dimensional manifold embedded in an 8-
dimensional vectorial space

SOL(MSk, ~C ′) = {(α, β, γ, 2 − β,−α, 2, 1 − 2α, 1 − 2γ) : α, β, γ ∈ R }

Definition 8. Let Π be a P system and an order 〈γ1, . . . , γd〉 on Γ×H, 〈r1, . . . , rp〉
a enumeration of its set of extended rules, MSk the matrix associated with the skele-

ton of Π based on that enumeration of R∗ and let ~C be the vectorial representation

of a configuration C. We define the constructor mapping as

ψΠ : SOL(MSk, ~C) → R
d

such that for all (x1, . . . , xp) ∈ SOL(MSk, ~C ′), ψΠ((x1, . . . , xp)) = (y1, . . . , yd)
verifying for all i ∈ {1, . . . , d},

yi =
∑

γi=LHS(rk)

xk

4 This result is called the Rouche-Frobenius theorem, especially in the Spanish speaking
world. This is almost certainly because the Spanish mathematician Julio Rey Pastor
referred to the theorem by this name.
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Notice that the set SOL(MSk, ~C) depends on the way in which the set of ex-

tended rules is enumerated, but ψΠ(SOL(MSk, ~C)) is independent of such enumer-

ation. Obviously, if all the coordinates of ~x ∈ SOL(MSk, ~C ′) are natural numbers,
then all the coordinates of ψ(~x) are also natural numbers.

Example 10. Following with the set SOL(MSk, ~C ′) from Example 9 and order
〈((a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉 on Γ × H, we have

y1 =
∑

(a,e)=LHS(rk) xk = x1 + x2 = α + β

y2 =
∑

(b,e)=LHS(rk) xk = x7 = 1 − 2α

y3 =
∑

(c,e)=LHS(rk) xk = x6 = 2

y4 =
∑

(a,s)=LHS(rk) xk = x5 = −α

y5 =
∑

(b,s)=LHS(rk) xk = x3 + x4 = 2 + γ − β

y6 =
∑

(c,s)=LHS(rk) xk = x8 = 1 − 2γ

Therefore ψΠ(SOL(MSk, ~C)) is a 3-dimensional manifold embedded in an 6-
dimensional vectorial space

ψΠ(SOL(MSk, ~C)) = {(α + β, 1 − 2α, 2,−α, 2 + γ − β, 1 − 2γ) |α, β, γ ∈ R}

Finally, we only consider the elements of SOL(MSk, ~C) such that all its coor-
dinates are natural numbers. We will prove below that the image of such vectors
by means of the constructor mapping represent the searched configurations.

Definition 9. Let Π be a P system, 〈r1, . . . , rp〉 a enumeration of its set of ex-

tended rules, MSk the matrix associated with the skeleton of Π based on that

enumeration of R∗ and let ~C be the vectorial representation of a configuration C.

We define

• NSOL(MSk, ~C)) = {(x1, . . . , xp) ∈ SOL(MSk, ~C)) | ∀i ∈ {1, . . . , p} (xi ∈ N)}

• A constructed configurations C1 of Π is a configuration such that ~C1 ∈
ψΠ(NSOL(MSk, ~C)).

Example 11. If we take ψΠ(SOL(MSk, ~C)) from Example 10

ψΠ(NSOL(MSk, ~C)) =































(α + β, 1–2α, 2,−α, 2 + γ–β, 1–2γ) |

α, β, γ ∈ R

α + β ∈ N

1 − 2α ∈ N

−α ∈ N

2 + γ − β ∈ N

1 − 2γ ∈ N































The set ψΠ(NSOL(MSk, ~C)) has only three elements

~C1 = (0, 1, 2, 0, 2, 1) ~C2 = (1, 1, 2, 0, 1, 1) ~C3 = (2, 1, 2, 0, 0, 1)

which correspond to the three configurations obtained in Section 2. Next we prove
that the result holds in the general case.
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Theorem 1. Let Π be a P system with skeleton Sk = (Γ,H, µ,R) and let C be

a configuration of Π. Let 〈γ1, . . . , γd〉 be an order on Γ × H and 〈r1, . . . , rp〉 an

enumeration of the extended set of rules R∗ of R. Let MSk be the matrix associated

with the skeleton Sk following such order and enumeration. Then, the configuration

C1 produces C in one computation step if and only if ~C1 ∈ ψΠ(NSOL(MSk, ~C)).

Proof. Let us consider a configuration C1 such that ~C1 ∈ ψΠ(NSOL(MSk, ~C)).
Such configuration is a multiset C1 on the set Γ×H such that for all i ∈ {1, . . . , n},
C1(γi) ∈ N.

