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Summary. In the framework of cell–like membrane systems it is well known that the
construction of exponential number of objects in polynomial time is not enough to ef-
ficiently solve NP–complete problems. Nonetheless, it may be sufficient to create an
exponential number of membranes in polynomial time. In the framework of recognizer
polarizationless P systems with active membranes, the construction of an exponential
workspace expressed in terms of number of membranes and objects may not suffice to
efficiently solve computationally hard problems.

In this paper we study the computational efficiency of recognizer tissue P systems
with communication (symport/antiport) rules and division rules. Some results have been
already obtained in this direction: (a) using communication rules and forbidding division
rules, only tractable problems can be efficiently solved; (b) using communication rules
with length three and division rules, NP–complete problems can be efficiently solved. In
this paper we show that the allowed length of communication rules plays a relevant role
from the efficiency point of view of the systems.

1 Introduction

Membrane Computing is a branch of Natural Computing and starts from the
assumption that the processes taking place within the compartmental structure of
a living cell can be interpreted as computations [9]. The computational devices in
Membrane Computing are called P systems. Roughly speaking, a P system consists
of a membrane structure. In the compartments of this structure are multisets of
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objects which evolve according to given rules in a synchronous, non–deterministic,
maximally parallel manner3.

In recent years, many different models of P systems have been proposed and
proved to be computationally universal. The most studied variants are character-
ized by a cell-like membrane structure, where the communication happens between
a membrane and the surrounding one. In this model the membrane structure is
hierarchical and the graph of the neighborhood relation between compartments is
a tree.

We shall focus here on another type of P systems, the so-called (because of
their membrane structure) tissue P Systems. Instead of considering a hierarchical
arrangement, membranes are modeled as nodes of an undirected graph. This vari-
ant has two biological inspirations: intercellular communication and cooperation
between neurons. The common mathematical model of these two mechanisms is
a net of processors dealing with symbols and communicating these symbols along
channels specified in advance. The communication between cells is based on sym-
port/antiport rules4. Symport rules move a number of objects across a membrane
together in the same direction, whereas antiport rules move objects across a mem-
brane in opposite directions.

Since the initial definition of tissue P systems several research lines have been
developed and other variants have arisen. One of the most interesting variants of
tissue P systems was presented in [12] where the definition of tissue P systems
is combined with the corresponding one of P systems with active membranes,
yielding the model of tissue P systems with cell division.

This model has been studied in depth in [1], where the importance of the cell
division rules regarding the computational power of the model is shown. Working
with tissue P systems without division rules it is not possible to solve computa-
tionally hard problems [2] (unless P=NP). We focus now on the influence of the
length of communication rules on the computational power of tissue P systems
with cell division. In particular, when limiting this length to 1, only tractable
problems can be efficiently solved. A proof of this result is presented here.

The paper is organized as follows. In Section 2 we recall some definitions related
to tissue P systems (further information can be found in the literature, see [15]).
Section 3 is devoted to formalizing the concept of polynomial solvability of decision
problems by recognizer tissue P systems. In Section 4 we introduce a dependency
graph for tissue P systems and use this technique to prove the main result of the
paper. Finally, the last section contains some remarks and raises open questions
and future work directions.

3 An informal overview can be found in [11] and further bibliography at [15].
4 This method of communication for P systems was introduced in [8].
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2 Recognizer Tissue P Systems

Firstly, the concept of tissue P system of degree q ≥ 1 with cell division is intro-
duced.

