
The Computational Complexity of Uniformity
and Semi-uniformity in Membrane Systems

Niall Murphy1 and Damien Woods2

1 Department of Computer Science,
National University of Ireland, Maynooth, Ireland
http://www.cs.nuim.ie/∼nmurphy/
nmurphy@cs.nuim.ie

2 Department of Computer Science and Artificial Intelligence,
University of Seville, Spain
http://www.cs.us.es/∼dwoods/
dwoods@us.es

Summary. We investigate computing models that are presented as families of finite
computing devices with a uniformity condition on the entire family. Examples include
circuits, membrane systems, DNA computers, cellular automata, tile assembly systems,
and so on. However, in this list there are actually two distinct kinds of uniformity condi-
tions.

The first is the most common and well-understood, where each input length is mapped
to a single computing device that computes on the finite set of inputs of that length. The
second, called semi-uniformity, is where each input is mapped to a computing device for
that input. The former notion is well-known and used in circuit complexity, while the
latter notion is frequently found in literature on nature-inspired computing models, from
the past 20 years or so.

Are these two notions distinct or not? For many models it has been found that these
notion are in fact the same, in the sense that the choice of uniformity or semi-uniformity
leads to characterisations of the same complexity classes. Here, we buck this trend and
show that these notions are actually distinct: we give classes of uniform membrane sys-
tems that are strictly weaker than their semi-uniform counterparts. This solves a known
open problem in the theory of membrane systems.

1 Introduction

In his famous 1984 paper on DNA computing [1], Adleman mapped a specific
instance of the travelling salesman problem (TSP) to a set of DNA strands, and
then used well-known biomolecular techniques to solve the problem. To assert
generality for his algorithm, one would define a (simple) mapping from arbitrary
TSP instances to sets of DNA strings. Then, in order to claim that this mapping
is not doing the essential computation, it would have to be easily computable

74 N. Murphy, D. Woods

(e.g. logspace computable). Circuit uniformity provides a well-established frame-
work where we map each input length n ∈ N to a circuit cn ∈ C, with a suitably
simple mapping. However, Adleman did something different, he mapped a specific
instance of the problem to a computing device. We call this notion semi-uniformity,
and in fact a large number of computation models use semi-uniformity. This raises
the immediate question of whether the notions of uniformity and semi-uniformity
are equivalent.

It has been shown in a number of models that whether one chooses to use
uniformity or semi-uniformity does not affect the power of the model. However, in
this paper we show that these notions are not equivalent. We prove that choosing
one notion over another gives characterisations of completely different complexity
classes, including known distinct classes.

We prove this result for a computational model called membrane systems (also
known as P-systems) [15]. Membrane computing is a branch of natural computing
which defines computation models that are inspired by the structure and function
of living cells. The membrane computing model is sufficiently formal that this
question can be clearly stated, e.g. it is stated as Open Problem C in [16].

Why is this result surprising? Every class of problems solved by a uniform
family of devices is contained in the analogous semi-uniform class, since one is a
restriction of the other. However, in all membrane system models studied to date,
the classes of problems solved by semi-uniform and uniform families turned out to
be equal [4, 10, 19]. Specifically, if we want to solve some problem, by specifying
a family of membrane systems (or some other model), it is often much easier to
first use the more general notion of semi-uniformity, and then subsequently try to
find a uniform solution. In almost all cases where a semi-uniform family was given
for some problem [3, 11, 13, 19], at a later point a uniform version of the same
result was published [2, 4, 13]. Here we prove that this improvement is not always
possible.

Since our main result proves something general about families of finite devices
we would hope that, in the future, it can be applied to other computational mod-
els, besides membrane systems. Why? Firstly, our results are proved by convert-
ing the membrane system into a directed acyclic graph. Input acceptance is then
rephrased as a graph reachability problem and this gives a very general tool that
can be applied to other computational models (where we can find analogous graph
representations). Secondly, the result concerns a general concept (uniformity/semi-
uniformity) that is independent of particular formalisms. Besides membrane sys-
tems and circuits, some other models that use notions of uniformity and semi-
uniformity include families of neural networks, molecular and DNA computers,
tile assembly systems and cellular automata [6, 8, 12, 17, 18]. Our results could
conceivably be applied to these models.