~C1 ∈ ψΠ(NSOL(MSk, ~C)) if and only if there exist (x1, . . . , xp) ∈

SOL(MSk, ~C) with xi ∈ N for all i ∈ {1, . . . , p} such that ψΠ(x1, . . . , xn) =
(C1(γ1), . . . , C1(γd)). By definition of the constructor mapping ψΠ :

SOL(MSk, ~C) → R
d we have for all i ∈ {1, . . . , d},

C1(γi) =
∑

γi=LHS(rk)

xk

On the other hand, we also know that (x1, . . . , xp) ∈ SOL(MSk, ~C), i.e.,

(C(γ1), . . . , C(γd)) = (x1, . . . , xd) · MSk

By construction of the matrix MSk, the previous equality means that for all i ∈
{1, . . . , n},

C(γi) =

p
∑

j=1

xj · |RHSrj
(γi)|

To sum up, ~C1 ∈ ψΠ(NSOL(MSk, ~C)) if and only if there exist (x1, . . . , xp) such
that for all i ∈ {1, . . . , p}

(a) xi ∈ N

(b) C1(γi) =
∑

γi=LHS(rk) xk

(c) C(γi) =
∑p

j=1 xj · |RHSrj
(γi)|

Since R∗ is a set of extended rules, LHS(R∗) is the set Γ × H. Bearing this
equality in mind, properties (a) and (b) claim that P∗ = 〈(r1, x1), . . . , (rp, xp)〉 is
a partition of C1 with respect to R∗ and property (c) claims that the configuration
C can be obtained from C1 by using the partition P∗.

On the other hand, if C1 produces C in one computation step, then there
exist a vector (x1, . . . , xn) such that 〈(r1, x1), . . . , (rp, xp)〉 is a partition of C1

with respect to R∗ verifying properties (a), (b) and (c) and therefore ~C1 ∈

ψΠ(NSOL(MSk, ~C)).

7 A General Method

After the proof of Theorem 1, we come back to the questions asked at the end of
Section 2. We wondered if there exists an algorithm such that it takes a P system
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Π as input and it outputs a mapping RΠ which, for every configuration C ′ of Π,
RΠ(C ′) is the set of all computations C such that C ′ is obtained from C in one
computational step. A method for computing such algorithm is the following:

Given a P system Π with skeleton Sk = (Γ,H, µ,R),

1. Fix an order 〈γ1, . . . , γd〉 for Γ × H.
2. Consider the pairwise representation of the rules in R according to such order.
3. Consider the extended set of rules R∗ from R and fix an enumeration

〈r1, . . . , rp〉 of the rules from R∗ in its algebraic representation.
4. Define matrix MSk following the orders 〈γ1, . . . , γd〉 and 〈r1, . . . , rp〉.

Matrix MSk is the same for all configurations. Next we provide a method for
finding all the configurations C ′ such that C ′ produce a given configuration C in
one computation step.

Given a configuration C of Π

1. Obtain the algebraic representation ~C of C according to the order 〈γ1, . . . , γd〉.

2. Find all the vectors ~x with natural coordinates such that ~C = ~x · MSk. The
set of all these vectors is called NSOL(MSk, ~C).

3. For each ~x ∈ NSOL(MSk, ~C), we consider C~x = (y1 . . . , yd) where, for all
i ∈ {1, . . . , n}

yi =
∑

γi=LHS(rk)

xk

4. The set {C~x | ~x ∈ NSOL(MSk, ~C)} is the set of the algebraic representations
of all the configurations such that produce C in one computation step.

8 Conclusions and Future Work

In this paper, we provide a general method for finding all the configurations that
produce a given one in one computational step. For that purpose, we have used an
algebraic representation of rules and configurations and a matrix associated with
the skeleton of the P systems.

The key step of the algorithm is to find all the vectors of natural numbers
that are solutions of a system of linear equations. In such a system, the number
of equations is the number of objects in the alphabet multiplied by the number of
labels. The number of variables in the system is the cardinal of the set of extended
rules which is at least the same as the number of equations and has no upper
bound.

The problem of finding the solutions with natural values of a system of linear
equations is a heavy problem, specially if we consider a high number of variables
and equations (which is the usual case for P systems). Nonetheless, currently there
exist some powerful software tools able to deal with large numerical matrices and
solve the corresponding systems under the restriction of finding natural-valued
vectors.
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In this way, we hope that this method can be useful for researchers interested in
computing backwards in Membrane Computing, since it can consider the problem
of finding the previous configurations as a problem of Integer Programming.

Finally, this work can be extended in several ways. Not only by going deeper
in the concept of computing backwards along a computation (and not only in one
step) but exploring if these ideas can be extended to other P system models.
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Summary. During mammalian central nervous system (CNS) development, an enor-
mous variety of cell types are generated. This cell diversity is due in part to asymmetrical
cell division. Asymmetrical segregation of Numb, a cell-determinant protein, can result
in the differential activation of the Notch pathway. The Notch pathway defines one of
the few fundamental signalling pathways that govern metazoan development. Notch sig-
nals link the fate decisions of one cell to those of its neighbours. Notch activation has a
profound effect on many aspects of nervous system development. Here we present a brief
overview of Notch signalling and reiterate some relevant questions relating to the Notch
pathway.