Definition 1. A tissue P system of degree q ≥ 1 with cell division is a tuple

Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin, iout)

where:

1. Γ is a finite alphabet (called working alphabet) whose elements are called ob-
jects;

2. Σ is a finite alphabet (called input alphabet) strictly contained in Γ ;
3. Ω ⊆ Γ \ Σ is a finite alphabet, describing the set of objects present in the

environment in arbitrarily many copies each;
4. M1, . . . ,Mq are strings over Γ , describing the multisets of objects placed in

the q cells of the system;
5. R is a finite set of rules, of the following forms:

a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, and u, v ∈ Γ ∗;
communication rules; 1, 2, . . . , q identify the cells of the system, 0 is the
environment; when applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and simultaneously the
objects of the multiset v are sent from region j to region i (we say that the
sum of the lengths of u and v is the length of the rule);

b) [ a ]
i
→ [ b ]

i
[ c ]

i
, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ ;

division rules; under the influence of object a, the cell with label i is divided
in two cells with the same label; in the first copy the object a is replaced
by b, in the second copy the object a is replaced by c; all other objects are
replicated and copies of them are placed in the two new cells.

6. iin ∈ {1, . . . , q} is the input cell, and iout ∈ {0, 1, . . . , q} is the output cell.

The rules of such a system are applied in a non-deterministic maximally parallel
manner as is customary in membrane computing. In each step, all cells which can
evolve must evolve in a maximally parallel way (in each step we apply a multiset of
rules which is maximal, no further rule can be added), with the following important
remark: if a cell divides, then the division rule is the only one which is applied for
that cell in that step, its objects do not evolve by means of communication rules. In
other words, before division a cell interrupts all its communication channels with
the other cells and with the environment; the new cells resulting from division will
interact with other cells or with the environment only in the next step – providing
that they do not divide once again. A cell’s label precisely identifies the rules which
can be applied to it.

A configuration of Π is a tuple C = (M0,M1, . . . ,Mq), where M0 is a multiset
of objects over Γ \ Ω (the objects in the environment which are in finitely many
copies), and M1, . . . ,Mq are multisets of objects over Γ (the objects in each cell of
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the system). For two configurations C1, C2 of Π we write C1 ⇒Π C2, and we say
that we have a transition from C1 to C2, if we can pass from C1 to C2 by applying
the rules from R.

The initial configuration of the system is (∅,M1, . . . ,Mq). For each multiset m
over the input alphabet, the initial configuration of the system associated with it is
(∅,M1, . . . ,Miin

∪ m, . . . ,Mq). Then, m is an input multiset of every computation
C = {Ci}i<r such that C0 is the initial configuration of Π associated with m.

All computations start from an initial configuration and proceeds as stated
above; only halting computations give a result, which is encoded by the number
of objects in the output cell iout in the last configuration. From now on, we will
consider that the output is collected in the environment (that is, iout = 0, and
thus we will omit iout in the definition of tissue P systems). This way, if Π is
a tissue P system and C = {Ci}i<r is a halting computation of Π, with Ci =
(Mi,0,Mi,1, . . . ,Mi,q), then the answer of the computation C is

Output(C) = ΨΓ\Ω(Mr−1,0)

where Ψ is the Parikh function.
Let us recall that NP–completeness has been usually studied in the framework

of decision problems, that is problems whose solution is either yes or no. More
formally, a decision problem is a pair (IX , θX) where IX is a language over a finite
alphabet whose elements are called instances, and θX is a total Boolean function
over IX .

Each decision problem X = (IX , θX) has a language LX over the alphabet of
IX associated with it, defined as follows: LX = {a ∈ IX | θX(a) = 1}. Reciprocally,
each language L over an alphabet Σ has a decision problem, XL associated with
it as follows: IXL

= Σ∗, and θXL
= {(x, 1) | x ∈ L} ∪ {(x, 0) | x /∈ L}.

Recognizer cell-like P systems were introduced in [14] and they are the natural
framework to study and solve decision problems within Membrane Computing,
since deciding whether an instance of a given problem has an affirmative or negative
answer is equivalent to deciding if a string belongs or not to the language associated
with the problem.

In the literature, recognizer cell-like P systems are associated with P systems
with input in a natural way. The data encoding an instance of the decision problem
has to be provided to the P system in order to compute the appropriate answer.
This is done by codifying each instance as a multiset placed in an input mem-
brane. The output of the computation (yes or no) is sent to the environment in
the last step of the computation. In this way, cell-like P systems with input and
external output are devices which can be seen as black boxes, in the sense that
the user provides the data before the computation starts, and then waits outside
the P system until it sends to the environment the output in the last step of the
computation.

