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Summary. We study two very simple variants of P colonies: systems with only one
object inside the cells, and systems with insertion-deletion programs, so called P colonies
with senders and consumers. We show that both of these extremely simple types of
systems are able to compute any recursively enumerable set of vectors of non-negative
integers.

1 Introduction

P colonies form a class of abstract computing devices modeling a community of
simple agents acting and evolving in a shared environment. They were introduced
in [5] as very simple membrane systems, similar in simplicity and architecture to
so called colonies of formal grammars. (See [7] for more information on membrane
systems and [2, 4] for details on grammar systems theory.)

A P colony consists of a collection of cells, each having a number of objects
inside and an associated set of rules through which it can process these objects.
Communication between the cells is only possible indirectly through the environ-
ment which is common to all of them.

The capabilities of the computing agents are very restricted, and the number
of objects present inside a cell during the functioning of the system is previously
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fixed: it is usually one, two or three. The rules are also of a very simple form.
As we will see, they allow the transformation of objects inside the cells and the
transportation of objects between the cells and the environment. The rules are
grouped into programs. A program contains exactly as many rules, as the number
of objects allowed to be present inside the cell. The rules of the programs are
applied to the objects inside the associated cells in parallel, and this also affects
the objects which are in the environment.

The P colony executes a computation by synchronously applying the programs
to the objects inside the cells and outside in the environment until a halting con-
figuration is reached. The result of the computation is obtained as the vector of
copies of certain “final” objects present in the environment after the system halts.

In the following, after providing the formal definitions, we first give a short
overview of results on the computational completeness of the different P colony
variants. Then we present new results about two types of systems: first about the
simplest possible P colonies, those which only have one object inside every cell,
and then about a new type called P colonies with senders and consumers, which
have special rules for insertion-deletion. We show that both kinds of these very
simple devices are able to compute any recursively enumerable set of vectors of
non-negative integers.

2 Preliminaries

Let V be an alphabet, let V ∗ be the set of all words over V , and let ε denote the
empty word. We denote the number of occurrences of a symbol a ∈ V in w by
|w|a. The set of non-negative integers is denoted by N.

A multiset over an arbitrary (not necessarily finite) set V is a mapping M :
V → N which assigns to each object a ∈ V its multiplicity M(a) in M . The support
of M is the set supp(M) = {a | M(a) ≥ 1}. If V is a finite set, then M is called a
finite multiset. A multiset M is empty if its support is empty, supp(M) = ∅. We
will represent a finite multiset M over V by a string w over the alphabet V with
|w|a = M(a), a ∈ V , and ε will represent the empty multiset.

We will also need the notion of a register machine which consists of a finite
number of registers each of which can hold an arbitrarily large non-negative integer
(we say that the register is empty if it holds zero), and a set of labeled instructions
which specify how the numbers stored in the registers can be changed.

Formally, a register machine is a construct M = (m,H, l0, lh, R), where m is
the number of registers, H is the set of instruction labels, l0 is the start label, lh
is the halting label, and R is the set of instructions. Each label from H labels only
one instruction from R. There are several types of instructions which can be used.
For li, lj , lk ∈ H and r ∈ {1, . . . , m} we have

• li : (ADD(r), lj , lk) - nondeterministic add: Add one to register r and then go
to one of the instructions with labels lj or lk, non-deterministically chosen.
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• li : (SUB(r), lj , lk) - subtract: If register r is non-empty, then subtract one from
it and go to the instruction with label lj , if the value of register r is zero, go
to instruction lk.

• lh : HALT - halt: Stop the machine.

A register machine M computes a set N(M) of numbers in the following way: It
starts with empty registers by executing the instruction with label l0 and proceeds
by applying instructions as indicated by the labels (and made possible by the
contents of the registers). If the halt instruction is reached, then the number stored
at that time in register 1 is said to be computed by M . Because of the non-
determinism in choosing the continuation of the computation in the case of ADD
instructions, N(M) can be an infinite set.

It is known (see, e.g., [6]) that in this way we can compute all sets of numbers
which are Turing computable.