1 Cell Diversity

The mammalian central nervous system (CNS) contains an enormous variety of
cell types each with a unique morphology, physiology and function (Lein et al.,
2006). Understanding how neuroepithelial cells (stem cells) of the developing CNS
choose between alternative cell fates to generate cell diversity is a challenge (Cay-
ouette and Raff, 2002). During development, cell-fate diversity is brought about,
in part, by asymmetric cell divisions (Gho and Schweisguth, 1998). Asymmetric
segregation of cell determinants, such as Numb can result in the differential activa-
tion of the Notch pathway, which can generate cell diversity (Fichelson and Gho,
2004). In invertebrates, asymmetric segregation of cell-fate determining proteins
or mRNAs to the two daughter cells during precursor cell division plays a crucial
part in cell diversification. There is increasing evidence that this mechanism also
operates in vertebrate neural development and that the Numb protein, which func-
tion as cell-fate determinant during Drosophila development, may also function in
this way during vertebrate development (Cayouette and Raff, 2002). A very clear
illustration of symmetric and asymmetric segregation of a cell fate-determining
protein can be found in Figure 2 of Cayouette and Raff (2002).
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2 Notch Pathway

Cells that receive Numb antagonize Notch activity. Those cells that do not receive
numb will adopt the fate associated with Notch activation. Despite the complexity
of the action of Notch, some general principles underlying the action of this fun-
damental cell-interaction mechanism have become known. During development,
animals use Notch signalling to amplify molecular differences between neighbour-
ing cells. The implementation of a particular developmental program modulated
by Notch depends, however, on how Notch integrates its activity with other cellu-
lar factors (Artavanis-Tsakonas et al., 1999), and is dependent on cellular context
(Bray, 2006). The Notch cell interaction mechanism defines one of the few funda-
mental signalling pathways that govern metazoan development. Notch signals link
the fate decisions of one cell to those of its neighbours and have been shown to
have a profound effect on many aspects of nervous system development (Louvi and
Artavanis-Tsakonas, 2006). Delta-Notch signalling is involved in cell fate decisions
in developing vertebrates.

3 Notch Activation

Notch, a transmembrane protein, is activated by the ligands Delta and Jagged,
which are also transmembrane proteins expressed by neighbouring cells. Notch ac-
tivation is described in detail in Kageyama et al. (2005), which we now summarise.
Upon activation, the intracellular domain of Notch is transferred into the nucleus
and forms a complex with RBP-J. This complex induces Hes1 and Hes5 expression.
Hes1 and Hes5 inhibit the expression of activator-type bHLH. In a differentiating
neuron, Notch is not activated, and RBP-J represses Hes1 and Hes5 expression.
The activator-type bHLH genes are expressed. The activator-type bHLH factors
induce expression of Hes6, which inhibits Hes1 functions and reinforces the neuro-
genic process. The activator-type bHLH factors also induce neuronal specific genes.
One of them includes the Notch ligand Delta, which activates Notch signalling in
neighbouring cells. An excellent illustration of Delta-Notch signalling is found in
Kageyama et al. (2005): Figure 1, entitled “Regulation of neural development by
the repressor-type and activator-type bHLH genes”. Put simply, Delta ligands bind
and activate Notch receptors on a neighbouring cell, this Delta-Notch signalling
can dictate the fate of the neighbouring cells (by influencing intracellular gene
expression).

4 Notch Pathway: Questions

Notch signals affect specific cell fates in a context-specific manner, a schematic
summarising the effects of Notch signalling and its affect on cell fate decisions
can be found in Louvi and Artavanis-Tsakonas (2006), Figure 3. Understanding



Notch Signalling and Cellular Fate Choices 229

how and why different target genes are activated according to cell type and time
is a very important question, in other words: how and why is Notch activation
context dependant (Bray, 2006)? This and other important questions are posed in
Bray (2006). The response to Notch differs greatly between cell types, for example
Notch promotes cell proliferation in some contexts and apoptosis in others. What
is the reason for this? Bray also states that recent data reveals that the precise
location of the Notch ligand and the receptor in the cell can have profound effects
on signalling. How does the different ligand locations exactly impact on Notch
activity? All of these questions are extremely important in untangling the role of
Notch during diverse developmental and physiological processes.

5 Modelling

Modelling biological processes can be a fruitful undertaking (Fussengger et al.,
2000). As stated in Fisher and Henzinger (2007) computational and mathematical
modelling of biological systems is becoming increasingly important in efforts to
better understand complex biological behaviours. Over the years, diagrammatic
models have been used to summarise and understand experimental data. Despite
the many benefits of such models, as well as their simplicity, they give a stationary
picture of cellular processes. Therefore, translating these models into more dynamic
forms may be very useful (Fisher and Henzinger, 2007). Fussengger et al. (2000)
believe “The model represents a flexible yet rigorous method to store, visualise and
interact with current and newly emerging biological information.” A modelling
approach that permits rigorous tests of mutual consistency between experimental
data and mechanistic hypotheses and can identify specific conflicting results can
provide a useful tool to developmental biology (Kam et al., 2008).

The Notch pathway is a fundamental pathway in metazoan development and
the design and implementation of a good dynamic model of this pathway, and
of crosstalk between Notch and other signalling pathways, may be beneficial to
developmental biologists.
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Summary. Although testing is an essential part of software development, until recently,
P system testing has been completely neglected. Mutation testing (mutation analysis) is
a structural software testing method which involves modifying the program in small ways.
Mutation analysis has been largely used in white-box testing, but only a few tentative
attempts to use this idea in black-box testing have been reported in the literature. In this
paper, we provide a formal way of generating mutants for systems specified by context-
free grammars. Furthermore, the paper shows how the proposed method can be used to
construct mutants for a P system specification, thus making a significant progress in the
area of P system testing.

