
Simulation of Recognizer P Systems by Using
Manycore GPUs

Miguel A. Mart́ınez–del–Amor1, Ignacio Pérez–Hurtado1,
Mario J. Pérez–Jiménez1, Jose M. Cecilia2,
Ginés D. Guerrero2, José M. Garćıa2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{mdelamor,perezh,marper}@us.es

2 Grupo de Arquitectura y Computación Paralela
Dpto. Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia
Campus de Espinardo, 30100 Murcia, Spain
{chema,gines,jmgarcia}@ditec.um.es

Summary. Software development for cellular computing is growing up yielding new
applications. In this paper, we describe a simulator for the class of recognizer P systems
with active membranes, which exploits the massively parallel nature of the P systems
computations by using a massively parallel computer architecture, such as Compute
Unified Device Architecture (CUDA) from Nvidia, to obtain better performance in the
simulations. We illustrate it by giving a solution to the N-Queens problem as an example.

1 Introduction

Membrane computing (or cellular computing) is an emerging branch within natural
computing that was introduced by Gh. Păun [20]. The main idea is to consider
biochemical processes taking place inside living cells from a computational point
of view, in a way that gives us a new nondeterministic model of computation by
using cellular machines.

Since the model was presented, many software applications have been produced
[9]. The common purpose of all these software applications is to simulate P systems
devices (cellular machines), and hence the designers have faced similar difficulties.
However, these systems were usually focused on, and adapted for, particular cases,
making it difficult to work on generalizations.

P systems simulators are tools that help the researchers to extract results from
a model. These simulators have to be as much efficient as possible when handling

46 M.A. Mart́ınez–del–Amor et al.

large problem sizes. The massively-parallel nature of the P systems computations
points out to looking for a massively-parallel technology where the simulator can
run efficiently.

The newest generation of graphics processor units (GPUs) are massively par-
allel processors which can support several thousand of concurrent threads. Many
general purpose applications have been designed on these platforms due to its huge
performance [12], [15], [23]. Current NVIDIA GPUs, for example, contain up to
240 scalar processing elements per chip [14], and they are programmed using C
and CUDA [26], [17].

In this paper we present a massively parallel simulator for the class of recog-
nizing P systems with active membranes using CUDA. The simulator executes the
P system which is defined by using the P-Lingua [4] programming language. The
simulator is divided in two main stages: the selection stage and the execution stage.
At this development stage, the selection stage is executed, in a parallel fashion, on
the GPU and the execution stage is executed on the CPU.

The rest of the paper is structured as follows. In Section 2 several definitions
and concepts are given for a correct understanding of the paper. Section 3 intro-
duces the Compute Unified Device Architecture (CUDA) and some concepts of
programming on GPUs are specified. In Section 4 we explain the design of the
simulator. In Section 5 we implement a solution to the N-Queens problem using
the simulator and P-Lingua. Finally, in Section 6 we show some results and com-
pare them with the sequential version of the simulator. The paper ends with some
conclusions and ideas for future work in Section 7.

2 Preliminaries

Polynomial time solutions to NP-complete problems in membrane computing are
achieved by trading time for space. This is inspired by the capability of cells to
produce an exponential number of new membranes in polynomial time. There
are many ways a living cell can produce new membranes: mitosis (cell division),
autopoiesis (membrane creation), gemmation, etc. Following these inspirations a
number of different models of P systems has arisen, and many of them proved to
be computationally universal [4].

For the sake of simplicity, we shall focus in this paper on a model, P systems
with active membranes. It is a construct of the form Π = (O, H, µ, ω1, . . . , ωm, R),
where m ≥ 1 is the initial degree of the system; O is the alphabet of objects, H
is a finite set of labels for membranes; µ is a membrane structure, consisting of m
membranes injectively labeled with elements of H, ω1, . . . , ωm are strings over O,
describing the multisets of objects placed in the m regions of µ; and R is a finite
set of rules, where each rule is of one of the following forms:

(a) [a → v]αh , where h ∈ H, α ∈ {+,−, 0} (electrical charges), a ∈ O and v is a
string over O describing a multiset of objects (object evolution rules).

Simulation of Recognizer P Systems by Using Manycore GPUs 47

(b) a []αh → [b]βh, where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-in communication
rules). An object is introduced in the membrane, possibly modified, and the
initial charge α is changed to β.

(c) [a]αh → []βhb, where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-out communication
rules). An object is sent out of the membrane, possibly modified, and the initial
charge α is changed to β.