If a set of output registers i1, . . . , ir, 1 ≤ r ≤ m, ij ∈ {1, . . . , m} is specified,
then M computes a set of vectors of non-negative integers as follows. If the halt
instruction is reached, then (v1, . . . , vr), where vk is the number stored in register
ik, 1 ≤ k ≤ r, is the vector of numbers computed by M, i.e., the result of that
computation.

Now we recall the definition of a P colony from [5]. A P colony is a construct
Π = (V, e, F, C1, . . . , Cn), n ≥ 1, where V is an alphabet (its elements are called
objects). There are two kinds of distinguished objects: e ∈ V (the environmental
object), and the objects in F ⊆ V (the set final objects). The cells of the colony are
denoted by C1, . . . , Cn. Each cell is a pair Ci = (Oi, Pi), where Oi is a multiset over
{e} having the same cardinality called capacity (here we only consider |Oi| ∈ {1, 2})
for all i, 1 ≤ i ≤ n (the initial state of the cell), and Pi is a finite set of programs.
Each program consists of rules of the following forms:

• a → b (internal point mutation), specifying that an object a ∈ V inside the
cell is changed to b ∈ V .

• c ↔ d (one object exchange with the environment), specifying that if c ∈ V
is contained inside the cell and d ∈ V is present in the environment, then c is
sent out of the cell while d is brought inside.

• c ↔ d/c ↔ d′ (checking rule for one object exchange with the environment),
specifying that if c ∈ V is inside the cell then it is exchanged with d ∈ V from
the environment, or if there is no d outside but d′ ∈ V is present, then c is
exchanged with d′.

• c ↔ d/c → d′ (checking rule for one object exchange with the environment or
internal point mutation), specifying that if the exchange of c ∈ V inside and
d ∈ V outside is not possible, then c is changed to d′ ∈ V .

The programs contain one rule for each element of Oi, thus, the number of rules
of a program coincides with the cardinality of Oi, 1 ≤ i ≤ n.

In addition, P colonies with capacity of two may have programs of the form
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• 〈a, in; bc → d〉 with a, b, c, d ∈ V (deletion programs), specifying that if bc is
present inside the cell and a is present in the environment, then the objects
inside are changed to d and a is brought in.

• 〈a, out; b → cd〉 with a, b, c, d ∈ V (insertion programs), specifying that if ab is
inside the cell, then a is sent out and b is changed to cd.

The programs of the cells are used in the non-deterministic maximally parallel
manner: in each time unit, each cell which is able to use one of its programs should
use one. The use of a program means the application of the rule(s) of the program
to the object(s) in the cell.

This way, transitions among the configurations of the colony are obtained. A
sequence of transitions is a computation which is halting if it reaches a configuration
where no cell can use any program. The result of a halting computation is obtained
from the number of copies of objects from F present in the environment in the
halting configuration. Because of the non-determinism in choosing the programs,
several computations can be obtained from a given initial configuration, hence with
a P colony Π we can associate a set of vectors of non-negative integers computed
by all possible halting computations of Π.

Initially, the environment contains arbitrarily many copies of the environmental
object e, and the cells also contain one or two copies of e inside, depending on the
capacity of the P colony.

For a P colony Π = (V, e, F, C1, . . . , Cn) as above, a configuration can be
formally written as an (n + 1)-tuple

(w1, . . . , wn; wE),

where wi ∈ V ∗ represents the multiset of objects from cell Ci, 1 ≤ i ≤ n, and
wE ∈ (V −{e})∗ represents the multiset of objects from the environment different
from the environmental object e. The initial configuration is (ei, . . . , ei; ε) where
i ∈ {1, 2} is the capacity of the cells.

A transition from a configuration to another is denoted as

(w1, . . . , wn;wE) ⇒ (w′1, . . . , w
′
n;w′E)

where w′E and each w′i is obtained from wi, 1 ≤ i ≤ n by executing one of the
programs of Pi.