1 Introduction

Membrane computing, the research field initiated by Gheorghe Păun in 1998 [12],
aims to define computational models, called P systems, which are inspired by the
behavior and structure of the living cell. Since its introduction in 1998, the P sys-
tem model has been intensively studied and developed: many variants of membrane
systems have been proposed, a research monograph [13] has been published and
regular collective volumes are annually edited – a comprehensive bibliography of P
systems can be found at [16]. The most investigated membrane computing topics
are related to the computational power of different variants, their capabilities to
solve hard problems, like NP-complete ones, decidability, complexity aspects and
hierarchies of classes of languages produced by these devices. In the last years
there have also been significant developments in using the P systems paradigm to
model, simulate and formally verify various systems [2]. Suitable classes of P sys-
tems have been associated with some of these applications and software packages
have been developed. Of the many variants of P systems that have been defined,
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in this paper we consider cell-like P systems without priority rules and membrane
dissolving rules [13].

Testing is an essential part of software development and all software appli-
cations, irrespective of their use and purpose, are tested before being released.
Testing is not a replacement for a formal verification procedure, when the former
is also present, but rather a complementary mechanism to increase the confidence
in software correctness [5]. Although formal verification has been applied to dif-
ferent models based on P systems [1], until recently testing has been completely
neglected in this context.

The main testing strategies involve either (1) knowing the specific function or
behavior a product is meant to deliver (functional or black-box testing) or (2)
knowing the internal structure of the product (structural or white-box testing).
In black-box testing, the test generation may be based on a formal specification
or model, in which case the process could be automated. There is a large class
of formal models used in software specification: finite state machines, Petri nets,
process algebras, Z, VDM etc. We can add now P systems as a formal approach
[2] to specifying various applications in linguistics, graphics and, more recently,
biology, especially for defining signalling pathways.

A number of recent papers devise testing strategies based on rule coverage [4],
finite state machine [8] and stream X-machine [7] conformance techniques. In this
paper, we propose an approach to P system testing based on mutation analysis.

Mutation testing (mutation analysis) is a structural software testing method
which involves modifying the program in small ways [14], [9]. The modified versions
of the program are called mutants.

Consider, for example, the following fragment of a Java program:

if (x ≥ 0)&&a then
y = y + 1

else
y = y + 2

Then mutants for this code fragment can be obtained by either

• substituting && with another logic operator, e.g., ||;
• substituting ≥ with another comparison operator, e.g., >, =;
• substituting + with another arithmetic operators, e.g., −;
• substituting one variable (e.g. x) with another one, e.g., y (we assume that the

two variables have the same type).

Some (not all) mutants of the above code fragment are given below.

if (x ≥ 0)||a then
y = y + 1

else
y = y + 2
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if (x > 0)&&a then
y = y + 1

else
y = y + 2

if (x ≥ 0)&&a then
y = y − 1

else
y = y + 2

if (x ≥ 0)&&a then
y = y + 1

else
y = y − 2

if (x ≥ 0)&&a then
x = y + 1

else
y = y + 2

if (x ≥ 0)&&a then
y = y + 1

else
x = y + 2

A variety of mutation operators (ways of introducing errors into the correct
code) for imperative languages are defined in the literature [9], [10] (a few examples
are given above). These are called traditional mutation operators. Beside these,
there are mutation operators for specialized programming environments, such as
object-oriented languages [10]. A popular tool for generating mutants for Java
programs is MuJava [15], [10].

The underlying idea behind mutation testing is that, in practice, an erroneous
program either differs only in a small way from the correct program or, alterna-
tively, a bigger fault can be expressed as the summation of smaller (basic) faults
and so, in order to detect the fault, the appropriate mutants need to be generated.
If the test suite is able to detect the fault (i.e., one of the tests fails), then the
mutant is said to be killed. Two kinds of mutation have been defined in the liter-
ature: weak mutation requires the test input to cause different program states for
the mutant and the original program; strong mutation requires the same condition
but also the erroneous state to be propagated at the end of the program (and
hence produce an incorrect output). Obviously, the generation of a weak mutation
test suite is less complex; on the other hand, a strong mutation test suite is easier
to apply as only the program outputs need to be measured.

Mutation analysis has been largely used in white-box testing, but only a few
tentative attempts to use this idea in black-box testing have been reported in the
literature [11]. Offutt et al. propose a general strategy for developing mutation
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operators for a grammar based software artefact, but the ideas that outline the
proposed strategy for mutation operator development are rather vague and general
and no formalization is provided.

In this paper we provide a formal way of generating mutants for systems spec-
ified by context-free grammars. Given such a specification, a derivation (or parse)
tree can be associated with. Based on it, we formally describe the process of gen-
erating the mutants for the given tree. Furthermore, the paper shows how the
proposed method can be used to construct mutants for a P system specification.

2 Preliminaries

Before proceeding we introduce the notation to be used in this paper. For an
alphabet V = {a1, . . . , ap}, V ∗ denotes the set of all strings over V . λ denotes the
empty string. For a string u ∈ V ∗, |u|ai

denotes the number of ai occurrences in u.
Each string u has an associated vector of non-negative integers (|u|a1 , . . . , |u|ap

).
This is denoted by ΨV (u).

