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Summary. In order to enhance the efficiency of spiking neural P systems, we introduce
the features of neuron division and neuron budding, which are processes inspired by neural
stem cell division. As expected (as it is the case for P systems with active membranes),
in this way we get the possibility to solve computationally hard problems in polynomial
time. We illustrate this possibility with SAT problem.

1 Introduction

Spiking neural P systems (in short, SN P systems) were introduced in [6] in the
framework of membrane computing [13] as a new class of computing devices which
are inspired by the neurophysiological behavior of neurons sending electrical im-
pulses (spikes) along axons to other neurons. Since then, many computational
properties of SN P systems have been studied; for example, it has been proved
that they are Turing-complete when considered as number computing devices [6],
when used as language generators [3, 1] and also when computing functions [12].

Investigations related to the possibility to solve computationally hard prob-
lems by using SN P systems were first proposed in [2]. The idea was to encode
the instances of decision problems in a number of spikes which are placed in an
arbitrarily large pre-computed system at the beginning of the computation. It was
shown that the resulting SN P systems are able to solve the NP-complete problem
SAT (the satisfiability of propositional formulas expressed in conjunctive normal
form) in a constant time. Slightly different solutions to SAT and 3-SAT by using SN
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P systems with pre-computed resources were considered in [7]; here the encoding of
an instance of the given problem is introduced into the pre-computed resources in
a polynomial number of steps, while the truth values are assigned to the Boolean
variables of the formula and the satisfiability of the clauses is checked. The answer
associated with the instance of the problem is thus computed in a polynomial
time. Finally, very simple semi-uniform and uniform solutions to the numerical
NP-complete problem Subset Sum – by using SN P systems with exponential size
pre-computed resources – have been presented in [8]. All the systems constructed
above work in a deterministic way.

A different idea of constructing SN P systems for solving NP-complete prob-
lems was given in [10, 11], where the Subset Sum and SAT problems were consid-
ered. In these papers, the solutions are obtained in a semi-uniform or uniform way
by using non-deterministic devices but without pre-computed resources. However,
several ingredients are also added to SN P systems such as extended rules, the
possibility to have a choice between spiking rules and forgetting rules, etc. An
alternative to the constructions of [10, 11] was given in [9], where only standard
SN P systems without delaying rules and having a uniform construction are used.
However, it should be noted that the systems described in [9] either have an expo-
nential size, or their computations last an exponential number of steps. Indeed, it
has been proved in [11] that a deterministic SN P system of a polynomial size can-
not solve an NP-complete problem in a polynomial time unless P=NP. Hence,
under the assumption that P 6= NP, efficient solutions to NP-complete problems
cannot be obtained without introducing features which enhance the efficiency of
the system.

In this paper, neuron division and budding are introduced into the framework
of SN P systems in order to enhance the efficiency of these systems. We exemplify
this possibility with a uniform solution to SAT problem.

The biological motivation of introducing neuron division and budding into SN
P systems comes from the recent discoveries in neurobiology related to neural stem
cells – see, e.g., [4]. Neural stem cells persist throughout life within central nervous
system in the adult mammalian brain, and this ensures a life-long contribution of
new neurons to self-renewing nervous system with about 30000 new neurons being
produced every day. Even in vitro, neural stem cells can be grown and extensively
expanded for months. New neurons are produced by symmetric or asymmetric
division. Two main neuron cell types are found: neuroblasts and astrocytes. The
latter form a meshwork and are organized into channels. These observations are
incorporated in SN P systems by considering neuron division and budding, and by
providing a “synapse dictionary” according to which new synapses are generated,
respectively.

The paper is organized as follows. In Section 2 we recall some mathematical
preliminaries that will be used in the following. In Section 3 the formal definition
of SN P systems with neuron division rules and neuron budding rules is given. In
Section 4 we present a uniform family of SN P systems with neuron division and
budding rules such that the systems can solve SAT problem in a polynomial time.
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Section 5 concludes the paper and suggests some possible open problems for future
work.

2 Prerequisites

We assume the reader to be familiar with basic elements about membrane com-
puting, e.g., from [13] and [14], and formal language theory, as available in many
monographs. We mention here only a few notions and notations which are used
through the paper.

For an alphabet V , V ∗ denotes the set of all finite strings over V , with the
empty string denoted by λ. The set of all nonempty strings over V is denoted by
V +. When V = {a} is a singleton, then we simply write a∗ and a+ instead of {a}∗,
{a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each
a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each regular expression E we associate
a language L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a},
for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2),
and L((E1)+) = (L(E1))+, for all regular expressions E1, E2 over V . Non-necessary
parentheses can be omitted when writing a regular expression, and also (E)+∪{λ}
can be written as E∗.