(d) [a]αh → b, where h ∈ H, α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A mem-
brane with a specific charge is dissolved in reaction with a (possibly modified)
object.

(e) [a]αh → [b]βh [c]γh, where h ∈ H,α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division rules). A
membrane is divided into two membranes. The objects inside the membrane
are replicated, except for a, that may be modified in each membrane.

Rules are applied according to the following principles:

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Rules associated with label h are used for all membranes with this label, no
matter whether the membrane is an initial one or whether it was generated by
division during the computation.

• Rules from (a) to (e) are used as usual in the framework of membrane com-
puting, i.e., in a maximal parallel way. In one step, each object in a membrane
can only be used by at most one rule (non-deterministically chosen), but any
object which can evolve by a rule must do it (with the restrictions indicated
below).

• Rules (b) to (e) cannot be applied simultaneously in a membrane in one com-
putation step.

• An object a in a membrane labeled with h and with charge α can trigger a
division, yielding two membranes with label h, one of them having charge β
and the other one having charge γ. Note that all the contents present before
the division, except for object a, can be the subject of rules in parallel with
the division. In this case we consider that in a single step two processes take
place: “first” the contents are affected by the rules applied to them, and “after
that” the results are replicated into the two new membranes.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin is never dissolved.

Recognizing P systems were introduced in [21], and constitute the natural
framework to study the solvability of decision problems, since deciding whether an
instance has an affirmative or negative answer is equivalent to deciding if a string
belongs or not to the language associated with the problem.

In the literature, recognizing P systems are associated in a natural way with
P systems with input. The data representing an instance of the decision problem
has to be provided to the P system to compute the appropriate answer. This is
done by codifying each instance as a multiset placed in an input membrane. The
output of the computation, yes or no, is sent to the environment [4].

48 M.A. Mart́ınez–del–Amor et al.

In this paper, we present a simulation tool to simulate recognizer P systems
with active membranes. The act of simulating something generally entails repre-
senting certain key characteristics or behavior of some physical, or abstract, sys-
tem. On the other hand, an emulation tool duplicates the functions of one system
by using a different system, so that the second system behaves like (and appears
to be) the first system.

With the current technology, we can not emulate the functionality of a cellular
machine by using a conventional computer to solve NP-complete problems in
polynomial time, but we can simulate these cellular machines, not necessarily in
polynomial time, in order to aid researchers. However, depending on the underlying
technology where the simulator is executed, the simulations can take too much
time.

The technology used for this work is called CUDA (Compute Unified Device
Architecture). CUDA is a co-designed hardware and software solution to make eas-
ier developing general-purpose applications on the Graphics Processor Unit (GPU)
[28]. The GPUs, that are one of the main components of traditional computers,
originally were specialized for math-intensive, highly parallel computation which
is the nature of graphics applications. These characteristics of the GPU were very
attractive to accelerate scientific applications whose have massively parallel appli-
cations. However, the problem was the way to program applications on the GPU.
This way involved to deal with GPUs designed for video games, so they have had to
tune their applications using programming idioms tied to computer graphics, pro-
gramming environment tightly constrained, etc [15], [12]. The CUDA extensions
developed by Nvidia provides an easier environment to program general-purpose
applications onto the GPU because it is based on ANSI C supported by several
keywords and constructs. ANSI C is the standard published by the American Na-
tional Standards Institute (ANSI) for the C programming language, which is one
of the most used.

The P system devices are massively parallel which fits into massively parallel
nature of the GPUs with thousands of threads running in parallel. These threads
are units of execution which execute the same code concurrently on different piece
of data. This idea of thread is very important and used in parallel computing.

3 Underlying Architecture

This work uses a graphics processor unit (GPU) from Nvidia as hardware target
for its study: Tesla C1060. This section introduces the Tesla C1060 computing ar-
chitecture, and it shows architecture parameters that can affect the performance.
In addition, it analyzes the threading model of Tesla architectures depending on
its computing capability, and also the most important issues in the CUDA pro-
gramming environment.

Simulation of Recognizer P Systems by Using Manycore GPUs 49

3.1 Tesla 10 Base Microarchitecture

The Tesla C1060 [14] is based on scalable processor array which has 240 streaming-
processor (SP) cores organized as 30 streaming multiprocessor (SMs). The appli-
cations start at the host side (the CPU) which communicates with the device side
(the GPU) through a bus, which is a PCI Express bus standard (see Figure 1).

Fig. 1. Tesla Unified Architecture. TPC: Texture/processor cluster. SM: Streaming Mul-
tiprocessor, distributed among TPCs. SP: Streaming Processor.

