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Summary. Lately, some studies linked the computational power of abstract computing
systems based on multiset rewriting to Petri nets and the computation power of these
nets to their topology. In turn, the computational power of these abstract computing
devices can be understood just looking at their topology, that is, information flow.

This line of research is very promising for several aspects:

its results are valid for a broad range of systems based on multiset rewriting;
it allows to know the computational power of abstract computing devices without te-

dious proofs based on simulations;
it links computational power to topology and, in this way, it opens a broad range of

questions.

In this note we summarize the known result on this topic and we list a few suggestions
for research together with the relevance of possible outcomes.

1 Introduction

Imagine that a computing device based on multiset rewriting is defined. Let us
call this computing device S1. This could be a P system with symport/antiport,
or with catalysts, of with conformons, or it could be a definition of Diophantine
equations, or some model of Brane calculi of whatever else you like.

What would you do in order to know the computing power of such a system?
Probably you would try to simulate with S1 another computing system, say

S2 with known computational power. If this is possible, than you can say that S1

can compute at least as much as S2 can compute. Then you would probably try to
simulate S1 with S2, if this is possible, then you know that the two systems have the
same computational power. This is the standard way to know the computational
power of a computing system.

There is another way to know the computational power of S1. This new way is
based on the fact that a computing system has a way to store information and a
way to manipulate it. This other way looks at how such a system stores information
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and how it manipulates it and it deducts (in between other things) the computing
power of S1.

From a point of view this is not a new idea: this is a very well establish concept
in formal grammars. If somebody gives you a formal grammar S1 and asks what
it can compute, probably you would not try to simulate with S1 another grammar
S2 of known computing power. Instead, you would simply look at the productions
of S1 and from this (because of the Chomsky hierarchy) you would be able to
deduct what it can be generated by S1.

The approach that we are going to consider in this paper is about this: it shows
how to know the computing power of a formal system based on multiset rewriting
without running simulations but simply looking at the kind of operations that the
formal system can perform.

The suggestions for research present in Section 7 have been in part inspired
by conversations taking place during the 7th Brainstorming Week on Membrane
Computing (February 2 - 6, 2009, Seville, Spain). This note is not self contained,
it has been written having in a mind readers knowledgeable in P systems and with
a strong interest in Petri nets. Citation indicate where the used but not defined
concepts can be found.

2 About Simulations

If you are familiar with formal language theory, then you know that productions
in a formal grammar are all of the same form: α → β with α and β strings over
a certain alphabet. There is not much confusion about what such a production
does and about the language generated by a grammar. On the other hand, formal
systems based on multiset rewriting do not have ‘standard’ way to operate and do
not have ‘standard’ ways to get the result of their computation. For this reason, if
we want to ‘reduce’ the way these systems operate to just one way (on which we
can analyze the topology), then we have to use a definition of simulation.

Let S and S′ be two formal systems with O and O′ their respective sets of
operations and C = {c1, c2, . . .} and C

′ = {c′1, c
′

2, . . .} their respective sets of

configurations. We denote with
σ
⇒ (

σ′

), σ multiset over O (σ′ multiset over O′), the
transition from one configuration to another in a computation of S (S′) according

to the application of the operations in σ (σ′). With
σ1,...,σn

⇒+ (
σ′

1
,...,σ′

n

+ ) we denote non-
empty sequences of transitions from one configuration to another in a computation
of S (S′) according to the application of the operations in σ1, . . . , σn (σ′

1, . . . , σ
′

n)

in sequence. So, for instance, if c1

σ1⇒ c2

σ2⇒ c3, then we can write c1

σ1,σ2

⇒+ c3.
It should be clear that, depending on the operational mode of S, the multiset

σ can be a multiset of a specific kind. For instance, σ can be such that it returns
at most 1.
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Definition 1. Let S and S′ be two formal systems with O and O′ their respective
sets of operations, C and C

′ their respective sets of configurations and cinit and
c′init their respective initial configurations.

We say that S simulates S′ if there are two relations α ⊆ C × C
′ and β ⊆

On × O′m, n,m ∈ N, such that:

i) (cinit, c
′

init) ∈ α;

ii) for all c1, c2 ∈ C, c′1 ∈ C
′ and σ ∈ On: if c1

σ

⇒+ c2 and (c1, c
′

1) ∈ α, then there

is c′2 ∈ C
′ such that c′1

σ′

+ c′2 with (c2, c
′

2) ∈ α and (σ, σ′) ∈ β;

iii) for all c′1, c
′

2 ∈ C
′, c1 ∈ C and σ′ ∈ On: if c′1

σ′

+ c′2 and (c1, c
′

1) ∈ α, then

there is c2 ∈ C such that c1

σ

⇒+ c2 with (c2, c
′

2) ∈ α and (σ, σ′) ∈ β.