2.1 Context-free grammars

In this section basic concepts and results related to context-free grammars are
introduced. For more details on automata, grammars and languages we refer to a
classical textbook [6]. A context-free grammar is a system G = (V, T, P, S), where

• V is the set of variables (nonterminals);
• T is the set of terminals;
• P is the set of production rules of the form A → w; where A is a single

nonterminal symbol, and w is a string of terminals and/or nonterminals;
• S is the start symbol.

For any strings u, v ∈ (V ∪ T )∗, we write u =⇒ v if there exists a production
rule A → w and α, β ∈ (V ∪ T )∗ such that u = αAβ and v = αwβ. That is, v is
the result of applying the rule A → w to u.

The =⇒ relation can be extended to a sequence of zero or more production
rules: for any u, v ∈ (V ∪ T )∗, we write u =⇒∗ v if there exist u1, · · · , uk, k ≥ 1
such that u = u1, v = uk and ui =⇒ ui+1, 1 ≤ i ≤ k− 1. We say that u derives v.
If the derivation has at least one step (i.e., k > 1) then we denote u =⇒+ v.

The language described by the context-free grammar G is the set L(G) =
{v ∈ T ∗ | S =⇒∗ v}. A language L ⊆ T ∗ is said to be context-free if there is a
context-free grammar G such that L = L(G).

A context-free grammar is said to be proper if

• it has no useless symbols (inaccessible symbols or unproductive symbols), i.e.,
∀A ∈ V , ∃α, β ∈ (V ∪ T )∗, v ∈ T ∗ such that S =⇒∗ αAβ and A =⇒∗ v;

• it has no λ-productions, i.e., A → λ;
• it has no renaming production rules, i.e., A → B, for A, B ∈ V .
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For every context-free language L, if λ /∈ L then there exists a proper context-free
grammar that describes L. For simplicity, in the sequel we consider only proper
context-free grammars.

A derivation (parse) tree for a (proper) context-free grammar G = (V, T, P, S)
is a tree that satisfies the following conditions:

• each non-leaf node is labeled by a nonterminal in V ;
• each leaf node is labeled by a terminal in T ;
• if a non-leaf node is labeled A and its children are labeled X1, . . . , Xk then

A → X1 . . . Xk is a production rule of G.

If the root node is labeled by S then the yield of the tree is the string of
terminals obtained by concatenating the leaves from left to right. For any string
of terminals w ∈ T ∗, S =⇒∗ w if and only if w is the yield of some derivation
(parse) tree with root S [6]. Consequently, w ∈ L(G) if and only if w is generated
by some parse tree with root S. Parse trees have very high practical value as they
are used by compilers to represent the structure of the source code.

A grammar is said to be ambiguous if there exists a string and in any leftmost
derivation (always the leftmost nonterminal is rewritten) this can be generated
by more than one derivation (parse) tree. Usually, ambiguity is a feature of the
grammar, not of the language and unambiguous grammars can be found to describe
the same context-free language. However, there are certain context-free languages
which can only be generated by ambiguous grammars; such languages are called
inherently ambiguous. An ambiguous grammar presents a practical problem since
a string may be associated with more than one parse tree. However, there are
well-known techniques for eliminating the causes of ambiguity which are used in
compiler construction.

In the sequel we will consider (possibly ambiguous) context-free grammars
which describe languages that are not inherently ambiguous. We will tacitly assume
that mechanisms for solving the causes of ambiguity exist and so there is a one-
to-one mapping between a string and its parse tree.

2.2 P systems

A basic cell-like P system is defined as a hierarchical arrangement of membranes
identifying corresponding regions of the system. With each region there are asso-
ciated a finite multiset of objects and a finite set of rules; both may be empty. A
multiset is either denoted by a string u ∈ V ∗, where the order is not considered,
or by ΨV (u). The following definition refers to one of the many variants of P sys-
tems, namely cell-like P system, which uses non-cooperative transformation and
communication rules [13]. We will call these processing rules. Since now onwards
we will refer to this model as simply P system.

Definition 1. A P system is a tuple Π = (V, µ, w1, . . . , wn, R1, . . . , Rn), where

• V is a finite set, called alphabet;
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• µ defines the membrane structure; a hierarchical arrangement of n compart-
ments called regions delimited by membranes; these membranes and regions
are identified by integers 1 to n;

• wi, 1 ≤ i ≤ n, represents the initial multiset occurring in region i;
• Ri, 1 ≤ i ≤ n, denotes the set of processing rules applied in region i.

The membrane structure, µ, is denoted by a string of left, [, and right, ],
brackets, each with the label of the membrane it points to; µ also describes
the position of each membrane in the hierarchy. For instance, a structure of
three membranes in which membrane 1 contains membranes 2 and 3 can be
described by either [1[2]2[3]3]1 or [1[3]3[2]2]1. The rules in each region have the
form u → (a1, t1) . . . (am, tm), where u is a multiset of symbols from V , ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a multiset u in
the current region, the symbol a is replaced by the symbols ai with ti = here;
symbols ai with ti = out are sent to the outer region or outside the system when
the current region is the external compartment and symbols ai with ti = in are
sent into one of the regions contained in the current one, arbitrarily chosen. In the
following definitions and examples all the symbols (ai, here) are used as ai. The
rules are applied in maximally parallel mode which means that they are used in
all the regions in the same time and in each region all the symbols that may be
processed, must be.