3 SN P Systems with Neuron Division and Budding

As stated in the Introduction, SN P systems have been introduced in [6], in the
framework of membrane computing. They can be considered as an evolution of P
systems, corresponding to a shift from cell-like to neural-like architectures.

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consist of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to
send information to other neurons in the form of electrical impulses (also called
spikes) which are accumulated at the target cell. The applicability of each rule is
determined by checking the contents of the neuron against a regular set associated
with the rule. In each time unit, if a neuron can use one of its rules, then one of such
rules must be used. If two or more rules could be applied, then only one of them
is non-deterministically chosen. Thus, the rules are used in the sequential manner
in each neuron, but neurons function in parallel with each other. Note that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, and hence the functioning of the system is synchronized.
When a cell sends out spikes it becomes “closed” (inactive) for a specified period
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of time, a fact which reflects the refractory period of biological neurons. During
this period, the neuron does not accept new inputs and cannot “fire” (that is, emit
spikes). Another important feature of biological neurons is that the length of the
axon may cause a time delay before a spike arrives at the target. In SN P systems
this delay is modeled by associating a delay parameter to each rule which occurs
in the system. If no firing rule can be applied in a neuron, then there may be the
possibility to apply a forgetting rule, that removes from the neuron a predefined
number of spikes.

The structure of SN P systems (that is, the synapse graph) introduced in
[6] is static. For both biological and mathematical motivations discussed in the
Introduction, neuron division and budding are introduced into SN P systems. In
this way, an exponential workspace can be generated in polynomial (even linear)
time and computationally hard problems can be efficiently solved by means of a
space-time tradeoff.

Formally, a spiking neural P system with neuron division and budding of (ini-
tial) degree m ≥ 1 is a construct of the form

Π = (O, H, syn, n1, . . . , nm, R, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. H is a finite set of labels for neurons;
3. syn ⊆ H ×H is a synapse dictionary, with (i, i) 6∈ syn for i ∈ H;
4. ni ≥ 0 is the initial number of spikes contained in neuron i, i ∈ {1, 2, . . . , m};
5. R is a finite set of developmental rules, of the following forms:

(1) extended firing (also called spiking) rule [E/ac → ap; d]
i
, where i ∈ H, E

is a regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0, with the restriction
c ≥ p;

(2) neuron division rule [E] i → [ ] j ‖ [ ]k, where E is a regular expression and
i, j, k ∈ H;

(3) neuron budding rule [E]
i
→ [ ]

i
/[ ]

j
, where E is a regular expression and

i, j ∈ H;
6. in, out ∈ H indicate the input and the output neurons of Π.

Note that we have presented here an SN P system in a way slightly different
from the usual definition present in the literature, where the neurons present ini-
tially in the system are explicitly listed as σi = (ni, Ri), where 1 ≤ i ≤ m and Ri

are the rules associated with neuron with label i. In what follows we will refer to
neuron with label i ∈ H also denoting it with σi.

It is worth to mention that by applying division rules different neurons can
appear with the same label. In this context, (i, j) ∈ syn means the following:
there exist synapses from each neuron with label i to each neuron with label j.

If an extended firing rule [E/ac → ap; d] i has E = ac, then we will write it in
the simplified form [ac → ap; d]

i
; similarly, if a rule [E/ac → ap; d]

i
has d = 0,

then we can simply write it as [E/ac → ap]
i
; hence, if a rule [E/ac → ap; d]

i
has
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E = ac and d = 0, then we can write [ac → ap]
i
. A rule [E/ac → ap]

i
with p = 0

is written in the form [E/ac → λ] i and is called extended forgetting rule. Rules of
the types [E/ac → a; d] i and [ac → λ] i are said to be standard.