The SM is the processing unit and it is unified graphics and computing multi-
processor. The parallel computing programs are programmed using ANSI C pro-
gramming language along with CUDA extensions [28].

Every SM contains the following units: eight SPs arithmetic cores, one dou-
ble precision unit, an instruction cache, a read only constant cache, 16-Kbyte
read/write shared memory, a set of 16384 registers, and access to the off-chip
memory (device/local memory).

The local and global (device) memory spaces are not cached, which means that
every memory access to global memory (or local memory) generates an explicit
memory access. A multiprocessor takes four clock cycles to issue one memory
instruction for a “Warp” (see next subsection). Accessing local or global memory
incurs an additional 400 to 600 clock cycles of memory latency [26], that is more
expensive than accessing share memory and registers that incurs 4 cycles.

50 M.A. Mart́ınez–del–Amor et al.

The Tesla C1060 achieves 102 GB/sec of bandwidth to the off-chip memory
(running at 800 MHz). This bandwidth is not enough for the big set of cores and the
possibilities to saturate it are high. To obtain the maximum bandwidth available
it is needed to coalesce accesses to the device memory. The coalesced accesses are
obtained whenever the accesses are contiguous 16-word lines, otherwise a fraction
of this bandwidth it is obtained. Coalesced accesses will be a critical point in the
optimization process.

In addition, the threads can use other memories like constant memory or tex-
ture memory. Reading from constant cache is as fast as reading from a registers,
as long as all threads in the same warp read the same address. Texture Memory
is optimized for 2D spatial locality (see Table 1).

Table 1. Memory System on the Tesla C1060

Memory Location Size Latency Access

Registers On-Chip 16384 32-bits Registers per SM ' 0 cycles R/W

Shared Memory On-Chip 16 KB per SM ' registers R/W

Constant On-Chip 64 KB ' registers R

Texture On-Chip Up to Global > 100 cycles R

Local Off-Chip 4 GB 400-600 cycles R/W

Global Off-Chip 4 GB 400-600 cycles R/W

3.2 Threading Model

A SM is a hardware device specifically designed with multithreaded capabilities.
Each SM manages and executes up to 1024 threads in hardware with zero schedul-
ing overhead. Each thread has its own thread execution state and can execute an
independent code path. The SMs execute threads in a Single-Instruction Multiple-
Thread (SIMT) fashion [14]. Basically, in the SIMT model all the threads execute
the same instruction on different piece of data. The SMs create, manage, schedule
and execute threads in groups of 32 threads. This set of 32 threads is called Warp.
Each SM can handle up to 32 Warps (1024 threads in total, see Table 2). Individ-
ual threads of the same Warp must be of the same type and start together at the
same program address, but they are free to branch and execute independently.

The execution flow begins with a set of Warps ready to be selected. The in-
struction unit selects one of them, which is ready for issue and execute instructions.
The SM maps all the threads in an active Warp to the SP cores, and each thread
executes independently with its own instructions and register state. Some threads
of the active Warp can be inactive due to branching or predication, and this is also
another critical point in the optimisation process. The maximum performance is
achieved when all the threads in an active Warp takes the same path (the same
execution flow). If the threads of a Warp diverge, the Warp serially executes each
branch path taken, disabling threads that are not on that path, and when all the
paths complete, the threads reconverge to the original execution path.

Simulation of Recognizer P Systems by Using Manycore GPUs 51

Table 2. Major Hardware and Software Limitations programming on CUDA

Configuration Parameters Limitation

Threads/SM 1024

Thread Blocks/SM 8

32-bit Registers/SM 16384

Shared Memory/SM 16KB

Threads/Block 512

Threads/Warp 32

Warps/SM 32

3.3 Parallel Computing with CUDA

The GPU is, nowadays, a single-chip massively parallel system which is inexpensive
and readily available. However, programming a highly-parallel system has histori-
cally been a domain of few experts [25]. The emergence of Compute Unified Device
Architecture (CUDA) has helped develop highly-parallel applications easier than
before. CUDA programming toolkit is an extension of ANSI C including several
keywords and constructs.

The GPU is seen as a coprocessor that executes data-parallel kernel functions.
The user creates a program encompassing CPU code (Host code) and GPU code
(Kernel code). These are separated and compiled by nvcc (Nvidia’s compiler for
CUDA code). The host code is responsible for transfer data to and from the GPU
memory (device memory) via API calls, to initiates the kernel code executed on
the GPU.