A configuration of the P system Π, is a tuple c = (u1, . . . , un), where ui ∈ V ∗,
is the multiset associated with region i, 1 ≤ i ≤ n. A derivation of a configuration
c1 to c2 using the maximal parallelism mode is denoted by c1 =⇒ c2. In the set of
all configurations we will distinguish terminal configurations; c = (u1, . . . , un) is a
terminal configuration if there is no region i such that ui can be further derived.

For the type of P systems we investigate in this paper multi-membranes can
be equivalently collapsed into one membrane through properly renaming symbols
in a membrane. Thus, for the sake of convenience, in this paper we will only focus
on P systems with only one membrane.

2.3 Kripke structures

Definition 2. A Kripke structure over a set of atomic propositions AP is a four
tuple M = (S, H, I, L), where

• S is a finite set of states;
• I ⊆ S is a set of initial states;
• H ⊆ S × S is a transition relation that must be total, that is, for every state

s ∈ S there is a state s′ ∈ S such that (s, s′) ∈ H;
• L : S → 2AP is an interpretation function, that labels each state with the set

of atomic propositions true in that state.

Usually, the Kripke structure representation of a system results by giving values
to every variable in each configuration of the system. Suppose var1, . . . , varn are
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the system variables, V ali denotes the set of values for vari and vali is a value from
V ali, 1 ≤ i ≤ n. Then the states of the system are S = {(val1, . . . , valn) | val1 ∈
V al1, . . . , valn ∈ V aln}, and the set of atomic predicates are AP = {(vali = val) |
1 ≤ i ≤ n, val ∈ V ali}. Naturally, L will map each state (given by the values of
variables) onto the corresponding set of atomic propositions. Additionally, a halt
(sink) state is needed when H is not total and an extra atomic proposition, that
indicates that the system has reached this state, is added to AP . For convenience,
in the sequel AP and L will be omitted from the definition of a Kripke structure.

Definition 3. An infinite path in a Kripke structure M = (S,H, I, L) from a
state s ∈ S is an infinite sequence of states π = s0s1 . . . , such that s0 = s and
(si, si+1) ∈ H for every i ≥ 0. A finite path π is a finite prefix of an infinite path.

3 Mutation Testing from a Context-Free Grammar

In this section we provide a way of constructing mutants for systems specified by
context-free grammars. Given the system specification, in the form of a parse tree,
we formally describe the generation of mutants for the given specification.

Consider a context-free G = (V, T, P, S) and L(G) the language defined by G.
We assume that, for every production rule p of G of the form A → X1 . . . Xk,
we have defined a set Mut(p), called the set of mutants of p. A mutant p′ of p is
a production rule of the form A → X ′

1 . . . X ′
n such that each symbol X ′

1, . . . , X
′
n

is either a terminal or is found among X1, . . . , Xk. Furthermore, p′ is either a
production rule of G itself or has the form A → A, A ∈ V ; this condition ensures
that the yield of the mutated tree is syntactically correct.

Among the mutants of p, the following types of mutants can be distinguished:

• A terminal replacement mutant is a production rule of the form A → X ′
1 . . . X ′

k

if there exists j, 1 ≤ j ≤ k, such that Xj , X
′
j ∈ T , Xj 6= X ′

j and X ′
i = Xi,

1 ≤ i ≤ n, i 6= j.
• A terminal insertion mutant is a production rule of the form A → w where w is

obtained by inserting one terminal into the string X1 . . . Xk (at any position).
• A string deletion mutant is a production rule of the form A → w where w is

obtained by removing one or more symbols from X1 . . . Xk.
• A string reordering mutant is a production rule of the form A → w where w is

obtained by reordering the string X1 . . . Xk.

Given any parse tree Tr for G, the set of mutants of Tr is defined as follows:

• A one-node tree has no mutants.
• Let Tr be the tree with root A and subtrees Tr1, . . . , T rk having root nodes

X1, . . . , Xk, respectively and p ∈ P the corresponding production rule of G, of
the form A → X1 . . . Xk. This is denoted by Tr = MakeTree(A, Tr1, . . . , T rk).
Let Tr′ denote a mutant of Tr. Then either
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– (subtree mutation) Tr′ = MakeTree(A, Tr′1, . . . , T r′k), where there ex-
ists j, 1 ≤ j ≤ k, such that Tr′j is mutant of Trj and Tr′i = Tri, 1 ≤ i ≤ k,
i 6= j, or

– (rule mutation) Tr′ = tree(A, Tr′1, . . . , T r′n), where there exists a mutant
p′ of p of the form A → X ′

1 . . . X ′
n such that for every i, 1 ≤ i ≤ n, there

exists j, 1 ≤ j ≤ n, such that Tr′i = Trj .