If a neuron σi contains k spikes and ak ∈ L(E), k ≥ c, then the rule [E/ac →
ap; d]

i
is enabled and it can be applied. This means consuming (removing) c spikes

(thus only k − c spikes remain in neuron σi); the neuron is fired, and it produces
p spikes after d time units. If d = 0, then the spikes are emitted immediately; if
d = 1, then the spikes are emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes open again, so that it can receive spikes (which can be used starting
with the step t + d + 1, when the neuron can again apply rules). Once emitted
from neuron σi, the p spikes reach immediately all neurons σj such that there is a
synapse going from σi to σj and which are open, that is, the p spikes are replicated
and each target neuron receives p spikes; as stated above, spikes sent to a closed
neuron are “lost”, that is, they are removed from the system. In the case of the
output neuron, p spikes are also sent to the environment. Of course, if neuron σi

has no synapse leaving from it, then the produced spikes are lost. If the rule is a
forgetting one of the form [E/ac → λ]

i
, then, when it is applied, c ≥ 1 spikes are

removed. When a neuron is closed, none of its rules can be used until it becomes
open again.

If (1) a neuron σi contains s spikes and as ∈ L(E), and (2) there is no neuron σg

such that the synapse (g, i) or (i, g) exists in the system, for some g ∈ {j, k}, then
the division rule [E]

i
→ [ ]

j
‖ [ ]

k
is enabled and it can be applied. This means that

consuming all these s spikes the neuron σi is divided into two neurons, σj and σk.
The new neurons contain no spike in the moment when they are created. They can
have different labels, but they inherit the synapses that the father neuron already
has (if there is a synapse from neuron σg to the neuron σi, then in the process of
division one synapse from neuron σg to new neuron σj and another one from σg to
σk are established; similarly, if there is a synapse from the neuron σi to neuron σh,
then one synapse from σj to σh and another one from σk to σh are established).
Note that the restriction provided by condition (2) to the use of the rule ensures
that no synapse (j, j) or (k, k) appears. Except for the inheritance of synapses,
the new neurons produced by division can have new synapses as provided by the
synapse dictionary. Note that during the computation, it is possible that a synapse
between neurons involved in the division rule and neurons existing in the system
will appear that is not in the synapse dictionary syn, because of the inheritance
of synapses. Therefore, the synapse dictionary syn has two functions: one is to
deduce the initial topological structure of the SN P system (a directed graph), for
example, if there are neurons σ1, . . . , σk at the beginning of computation, then the
initial topological structure of the system is syn ∩ ({1, 2, . . . , k} × {1, 2, . . . , k});
another function is to guide the synapse establishment associated with the new
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neurons generated by neuron division or neuron budding. That is why we call syn
a synapses dictionary.

If (1) a neuron σi contains s spikes, and as ∈ L(E), and (2) there is no neuron
σj such that the synapse (i, j) exists in the system,then the budding rule [E]

i
→

[ ]
i
/[ ]

j
is enabled and it can be applied. This means that consuming all the s

spikes a new neuron is created, σj . Both neurons are empty after applying the
rule. The neuron σi inherits the synapses going to it before using the rule. The
neuron σj created by budding by neuron σi inherits the synapses going out of σi

before budding, that is, if there is a synapse from neuron σi to some neuron σh,
then a synapse from neuron σj to neuron σh is established (condition (2) ensures
the fact that no synapse (j, j) appears). There is also a synapse (i, j) between
neurons σi and σj . Except for the above synapses associated with neurons σi and
σj , other synapses associated with neuron σj can be established according to the
synapses dictionary syn as in the case of neuron division rule.

In each time unit, if a neuron σi can use one of its rules, then a rule from R must
be used. If several rules are enabled in neuron σi, irrespective of their types (spik-
ing, dividing, or budding) then only one of them is chosen non-deterministically.
When a spiking rule is used, the state of neuron σi (open or closed) depends on
the delay d. When a neuron division rule or neuron budding rule is applied, at this
step the associated neuron is closed, it cannot receive spikes. In the next step, the
neurons obtained by division or budding will be open and can receive spikes. Thus,
the rules are used in the sequential manner in each neuron, but neurons function
in parallel with each other.

It is worth noting here that the two neurons produced by a division rule can
have labels different from each other and from the divided neuron, and that they
are placed “in parallel”, while in the budding case the old neuron (consumes all its
spikes and) produces one new neuron which is placed “serially”, after the neuron
which budded.

The configuration of the system is described by the topology structure of the
system, the number of spikes associated with each neuron, and the state of each
neuron (open or closed). Using the rules as described above, one can define tran-
sitions among configurations. Any sequence of transitions starting in the initial
configuration is called a computation. A computation halts if it reaches a configu-
ration where all neurons are open and no rule can be used.