The set of vectors in Nm, m = |F |, F = {o1, . . . , om} computed by a P colony
Π is defined as

N(Π) = {(|vE |o1 , . . . , |vE |om) | (ei, . . . , ei; ε) ⇒∗ (v1, . . . , vn, vE)}

where (ei, . . . , ei, ε), i ∈ {1, 2}, is the initial configuration, (v1, . . . , vn, vE) is a
halting configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Let us denote by PCOL(i, j, k, check) and PCOL(i, j, k, no-check) the classes
of sets of vectors generated by P colonies with j ≥ 1 cells of capacity i ∈ {1, 2},
having at most k ≥ 1 programs associated to a cell which contain or do not contain
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checking rules, respectively. If a numerical parameter is unbounded, we denote it
by a ∗.

P colonies can simulate register machines with a rather limited number of
programs per cell. In [3], it was shown that

PCOL(2, ∗, 4, check) = PCOL(3, ∗, 3, check) = NRE

where NRE denotes the class of recursively enumerable sets of integer vectors.
Even one cell is enough, if it may have an arbitrarily large number of programs,
that is,

PCOL(2, 1, ∗, check) = NRE.

Similar results were also obtained without the use of checking rules. In this
case we have

PCOL(2, ∗, 8, no-check) = PCOL(3, ∗, 7, no-check) = NRE.

3 P Colonies with One Object

In [1] it was shown that if checking rules are allowed to be used, then all recursively
enumerable sets of vectors can even be generated by P colonies with capacity one,
that is,

PCOL(1, 4, ∗, check) = NRE.

In the following we strengthen this result by showing that P colonies with six
components generate all vectors even if checking rules are not used.

Theorem 1. PCOL(1, 6, ∗, no-check) = NRE.

Proof. We construct a P colony simulating the computations of a register ma-
chine. Let us consider an m-register machine M = (m,H, l0, lh, P ) and represent
the content of the register i by the number of copies of a specific object ai in the en-
vironment. We construct the P colony Π = (V, e, F, C1, . . . , C6) with:

V = {li, l′i, l′′i , l̄i,Ki, Li, L
′
i, L

′′
i , L′′′i , Ei, Fi, $i | for each li ∈ H} ∪

{ai, ai,j | 1 ≤ i ≤ m, 1 ≤ j ≤ |H|} ∪ {D,D′, T},
F = {ai | register i is an output register}, and
Ci = (e, Pi), for 1 ≤ i ≤ 6.

Because initially there are only copies of e in the environment and inside the cells,
we have to initialize the simulation of the computation of M by generating the
initial the label l0, and an arbitrary number of l′i, l

′′
i for all li ∈ H. These symbols

are generated by C1 and C2 with the following programs:

P1 ⊃ {〈e → l′r〉, 〈l′r ↔ e〉, 〈e → l′′r 〉, 〈l′′r ↔ e〉 | lr ∈ H} ∪
{〈e ↔ D′〉, 〈D′ → l0〉, 〈l0 ↔ D〉},

P2 ⊃ {〈e → D′〉, 〈D′ → D′〉, 〈D′ ↔ l′1〉, 〈l′1 → D〉, 〈D ↔ l′′1 〉}.



102 L. Ciencialová et al.

With these programs, from the configuration (e, e, e, e, e, e; ε), we obtain
(D, l′′1 , e, e, e, e; l0w) where the environment contains the label of the initial in-
struction, l0, and w, a multiset of primed and double primed instruction labels.

To simulate the instruction li : (ADD(r), lj , lk), cells C1 and C3 cooperate to
add one copy of object ar and object lj or lk to the environment.

P1 : P3

i1 : 〈D ↔ ar,i〉 i1 : 〈e ↔ li〉
i2 : 〈ar,i → ar〉 i2 : 〈li → ar,i〉
i3 : 〈ar ↔ Kj〉 i3 : 〈ar,i ↔ l′i〉
i4 : 〈ar ↔ Kk〉 i4 : 〈ar,i → t〉
i5 : 〈Kj → lj〉 i5 : 〈l′i → Kj〉
i6 : 〈Kk → lk〉 i6 : 〈l′i → Kk〉
i7 : 〈lj ↔ D〉 i7 : 〈Kj ↔ e〉
i8 : 〈lk ↔ D〉 i8 : 〈Kk ↔ e〉

i9 : 〈t → t〉

It is not difficult to follow how the interplay of these two cells produce the con-
figuration (D, l′′1 , e, e, e, e; ljarw

′) or (D, l′′1 , e, e, e, e; lkarw
′) from a configuration

(D, l′′1 , e, e, e, e; liw) where w,w′ are multisets of l′i, l
′′
i for li ∈ H and ar 1 ≤ r ≤ m.