We now briefly observe what happens when we relate the notion of semi-
uniformity to circuit complexity. We can easily define semi-uniformity for circuits.
If the complexity class of the semi-uniformity function contains the prediction
problem for circuits in the resulting family, then the semi-uniformity condition

Uniformity and Semi-uniformity in Membrane Systems 75

C
h
a
ra

ct
er

is
a
ti

o
n

Power of (semi-)uniformity condition

A
C
0

AC0

N
C
1

NC1

L

L

N
L

NL

N
C
2

NC2

P

P

N
P

NP

P
S
P
A
C
E

PSPACE

Fig. 1. Complexity classes that are characterised by the membrane systems studied in
this paper. Characterisations by uniform systems are denoted by , and semi-uniform
by . For example, Theorem 1 is illustrated by the fact that AC0-uniform systems
characterise AC0, and that AC0-semi-uniform systems characterise NL. The previously
known P [10] (indicated by) and PSPACE [4, 20] (indicated by) results, where
semi-uniform and uniform classes have the same power are also shown.

characterises the power of the model. If the semi-uniformity function is computable
in the class that is characterised by the prediction problem for circuits in the result-
ing family, then we get the known characterisations for the analogous uniformity
condition. However, in the uniform case it is not obvious what happens when we
increase the uniformity beyond the power of the circuit, for example P-uniform
AC0 = AC0 is an open problem [5]. Furthermore we should note that the unifor-
mity condition in membrane systems preprocesses the input (as well as creating
the device) and so is a seemingly different notion than circuit uniformity. If we add
an analogous preprocessing step to circuits we see similar results as proven here
for membrane systems: as soon as the preprocessing goes beyond the power of the
circuit, we can ignore the circuit and let the preprocessing solve the problem. With
preprocessing below the power of the circuit, the answer depends on the particular
circuit model. In fact, if we restrict ourselves to polynomially sized circuits with
only OR gates, we would see analogous results to those presented here, (i.e. our
work shows that this circuit model is computationally equivalent to the AM0

−d

membrane systems discussed in this work).

76 N. Murphy, D. Woods

1.1 Statement of result

We show that a class of problems, that is characterised by AC0-uniform membrane
systems of a certain type, is a strict subset of another class that is characterised
by AC0-semi-uniformity systems of the same type. Besides their respective use of
uniformity and semi-uniformity, both models are identical, so this shows that for
the membrane systems we consider, semi-uniformity is a strictly stronger notion
than uniformity. Specifically, we show that the uniform systems characterise AC0

and the semi-uniform systems characterise NL, two classes known to be distinct.
In the notation of membrane systems this is written as follows (explanations of
notation are found in Section 2).

Theorem 1. AC0 = (AC0,AC0)–PMCAM0
−d

((AC0)–PMC∗AM0
−d

= NL

The left hand equality is proved in this paper, while the right hand equality was
given in [11]. In Figure 1, Theorem 1 is illustrated by the leftmost pair of tri-
angles. Essentially, the figure shows that if we use AC0 uniformity, the systems
characterise AC0, while with AC0 semi-uniformity they characterise NL.

In fact we can also state a more general result for a number of complexity
classes below NL, for brevity we keep the list short.

Theorem 2. Let C ∈ {AC0,NC1,L} and assuming NC1 (L (NL then C =
(C,C)–PMCAM0

−d
((C)–PMC∗AM0

−d
= NL

This shows that, roughly speaking, uniform membrane systems are essentially
powerless, they are as weak and as strong as their uniformity condition. In Fig-
ure 1, Theorem 2 is illustrated by the triangles to the left of (and including) the
uniformity condition L.

The essential ideas behind the proof of these theorems are as follows. First,
we convert the (complicated looking) membrane systems into a directed acyclic
graph called a dependency graph. Acceptance of an input word in some membrane
system is equivalent to reachability in the corresponding dependency graph. We
observe that for the class of systems that we consider, it is possible to make a num-
ber of simplifications to the model (and the dependency graph) without changing
the power. In the semi-uniform case, even with these simplifications, the mem-
brane systems have NL power. We then go on to prove that in the uniform case,
the systems are severely crippled. We show this by proving that even though an
arbitrary membrane system’s dependency graph may have an NL-complete reach-
ability problem, in fact there is an equivalent membrane system where reachability
on the dependency graph is in AC0. This, along with some other tools, is used to
show that if the power of the uniformity notion is AC0 or more, then the power
of the entire family of systems is determined by the power of the uniformity.