In order to use these computational devices for solving decision problems, rec-
ognizer tissue P systems are introduced.
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Definition 2. A tissue P system with cell division of degree q ≥ 1

Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin)

is a recognizer system if the following holds:

1. The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets M1, . . . , Mq, but not present in Ω.

2. All computations halt.
3. If C = {Ci}i<r is a computation of Π, then either the object yes or the object

no (but not both) must have been released into the environment, and only in
the last step of the computation.

Given a recognizer tissue P system with cell division, and a computation C =
{Ci}i<r of Π (r ∈ N), we define the result of C as follows:

Output(C) =















yes, if Ψ{yes,no}(Mr−1,0) = (1, 0)
∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2

no, if Ψ{yes,no}(Mr−1,0) = (0, 1)
∧ Ψ{yes,no}(Mk,0) = (0, 0) for k = 0, . . . , r − 2

That is, C is an accepting computation (respectively, rejecting computation) if
the object yes (respectively, no) appears in the environment (only) in the halting
configuration of C.

3 Polynomial Solvability by Recognizer Tissue P systems

In this section, the definition of polynomial (uniform) solvability of decision prob-
lems by a family of cell–like P systems is extended to solvability by a family of
tissue P systems.

Definition 3. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue P systems with
cell division if the following hold:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:
– For each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u)).
– The family Π is polynomially bounded with regard to (X, cod, s); that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps.
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– The family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1.

– The family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

We denote by PMCTD the set of all decision problems which can be solved by
means of recognizer tissue P systems with cell division in polynomial time. This
class is closed under polynomial–time reduction and under complement (see [13]
for a similar result for cell-like P systems). We also denote by PMCTD(k) the set of
all decision problems which can be solved by means of recognizer tissue P systems
with cell division in polynomial time, by using communication rules whose length
is, at most, k.

4 Dependency Graph Associated with Tissue P Systems

Let Π be a tissue P system with cell division and let all communication rules
be of length 1. In this case, each rule of the system can be activated by a single
object. Hence, there exists in a certain sense, a dependency between the object
triggering the rule and the object or objects produced by its application. This
dependency allows to adapt the ideas developed in [5] for cell-like P systems with
active membranes to tissue P systems with cell division and communication rules
of length 1.

We can consider a general pattern (a, i) → (b1, j) . . . (bs, j) where i, j ∈
{0, 1, 2, . . . , q}, i 6= j, and a, b ∈ Γ . Communication rules correspond to the case
s = 1 and b1 = a, and division rules correspond to the case s = 2 and j = i 6= 0.
The above pattern can be interpreted as follows: from the object a in the cell (or
in the environment) labeled with i we can reach the objects b1, . . . , bs in the cell
(or in the environment) labeled with j.

Without loss of generality we can assume that all communication rules in the
system obey the syntax (i, a/λ, j), since every rule of the form (j, λ/a, i) can be
rewritten to follow the above syntax, with equivalent semantics.

Next, we formalize these ideas in the following definition.

Definition 4. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system of de-
gree q ≥ 1 with cell division. Let H = {0, 1, . . . , q}. The dependency graph associ-
ated with Π is the directed graph GΠ = (VΠ , EΠ) defined as follows:

VΠ = {(a, i) ∈ Γ × H : ∃j ∈ H ((i, a/λ, j) ∈ R ∨ (j, a/λ, i) ∈ R) ∨

∃b, c ∈ Γ ([a]i → [b]i[c]i ∈ R ∨ [b]i → [a]i[c]i ∈ R)},
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EΠ = {((a, i), (b, j)) : (a = b ∧ (i, a/λ, j) ∈ R) ∨

∃c ∈ Γ ([a]i → [b]i[c]i ∈ R ∧ j = i)}.

