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Summary. A central issue in systems biology is the study of efficient methods to in-
fer fluxes of biological reactions starting from experimental data. Among the different
techniques proposed in the last years, in the theory of Metabolic P systems Log-Gain
principles have been introduced, which prove to be helpful for deducing biological fluxes
from temporal series of observed dynamics. However, crucial tasks remain to be per-
formed for a complete suitable application of these principles. In particular the algebraic
systems introduced by the Log-Gain principles require the knowledge of the initial fluxes
associated with a set of biochemical reactions. In this paper we propose an algorithm for
estimating initial fluxes, which is tested in two case studies.

1 Introduction

In the last years, the problem of reverse-engineering of biological phenomena from
experimental data has spurred increasing interest in the scientific communities. For
these reasons, many computational models inspired from biology have been given.
Among these models, the Metabolic P systems [9, 10], shortly MP systems, proved
to be relevant in the analysis of dynamics of biochemical processes [4, 12, 14, 13].
MP systems intend to model metabolic systems, that is, structures where matter
of different types is subject to reactions, or transformations of various types. The
importance of these computational models is their potential applicability to the
reverse-engineering problem of biological phenomena. In fact, the MP systems
introduce a theory, called Log-Gain [8], intrinsically related to the structure of
these computational models.

This theory provides a method for constructing MP models of real phenomena
from time-series of observed dynamics. In fact, given a real system which can be
observed in its evolution, then almost all the elements occurring in the definition
of MP system can be, in principle, deduced by macroscopic observations of the
system [9].
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The only component which cannot be directly measured is a set of regula-
tion functions which state the reaction fluxes, that is, the amount of reactants
transformed by the reactions at any state of the system. These functions depend
on internal microscopic processes on which molecules are involved. However, Log-
Gain theory provides a way for deducing them from time-series of the states of a
given system along a sufficient number of observation instants.

A key point for achieving this task consists in the discovery of the fluxes asso-
ciated to the passage of a metabolic system from two initial observation instants.
In this paper an algorithm is proposed for estimating these initial fluxes from few
steps of observation.

The present paper is organized as follows. Section 2 is devoted to the definition of
Metabolic P Systems. Section 3 briefly recalls the Log-Gain theory. In Section 4 we
describe the algorithm that solves our problem. Section 5 reports some experimen-
tal results obtained by the new framework. Some further remarks and directions
for future researches are discussed in the last section.

2 Metabolic P Systems

MP systems are a special class of dynamical systems (the reader can find some
details concerning dynamical aspects of MP systems in [11]), based on P systems
[3, 16, 17, 18], which are related to metabolic processes. MP systems are essentially
constituted by multiset grammars where rules are regulated by specific functions
depending on the state of the system. From a Membrane Computing point of
view, MP systems can be seen as deterministic mono-membrane P systems where
the transitions between states are calculated by a suitable recurrent operation. In
an MP system the overall variation, in a macroscopic time interval, of the whole
system under investigation is considered. In this manner, the evolution law of the
system consists in the knowledge of the contribution of each reaction in the passage
between any two instants separated by such an interval. Therefore, dynamics is
given at discrete steps, and at each step, it is ruled by a partition of matter among
the reactions transforming it. The principle underlying the partitioning is called
mass partition principle. This principle replaces the mass action law1 of ODE
systems. The mass partition principle defines the transformation rate of object
populations rather than single objects, according to a suitable generalization of
chemical laws [9].

1 The foundation of this law is the theory of molecular collisions. The first formulation
of this law, formulated by Waage and Guldberg [21], is the following: “the rate of
any given chemical reaction is proportional to the product of the concentrations of the
reactants”.
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2.1 MP systems: a formal definition

The following definition introduces the MP systems in a formal way (N, Z, and R
respectively denote the sets of natural, integer, and real numbers).

Definition 1 (MP system) An MP system M is specified by the following con-
struct:

M = (X, R, V,H, Φ, ν, µ, τ, δ)

where X, R and V are finite disjoint sets, and moreover the following conditions
hold, with n, m, k ∈ N:

• X = {x1, x2, . . . , xn} is a finite set of substances. This set represents the types
of molecules;

• R = {r1, r2, . . . , rm} is a finite set of reactions. A reaction r is a pair of type
αr → βr, where αr identifies the multiset of the reactants (substrates) of r
and βr identifies the multiset of the products of r (λ represents the empty
multiset). The stoichiometric matrix A of a set R of reactions over a set X
of substances is A = (Ax,r | x ∈ X, r ∈ R) with Ax,r = |βr|x − |αr|x, where
|αr|x and |βr|x respectively denote the number of occurrences of x in αr and
βr. Of course, a reaction r can be seen as the vector r = (Ax,r |x ∈ X ) of
Zn. We also set Rα(x) = {r ∈ R | x ∈ αr}, Rβ(x) = {r ∈ R | x ∈ βr}, and
R(x) = Rα(x) ∪Rβ(x);