If there is no l′i present in the environment when the program i3 of cell C3 should
be used, then the programs i4 and i9 do not allow the halting of the computation.

For each subtract instruction lf : (SUB(r), lg, ln) there are the following pro-
grams in P1, P4, P5 and in P6:

P1 P4 P5 P6

f1 : 〈D ↔ Lf 〉 f1 : 〈e ↔ lf 〉 f1 : 〈e ↔ L′f 〉 f1 : 〈e ↔ L′′f 〉
f2 : 〈Lf → Ef 〉 f2 : 〈lf → Lf 〉 f2 : 〈L′f → l′f 〉 f2 : 〈L′′f → l′f 〉
f3 : 〈Ef → Ff 〉 f3 : 〈Lf ↔ l′f 〉 f3 : 〈l′f ↔ ar〉 f3 : 〈l′f ↔ $f 〉
f4 : 〈Ff → $f 〉 f4 : 〈l′f → L′f 〉 f4 : 〈l′f ↔ $f 〉 f4 : 〈$f → lg〉
f5 : 〈$f ↔ D〉 f5 : 〈L′f ↔ l′′f 〉 f5 : 〈$f → l̄n〉 f5 : 〈lg ↔ e〉

f6 : 〈l′′f → L′′′f 〉 f6 : 〈ar → e〉 f6 : 〈l′f ↔ l̄n〉
f7 : 〈L′′′f → L′′f 〉 f7 : 〈l̄n ↔ e〉 f7 : 〈l̄n → ln〉
f8 : 〈L′′f ↔ e〉 f8 : 〈ln ↔ e〉
f9 : 〈Lf → t〉
f10 : 〈L′f → t〉
f11 : 〈t → t〉

In the following table we show how a subtract instruction can be simulated by
the programs above. Since C2 and C3 cannot apply any of their rules in any step of
the following simulation, we omit them from the table. The multiset of objects in
the environment is denoted by [. . .], and for now we assume that it always contains
a sufficient amount of l′i, l

′′
i objects for any li ∈ H.

First we consider the case when there is at least one object ar in the environ-
ment, that is, if the simulation starts in a configuration (D, l′′1 , e, e, e, e; lfar[. . .]).
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configuration of Π programs to be applied
C1 C4 C5 C6 Env P1 P4 P5 P6

1. D e e e lfar[. . .] − f1 − −
2. D lf e e ar[. . .] − f2 − −
3. D Lf e e ar[. . .] − f3 − −
4. D l′f e e Lfar[. . .] f1 f4 − −
5. Lf L′f e e Dar[. . .] f2 f5 − −
6. Ef l′′f e e L′fDar[. . .] f3 f6 f1 −
7. Ff L′′′f L′f e Dar[. . .] f4 f7 f2 −
8. $f L′′f l′f e Dar[. . .] f5 f8 f3 −
9. D e ar e $fL′′f [. . .] − − f6 f1

10. D e e L′′f $f [. . .] − − − f2

11. D e e l′f $f [. . .] − − − f3

12. D e e $f [. . .] − − − f4

13. D e e lg [. . .] − − − f5

14. D e e e lg[. . .] − g1 − −

In 13 steps we obtain from a configuration (D, l′′1 , e, e, e, e; lfar[. . .]) a new one
(D, l′′1 , e, e, e, e; lg[. . .]) where lg is the label of the instruction which should follow
the successful decrease of the value of the nonempty register r, and the environment
contains a multiset of objects l′i, l

′′
i for li ∈ H.