Traditionally, the input of an SN P system used in the accepting mode is
provided in the form of a spike train, a sequence of steps when one spike or no
spike enters the input neuron. In what follows we need several spikes at a time to
come into the system via the input neuron, that is we consider “generalized spike
trains”, written in the form ai1 ·ai2 · . . . ·air , where r ≥ 1, ij ≥ 0 for each 1 ≤ j ≤ r.
The meaning is that ij spikes are introduced in neuron σin in step j (all these ij
spikes are provided at the same time). Note that we can have ij = 0, which means
that no spike is introduced in the input neuron. The period which separate the
“packages” aij of spikes is necessary in order to make clear that we do not have
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here a concatenation of the strings describing these “packages”, but a sequence of
blocks (more formally, a sequence of multisets over the singleton alphabet O).

Spiking neural P systems can be used to solve decision problems, both in a
semi–uniform and in a uniform way. When solving a problem Q in the semi–
uniform setting, for each specified instance I of Q an SN P system ΠQ,I is (i)
built by a Turing machine in a polynomial time (with respect to the size of I),
(ii) its structure and initial configuration depend upon I, and (iii) it halts (or
emits a specified number of spikes in a given interval of time) if and only if I is
a positive instance of Q. On the other hand, a uniform solution of Q consists of
a family {ΠQ(n)}n∈N of SN P systems that are built by a Turing machine in a
polynomial time (with respect to the size n). When having an instance I ∈ Q of
size n, we introduce a polynomial (in n) number of spikes in a designated input
neuron of ΠQ(n) and the computation halts (or, alternatively, a specified number
of spikes is emitted in a given interval of time) if and only if I is a positive instance.
The preference for uniform solutions over semi–uniform ones is given by the fact
that they are more strictly related to the structure of the problem, rather than to
specific instances. Indeed, in the semi–uniform setting we do not even need any
input neuron, as the instance of the problem can be embedded into the initial
configuration of the system from the very beginning.

4 A Uniform Solution to SAT Problem

Let us consider the NP-complete decision problem SAT [5]. The instances of SAT
depend upon two parameters: the number n of variables, and the number m of
clauses. We recall that a clause is a disjunction of literals, occurrences of xi or
¬xi, built on a given set X = {x1, x2, . . . , xn} of Boolean variables. Without loss
of generality, we can avoid the clauses in which the same literal is repeated or
both the literals xi and ¬xi, for any 1 ≤ i ≤ n, occur. In this way, a clause can be
seen as a set of at most n literals. An assignment of the variables x1, x2, . . . , xn

is a mapping T : X → {0, 1} that associates to each variable a truth value. The
number of all possible assignments to the variables of X is 2n. We say that an
assignment satisfies the clause C if, assigned the truth values to all the variables
which occur in C, the evaluation of C (considered as a Boolean formula) gives 1
(true) as a result.

We can now formally state the SAT problem as follows.
Problem 1. NAME: SAT.

– INSTANCE: a set C = {C1, C2, . . . , Cm} of clauses, built on a finite set
{x1, x2, . . . , xn} of Boolean variables.

– QUESTION: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

Equivalently, we can say that an instance of SAT is a propositional formula
γn,m = C1∧C2∧· · ·∧Cm, expressed in the conjunctive normal form as a conjunction
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of m clauses, where each clause is a disjunction of literals built using the Boolean
variables x1, x2, . . . , xn. With a little abuse of notation, from now on we will denote
by SAT (n,m) the set of instances of SAT which have n variables and m clauses.

Let us consider the polynomial time computable function 〈n, m〉 = ((m+n)(m+
n + 1)/2) + m (the pair function), which is a primitive recursive and bijective
function from N2 to N. Let us build a uniform family {ΠSAT (〈n,m〉)}n,m∈N of
SN P systems such that for all n, m ∈ N the system ΠSAT (〈n,m〉) solves all the
instances of SAT (n,m) in a number of steps which is linear in both n and m. All
the systems ΠSAT (〈n, m〉) will work in a deterministic way.

Because the construction is uniform, we need a way to encode any given in-
stance γn,m of SAT (n,m). As stated above, each clause Ci of γn,m can be seen
as a disjunction of at most n literals, and thus for each j ∈ {1, 2, . . . , n} either xj

occurs in Ci, or ¬xj occurs, or none of them occurs. In order to distinguish these
three situations we define the spike variables αi,j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
as variables whose values are amounts of spikes; we assign to them the following
values:

αi,j =





a, if xj occurs in Ci;
a2, if ¬xj occurs in Ci;
a0, otherwise.

