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Summary. An idea of modularization of complex networks (from cortial neural net,
Internet computer network, to market and social networks) is explained and some its
topic motivations are presented. Then some known modularization algorithms and mod-
ular architectures (constructions) of complex networks are discussed in the context of
possible applications of spiking neural P systems in order to improve these modular-
ization algorithms and to analyze massively parallel processes in networks of modular
architecture.

1 Introduction

The aim of this paper is to discuss certain interconnections between spiking neural
P systems [16], [28], and an idea of modularization of complex networks from cortial
neural net, Internet computer network, to market and social networks, where the
idea of modularization comprises modular architectures (structures or construc-
tions) of those networks and modularization algorithms for retrieving modular
structure of networks. The interconnections are understood here as proposals of
application of spiking neural P systems to improve the modularization algorithms
and to analyze massively parallel processes in networks of modular architecture or
construction (emergence of new modules, etc., [9], [23]).

In Section 2 we explain the idea of modularization of complex networks and
some its topic motivations. In Section 3 we outline open problems concerning
improvement of some modularization algorithms by application of spiking neural
P systems and investigations of massively parallel processes in networks of modular
construction by applying these P systems.
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2 Modularization of Complex Networks and Its Topic
Motivations

A modularization1 of a complex network or a graph is understood to be a decom-
position or a partition of the underlying set of nodes of the network or the graph,
respectively, into subsets called modules, often identified with subnetworks deter-
mined by these subsets and treated as autonomous processing units in cooperation
with other units (on a higher level if abstraction). A collection of modules of a given
network or a graph can be also a subject of modularization, i.e. a decomposition
into subcollections of modules, etc., where the resulting subcollections of modules
are called higher level modules.

There are many reasons, motivations, and practical applications of modular-
ization and we outline here some topics:

1) cortial neural network is modularized from anatomical, physiological, and scale
(or magnitude) reasons, see, e.g., [24] or [27] for more references, into
• cortial minicolumns which are modules consisting of neurons,
• cortial hypercolumns which are some sets of minicolumns,
• cortial areas which are some sets of hypercolumns,
where cortial hypercolumns and areas are higher level modules,

2) natural self-modularization of cortial neural network into neuronal groups dur-
ing evolution process described by M. G. Edelman’s Theory of Neuronal Group
Selection (Neuronal Darwinism), see [18], [17] for a spiking neural network ver-
sion,

3) modularization of cortial neural network into assemblies of neurons appears
useful for neuronal representation of cognitive functions and processes because:
• a single neuron behavior is less certain or more noisy than a behavior of

an assembly of neurons,
• the number of synaptic connections of a single neuron with other neurons

is smaller than that of an assembly of neurons with other assemblies of
neurons,

• according to M. Kaiser [20] hierarchical cluster (higher level module) ar-
chitecture “may provide the structural basis for the stable and diverse
functional patterns observed in cortial networks”,

4) emergence (or extraction) of community structures in social networks, bio-
logical networks, and Internet computer network is a modularization of these
networks discussed by M. J. E. Newman, [6], [7], [26], [29], see also applications
of similar modularization in city planning discussed by Ch. Alexander [2],

5) modularization of artificial cortial-like networks for image processing, e.g., reg-
ularization for improving segmentation, see J. A. Anderson and P. Sutton,
cf. [21], applications of an idea of a Network of Networks (NoN),

6) modularization which gives rise to hierarchical and fractal graphs and net-
works, [25], [29], [30], [33], to compress the information contained in large
complex networks.

1 The term ‘modularization’ is used e.g., in [19].
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The higher level modules and their motivation are also discussed in [10], [11],
[12], [22], [32], [31].

3 Modularization Algorithms and Modular Architectures

In the cases 2)–5) algorithms of modularization are considered, i.e. algorithms of
distinguishing or extraction of modules, see e.g., [3], [18]. Thus one asks for those
spiking neural P systems which could realize these algorithms through massive
parallelism of computations providing

• efficiency of computation,
• those computation processes which could be close (from simulation reason) to

real distributed processes of emergence of neuronal groups (see [18]) or com-
munity structures in social networks, where distributed processes of emergence
of neuronal groups are massively parallel processes of simultaneous emergence
of many those groups which are autonomous understood that, e.g., each group
has at least one neuron which does not belong to other groups.

These spiking neural P systems could give rise to constructing new brain-
based devices (robots) similar to those which belong to the family Darwin due to
M.G. Edelman [8]. The new brain-based devices could simulate maturing processes,
where emergence of neuronal groups and groups of groups give rise to new cognitive
functions.

We show now an example of a link between modularization algorithms and
spiking neural P systems which suggests the proposed above applications of these
P systems. Namely, basing on the algorithm for identification of neuronal groups
described in [18] we outline a method of extraction of a process of simultaneous
emergence of many neuronal groups from a process generated by a spiking neural
P system.

Let S [ C > S ′ be the next state relation determined by simultaneous appli-
cation (in maximal parallelism mode) of the rules of a spiking neural P system,
where S,S ′ are spike contents of neurons of the system and C is the set of those
synapses of the system which are activated to transform S into S ′ according to
some maximal consistent set of the rules of the system during a unit of time. For
a finite process generated by a spiking neural P system and represented by

S0 [ C1 > S1 [ C2 > S2 . . .Sn−1 [ Cn > Sn (n > 2) (1)

we extract from it a process of simultaneous emergence of many neuronal groups
which is represented by a sequence G1 . . .Gi∗ of sets of synapses of the system such
that

• G1 is the set of maximal (with respect to inclusion relation of sets) subsets x
of C1 such that the synapses in x have a common source neuron which is a
counterpart of an anchor neuron, see the first step of the algorithm in [18],
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• for i > 1 we define Gi to be the set of maximal sets in the collection

Ki =
{

y
∣∣∣ x ( y = x ∪ {s ∈ Ci | the source neuron of synapse s

is the target neuron of some synapse in x} for some x ∈ Gi−1

}

until this collection is non-empty or, equivalently, until i = i∗, where i∗ is the
greatest number for which Ki∗ is non-empty.

The elements of Gi∗ represent neural circuits which correspond to neuronal
groups emerging simultaneously in the process represented by (1).

Since the networks and their modularization discussed in 2)–4) are also ap-
proached by using probabilistic and statistical methods of clustering (see [1]) and
by using random graphs (understood as in the B. Bolobas book [4]), it is worth
to discuss a concept of a stochastic (or random) spiking neural P system whose
synaptic connections form a random graph.

Besides the new applications of spiking neural P systems suggested above one
could ask for an application of M.-A. Guttiérez-Naranjo and M. Pérez-Jiménez
models for Hebbian learning with spiking neural P systems [15] to explain in a
new way

• temporal correlation hypothesis of visual feature integration [14], also dealing
with modularization, where modules are neural assemblies emerging in distrib-
uted processes like the processes of emergence of neuronal groups described
above, for the connections of neuronal groups and binding (some generaliza-
tion of feature integration), see [17].

• emergence of brain cognitive functions, where some modularizations of cortial
neural network are considered, see [5], [13].

We propose to use higher-level networks with neighbourhood graphs, intro-
duced in [27], as a precise description of results of some modularizations of net-
works and modular architectures including higher level modules.
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