According to [11] these operations can be made such as to keep the result
produced by them in the same language or in a larger one. In the first case a
much simpler approach can be considered whereby each rule having a certain
nonterminal in the left hand side is replaced by another different rule having the
same nonterminal as left hand side. However the above set of operations provide
a two stage method which generates mutants by considering first the rule level
and then the derivation (parse) tree. If these operations are restricted to produce
strings in the same language then we have the following result.

Lemma 1. Every mutant of a parse tree for G is also a parse tree from G.

Proof. Follows by induction on the depth of the tree.

Thus, the yield of any mutant constructed as above belongs to the language
described by G and so only syntactically correct mutants will be generated. Syn-
tactically incorrect mutants are useless (they do not produce test data) and so the
complexity of the testing process is reduced by making sure that these are ruled
out from the outset.

Example 1. Let G = (V, T, P, S) where

• V = {S};
• T = {0, . . . , N} ∪ {+,−} where N is a fixed upper bound;
• P = {p1, p2} ∪ {pi

3 | 0 ≤ i ≤ N}, where p1 : S → S + S, p2 : S → S − S,
pi
3 : S → i, 0 ≤ i ≤ N .

Suppose we have the following rule mutants:

• Mutants for p1 : S → S − S (terminal replacement), S → S (string deletion)
• Mutants for p2 : S → S + S (terminal replacement), S → S (string deletion)
• Mutants for pi

3 : S → i − 1 and S → i + 1 if 1 < i < N , S → 1 if i = 0
and S → N − 1 if i = N . The mutants of pi

3 are of terminal replacement type
and are based on a technique widely used in software testing practice, called
boundary value analysis. According to practical experience, many errors tend
to lurk close to boundaries; thus, an efficient way to uncover faults is to look
at the neighboring values

Consider the string 1 + 2− 3 and a parse tree for this string as represented in
Figure 1 (leaf nodes are in bold). The construction of mutants for the given parse
tree is illustrated in Figures 2, 3 and 4. Thus, the mutated strings are 0 + 2 − 3,
2 + 2 − 3, 1 + 1 − 3, 1 + 3 − 3, 1 − 3, 2 − 3, 1 + 2 − 2, 1 + 2 − 4, 1 + 2 + 3,
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1 − 2 − 3, 1 + 2, 3. Some of these produce the same result as the original string;
these are called equivalent mutants. Since no input value can distinguish these
mutants from the correct string, they will not affect the test suite when strong
mutation is considered.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S + S 

S 

3 

1 2 

- 

S 

S 

Fig. 1. Example parse tree

4 P System Mutation Testing

Consider a 1-membrane P-system Π = (V, µ, w, R), where R = {r1, . . . , rm}; each
rule ri, 1 ≤ i ≤ m, is of the form ui → vi, where ui and vi are multisets over
the alphabet V . In the sequel, we treat the multisets as vectors of non-negative
integers, that is each multiset u is replaced by ΨV (u) ∈ Nk, where k denotes the
number of symbols in V .

In order to keep the number of configuration finite we will assume that each
component of a configuration u cannot exceed an established upper bound denoted
Max. We denote u ≤ Max if ui ≤ Max for every 1 ≤ i ≤ k and Nk

Max = {u ∈
Nk | u ≤ Max}. Analogously to [3], the system is assumed to crash whenever
u ≤ Max does not hold (this is different from the normal termination, which
occurs when u ≤ Max and no rule can be applied). Under these conditions, the
1-membrane P system Π can be described by a Kripke structure.

In order to define the Kripke structure equivalent of Π we use two predi-
cates, MaxParal and Apply, defined by: MaxParal(u, u1, v1, n1, . . . , um, vm, nm),
u ∈ Nk

Max, n1, . . . , nm ∈ N signifies that a derivation of the configuration u in
maximally parallel mode is obtained by applying rules r1 : u1 → v1, . . . , rm : um →
vm for n1, . . . , nm times, respectively; Apply(u, v, u1, v1, n1, . . . , um, vm, nm), u ∈
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Fig. 2. 1st level mutants

Nk
Max, n1, . . . , nm ∈ N, denotes that v is the result of applying rules r1, . . . , rm

for n1, . . . , nm times, respectively.
Then the Kripke structure equivalent M = (S,H, I, L) of Π is defined as

follows:

• S = Nk
Max ∪ {Halt, Crash} with Halt, Crash /∈ Nk

Max, Halt 6= Crash;
• I = w;
• H is defined by:

– (u, v) ∈ H, u, v ∈ Nk
Max, if ∃n1, . . . , nm ∈ N ·MaxParal(u, u1, v1, n1, . . . ,

um, vm, nm) ∧Apply(u, v, u1, v1, n1, . . . , um, cm, nm);
– (u,Halt) ∈ H, u ∈ Nk

Max, if ¬∃v ∈ Nk
Max, n1, . . . , nm ∈ N · Apply(u, v,

u1, v1, n1, . . . , um, vm, nm);
– (u,Crash) ∈ H if ¬∃v ∈ Nk

Max ∪ {Halt} · (u, v) ∈ H;
– (Halt, Halt) ∈ H;
– (Crash,Crash) ∈ H.

It can be observed that the relation H is total.
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Fig. 3. 2nd level mutants

A multi-membrane P system without dissolving rules can be collapsed into
a 1-membrane P system so, without loss of generality we will only consider 1-
membrane P systems.