In this way, clause Ci will be represented by the sequence αi,1 · αi,2 · . . . · αi,n of
spike variables; in order to represent the entire formula γn,m we just concatenate
the representations of the single clauses, thus obtaining the generalized spike train
α1,1 ·α1,2 · . . . ·α1,n.α2,1 ·α2,2 · . . . ·α2,n · . . . ·αm,1 ·αm,1 · . . . ·αm,n. As an example,
the representation of γ3,2 = (x1∨¬x2)(x1∨x3) is the sequence a ·a2 ·a0 ·a ·a0 ·a. In
order to let the systems have enough time to generate necessary workspace before
computing the instances of SAT (n,m), a spiking train (a0·)2n is added in front
of the formula encoding spike train α1,1 · α1,2 · . . . · α1,n.α2,1 · α2,2 · . . . · α2,n · . . . ·
αm,1 · αm,1 · . . . · αm,n. In general, for any given instance γn,m of SAT (n,m), the
encoding sequence is cod(γn,m) = (a0·)2nα1,1 ·α1,2 · . . . ·α1,n ·α2,1 ·α2,2 · . . . ·α2,n ·
. . . · αm,1 · αm,1 · . . . · αm,n.

For each n,m ∈ N, we construct

Π(〈n,m〉) = (O,H, syn, n1, . . . , nq, R, in, out),

with the following components:

The initial degree of the system is q = 4n + 7;

O = {a};

H = {in, out, cl} ∪ {di | i = 0, 1, . . . , n}
∪ {Cxi | i = 1, 2, . . . , n} ∪ {Cxi0 | i = 1, 2, . . . , n}
∪ {Cxi1 | i = 1, 2, . . . , n} ∪ {ti | i = 1, 2, . . . , n}
∪ {fi | i = 1, 2, . . . , n} ∪ {0, 1, 2, 3};
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syn = {(di, di+1) | i = 0, 1, . . . , n− 1} ∪ {(dn, d1)}
∪ {(in, Cxi) | i = 1, 2, . . . , n} ∪ {(di, Cxi) | i = 1, 2, . . . , n}
∪ {(Cxi, Cxi0) | i = 1, 2, . . . , n} ∪ {(Cxi, Cxi1) | i = 1, 2, . . . , n}
∪ {(i + 1, i) | i = 0, 1, 2} ∪ {(1, 2), (0, out)}
∪ {(Cxi1, ti) | i = 1, 2, . . . , n} ∪ {(Cxi0, fi) | i = 1, 2, . . . , n};

nd0 = n0 = n2 = n3 = 1, nd1 = 6, and there is no spike in the other neurons;

R is the following set of rules:
(1) spiking rules:

[a → a]
in

,
[a2 → a2]

in
,

[a → a; 2n + nm]d0
,

[a4 → a4]
i
, i = d1, . . . , dn,

[a5 → λ]
d1

,
[a6 → a4; 2n + 1]

d1
,

[a → λ]
Cxi

, i = 1, 2, . . . , n,
[a2 → λ]Cxi

, i = 1, 2, . . . , n,
[a4 → λ]

Cxi
, i = 1, 2, . . . , n,

[a5 → a5; n− i]Cxi
, i = 1, 2, . . . , n,

[a6 → a6; n− i]
Cxi

, i = 1, 2, . . . , n,
[a5 → a4]Cxi1

, i = 1, 2, . . . , n,
[a6 → λ]

Cxi1
, i = 1, 2, . . . , n,

[a5 → λ]Cxi0
, i = 1, 2, . . . , n,

[a6 → a4]
Cxi0

, i = 1, 2, . . . , n,
[(a4)+ → a] ti

, i = 1, 2, . . . , n,
[(a4)+ → a]

fi
, i = 1, 2, . . . , n,

[a4k−1 → λ] ti
, k = 1, 2, . . . , n, i = 1, 2, . . . , n,

[a4k−1 → λ]
fi

, k = 1, 2, . . . , n, i = 1, 2, . . . , n,
[am → a2]cl,
[(a2)+/a → a]out,
[a → a]

i
, i = 1, 2,

[a2 → λ]
2
,

[a → a; 2n− 1]
3
;

(2) neuron division rules:
[a]0 → [ ] t1

‖ [ ]f1
,

[a]
ti
→ [ ]

ti+1
‖ [ ]

fi+1
, i = 1, 2, . . . , n− 1,

[a]
fi
→ [ ]

ti+1
‖ [ ]

fi+1
, i = 1, 2, . . . , n− 1;

(3) neuron budding rules:
[a]

tn
→ [ ]

tn
/[ ]

cl
,

[a]
fn
→ [ ]

fn
/[ ]

cl
.
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The solution of the SAT problem is obtained by means of a brute force algorithm
in the framework of SN P systems with neuron division and budding. Our strategy
consists in the following phases:

• Generation Stage: The neuron division and budding are applied to generate an
exponential number of neurons such that each possible assignment of variables
x1, x2, . . . , xn is represented by a neuron (with associated connections with
other neurons by synapses).