Now we consider the case when register r, which is the register to be
decremented stores zero, that is, if the simulation starts in a configuration
(D, l′′1 , e, e, e, e; lf [. . .]) where the environment does not contain any object ar.

configuration of Π programs to be applied
C1 C4 C5 C6 Env P1 P4 P5 P6

1. D e e e lf [. . .] − f1 − −
2. D lf e e [. . .] − f2 − −
3. D Lf e e [. . .] − f3 − −
4. D l′f e e Lf [. . .] f1 f4 − −
5. Lf L′f e e D[. . .] f2 f5 − −
6. Ef l′′f e e L′fD[. . .] f3 f6 f1 −
7. Ff L′′′f L′f e D[. . .] f4 f7 f2 −
8. $f L′′f l′f e D[. . .] f5 f8 − −
9. D e l′f e $fL′′f [. . .] − − f4 f1

10. D e $f L′′f [. . .] − − f5 f2

11. D e l̄n l′f [. . .] − − f7 −
12. D e e l′f l̄n[. . .] − − − f6

13. D e e l̄n [. . .] − − − f7

14. D e e ln [. . .] − − − f8

15. D e e e ln[. . .] − n1 − −
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Similarly to the previous case, in 14 steps we obtain a configuration
(D, l′′1 , e, e, e, e; ln[. . .]) where ln is the label of the instruction which should fol-
low lf if register r is empty, that is, if the decrease of its value is not possible.

Consider now what happens if there is an insufficient amount of objects l′i, l
′′
i

for li ∈ H is present in the environment. Notice that such symbols are needed in
step 3 and 5 by cell C4. If there is no more available (not enough of them were
produced in the initial phase by C1 and C2), then the programs f9 f10 and f11 do
not allow the halting of the computation.

From these considerations we can see that after the initialization phase, all
instructions of the register machine M can be simulated by the P colony. If the
label of the halt instruction, lh is produced, the computation halts since there is
no program for processing the object lh. The reader can immediately see that Π
computes the same set of vectors as M.

4 P Colonies with Senders and Consumers

Now we continue with the investigation of two object P colonies with insertion-
deletion programs. It is not too difficult to see that if we allow a cell to contain
both types of programs, then we can simulate the other types of programs in two
steps, thus, it is more interesting to consider P colonies having cells which contain
either insertion or deletion programs, but not both types at the same time. We
call these systems P colonies with senders and consumers. A sender is a cell with
only insertion programs, a consumer is a cell with only deletion programs.

Let us denote by PCOL(s-c, i, j) the class of sets of numbers generated by P
colonies with senders and consumers having at most i ≥ 1 cells with at most j ≥ 1
program each.

Example 1. (a) Every sender cell in a P colony can generate the Parikh set of a
regular language L ⊆ T ∗. Let G = (N, T, P, S) be a regular grammar such that
L(G) = L.

For accepting the Parikh vectors of the words in L, we use the programs

〈e, out; e → eS〉, 〈e, out; S → aB〉
for each S → aB of P , and then

〈x, out; A → aB〉, x ∈ T

for every A → aB in P . Finally, for every rule of the form A → a we need

〈x, out; A → aF 〉, x ∈ T, 〈a, out; F → FF 〉,
where F /∈ T ∪N .

(b) Every consumer cell in a P colony can consume the Parikh set of a regular
language L. To see this, let M = (Q, T, δ, q0, F ) be a deterministic finite automaton
such that L(M) = L.
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We need the program
〈e, in; ee → q0〉,

and to every transition δ(qi, a) = qj in M

〈a, in; xqi → qj〉, x ∈ T ∪ {e}.
If qj ∈ F in δ(qi, a) = qj we have to add the programs

〈a, in;xqi → F 〉, x ∈ T

where F /∈ Q ∪ T .

Now we show that three cells, one sender and two consumers are sufficient to
generate all recursively enumerable sets of integer vectors.

Theorem 2. PCol(s-c, 3, ∗) = NRE.

Proof. We simulate the computations of an m-register machine M =
(m,H, l0, lh, P ), m ≥ 1, by representing the content of the register i by the num-
ber of copies of a specific object ai in the environment. We construct the P colony
Π = (V, e, F, C1, C2, C3) with:

V = {l, l′, l′′, l′′′, liv, lv, l̄, ¯̄l | l ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪
{K,T1, T2, T3, T4, T5},

F = {ai | register i is an output register}, and
Ci = (ee, Pi) for 1 ≤ i ≤ 3.