• V = {v1, v2, . . . , vk} is a finite set of parameters (such as pressure, tempera-
ture,. . . );

• H = {hv | v ∈ V } is a set of parameters evolution functions. The function
hv : N → R states the value of parameter v, and H[i] = (hv(i) |v ∈ V );

• Φ = {ϕr | r ∈ R} is the set of flux regulation maps, where, for each r ∈ R,
ϕr : Rn+k → R. Let q ∈ Rn be the vector of substances values and s ∈ Rk be
the vector of parameters values. Then (q, s) ∈ Rn+k is the state of the system.
We set by U(q, s) = (ϕr(q, s) | r ∈ R) the flux vector in the state (q, s);

• ν is a natural number which specifies the number of molecules of a (conven-
tional) mole of M ;

• µ is a function which assigns, to each x ∈ X, the mass µ(x) of a mole of x
(with respect with to some measure units);

• τ is the temporal interval between two consecutive observation steps;
• X[i] = (x1[i], x2[i], . . . , xn[i]), for each i ∈ N, is the vector of substances val-

ues at the step i, and X[0] are the initial values of substances. The dynamics
δ : N → Rn of the system is completely identified by the following recurrent
equation, called Equational Metabolic Algorithm shortly EMA:

X[i + 1] = A× U(X[i],H[i]) + X[i] (1)

where A is the stoichiometric matrix of reactions having dimension n×m, while
×, +, are the usual matrix product and vector sum. We denote by EMA[i]
the system (1) at the step i. By using the formulation introduced above it is
simple to note that we can obtain the vector X[i + 1] from vectors X[i] and
U(X[i], X[i]).
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3 Log-Gain Theory: A Brief Recall

The starting point of the Log-Gain theory for MP systems [20] is the Allometry
Law [2, 6] which assumes a proportion between the relative variations of the fluxes
of a reaction r and the sum of relative variations of tuners of r, that is, magnitude
influencing r.

The relative variation of a variable x is given, in differential notation and with
respect to the time variable t, by d(lg x)/dt. This explains the term “Log-Gain”.

Given a dynamics of an MP system, we will use the following simplified nota-
tions, for i ∈ N, and r ∈ R:

ur[i] = ϕr(X[i],H[i]) and U [i] = (ur[i]|r ∈ R) (2)

Assuming to know the vectors X[i] and X[i+1], the equation (1) can be rewritten
in the following form, which we called ADA[i] (Avogadro and Dalton Aggregation
[10]):

X[i + 1] = A× U [i] + X[i] (3)

The formula (3) expresses a system of n equations and m variables (n is the
number of substances and m the number of reactions) which is assumed to have
maximal rank. This supposition is not restrictive. In fact, if it does not hold the
rows which are linearly depend on other rows are removed. Formally ADA[i] is the
same to system EMA[i] introduced in Section 2. However, these two systems have
dual interpretations. In fact, in EMA[i], the vectors U [i] and X[i] are known, and
the vector X[i + 1] is computed by means of them, while in ADA[i], the vector
X[i + 1] − X[i] is known and U [i] is computed by solving the system, as we will
see by formula (6).

Usually, in a biochemical phenomenon, the number of reactions is greater than
the number of substances, and this means that the system (3) has more than one
solution. Therefore, fluxes cannot be univocally deduced by means of ADA. The
following principle [8] allows us to add more equations to the above system in
order to get a univocally solvable system which could provide the flux vector.

Definition 2 (Discrete Log-Gain) Let (z[i] |i ∈ N ) a real valued sequence. Then,
the discrete log-gain of z is given by the following equation:

Lg(z[i]) =
z[i + 1]− z[i]

z[i]
(4)

Principle 1 (Log-Gain regulation) Let U [i], for i ≥ 0, be the vector of fluxes
at step i. Then the Log-Gain regulation can be expressed in terms of matrix and
vector operations:

(U [i + 1]− U [i])/U [i] = B× L[i] + C ⊗ P [i + 1] (5)

where:
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• B = (pr,z |r ∈ R, z ∈ X ∪ V ) where pr,z ∈ {0, 1} with pr,z = 1 if z is a tuner of
r and pr,z = 0 otherwise;

• L[i] = (Lg(z[i]) |z ∈ X ∪ V ) is the column vector of substances and parameters
log-gains ;

• P [i + 1] is a column vector of values associated with the reactions and called
(Log-Gain) offsets at step i + 1;

• C = (cr |r ∈ R ), where cr = 1 if r ∈ R0, while cr = 0 otherwise, and R0 is a
subset of reactions having the Covering Offset Log Gain Property, that is, it is
a set of n linear independent vectors of Zn;

• × denotes the usual matrix product;
• +, −, /, ⊗ denote the component-wise sum, subtraction, division and product2.