2 Preliminaries

In this section we define membrane systems and some complexity classes, these
definitions are based on those from [9, 13, 14, 15, 20].

Uniformity and Semi-uniformity in Membrane Systems 77

The set of all multisets over a set A is denoted by MS(A). Let G = (V,E)
be a directed graph with x, y, z ∈ V . Then let path(x, y) be true if x = y, or
∃ z s.t path(x, z) and path(z, y). Otherwise path(x, y) is false.

2.1 Active membrane systems

Active membrane systems are a class of membrane systems with membrane division
rules. Here division rules act only on elementary membranes, which are membranes
that do not contain other membranes (i.e. leaves in the membrane structure).3 To
prove the results in this paper, we convert membrane systems into directed graphs.
Thus, in this section, we provide some necessary membrane system definitions, but
omit specific example of membrane systems.

Definition 3. An active membrane system without charges is a tuple

Π = (O,H, µ,w1, . . . , wm, R)

where,

1. m ≥ 1 is the initial number of membranes;
2. O is the alphabet of objects, Σ is the input alphabet, Σ ⊂ O;
3. H is the finite set of labels for the membranes;
4. µ is a membrane structure in the form of a tree, consisting of m membranes

(nodes), labelled with elements of H. The parent of all membranes (the root
node) is called the “environment” and has label env ∈ H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed in the
m regions of µ.

6. R is a finite set of developmental rules, of the following forms:
a) [a → u]h, for h ∈ H, a ∈ O, u ∈ O∗ (object evolution)
b) a[]h → [b]h, for h ∈ H, a, b ∈ O (communication in)
c) [a]h → []h b, for h ∈ H, a, b ∈ O (communication out)
d) [a]h → b, for h ∈ H, a, b ∈ O (membrane dissolution)

(e) [a]h → [b]h [c]h, for h ∈ H, a, b, c ∈ O (elementary membrane
division).

These rules are applied according to the following principles:

• All the rules are applied in a maximally parallel manner. That is, in one step,
one object of a membrane is used by at most one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

3 The more complicated non-elementary membrane division rule is also considered in the
literature (where membranes containing other membranes can divide and replicate all
of their substructure). All results in this paper hold when we permit non-elementary
division, however we omit this detail as it adds unnecessary complications to our
definitions and proofs.

78 N. Murphy, D. Woods

• If at the same time a membrane labelled with h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules of
type (a), then we suppose that first the evolution rules of type (a) are used,
and then the division is produced. This process takes only one step.

• The rules associated with membranes labelled with h are used for membranes
with that label. At one step, a membrane can be the subject of only one rule
of types (b)–(e).

2.2 Recogniser membrane systems

We recall [9] that a computation of a membrane system is a sequence of config-
urations such that each configuration (except the initial one) is obtained from
the previous one by a transition (one-step maximally parallel application of the
rules). Membrane systems are non-deterministic, therefore on a given input there
are multiple possible computations. A computation that reaches a configuration
where no more rules are applicable to the existing objects and membranes is called
a halting computation.

Definition 4 ([9]). A recognizer membrane system is a membrane system that,
on each computation, outputs either object yes or object no (but not both), this
occurs only when no further rules are applicable.

2.3 Complexity classes

Consider a decision problem X, i.e. a set of instances X = {x1, x2, . . .} over some
finite alphabet such that to each xi there is an unique answer “yes” or “no”. We
say that a family of membrane systems solves a decision problem if each instance
of the problem is solved by some family member. We denote by |x| = n the length
of any instance x ∈ X. Throughout this paper, AC0 circuits are DLOGTIME-
uniform, polynomial sized (in input length n), constant depth, circuits with AND,
OR and NOT gates, and unbounded fanin [7].