If S αβ simulates S′, then S is called the simulating system while S′ is called
the simulated system.

It is important to stress that in this paper the accepted or generated languages
of simulations are related to the configurations, not to the labels associated to
the operations (as in other definitions of simulation). Moreover, we have to point
out that the just given definition of simulation differs substantially from the ones
present in [11, 12] and from other similar definitions (specific to EN systems) as
in [14].

3 Petri Nets

If we want to study how the topology of formal system based on multiset rewriting
is related to their computational power, then we need one such system in which
topology is clearly present. Place/transition system (P/T systems) are the ideal
candidate. They are a type of Petri nets and, as such, are a (bipartite) graph.
Similarly to grammars, one of the nice features of P/T systems is their simplicity:
the operations that can be performed by them are very basic, no complexity hidden
in the way they operate. In this way, the set of numbers that can be generated
a P/T systems can be directly related to its topology, similarly to the way the
language generated by a grammar can be directly related to its kind of productions.

Given an P/T system it is possible to ‘run’ it (that is, the way it fires) in
different ways. This is different than other formal systems for which their way to
run is embedded in their definition. For instance, in a grammar the productions
are applied once per time (that is, given a sentential form at most one production
is applied in order to pass to another sentential form) while in an L system pro-
ductions are applied in parallel. So, if someone would give you a grammar, then
you would also know the way it runs. This means that if together with a grammar
you are also given a language, then it can either be that the grammar generates
that language or not.
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P/T systems (and Petri nets in general) do not have a unique way to run. If
someone would give you a P/T system, then you could run it in different ways
(each of these ways generates a configuration graph of a certain kind). This means
that if together with the P/T system you are also given a set of numbers, then
the P/T system can generate or not that set of numbers depending on the way it
runs.

This separation between a P/T system and the way it runs is important to us
as some of the results indicated in the following depend on a specific way to run
while others are independent of the way to run.

For us it is important to say that we consider three types of Petri nets: EN
system, P/T systems and P/T′ systems and we consider two ways they can run:
SCG and MSCG. It is improper to refer to SCG and MSCG as ‘ways to run’.
Here we use this improper language because we want to use a very simple termi-
nology. The readers who are not familiar with these Petri nets concepts can find
their definitions in [13, 5]. These concepts are important for understanding what
in the following sections.

4 Building Blocks and Their Composition

Let us introduce the nets depicted in Fig. 1 and call them building blocks, join and
fork in particular, as depicted in that figure. The places present in each building
block are distinct.

join fork

Fig. 1. Building blocks: join and fork. c© With kind permission of Springer Science and
Business Media [4].

Definition 2. Let x, y ∈ {join, fork} be building blocks and let t̄x and t̂y be the
transitions present in x and y respectively.

We say that y comes after x (or x is followed by y, or x comes before y or x
and y are in sequence) if t̄•x ∩ •t̂y 6= ∅ and •t̄x ∩ •t̂y = ∅. We say that x and y are
in parallel if •t̄x ∩ •t̂y 6= ∅ and t̄•x ∩ •t̂y = ∅.

We say that a net is composed by building blocks (it is composed by x) if
it can be defined by building blocks (it is defined by x) sharing places but not



P Systems and Topology: Some Suggestions for Research 127

transitions. Consequently, we say that a Petri net is composed by building blocks
(it is composed by x) if its underlying net is composed by building blocks (it is
composed by x).

In Fig. 2 a join and a fork are depicted in parallel, while in Fig. 3.a and Fig.
3.b join and fork are depicted in sequence.
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Fig. 2. A join and a fork in parallel.
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Fig. 3. (a) join and fork in sequence and (b) fork and join in sequence.