The threads executes the kernel code, and they are organized into a three-level
hierarchy. At the highest level, each kernel creates a single grid that consists of
many thread blocks. Besides, each thread block can contain up to 512 threads
which can share data through Shared Memory and can perform barrier synchro-
nization by invoking the --syncthreads primitive [25]. On the other hand, blocks
can not perform synchronization. The synchronization across blocks can only be
obtained by terminating the kernel. Finally, the threads within the block are or-
ganized into warps of 32 threads.

Each block within the grid have their own identifier[18]. This identifier can
be one, two or three dimensions depending on how the programmer has declared
the grid. In the same way, each thread within the block have their own identifier
which can be one, two or three dimensions as well. Combining thread and block
identifiers, the threads can access to different data address and also select the work
that they have to do.

52 M.A. Mart́ınez–del–Amor et al.

4 A Design of the Simulator for the Class of Recognizing P
Systems

4.1 Algorithm Design

Whenever we design algorithms in the CUDA programming model, our main effort
is dividing the required work into processing pieces, which have to be processed
by TB thread blocks of T threads each. Using a thread block size of T=256, we
have empirically determined to obtain the overall best performance on the Tesla
C1060. Each thread block access to one different set of input data, and assigns a
single or small constant number of input elements to each thread.

Each thread block can be considered independent to the other, and it is at
this level at which internal communication (among threads) is cheap using explicit
barriers to synchronize, and external communication (among blocks) becomes ex-
pensive, since global synchronization only can be achieved by the barrier implicit
between successive kernel calls. The need of global synchronization in our designs
requires successive kernel calls even to the same kernel.

4.2 P System Simulator with Active Membranes

The simulator simulates a recognizer P system with active membranes, i.e Π =
(O, H, µ, ω1, . . . , ωm, R) according to the notation described in section 2.

The simulator is executed into two main stages: selection stage and execution
stage. The selection stage consists of the search for the rules to be executed in
each membrane. Once the rules have been selected, the execution stage consists
of the execution of these rules. The selection stage takes the major part of the
simulation time in the sequential code, since this part of the algorithm implies to
check all the rules of the system in every membrane. So we have parallelized the
selection stage on the GPU, and the execution stage is still executed on the CPU
at this point of the implementation.

The input data for the selection stage consists of the description of the mem-
branes with their multisets (strings over O, labels associated with the membrane
in H, etc...) and the set of rules R to be selected. The output data of this stage
will be the set of selected rules per membrane. Only the execution stage changes
the information of the configuration.

Besides, we have identified each membrane as a thread block where each thread
represents an element of the alphabet O. Each thread block runs in parallel looking
for the set of rules that has to execute, and each individual thread is responsible for
identifying if there are some rules associated with the element that it represents,
and if so, send it back to the execution stage. Finally, the CPU takes the control
and executes the rules previously selected.

As result of the execution stage, the membranes can vary including news el-
ements, dissolving membranes, dividing membranes, etc. Therefore, we have to

Simulation of Recognizer P Systems by Using Manycore GPUs 53

modify the input data for the selection stage with the newest structure of mem-
branes, and then call the selection again. It is an iterative process until a system
response is reached.

Our simulator presents two restrictions: it can handle only two levels of mem-
brane hierarchy for simplicity (the skin and the rest of elementary membranes),
what is enough for solving lots of NP-complete problems; moreover, the number
of objects in the alphabet must be divisible by a number smaller than 512 (the
maximum thread block size), in order to distribute the objects among the threads
equally.

5 A Case Study: Implementing a Solution to the N-Queens
Problem

In this section, we present a solution to the N-Queens problem, given by Miguel
A. Gutiérrez–Naranjo et al [8], using our simulator. The N-Queens problem is
expressed as a formula in conjunctive normal form, in such way that one truth
assignment of the formula is considered as N-Queens solution. A family of recog-
nizer P system for the SAT problem [22] can state whether exists a solution to the
formula or not sending yes or no to the environment.

However, the yes ot no answer from the recognizer P system is not enough.
Besides, the system needs to give us the way to encode the state of the N-Queens
problem.

The P system designed for solving the N-Queens problem is a modification
of the P system for the SAT problem. It is an uniform family of deterministic
recognizer P system which solves SAT as a decision problem (i.e., the P system
sends yes or no to the environment in the last computation step), but it also stores
the truth assignments that makes true the formula encoded in the elementary
membranes of the halting configuration.