If we assume to know the flux unit vector at step i and put together the equations
(5) and (3) at steps i and i + 1 respectively, we get the following linear system
called Offset Log-Gain Adjustment module at step i, shortly OLGA[i], in which
the number of variables (here reported in bold font) is equal to the number of
equations:

A×U[i + 1] = X[i + 2]−X[i + 1] (6)
(U[i + 1]− U [i])/U [i] = B× L[i] + C ⊗P[i + 1]

Now, if the vectors X[i] and V [i], for 0 ≤ i ≤ l, where l ∈ N, are obtained by
experimental measures, then it is possible to solve OLGA[i] for i = 0, . . . , l − 1,
obtaining the vector U [i] for i ∈ [1, l − 1].

4 An Algorithm for the Estimation of Initial Metabolic
Fluxes

The method described in the previous section assumes the knowledge of the initial
values of fluxes.

Problem 1 (Initial Fluxes Problem) Given X[0] and H[0], find a flux vector
U [0] such that it satisfies the initial dynamics, that is:

X[1] u A× U [0] + X[0]

where u means approximate equality.

The algorithm given below circumvents the Initial Fluxes Problem by using the
knowledge about the dynamics in the first evolution steps in order to approximate
the amount of substances which is not transformed, we call inertia of the system
(at a given step).

2 Given two n × m matrices A and B, the operation A ⊗ B involves the action of
multiplying component-wise each element of A by the corresponding element of B.
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4.1 The proposed algorithm

Our approach is based on the assumption that if the inertia of each substance is
known, then only a part of substances has to be partitioned among the reactions
which require to consume them. The main steps of the algorithm are described in
the following of this section.

Step 1.

The goal of the first step is to evaluate grossly the initial fluxes at the step 0 by
assuming that they are proportional to the reactants, that is, for all r ∈ R:

ûr[i] = kryr[i] (7)

where kr ∈ R, and yr[i] is the product of all substance quantities, at the step i,
which are reactants for r. We suppose that if αr = λ then yr = 1, and we set

Û [i] = (ûr[i] | r ∈ R) (8)

For example, in a metabolic system with three kinds of substances, a, b, c, and
with a set of reactions given in the first column of the Table 1, the relationships
among the fluxes of these reactions and their reactants are reported in the second
column of the Table 1.
Let us consider the following system, called Local-Stoichiometric Module at the

Reactions Maps

r1 : a → bc kr1a
r2 : b → a kr2b
r3 : c → ab kr3c
r4 : c → cc kr4c

Table 1. Reactions and their flux regulation maps of the Local-Stoichiometric Module.

step i:
x[i + 1]− x[i] =

∑
r∈R(x)

Ax,rûr[i] ∀x ∈ X (9)

If we assume that the constants kr, with r ∈ R, do not sensibly change in few steps,
then by applying the system (9) for a sufficient number of steps we can obtain
a square linear system of dimension m having maximum rank. In the example
reported in Table 1, we have a Local-Stoichiometric Module of 3 equations which
initially has 4 unknowns. It has rank 3. At the second iteration of this module we
get other 3 equations and the rank of Local-Stoichiometric Module is maximum.
Thus, we can obtain a system of equation having unique solution. In general, if
we start with the Local-Stoichiometric Module at the step 0 then we can compute
the vector Û [0] = (ûr[0] | r ∈ R) by applying the Local-Stoichiometric module a
suitable number of steps.
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Step 2.

The aim of this step is to approximate the inertia of the system. We split this step
in two sub-steps. In the first one we take n linear independent reactions, obtaining
a set R0, according to the Covering Offset Log Gain Property. Then, we use the
set R0 to obtain an OLGA[1] module, with U [0] = Û [0], where Û [0] is the vector of
fluxes computed in the previous step. We will indicate with U∗[1] = (u∗r [1] | r ∈ R)
the solution of this system. However, if some elements of this vector is a negative
real value, then we choose others n linear independent reactions and reapply the
procedure above describe (it easy to prove that a positive vector must exist).