Definition 5. Let D be a class of membrane systems and let t : N → N be a total
function. The class of problems solved by (e, f)-uniform families of membrane
systems of type D in time t, denoted (e, f)–MCD(t), contains all problems X such
that:

• There exists an f-uniform family of membrane systems,
ΠX = {ΠX(1),ΠX(2), . . .} of type D: that is, there exists a function f : {1}∗ →
ΠX such that f(1n) = ΠX(n).

• There exists an input encoding function e : X → MS(Σ) such that e(x) is the
input multiset, where |x| = n, and the input multiset is placed in a specific
(input) membrane of ΠX(n).

• ΠX is sound and complete with respect to problem X: ΠX(n) starting with the
encoding e(x) of input x ∈ X, |x| = n, accepts iff the answer to x is “yes”.

Uniformity and Semi-uniformity in Membrane Systems 79

• ΠX is t-efficient: ΠX(n) always halts in at most t(n) steps.

Definition 5 describes (e, f)-uniform families (i.e. with input) and we gen-
eralise this to define (h)-semi-uniform families of membrane systems ΠX =
{ΠX(x1),ΠX(x2), . . .} where there exists a function h : X → ΠX such that
h(x) = ΠX(x). Here a single function (rather than two) is used to construct
the semi-uniform membrane family, and so the problem instance is encoded us-
ing objects, membranes, and rules. Also, for each instance of x ∈ X we have a
(potentially unique) membrane system, a clear departure from the spirit of circuit
uniformity. The resulting class of problems is denoted by (h)–MC∗D(t).

We often refer to AC0 uniform or logspace uniform (or semi-uniform) families
of membrane systems which indicates that the functions e and f (or h) are AC0

or logspace computable functions.
We define (e, f)–PMCD (and (h)–PMC∗D) as the class of problems solvable

by (e, f)-uniform (respectively (h)-semi-uniform) families of membrane systems in
polynomial time. We let AM0 denote the class of membrane systems that obey
Definitions 3 and 4. We let AM0

−d denote the class of membrane systems that
obey Definition 3 but where rule (d) is forbidden, and Definition 4.

We let (AC0)–PMC∗AM0
−d

denote the class of problems solvable by AC0-semi-
uniform families of membrane systems in polynomial time with no dissolution
rules.

Remark 6. A membrane system is said to be confluent if it is both sound and
complete. That is, a membrane system Π is confluent if all computations of Π
with the same input x (properly encoded) give the same result; either always
accepting or else always rejecting.

In a confluent membrane system, given a fixed initial configuration, the system
non-deterministically chooses one from a number of valid configuration sequences,
but all of the reachable configuration sequences must lead to the same result, either
all accepting or all rejecting.

3 Dependency graphs

A dependency graph (first introduced in [9]) represents the rules of membrane
systems as a directed acyclic graph (DAG). For many proofs, this representa-
tion is significantly simpler and as such is an indispensable tool for characterising
the computational complexity of membrane systems (without type (d) dissolution
rules).

The dependency graph for a membrane system Π (without type (d) dissolution
rules) is a directed graph G = (VG , EG , in, yes, no) where in ⊆ VG represents the
input multiset, and yes, no ∈ VG , represent the accepting and rejecting objects
respectively. Each vertex a ∈ VG is a pair a = (o, h) ∈ O × H, where O is the
set of objects in Π, and H is the set of membrane labels in Π. An edge (a, b)

80 N. Murphy, D. Woods

exists in EG if there is a developmental rule in Π such that the left hand side
of the rule has the same object-membrane pair as a and the right hand side has
an object-membrane pair matching b. In this paper, no membrane dissolution
(type (d)) rules are allowed, and so the parent/child relationships of membranes
in the structure tree cannot change during the computation. Thus when creating
the edges for communication rules (types (b) and (c)) we can find the parent and
child membranes for these rules and these choices remain correct for the entire
computation (for example, to represent the rule a[]h → [a]h, that communicates
an object a into a membrane of label h, it is only necessary to calculate the parent
of h one time in the construction of the dependency graph).

For a number of previous results, it was sufficient to construct the graph G
from Π in polynomial time [9]. For the results in this paper, we make the obser-
vation that G can be constructed from Π in AC0 (see Appendix A).