• Input Stage: The system reads the encoding of the given instance of SAT.
• Satisfiability Checking Stage: The system checks whether or not there exists

an assignment of variables x1, x2, . . . , xn that satisfies all the clauses in the
propositional formula C.

• Output Stage: According to the result of the previous stage, the system sends
a spike to the environment if the answer is positive; otherwise, the system does
not send any spike to the environment.

Let us have an overview of the computation. The initial structure of the system
is shown in Figure 1 (in the figures which follow we only present the spiking and
the forgetting rules, but not also the division and budding rules). The first three
layers of the system constitutes the input module. The neuron σ0 and its offsprings
will be used to generate an exponential workspace by neuron division and budding
rules. The auxiliary neurons σ1, σ2, and σ3 supply necessary spikes to the neuron
σ0 and its offsprings for neuron division and budding rules. The neuron σout is
used to output the result.

Generation Stage: By the way of the encoding of instances, it is easy to see
that the spike variables αi,j will be introduced into neuron σin from step 2n + 1
(it takes 2n steps to read (a0·)2n of cod(γn,m)). In the first 2n steps, the system
generates an exponential workspace; after that, the system checks the satisfiability,
and outputs the result.

The neuron σ0 contains one spike, the rule [a]0 → [ ] t1
‖ [ ]f1

is applied, and
two neurons σt1 and σf1 are generated. They have the associated synapses (1, f1),
(1, t1), (t1, out), (f1, out), (Cx11, t1) and (Cx10, f1), where the first 4 synapses are
obtained by the heritage of the synapses (0, out) and (1, 0), respectively, and the
last 2 synapses are established by the synapse dictionary. The auxiliary neuron σ2

sends one spike to neuron σ1, and at step 2 neuron σ1 sends this spike to neurons
σt1 and σf1 for the next division. At step 1, the neuron σ3 contains one spike, and
the rule [a → a; 2n − 1]

3
is applied. It will send one spike to neuron σ2 at step

2n because of the delay 2n − 1. (As we will see, at step 2n, neuron σ1 also sends
one spike to neuron σ2, so neuron σ2 will have 2 spikes, and the rule [a2 → λ]2
will be applied. In this way, after step 2n, the auxiliary neurons stop the work of
supplying spikes for division and budding.) The structure of the system after step
1 is shown in Figure 2.

At step 2, neuron σ1 sends one spike to neurons σ2, σt1 , and σf1 . In the next
step, neuron σ2 sends one spike back to neuron σ1; in this way, the auxiliary
neurons σ1, σ2, and σ3 supply spikes for division and budding every two steps in
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Fig. 1. The initial structure of system Π(〈n, m〉)

the first 2n steps. At step 3, only division rules can be applied in neurons σt1 and
σf1 , these two neurons are divided, and the associated synapses are obtained by
heritage or synapse dictionary. The four neurons with labels t2 or f2 correspond
to assignments where (1) x1 = 1 and x2 = 1, (2) x1 = 1 and x2 = 0, (3) x1 = 0
and x2 = 1, (4) x1 = 0 and x2 = 0, respectively. The neuron Cx11 (encoding
that x1 appears in a clause) has synapses from it to neurons whose corresponding
assignments have x1 = 1. That is, assignments with x1 = 1 satisfy clauses where
x1 appears. The structure of the system after step 3 is shown in Figure 3. The
neuron division is iterated until 2n neurons with labels tn or fn appear at step
2n− 1. The corresponding structure after step 2n− 1 is shown in Figure 4.