The P colony Π starts its computation in the initial configuration (ee, ee, ee; ε).
We initialize the computation by generating the initial label l0 with a program
from P1,

〈e, out; e → l0l0〉 ∈ P1

obtaining (l0l0, ee, ee; ε).
The simulation of an instruction with label li starts from a configuration

(lili, ee, ee; w) where w ∈ V ∗, the multiset of objects in the environment, rep-
resents the counter contents of M .

To simulate an ADD instruction, we use the programs of P1 and P3. For each
li, lj , lk ∈ H with li being the label of an instruction li : (ADD(r), lj , lk), we have
the following programs:

P1 P3

i1 : 〈li, out; li → arlj〉 i1 : 〈li, in; ee → T1〉
i2 : 〈li, out; li → arlk〉 i2 : 〈e, in; liT1 → e〉
i3 : 〈ar, out; lj → lj lj〉 i3 : 〈li, in; ¯̄liT5 → T1〉
i4 : 〈ar, out; lk → lklk〉

Using these programs, we obtain a sequence of configurations
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(lili, ee, ee; w) ⇒ (arl, ee, ee; liw) ⇒ (ll, ee, liT1; arw)

where l is the label of the next instruction, that is, we either have (lj lj , ee, liT1; arw)
or to (lklk, ee, liT1; arw). The contents of cell C3, liT1, will change in the next step
to ee independently of the several ways of the continuation of the computation, as
we shall see later.

The program labeled with i3 is used if the instruction simulated before li was
a SUB instruction (see below). In this case, the configuration in which the simu-
lation of li starts is (lili, ee, l̄iT4; ¯̄liw) and we need the steps (lili, ee, l̄iT4; ¯̄liw) ⇒
(arl, ee,

¯̄liT5; liw) ⇒ (ll, ee, liT1; arw) and program i3 to obtain the same configu-
ration as before.

Now we show how to simulate a SUB instruction. For each lj , lk, ll ∈ H with
lj being the label of an instruction lj : (SUB(r), lk, ll), and for all labels lr ∈ H,
we have the following programs.

P1 P2 P3

j1 : 〈lj , out; lj → l′j l
′
j〉 j1 : 〈lj , in; ee → e〉 j1 : 〈l′j , in; ee → T1〉

j2 : 〈l′j , out; l′j → l′′j l′′j 〉 j2 : 〈ar, in; elj → e〉 j2 : 〈e, in; l′jT1 → T2〉
j3 : 〈l′′j , out; l′′j → l′′′j livj 〉 j3 : 〈l′′j , in; elj → e〉 j3 : 〈l′′j , in; eT2 → T3〉
j4 : 〈l′′′j , out; livj → l̄k l̄k〉 j4 : 〈l′′′j , in; are → e〉 j4,r : 〈l̄r, in; l′′j T3 → T4〉
j5 : 〈livj , out; l′′′j → l̄l l̄l〉 j5 : 〈e, in; l′′′j e → e〉 j5,r : 〈l̄r, in; eT2 → T4〉
j6 : 〈l̄k, out; l̄k → ¯̄lk¯̄lk〉 j6 : 〈livj , in; are → K〉 j6,r : 〈¯̄lr, in; l̄rT4 → T5〉
j7 : 〈¯̄lk, out; ¯̄lk → lklk〉 j7 : 〈e, in; livj K → K〉 j7,r : 〈e, in; ¯̄lrT5 → e〉
j8 : 〈l̄l, out; l̄l → ¯̄ll¯̄ll〉 j8 : 〈e, in; eK → K〉
j9 : 〈¯̄ll, out; ¯̄lk → llll〉 j9 : 〈l′′′j , in; l′′j e → K〉

j10 : 〈e, in; l′′′j K → K〉
j11 : 〈livj , in; l′′j e → e〉
j12 : 〈e, in; livj e → e〉

In the following table we show how the programs above simulate the execution of
the instruction lj : (SUB(r), lk, ll). To save space, we use the sign “/” to separate
the different possible multisets which might appear in the same row of the table.