4 Proof of main result

The equality on the right hand side of Theorem 1 states that certain (AC0)-semi-
uniform systems characterise NL. This was shown in [11], we quote the result:

Theorem 7 ([11]). (AC0)–PMC∗AM0
−d

= NL

In rest of this paper, we prove the left hand side equality of Theorem 1, that is,
we show that the analogous (AC0,AC0)-uniform systems characterise AC0. We
begin by giving two normal forms for the membrane systems that are considered
in this paper.

4.1 Normal forms

Lemma 8. Any confluent AM0
−d membrane system Π, with m membranes, is

simulated by a AM0
−d membrane system Π ′, that (i) has exactly one membrane

and (ii) uses only rules of type (a). (By simulate we mean that the latter system
accepts x iff the former does.)

Proof (sketch). Given membrane system Π we construct its dependency graph
G = (VG , EG , in, yes, no). We observe that we can convert G into a new mem-
brane system Π ′ = ΠG by simply converting the edges of the graph into ob-
ject evolution rules. Specifically, the set of objects of ΠG is OG = VG , and
there is a single (environment) membrane of label env. The rules of ΠG are
{[v → str(v)]env | v ∈ VG} where str(v) is the string formed by concatenating the
elements of the set {s | (v, s) ∈ EG}. The vertices yes, no are mapped to the yes
and no objects respectively, and the set of vertices in becomes the input multiset
of objects (actually an input set). This construction of ΠG (from G) is AC0-
computable.

For correctness, notice that the dependency graphs of Π and ΠG are isomor-
phic, so one accepts iff only the other does. Furthermore, Π ′ = ΠG has exactly
one membrane with label env, and uses only type (a) rules (object evolution). ut

Uniformity and Semi-uniformity in Membrane Systems 81

Lemma 9. Any confluent AM0
−d membrane system Π, which has, as usual, multi-

sets of objects in each membrane is simulated by another AM0
−d membrane system

Π ′, which has sets of objects in each membrane. (By simulate we mean that the
latter system accepts x iff the former does.)

Proof (sketch). We observe that in a dependency graph, G, the multiset of objects
is encoded as a set of vertices, so no information is stored regarding object multi-
plicities. Thus if we convert G into a new membrane system, Π ′ (as in the proof
of the previous lemma), there are no rules in Π ′ with a right hand side with more
than one instance of each object. The resulting system Π ′ accepts iff Π accepts
since the dependency graphs of both systems are isomorphic. ut

4.2 Uniformity is not equal to semi-uniformity

The following theorem is key to the proof of our main results (Theorems 1 and 2).
Roughly speaking, Theorem 10 states that in uniform membrane systems of the
type we consider, the uniformity condition dominates the computational power
of the system. By letting E = F = AC0, the statement of Theorem 10 gives us
the left hand side equality in Theorem 1. By letting E = F ∈ {AC0,NC1,L} we
get the left hand side of Theorem 2. The remaining classes quoted in the theorem
serve to illustrate Figure 1.

Theorem 10. Let E,F ∈
{
AC0,NC1,L,NL,NC2,P,NP,PSPACE

}
and let

F ⊆ E. Then (E,F)–PMCAM0
−d

= E.

Proof. Let G = (VG , EG) be the dependency graph of confluent recogniser mem-
brane system Π from the class AM0

−d. We define the following subsets of the
vertices of VG . Let VGyes = {v | v ∈ VG , path(v, yes)}, VGno = {v | v ∈
VG , path(v, no)}, and VGother = VG\(VGyes ∪ VGno).

We claim that VGyes ∩ VGno = ∅. Assume otherwise, and let vertex v ∈
VGyes∩VGno. This implies that path(in, yes) and path(in, no) are both true, which
contradicts Definition 4 which states that only a yes or only a no object may be
output by the system Π.