5 Known Results

Table 1 lists the known results linking topology to accepted/generated vectors of
numbers.
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n. system build. blocks composition n. places way to run acc./gen. class

1 P/T join, fork any finite SCG acc. = part. blind r.m.

2 P/T join, fork as Fig. 3.a finite MSCG acc. = restricted r.m.

3 P/T join, fork any finite MSCG acc./gen. = N·RE

4 EN join any finite SCG acc. = N·FIN

5 P/T′ join any infinite SCG acc./gen. = N·RE

6 P/T join any finite SCG acc. N·REG ⊂ J ⊂ N·CS

Table 1. Summary of known results

In Table 1:

n. refers to the row in the table;
system indicates the kind of Petri net;
build. blocks indicated the kinds of building blocks present in the system;
composition indicates how the building blocks are composed in the system;
n. places indicates the number of places present in the system;
way to run indicates the way the system is run;
acc./gen. indicates if known results refers to the accepting or generating model;
class indicates the class of numbers accepted/generated by the considered system.

Moreover:

part. blind r.m. means partially blind register machines [8];
restricted r.m. means restricted register machines [9];
N·FIN, N·REG, N·CS, N·RE denote classes of numbers [15].

Because of Theorem 2 in [5] row 3 in Table 1 holds true also for other ways
to run the P/T system included P/T systems having an infinite number of places
and running according to SCG.

6 Links with P Systems with Catalysts

In the introduction we hinted to a novel approach to study the computational
power of abstract computing devices. This novel approach is based on the simula-
tion (according to Definition 1) of join and fork and their composition. Once this
is known, then the results listed in Table 1 can be used to deduct the computing
power of the abstract computing device under investigation.

This has been performed for catalytic P systems. Here we list the results ob-
tained using this novel approach for this model of P system. The following results
can be found in [5] together with the definitions of the used notation and termi-
nology.

Lemma 1. The building blocks join and fork can be simulated by generating P
systems with catalysts of degree 1 and with 2 catalysts.
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Lemma 2. Generating P systems with 2 catalysts and one compartment can sim-
ulate the 0-test P/T system.

From these two lemmas and the results in Table 1 the following holds true:

Theorem 1. N02 · aCP (1, 2) = N02 · aCatP (1, 3) = N2 ·RE;
N · gCP (2, 2) = N · gCatP (2, 3) = N · aCP−c(1, 2) = N · aCatP−c(1, 3) = N·RE.

Theorem 2. The families N · gCP (2, 2), N · gCatP (2, 3), N02 · aCP (1, 2), N02 ·
aCatP (1, 3), N · aCP−c(1, 2), N · aCatP−c(1, 3), when maximal parallelism is not
present, are the ones generated also by partially blind register machines.

Corollary 1. Accepting catalytic-P systems with only rules of the kind cx → c, c ∈
C and x ∈ V \ C can accept only finite languages.

Corollary 2. Restricted P systems with catalysts of degree 2 and two catalysts and
restricted catalytic-P systems of degree 2 and three catalysts can simulate restricted
register machines.

Moreover:

Corollary 3. The class of numbers accepted by P systems with catalysts of degree
2 and 2 catalysts not using rules of the kind a → b1b2 is J;

The class of numbers accepted by purely catalytic P systems of degree 2 and 3
catalysts not using rules of the kind a → b1b2 is J.

Where J is a class of numbers such that N·REG ⊂ J ⊂ N·CS (that is, the one
in row 6 of Table 1).

Some of the results in this section (as, for instance, Theorem 1) have previ-
ously been obtained using ‘classical’ (that is, simulating other devices of known
computing power) methodologies [2, 10].

7 Suggestions for Research

The results in Section 6 show how far reaching the simulation of join and fork can
be in respect to the direct simulation of a specific computational model. We say
‘can be’ and not ‘is’ because it is not always the case that some features considered
for building blocks can be naturally translated in features of the simulating system
(P systems with catalysts, in this case). Corollary 2 is an example of the difficulties
in this ‘translation’. How to translate in natural terms for P systems with catalysts
the fact that join and fork are composed as in Fig. 3.a?

The definition of restricted P systems with catalysts considered for Corollary
2 is a very simple way to perform such a translation, but still it did not allow to
say that the computational power of such P systems is equivalent to the one of
restricted register machines. For this reason we formulate:
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Suggestion for research 1 Define a model of P systems with catalysts having
computational power equivalent to the one of restricted register machines.

Line 6 in Table 1 refers to the class of numbers accepted by P/T systems com-
posed only by join and having a finite number of places when they run according
to SCG. This class of number, called J in [7], is well defined: it is proved that this
kind of P/T systems can only accept J . What it is not well known is how J relates
to other classes of numbers.