At step 2n, each neuron with label tn or fn obtains one spike from neuron σ1,
then in next step the budding rules [a]

tn
→ [ ]

tn
/[ ]

cl
and [a]

fn
→ [ ]

fn
/[ ]

cl
are

applied. Each created neuron σcl has synapses (tn, cl) or (fn, cl) and (cl, out) by
heritage. At step 2n, neuron σ1 also sends one spike to neuron σ2, at the time,
neuron σ3 sends one spike to neuron σ2. So neuron σ2 has two spikes, and the rule
[a2 → λ]

2
is applied at step 2n+1. After that, the auxiliary neurons cannot supply

spikes any more, and the system passes to read the encoding of given instance.
The structure of the system after step 2n + 1 is shown in Figure 5.
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Fig. 2. The structure of system Π(〈n, m〉) after step 1

Input Stage: The input module consists of 2n + 2 neurons, which are in the
layers 1 – 3 as illustrated in Figure 1; σin is the unique input neuron. The spikes
of the encoding sequence code(γn,m) are introduced into σin one “package” by one
“package”, starting from step 1. It takes 2n steps to introduce (a0·)2n into neuron
σin. At step 2n + 1, the value of the first spike variable α11, which is the virtual
symbol that represents the occurrence of the first variable in the first clause, enters
into neuron σin. In the next step, the value of the spike variable α11 is replicated
and sent to neurons σCxi , for all i ∈ {1, 2, . . . , n}; in the meanwhile, neuron σd1

send four auxiliary spikes to neurons σCx1 and σd2 (the rule [a6 → a4; 2n + 1]d1
is

applied at step 1). Hence, neuron σCx1 will contain 4, 5 or 6 spikes: if x1 occurs
in C1, then neuron σCx1 collects 5 spikes; if ¬x1 occurs in C1, then it collects
6 spikes; if neither x1 nor ¬x1 occur in C1, then it collects 4 spikes. Moreover,
if neuron σCx1 has received 5 or 6 spikes, then it will be closed for n − 1 steps,
according to the delay associated with the rules in it; on the other hand, if 4
spikes are received, then they are deleted and the neuron remains open. At step
2n + 3, the value of the second spike variable α12 from neuron σin is distributed
to neurons σCxi , 2 ≤ i ≤ n, where the spikes corresponding to α11 are deleted
by the rules [a → λ]

Cxi
and [a2 → λ]

Cxi
, 2 ≤ i ≤ n. At the same time, the four

auxiliary spikes are duplicated and one copy of them enters into neurons σCx2 and
σd3 , respectively. The neuron σCx2 will be closed for n− 2 steps only if it contains
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Fig. 5. The structure of system Π(〈n, m〉) after step 2n + 1

5 or 6 spikes, which means that this neuron will not receive any spike during this
period. In neurons σCxi , 3 ≤ i ≤ n, the spikes represented by α12 are forgotten in
the next step.

In this way, the values of the spike variables are introduced and delayed in the
corresponding neurons until the value of the spike variable α1n of the first clause
and the four auxiliary spikes enter together into neuron σCxn at step 3n+1. At that
moment, the representation of the first clause of γn,m has been entirely introduced
in the system, and the second clause starts to enter into the input module. In
general, it takes mn + 1 steps to introduce the whole sequence code(γn,m) in the
system, and the input process is completed at step 2n + nm + 1.

At step 2n + nm + 1, the neuron σdn sends four spike to neuron σd1 . At the
same time, the auxiliary neuron σd0 also sends a spike to the neuron σd1 (the rule
[a → a; 2n + nm]

d0
is used at the first step of the computation). So neuron σd1

contains 5 spikes, and in the next step these 5 spikes are forgotten by the rule
[a5 → λ]d1

. This ensures that the system eventually halts.
Satisfiability Checking Stage: Once all the values of spike variables α1i (1 ≤

i ≤ n), representing the first clause, have appeared in their corresponding neurons
σCxi in layer 3, together with a copy of the four auxiliary spikes, all the spikes
contained in σCxi are duplicated and sent simultaneously to the pair of neurons
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σCxi1 and σCxi0, for i ∈ {1, 2, . . . , n}, at step 3n + 2. In this way, each neuron
σCxi1 and σCxi0 receives 5 or 6 spikes when xi or ¬xi occurs in C1, respectively,
whereas it receives no spikes when neither xi nor ¬xi occurs in C1. In general, if
neuron σCxi1 receives 5 spikes, then the literal xi occurs in the current clause (say
Cj), and thus the clause is satisfied by all those assignments in which xi is true.
Neuron σCxi0 will also receive 5 spikes, but they will be deleted during the next
computation step. On the other hand, if neuron σCxi1 receives 6 spikes, then the
literal ¬xi occurs in Cj , and the clause is satisfied by those assignments in which
xi is false. Since neuron σCxi1 is designed to process the case in which xi occurs
in Cj , it will delete its 6 spikes. However, neuron σCxi0 will also have received 6
spikes, and this time it will send four spikes to those neurons which are bijectively
associated with the assignments for which xi is false (refer to the generation stage
for the corresponding synapses). In the next step, those neurons with label tn or fn

that received at least four spikes send one spike to the corresponding neurons σcl