Next we claim that for confluent recogniser membrane systems Π from the class
AM0

−d, a size-two input alphabet Σ = {a, b} is both necessary and sufficient, in
the sense that this restriction does not alter the computing power of the system Π.
Again, consider G = (VG , EG), the dependency graph of Π. The “input” vertices
in ⊆ VG , represent the input objects of Π. On the one hand, it is necessary that
| in |≥ 2. This follows from the fact that it is necessary that both yes and no are
reachable, and the fact that VGyes ∩ VGno = ∅. Thus we need one vertex in VGyes
and another vertex in VGno. On the other hand, it can be seen that a single vertex
from each set VGyes, VGno is sufficient as follows. Given a set S of input vertices
in VGyes, there is another system with an extra vertex, where all edges from this
extra vertex lead to all vertices in S. A vertex can be analogously added for VGno.
So even though membrane system Π may have multiple input objects, there is a

82 N. Murphy, D. Woods

Π ′ that is equivalent in all respects except that there are exactly two input objects
some extra rules. In particular, Π ′ accepts input x iff Π does.

The previous argument permits us to consider only those systems that have
two input objects {a, b}. Thus we restrict attention to the case that the input
encoding function is of the form e : X → {a, b}. We say that e is a characteristic
function with range {a, b}.

Let (e, f) –P be a (e, f)-uniform family of confluent recogniser membrane sys-
tems from the class AM0

−d that solves problem X. We claim that there exists
a family (e, f ′)–P that also solves X but uses a uniformity function f ′ that pro-
duces membrane systems of a very restricted form. Consider the dependency graph
of the membrane system f(n) = ΠX(n). In terms of reachability from {a, b} to
{yes, no} in this graph (which corresponds to accepting/rejecting in the mem-
brane system), the essential property is whether path(a, yes) is true or path(a, no)
is true. However, this essential property is captured by the following (extremely
simple) pair of dependency graphs: G1 = (VG , EG1) and G2 = (VG , EG2) where
VG = {a, b, yes, no}, EG1 = {(a, yes) , (b, no)}, and EG2 = {(a, no) , (b, yes)}.
Therefore if there is a family (e, f) –P that solves X, where f represents valid, but
arbitrary, dependency graphs, then there is another family of the form (e, f ′) –P
that also solves X and is identical in every way except that f ′ represents depen-
dency graphs of the restricted form just described.

Now we prove the upper bound (e, f)–PMCAM0
−d

⊆ E, where e, f are re-
spectively computable in E, F , with F ⊆ E, and the classes E, F are as
given in the statement. As we have just shown, for each problem X in the
class (e, f)–PMCAM0

−d
there is a family of the restricted form (e, f ′) –P that

solves X. To simulate (e, f ′) –P with a given input x ∈ X we compute the pair(
e(x), f ′(1|x|)

)
. The range of the function f ′ is two membrane systems, which cor-

respond to the two (restricted) dependency graphs G1 and G2 from above, and
whose reachability problems are (trivially) in the weakest E that we consider
(E = AC0). Furthermore, since we only consider the case where F ⊆ E then we
know that f ′ itself is computable in E and we have (e, f)–PMCAM0

−d
⊆ E.

The lower bound E ⊆ (e, f)–PMCAM0
−d

is easy to show. We use the fact,
shown above, that e is a characteristic function with access to the input word.
Thus the following simple family computes any problem from E: function e(x)
outputs a if x is a positive instance of X and b if x is a negative instance of X,
and f simply maps a to yes and b to no. ut

Acknowledgements

Niall Murphy is funded by the Irish Research Council for Science, Engineering
and Technology. Damien Woods is supported by a Project of Excellence from the
Junta de Andaluca, grant number TIC-581.

Uniformity and Semi-uniformity in Membrane Systems 83

References

1. Leonard Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, 1994.

2. Artiom Alhazov, Carlos Mart́ın-Vide, and Linqiang Pan. Solving a PSPACE-
complete problem by recognizing P Systems with restricted active membranes. Fun-
damenta Informaticae, 58(2):67–77, 2003.

3. Artiom Alhazov and Linqiang Pan. Polarizationless P Systems with active mem-
branes. Grammars, 7:141–159, 2004.

4. Artiom Alhazov and Mario J. Prez-Jimnez. Uniform solution to QSAT using po-
larizationless active membranes. In Jrme Durand-Lose and Maurice Margenstern,
editors, Machines, Computations and Universality (MCU), volume 4664 of LNCS,
pages 122–133, Orlans, France, September 2007. Springer.