Proposition 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system
with cell division, in which the length of all communication rules is 1. Let
H = {0, 1, . . . , q}. There exists a deterministic Turing machine that constructs
the dependency graph GΠ associated with Π, in polynomial time (that is, in a
time bounded by a polynomial function depending on the total number of rules).

Proof. A deterministic algorithm that, given a P system Π with the set R of rules,
constructs the corresponding dependency graph, is the following:

Input: Π (with R as its set of rules)

VΠ ← ∅; EΠ ← ∅
for each rule r ∈ R of Π do

if r = (i, a/λ, j) then

VΠ ← VΠ ∪ {(a, i), (a, j)}; EΠ ← EΠ ∪ {((a, i), (a, j))}
if r = [a]i → [b]i[c]i then

VΠ ← VΠ ∪ {(a, i), (b, i), (c, i)};
EΠ ← EΠ ∪ {((a, i), (b, i)), ((a, i), (c, i))}

The running time of this algorithm is bounded by O(|R|). ¤

Proposition 2. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system
with cell division, in which the length of all communication rules is 1. Let
H = {0, 1, . . . , q}. Let ∆Π be defined as follows:

∆Π = {(a, i) ∈ Γ × H : there exists a path (within the dependency graph)
from (a, i) to (yes, 0)}.

Then, there exists a Turing machine that constructs the set ∆Π in polynomial time
(that is, in a time bounded by a polynomial function depending on the total number
of rules).

Proof. We can construct the set ∆Π from Π as follows:

• We construct the dependency graph GΠ associated with Π.
• Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
∆Π ← ∅
for each (a, i) ∈ VΠ do

if reachability (GΠ , (a, i), (yes, 0)) = yes then

∆Π ← ∆Π ∪ {(a, i)}
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The running time of this algorithm is of order O(|VΠ | · |VΠ |2), hence5 it is of order
O(|Γ |3 · |H|3). ¤

Notation: Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin, iout) be a tissue P system with
cell division. Let m be a multiset over Σ. Then we denote M∗

j = {(a, j) : a ∈ Mj},
for 1 ≤ j ≤ q, and m∗ = {(a, iin) : a ∈ m}.

Below we characterize accepting computations of a recognizer tissue P system
with cell division and communication rules of length 1 by distinguished paths in
the associated dependency graph.

Lemma 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a recognizer confluent tissue
P system with cell division in which the length of all communication rules is 1.
The following assertions are equivalent:

(1)There exists an accepting computation of Π.
(2)There exists (a0, i0) ∈

⋃q

j=1 M∗
j and a path in the dependency graph associated

with Π, from (a0, i0) to (yes, 0).

Proof. (1) ⇒ (2) First, we show that for each accepting computation C of Π there
exists (a0, i0) ∈

⋃q

j=1 M∗
j and a path γC in the dependency graph associated with

Π from (a0, i0) to (yes, 0). By induction on the length n of C.
If n = 1, a single step is performed in C from C0 to C1. A rule of the form

(j, yes/λ, 0), with a ∈ Γ, j 6= 0, has been applied in that step. Then, (yes, j) ∈ M∗
j ,

for some j = 1, . . . , q. Hence, ((yes, j), (yes, 0)) is a path in the dependency graph
associated with Π.

Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1) be
an accepting computation of Π. Then C′ = (C1, . . . , Cn, Cn+1) is an accepting
computation of the system Π ′ = (Γ,Σ,Ω,M′

1, . . . ,M
′
q,R, iin), being M′

j the
contents of cell j in configuration C1, for 1 ≤ j ≤ q. By induction hypothesis
there exists an object b0 in a cell i0 from C1, and a path in the dependency graph
associated with Π ′ from (b0, i0) to (yes, 0). If (b0, i0) is an element of configuration
C0 (that means that in the first step a division rule has been applied to cell i0), then
the result holds. Otherwise, there is an element (a0, j0) in C0 producing (b0, i0).
So, there exists a path γC in the dependency graph associated with Π from (a0, j0)
to (yes, 0).