(the remaining spikes will be forgotten; note that the number of spikes received in
neurons with label tn or fn is not more than 4n, because, without loss of generality,
we assume that the same literal is not repeated and at most one of literals xi or
¬xi, for any 1 ≤ i ≤ n, can occur in a clause; that is, a clause is a disjunction of at
most n literals), with the meaning that the clause is satisfied by the assignments in
which xi is false. This occurs in step 3n+4. Thus, the check for the satisfiability of
the first clause has been performed; in a similar way, the check for the remaining
clauses can proceed. All the clauses can thus be checked to see whether there exist
assignments that satisfy all of them.

If there exist some assignments that satisfy all the clauses of γn,m, then the
corresponding neurons with label cl succeed to accumulate m spikes. Thus, the rule
[am → a2]

cl
can be applied in these neurons. The satisfiability checking process is

completed at step 2n + mn + 4.
Output Stage: From the above explanation, it is not difficult to see that the

output neuron receives spikes if and only if γn,m is true. Furthermore, the output
neuron sends exactly one spike to the environment at step 2n+mn+6 if and only
if γn,m is true.

From the previous explanations, one can see that the system correctly answers
the question whether or not γn,m is satisfiable. The duration of the computation is
polynomial in term of n and m: if the answer is positive, then the system sends one
spike to the environment at step 2n + mn + 6; if the answer is negative, then the
system halts in 2n+mn+6 steps, but does not send any spike to the environment.

Finally, we show that the family Π = {Π(〈n,m〉) | n,m ∈ N} is polynomially
uniform by deterministic Turing machines. We first note that the sets of rules
associated with the system Π(〈n, m〉) are recursive. Hence, it is enough to note
that the amount of necessary resources for defining each system is linear with
respect to n, and this is indeed the case, since those resources are the following:

1. Size of the alphabet: 1 ∈ O(1).
2. Initial number of neurons: 4n + 7 ∈ O(n).
3. Initial number of spikes: 9 ∈ O(1).
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4. Number of labels for neurons: 6n + 8 ∈ O(n).
5. Size of synapse dictionary: 7n + 6 ∈ O(n).
6. Number of rules: 2n2 + 14n + 12 ∈ O(n2).

5 Conclusions and Remarks

With computer science and biological motivation, neuron division and neuron bud-
ding are introduced into the framework of spiking neural P systems. We have
proven that spiking neural P systems with neuron division and neuron budding
can solve NP-complete problems in polynomial time. We exemplify this possibility
with SAT problem.

Both neuron division rules and neuron budding rules can generate exponential
workspace in linear time. In this sense, we used a double “power” to solve SAT
problem in the systems constructed in this paper. It remains open to design efficient
spiking neural P systems with either neuron division rules or neuron budding rules,
but not both kinds of rules, for solving NP-complete problem.

Actually, we have here a larger set of problems. Besides the budding rules of
the form considered above, we can also define “serial division rules”, of the form
[E]

i
→ [ ]

j
/[ ]

k
, where E is a regular expression and i, j, k ∈ H. The meaning

is obvious: neuron σi produces two neurons, σj and σk, with possibly new labels
j, k, linked by synapses as in the case of budding rules. Note that a budding rule
is a particular case, with i = j. Thus, we can consider three types of rules: parallel
division rules, budding rules (these two types were considered above), and serial
division rules. Are rules of a single type sufficient in order to devise SN P systems
which solve computationally hard problems in polynomial time?

For cell-like P systems, besides membrane division, there is another operation
which was proved to provide ways to generate an exponential workspace in poly-
nomial time, useful for trading space for time in solving NP-complete problem,
namely membrane creation (a membrane is created from objects present in other
membranes). Can this idea be also extended to SN P systems? Note that in the
case of SN P systems we do not have neurons inside neurons, neither spikes outside
neurons, hence this issue does not look easy to handle; maybe further ingredients
should be added, such as glia cells, astrocytes, etc.
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to SAT and Subset Sum by spiking neural P systems. Natural Computing, online
version (DOI: 10.1007/s11047-008-9091-y).

10. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: Solving numerical NP-complete
problem with spiking neural P systems. Lecture Notes in Computer Sci., 4860 (2007),
336–352.

11. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: On the computational power of
spiking neural P systems. International Journal of Unconventional Computing, 2007,
in press.
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