Suggestion for research 2 As indicated in Table 1, it is known that N·REG ⊂
J ⊂ N·CS. Restrict this (rather broad) interval.

A solution to this suggestion does not necessarily mean to have a result of the
kind: A ⊂ J ⊂ B where A and B are classes of numbers. The indication of what
part of N·CS is in J and what not, would be already of interest.

In the Introduction we said: “it shows how to know the computing power of a
formal system based on multiset rewriting without running simulations but simply
looking at the kind of operations that the formal system can perform”. What do
we mean with ‘looking’?

In this case ‘looking’ means the way Definition 1 is implemented, that is what
it is considered as configuration of the simulated system. Given a configuration
of a formal system it is possible to ‘look’ at it in different ways. For instance, we
could ignore some elements in the configuration, we could group different elements
in the configuration, etc. This concept of ‘looking’ (observing) has been formalized
(see, for instance, [1]). As a consequence of this, given a formal system, we could
implement Definition 1 in different ways, leading to different models of Petri nets
and, possibly, to different accepted/generated languages.

Suggestion for research 3 Study how different implementations of Definition 1
in a given formal system change the class of numbers accepted/generated by it. Is
it possible to link these results to the topology as presented in this paper?

The previous suggestion for research can go beyond the study of a few formal
systems ‘observed’ in different ways. It can include more general studies as the
classification of systems that can be ‘observed’ in only one way, or in an unbounded
number of ways, or that can accept/generate the same language independently of
the way they are observed, etc. For instance, we could obtain results of the kind:
the ‘observation’ of the systems in row 4 of Table 1 can only accept/generate finite
classes of numbers, etc.

If we look at rows 2 and 3 in Table 1 you notice that the difference on the ac-
cepted class of numbers is due to the allowed composition. Here one could imagine
that if the composition would be something in between what present in these two
rows, then the accepted language would also be ‘in between’. We try to clarify
this point. In row 2 we deal with systems in which join and fork can only be in
sequence as in Fig. 3.a, while in row 3 we deal with systems in which the two
building blocks can be composed in any way. What language can be accepted by
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P/T systems having a finite number of join and fork in which only a few are in
sequence as in Fig. 3.a?

This line of research could be called “language generated by pseudo-random
Petri nets” where ‘random’ refers to the fact that the Petri net is created composing
building blocks in a random way, while ‘pseudo’ refers to the fact that we impose
some limitations to this randomness as, for instance, the fact that a few join and
fork have to be in a specific sequence.

Suggestion for research 4 Study languages generated by pseudo-random Petri
nets.

This line of research requires the creation of some computer programs (or the
use of already available computer programs). Of course, a similar line of research
can be pursued for P systems and any other kind of computing device that can be
build in a pseudo-random way.

In Section 6 we indicated how the results in Table 1 have been used on P
systems with catalysts. We tried to use similar results on other models of P systems
(symport/antiport, conformons, etc., see [6]) and all went as we expected. This
means that using Definition 1 and the results in Table 1 we obtained results similar,
in terms of descriptional complexity, to the ones already known. The exception to
this were spiking P systems. We did not succeed in defining a simulation (as in
Definition 1) that let us re-obtain the known results on this model of P systems
with the same descriptional complexity. The results we got needed more features
(more compartments, the presence of forgetting rules, etc.) not present in direct
proofs.

This fact is particularly intriguing because it could suggest some limits in the
approach considered in this note. For this reason we propose:

Suggestion for research 5 Use the approach considered in this paper on spiking
P systems, analyzing advantages and limitations of it.

Only row 2 in Table 1 considers P/T system in which the underlying net has
one kind of limitations in its composition. What about other limitations in the
arrangement?

Suggestion for research 6 Study further the computational power of P/T sys-
tems whose relative arrangement of pairs of fork and join is limited.

In particular one could focus on the limitations needed to generate semilinear sets.
The relevance of the following suggestion should be straightforward:

Suggestion for research 7 Are join and fork the only building blocks that lead
to the result in Table 1? Are there other building blocks leading to the same or
different results?

The overall aim of the approach considered in this paper is:
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Suggestion for research 8 Create a full hierarchies of accepting and generating
computational processes in terms of sets of building blocks, compositions of ele-
ments in these sets and the functions W and K (present in the definition of P/T
systems in [13, 5]).
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