5 The Reachability Problem is the following: given a (directed or undirected) graph, G,
and two nodes a, b, determine whether or not the node b is reachable from a, that
is, whether or not there exists a path in the graph from a to b. It is easy to design
an algorithm running in polynomial time solving this problem. For example, given a
(directed or undirected) graph, G, and two nodes a, b, we consider a depth–first–search
with source a, and we check if b is in the tree of the computation forest whose root
is a. The total running time of this algorithm is O(|V | + |E|), that is, in the worst
case is quadratic in the number of nodes. Moreover, this algorithm needs to store a
linear number of items (it can be proved that there exists another polynomial time
algorithm which uses O(log2(|V |)) space).
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(2) ⇒ (1). Let us see that for each (a0, i0) ∈
⋃q

j=1 M∗
j and for each path in

the dependency graph associated with Π from (a0, i0) to (yes, 0), there exists an
accepting computation of Π. By induction on the length n of the path.

If n = 1, we have a path ((a0, i0), (yes, 0)). Then, a0 = yes and the computa-
tion C = (C0, C1) where the rule (i0, yes/λ, 0) belongs to a multiset of rules m0

that produces configuration C1 from C0 is an accepting computation of Π.
Let us suppose that the result holds for n. Let

((a0, i0), (a1, i1), . . . (an, in), (yes, 0))
be a path in the dependency graph of length n + 1. If (a0, i0) = (a1, i1), then
the result holds by induction hypothesis. Otherwise, let C1 be the configuration
of Π reached from C0 by the application of a multiset of rules containing the rule
that produces (a1, i1) from (a0, i0). Then ((a1, i1), . . . (an, in), (yes, 0)) is a path
of length n in the dependency graph associated with the system

Π ′ = (Γ,Σ,Ω,M′
1, . . . ,M

′
q,R, iin)

being M′
j the content of cell j in configuration C1, for 1 ≤ j ≤ q. By induction

hypothesis, there exists an accepting computation C′ = (C1, . . . , Ct) of Π ′. Hence,
C = (C0, C1, . . . , Ct) is an accepting computation of Π. ¤

Next, given a family Π = (Π(n))n∈N of recognizer tissue P system with cell
division in which the length of all communication rules is 1, solving a decision
problem, we will characterize the acceptance of an instance of the problem, w,
using the set ∆Π(s(w)) associated with the system Π(s(w)), that processes the
given instance w. More precisely, the instance is accepted by the system if and
only if there is an object in the initial configuration of the system Π(s(w)) with
input cod(w) such that there exists a path in the associated dependency graph
starting from that object and reaching the object yes in the environment.

Proposition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer tissue P system with cell division in which the length of all
communication rules is 1 solving X, according to Definition 3. Let (cod, s) be the
polynomial encoding associated with that solution. Then, for each instance w of
the problem X the following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(s(w)) ∩ ( (cod(w))∗ ∪

p
⋃

j=1

M∗
j ) 6= ∅, where M1, . . . ,Mp are the initial mul-

tisets of the system Π(s(w)).

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) with input multiset cod(w). From Lemma 1
this condition is equivalent to the following: in the initial configuration of Π(s(w))
with input multiset cod(w) there exists at least one object a ∈ Γ in a cell labeled
with i such that in the dependency graph the node (yes, 0) is reachable from (a, i).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩M∗
j 6= ∅ for some j ∈ {1, . . . , p}, or

∆Π(s(w)) ∩ (cod(w))∗ 6= ∅. ¤
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Theorem 1. P = PMCTD(1)

Proof. We have P ⊆ PMCTD(1) because the class PMCTD(1) is closed un-
der polynomial time reduction. Next, we show that PMCTD(1) ⊆ P. Let X ∈
PMCTD(1) and let Π = (Π(n))n∈N be a family of recognizer tissue P systems
with cell division solving X, according to Definition 3. Let (cod, s) be the polyno-
mial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X
- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).
- Construct the set ∆Π(s(w)) as indicated in Proposition 2

answer ← no; j ← 1
while j ≤ p ∧ answer = no do

if ∆Π(s(w)) ∩M∗
j 6= ∅ then

answer ← yes

j ← j + 1
endwhile

if ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there exists a
pair (a, i) belonging to ∆Π(s(w)) such that the symbol a appears in the cell labeled
with i in the initial configuration (with input the multiset cod(w)).