In the second sub-step we compute, for each x ∈ X, the inertia, indicated by
x̄, by applying the following equation:

x̄[1] = x[1]−
∑

r∈Rα(x)

u∗r [1], ∀x ∈ X (10)

Step 3

In the last step we obtain the vector of fluxes at the evolution step 1 by solving an
optimization problem. In fact, the vector U◦ = (u◦r | r ∈ R) we search has to be
a strictly positive vector of Rm (positive in each component) which satisfies the
following n equations:

x[1]− x̄[1] =
∑

r∈Rα(x)

u◦r [1], ∀x ∈ X (11)

and it is bounded, for each component, by the following constraint:

u◦r [1] ≤

min
{

xj [1]−x̄j [1]
|αr|xj

| xj ∈ αr

}
if αr 6= λ

kr if αr = λ
(12)

and such that
U◦ = min

ξ∈Rm
‖A× ξ − (X[2]−X[1])‖ (13)

5 Experiments

In this section, in order to evaluate the performance of our algorithm, we apply
it to two case studies: i) a synthetic oscillatory metabolic system, and ii) the
Belousov-Zhabotinsky reaction [1, 7, 19, 22].
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Reactions Flux regulation maps

r1 : a → aa ϕ1 = k1a/(k1 + k2c + k4b + k6)
r2 : a → b ϕ2 = k2ac/(k1 + k2c + k4b + k6)
r3 : b → λ ϕ3 = k3b/(k3 + k6)
r4 : a → c ϕ4 = k4ab/(k1 + k2c + k4b + k6)
r5 : c → λ ϕ5 = k5c/(k5 + k6)

X[0] = (100 100 1) k1 = k3 = k5 = 4, k2 = k4 = 0.02, k6 = 100

Table 2. Sirius’ reactions and maps.

5.1 A synthetic metabolic system

Let us consider the synthetic non-cooperative metabolic system called Sirius and
given in Table 2 [9]. Firstly, we generate the dynamics of this model for 1000
steps by using the flux regulation maps of Sirius. Then, we use our algorithm
to approximate the vector of fluxes U◦[1] at the evolution step 1. Starting from
U◦[1], by applying OLGA[i] for i = 1, 2, . . . , 900, we deduce the vectors U [i], for
i = 2, 3, . . . , 899, according to the Log-Gain theory. Figure 1 shows the fluxes
relative to the dynamics of Sirius initially generated, while the Figure 2 shows the
inferred fluxes. These results show an almost complete accordance.

Fig. 1. The values of Sirius’ fluxes calculated by using the flux regulation maps given in
Table 2.
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Fig. 2. The values of Sirius’ fluxes calculated by applying the Log-gain theory and the
initial vector of fluxes inferred by the proposed algorithm.

5.2 A biochemical case study

In this subsection the application of the algorithm to approximate the initial fluxes
of the Belousov-Zhabotinsky reaction, also known as BZ reaction, is discussed.
This reaction represents a famous example of a biochemical oscillatory phenom-
enon. Its importance is that it is the first evidence of a biochemical clock. Although
the stoichiometry of the BZ reaction is quite complicated, several simplified math-
ematical models of this phenomenon have been proposed. In particular, Prigogine
and Nicolis [15] proposed a simplified formulation of the dynamics of the BZ re-
action, called Brusselator, whose oscillating behavior is represented by only two
substances, x and y respectively, and it is governed by the following system of
differential equations:

dx

dt
= k1 − k2x + k3x

2y − k4x (14)

dy

dt
= k2x− k3x

2y

where k1 = 100, k2 = 3, k3 = 10−4 and k4 = 1 represent constant rates. The
numerical solution of the system system (14) from initial conditions x = 1 and
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y = 10 shows the oscillatory dynamics displayed in Figure 3. We use this dynamics
as experimental data on which applying our algorithm. By reading the set of

Fig. 3. Numerical solution of the system of differential equations (14).

differential equations (14) the stoichiometry of the Brusselator can be interpreted
by using the set of rewriting rules reported in Table 3. In fact, species x has
two positive and two negative contributions, while one positive and one negative
contributions characterize y. Thus, the equations can be translate in the suitable
stoichiometry by following the strategy described in [5].

Rules

r1 : λ → x
r2 : xxy → xxx
r3 : x → y
r4 : x → λ

Table 3. A set of rewriting rules that describes the Brusselator’ stoichiometry.

In the case of BZ we adopt a different strategy of validation of our algorithm.
In fact, there is a complete correspondence between the dynamics computed by the
differential model and that one computed by the equational metabolic algorithm
using the fluxes inferred (Figure 4) by solving an OLGA module starting from the
initial fluxes inferred by means of our algorithm.
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Fig. 4. The BZ reaction’s fluxes calculated by using the Log-gain theory and the initial
vector of fluxes inferred by our algorithm.

6 Conclusions

In this paper we have devised an algorithm for inferring the initial reaction fluxes
of a metabolic network.

The proposed algorithm has been validated on test cases of a synthetic
metabolic oscillator and Brusselator reaction. The near future investigations will
be planed with the aim i) to show the applicability of our method to complex
biological cases ii) and to improve this algorithm possibly with other relevant
computational features.
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