5. Eric Allender. Applications of time-bounded Kolmogorov complexity in complexity
theory. In Osamu Watanabe, editor, Kolmogorov Complexity and Computational
Complexity, chapter 1, pages 4–22. Springer, 1992.

6. Martyn Amos. Theoretical and Experimental DNA Computation. Natural Computing
Series. Springer, 2005.

7. David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within NC1. Journal of Computer and System Sciences, 41(3):274–306, 1990.

8. Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programma-
bility of chemical reaction networks. Technical report, Caltech Parallel and Distrib-
uted Systems Group [http://caltechparadise.library.caltech.edu/perl/oai2] (United
States), 2008. In submission.

9. Miguel A. Gutirrez-Naranjo, Mario J. Prez-Jimnez, Agustn Riscos-Nez, and Fran-
cisco J. Romero-Campero. Computational efficiency of dissolution rules in membrane
systems. International Journal of Computer Mathematics, 83(7):593–611, 2006.

10. Niall Murphy and Damien Woods. Active membrane systems without charges and
using only symmetric elementary division characterise P. 8th International Workshop
on Membrane Computing, LNCS, 4860:367–384, 2007.

11. Niall Murphy and Damien Woods. A characterisation of NL using membrane sys-
tems without charges and dissolution. Unconventional Computing, 7th International
Conference, UC 2008, LNCS, 5204:164–176, 2008.

12. Ian Parberry. Circuit complexity and neural networks. MIT Press, 1994.
13. Mario J. Prez-Jimnez, Alvaro Romero-Jimnez, and Fernando Sancho-Caparrini.

Complexity classes in models of cellular computing with membranes. Natural Com-
puting, 2(3):265–285, 2003.

14. Gheorghe Pun. P Systems with active membranes: Attacking NP-Complete prob-
lems. Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

15. Gheorghe Pun. Membrane Computing. Springer-Verlag, Berlin, 2002.
16. Gheorghe Pun. Further twenty six open problems in membrane computing. In Pro-

ceedings of the Third Brainstorming Week on Membrane Computing, Sevilla (Spain),
pages 249–262. Fnix Editoria, January 2005.

17. David Soloveichik and Erik Winfree. The computational power of Benenson au-
tomata. Theoretical Computer Science, 344:279–297, 2005.

18. David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM J.
Comput., 36(6):1544–1569, 2007.

19. Petr Sosk. The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing, 2(3):287–298, August 2003.

84 N. Murphy, D. Woods

20. Petr Sosk and Alfonso Rodrguez-Patn. Membrane computing and complexity the-
ory: A characterization of PSPACE. Journal of Computer and System Sciences,
73(1):137–152, 2007.

Appendix A

A.1 Constructing dependency graphs in AC0

We are given a binary string x that encodes a membrane system, Π. To make a
dependency graph from a membrane system requires a constant number of parallel
steps that are as follows. First, a row of circuits identifies all communication (type
(b) and (c)) rules and uses the (static) membrane structure to determine the correct
parent membranes, then writes out (a binary encoding of) edges representing these
rules. Next, a row of circuits writes out all edges representing division (type (e))
rules, for example a rule [a]h → [b][c] becomes the edges (ah, bh), (ah, ch) in the
dependency graph. In the final step we deal with evolution (type (a) rules) where
it is possible to have polynomially many copies of polynomially many distinct
objects on the right hand side of a rule (e.g. [a]h → [bcbbcdee · · · z]h). To write
out edges for these rules in constant time we take advantage of the fact that we
require at most one edge for each object-membrane pair in O × H. We have a
circuit for each element of {oh | o ∈ O, h ∈ H}. The circuit for oh takes as input
(an encoding of) all rules in R whose left hand side is of the form [o]h. The circuit
then, in a parallel manner, masks (an encoding of) the right hand side of the rule
(for example [bbcdc]h) with the encoding of each object in O, (in the example,
masking for (encoded) b would produce (encoded) bb000). All encoded objects in
the string are then ORed together so that if there was at least one copy of that
object in the system we obtain a single instance of it. The circuit being unique for
a specific left hand side [o]h now writes out an encoding of the edge (oh, bh) and
an encoding of all other edges for objects that existed on the right hand side of
this rule in parallel.