On the other hand, a pair (a, i) belongs to ∆Π(s(w)) if and only if there exists
a path from (a, i) to (yes, 0), that is, if and only if we can obtain an accepting
computation of Π(s(w)) with input cod(w). Hence, the algorithm above described
solves the problem X.

The cost to determine whether or not ∆Π(s(w)) ∩ M∗
j 6= ∅ (or ∆Π(s(w)) ∩

(cod(w))∗ 6= ∅) is of order O(|Γ |2 · |H|2).
Hence, the running time of this algorithm can be bounded by f(|w|)+O(|R|)+

O(q · |Γ |2 ·n2), where f is the (total) cost of a polynomial encoding from X to Π,
R is the set of rules of Π(s(w)), and q is the number of (initial) cells of Π(s(w)).
But from Definition 3 we have that all involved parameters are polynomials in |w|.
That is, the algorithm is polynomial in the size |w| of the input. ¤

In [3] a polynomial time solution of the Vertex Cover problem was given by
using a family of recognizer tissue P systems with cell division and communication
rules of length at most 3. Then NP ∪ co − NP ⊆ PMCT D(3).

Hence, in the framework of recognizer tissue P systems with cell division the
length of the communication rules provides a borderline between efficiency and
non-efficiency. Specifically, a frontier is obtained when we pass from length 1 to
length 3.
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5 Final Remarks and Future Work

It is well known [2] that tissue P systems with communication rules and without
division rules can efficiently solve only tractable problems. It is also well known
that by adding division rules we can efficiently solve NP–complete problems in
linear time by using communication rules with length at most 3 [3].

In order to obtain new borderlines between tractability and intractability of
problems, we study the possibility to restrict the length of communication rules
to 1, allowing division rules. By using the dependency graph technique of cell–like
P systems, we have shown that only tractable problems can be efficiently solved
in that scenario.

Several questions regarding the role of the length remain open, for example:

• What happens if we consider tissue P systems using communication rules of
length at most 2?

• In the solution provided in [3], antiport rules of length at most 3 were used.
Would it be possible to provide another solution in which all rules of length 3
were symport?

Other open issues related to tissue P systems that may be interesting are:

• Analyzing a new role for the environment. More specifically, consider in the
initial configuration only permitting objects with finite multiplicity in the en-
vironment . It seems that this new scenario would be equivalent to tissue P
systems without environment, with a new distinct cell with no division rules
associated. Is it still possible to solve NP–complete problems in polynomial
time in this new framework, permitting division rules?

• Considering variations in the semantics of division rules, for example, dispens-
ing with replication or with evolution. Division rules without replication would
obey the syntax [ a ]

i
→ [ ]

i
[ u ]

i
, where i ∈ {1, 2, . . . , q}, a ∈ Γ and u ∈ Γ ∗,

meaning that under the influence of object a, the cell with label i is divided in
two cells with the same label. The first copy contains all objects of the origi-
nal cell except for a and in the second copy the content of the original cell is
replaced by the multiset u. Division rules without evolution would be either of
the form [ a ]

i
→ [ ]

i
[ ]

i
or [ a ]

i
→ [ a ]

i
[ a ]

i
, where i ∈ {1, 2, . . . , q} and

a ∈ Γ . In both cases, under the influence of object a, the cell with label i is
divided in two cells. All objects are replicated and copies of them are placed
in the two new cells, except for a in the first case.
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Campero: On the power of dissolution in P systems with active membranes. Lecture
Notes in Computer Science, 3850 (2006), 224–240.
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