In order to use mutation analysis in P system testing we first have to describe
an appropriate context-free grammar, such that the P system specification can be
written as a string accepted by this grammar. The parse tree for the string is then
generated and the procedure presented in the previous section is used for mutant
construction.
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Fig. 4. 3rd level mutants

The grammar definition will depend on the level at which testing is intended
to be performed. At a high level (for instance in integration testing) the predicates
MaxParal and Apply will normally be assumed to be correctly implemented and
so they will be presented as terminals in the grammar; obviously, they can be
themselves described by context-free grammars and appropriate mutants will be
generated in a similar fashion at lower level of testing. On the other hand, it is
possible to incorporate the definitions of the two predicates into the definition of
the transition relation H; in this case the corresponding grammar will be much
more complex and system testing will be performed in one single step. Naturally,
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for complexity reasons, in practice a multi-phase testing strategy is normally pre-
ferred.

The following (simplified) example illustrates the above strategy for high-level
testing of P systems.

Example 2. Consider a 1-membrane P-systems with 2 rules r1 : u1 → v1, r2 : u2 →
v2. Then the transition of the Kripke structure representation of Π is given by the
formulae:

• (u, v) ∈ H, u, v ∈ N2
Max, if ∃n1, n2 ∈ N ·MaxParal(u, u1, v1, n1, u2, v2, n2) ∧

Apply(u, v, u1, v1, n1, u2, c2, n2);
• (u,Halt) ∈ H, u ∈ N2

Max, if ¬∃v ∈ N2
Max, n1, n2 ∈ N · Apply(u, v, u1,

v1, n1, u2, v2, n2);
• (u,Crash) ∈ H if ¬∃v ∈ N2

Max ∪ {Halt} · (u, v) ∈ H;
• (Halt, Halt) ∈ H;
• (Crash, Crash) ∈ H.

Then such a system can be described by a context-free grammar G = (V, T, P, S)
where

• V = {S, S1, S2, U, V, U1, V1, U2, V2};
• T contains (bounded) vectors from N2, the additional states Hal and

Crash, predicates MaxParal and Apply, the “true” logical value, logi-
cal operators, quantifiers and other symbols, i.e., T = N2

Max ∪ {Halt,
Crash,MaxParal, Apply, true,∧, ,∨,¬, ∃, ∀, n1, n2, ·, (, )};

• The production rules are:
– p1 : S → ¬S;
– p2 : S → S ∧ S;
– p3 : S → S ∨ S;
– p4 : S → true;
– p5 : S → ∃n1 · S1;
– p6 : S1 → ∃n2 · S2;
– p7 : S2 → S2 ∧ S2;
– p8 : S2 → Apply(U, V, U1, V1, n1, U2, V2, n2);
– p9 : S2 → MaxParal(U,U1, V1, n1, U2, V2, n2);
– rules that transform nonterminals U,U1, V1, U2, V2 into vectors from N2.

Suppose the following rule mutants are defined:

• Mutants for p1 : S → S;
• Mutants for p2 : S → S ∨ S, S → S;
• Mutants for p3 : S → S ∧ S, S → S;
• Mutants for p4 : S → ¬true;
• Mutants for p5 : S → ∀n1 · S1;
• Mutants for p6 : S1 → ∀n2 · S2;
• Mutants for p7 : S1 → S ∨ S1, S1 → S1;



244 F. Ipate, M. Gheorghe

• Mutants for p8 : negate de predicate, change parameters such that the obtained
formula is syntactically correct, e.g. switch u and u1;

• p9 : negate de predicate, change parameters such that the obtained formula is
syntactically correct;

• remaining rules: change each integer value by adding or removing 1.

Now, consider the P system Π with rules r1 : a → ab, r2 : a → c. Among the
P-system mutants generated using the above procedure are the following:

• P systems in which one rules is changed: r1 can be replaced by any of λ →
ab (this is an invalid rule and the resulting mutant will have no P system
equivalent), aa → ab, ab → ab, ac → ab, a → a, a → b, a → c, a → a2b,
a → ab2, a → abc; r2 can be substituted in a similar manner. Note that only
one rule is mutated at a time.

• r1 and r2 are interchanged (this will result in an equivalent mutant).
• A system with rules r1 and r2, but which are not applied in a maximal parallel

mode (this is obtained by negating the maxParal predicate in the expression
of H).

• Other erroneous Kripke systems which may have no P system equivalent; these
can be obtained, for example, by negating the Apply predicate in the expression
of H or by changing one of its “state” parameters (u or v).

Note that in this example we have used a grammar that generates 1-membrane
P systems with (at most) two rules and so all generated mutants have this form.
More generally, we can use a grammar that describes any 1-membrane P system
(with any number of rules). Naturally, in this case the mutant generation process
will be much more complex.

5 Conclusions

In many applications based on formal specification methods the test sets are gen-
erated directly from the formal models. The same applies to formal models based
on grammars. However the approach presented in [11], although novel and with
many practical consequences, lacks a rigorous method of defining the process of
generating the mutants. In this paper a formal method based rigorously defined
operations with rules and subtrees of derivation trees is introduced for context-
free grammar formalisms and extended to P systems. Some examples illustrate the
approach.
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