First we consider the case when register r is not empty, that is, when there is
at least one object ar present in the environment.
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configuration of Π programs to be applied
C1 C2 C3 Env P1 P2 P3

1. lj lj ee ? arw
′ j1 − ?

2. l′j l
′
j ee ? ljarw

′′ j2 j1 ?
3. l′′j l′′j lje ee l′jarw j3 j2 j1
4. l′′′j livj are l′jT1 l′′j w j4/j5 − j2
5. l̄k l̄k/l̄l l̄l are eT2 (l′′′j /livj )l′′j w j6/j8 j4/j6 j3
6. ¯̄lk¯̄lk/¯̄ll¯̄ll l′′′j e/livj K l′′j T3 (l̄k/l̄l)w j7/j9 j5/j7 j4,k/j4,l

7. lklk/llll ee/eK (l̄k/l̄l)T4 (¯̄lk/¯̄ll)w k1/l1 −/j8 j6,k/j6,l

8. l′kl′k/l′ll
′
l ee/eK (¯̄lk/¯̄ll)T5 (lk/ll)w k2/l2 k1/j8 j7,k/j7,l

9. l′′k l′′k/l′′l l′′l (lk/ll)e/eK ee (l′k/l′l)w k3/l3 k2/j8 j1

We see that starting with a configuration where C1 contains the objects lj lj and the
environment contains ar, in six steps we obtain a configuration where the object
ar is removed from the environment, and C1 either contains the label of the next
instruction lk, or because of the presence of program j8, in P2, the computation
will never be able to halt.

Now we show the simulation of the lj : (SUB(r), lk, ll) instruction when there
is no object ar is present in the environment, that is, when register r is empty.

configuration of Π rules to be applied
C1 C2 C3 Env P1 P2 P3

1. lj lj ee ? w j1 − ?
2. l′j l

′
j ee ? ljw j2 j1 ?

3. l′′j l′′j lje ee l′jw j3 − j1
4. l′′′j livj lje l′jT1 l′′j w j4/j5 j3 j2
5. l̄k l̄k/l̄l l̄l l′′j e eT2 (l′′′j /livj )w j6/j8 j9/j11 −
6. ¯̄lk¯̄lk/¯̄ll¯̄ll l′′′j K/livj e eT2 (l̄k/l̄l)w j7/j9 j10/j12 j5,k/j5,l

7. lklk/llll eK/ee (l̄k/l̄l)T4 (¯̄lk/¯̄ll)w k1/l1 j8/− j6,k/j6,l

8. l′kl′k/l′ll
′
l eK/ee (¯̄lk/¯̄ll)T5 (lk/ll)w k2/l2 j8/k1 j7,k/j7,l

9. l′′k l′′k/l′′l l′′l eK/(lk/ll)e ee (l′k/l′l)w k3/l3 j8/k2 j1

In this case, similarly to the previous one, we either get the objects lklk in the cell
C1, or the computation will not be able to halt.

The rules to be applied and the objects contained by the cell C3 in row 1. and
row 2. of the tables above depend on the instruction li which was simulated before
lj . If li is an ADD instruction, then we have liT1 in the first row, and applying
the program i2 from P3 we get ee in the second row, where no program is applied
until the next step. Also, w = w′ = w′′ in this case.

If li is a SUB instruction, then (as we can also see from row 7. and row 8.) the
contents of the cell C3 is l̄jT4 and ¯̄ljT5 in the first two rows where the programs
i6,j and i7,j are applied. In this case w′′ = ¯̄ljw, and w′ = w.
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As we have seen above, the P colony successfully simulates each instruction of
M and since there is no program to process lh, the label of the halt instruction,
it also halts when the computation of M is finished. It is also easy to see that M
and Π compute the same set of vectors of non-negative integers.

5 Conclusion

We have examined extremely simplified variants of P colonies: P colonies of ca-
pacity one with no checking rules, and P colonies with capacity two, but only
with senders and consumers. We have shown that even these very simple variants
are able to simulate arbitrary register machines, that is, to compute all Turing
computable sets of vectors.
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