5.1 Implementation

P-Lingua 1.0[4] is a programming language useful for defining P system models
with active membranes. We use P-Lingua to encode a solution to the N-Queens
problem, and also to generate a file that our simulator can use as input. Figure 2
shows the P-Lingua process to generate the input for our simulator.

P-Linga 2.0[5] translates a model written in P-Lingua language into a binary
file. A binary file is a file whose information is encoded in Bytes and bits (not
understandable by humans like plain text), which is suitable for trying to compress
the data. This binary file contains all the information of the P system (Alphabet,
Labels, Rules, . . .) which is executed by our simulator.

In our tests, we use the recognizer P system for solving the 3-Queens problem.
This problem creates 512 membranes and up to 1300 different objects. For the
4-Queens problem, the system would create 65536 membranes and up to 8000

54 M.A. Mart́ınez–del–Amor et al.

Fig. 2. Generation of the simulator’s input

different objects. Currently, our simulator can not handle this example due to
memory space limitation (requires up to 8GB in device memory). This problem
can be solved with overlays of data and subsequent calls to the GPU. We are
working on this solution, and also in other solutions to make possible execute
problems with bigger memory size constraints on our simulator. On the other
hand, note that 2-Queens is a system with only 4 membranes, what is not enough
for exploiting the parallelism in P systems.

6 Performance Analysis

We now examine the experimental performance of our simulator. Our performance
test are based on the solution to 3-Queen problem previously explained 5.1. Al-
though this problem does not cover all the NP-complete problems that we want
to simulate in our simulator, it states an example of how a NP-complete problem
can be solved on the P system with active membranes simulator. We report the
selection stage time which is executed on the GPU, and compare it with the selec-
tion stage for the sequential code. We do not include the cost of transferring input
data from host CPU memory across the PCI-Express bus to the GPU’s on board
memory. Selection is one building block of larger-scale computation. Our aim is to
get a full implementation of the simulator on the GPU. In such case, the transfers
across PCI-Express bus will be close to zero.

The selection stage on the GPU takes about 195 msec. This is 12 times faster
than the selection stage on the CPU which takes 2345 msec. We have used the
NVIDIA GPU Tesla C1060 which has 240 execution cores and 4GB of device
memory, plugged in a computer server with a Intel Core2 Quad CPU and 8GB of
RAM, using the 32bits ubuntu server as Operating System.

Our experimental results demonstrate the results we expect to see: a massively-
parallel problem such as selection of the rules in a P system with active membranes
achieves faster running times on a massively-parallel architecture such as GPU.

Simulation of Recognizer P Systems by Using Manycore GPUs 55

7 Conclusions and Future Work

In this paper, we have presented a simulator for the class of recognizer P systems
with active membranes using CUDA. The membrane computation has double par-
allel nature. The first level of parallelism is presented by the objects inside the
membranes, and the second one is presented between membranes. Hence, we have
simulated these P systems in a platform which provides those levels of parallelism.
This platform is the GPU, with parallelism between thread blocks and threads.
Besides, we have used a programming language called P-Lingua to generate a
solution to the N-Queens problem, in order to test our simulator.

Using the power and parallelism that provides the GPU to simulate P systems
with active membranes is a new concept in the development applications for mem-
brane computing. Even the GPU is not a cellular machine, its features help the
researches to accelerate their simulations allowing the consolidation of the cellular
machines as alternative to the traditional machines.

The first version of the simulator is presented for P systems with active mem-
branes, specifically, we have developed the selection stage of the simulator. In
forthcoming versions, we will try to include the execution version in the GPU.
This issue allows a completely parallel execution on the GPU, avoiding CPU-GPU
transfers in every step, which degrades system performance.

On the other hand, we shall adapt our simulator to use the resources available
on the GPU at maximum. To develop general purpose programs on the GPU
is easier than several years ago with tools such as CUDA. However, extracting
the maximum performance on the GPU is still hard, so we need to make a deep
analysis to obtain the maximum performance available for our simulator.

It is also important to point out that this simulator is limited by the resources
available on the GPU as well as the CPU (RAM, Device Memory, CPU, GPU).
This limits the size of the instances of NP-complete problems whose solutions can
be successfully simulated. In the following version of the simulator, we will try to
reduce the memory requirements for the simulator in order to be able to simulate
bigger instances of NP-complete problems. Moreover, it would be interesting to
design heuristics to accelerate the computations of our simulator.

Although, the massively parallel environment that provides the GPUs is good
enough for the simulator, we need to go beyond. The newest cluster of GPUs
provides a higher massively parallel environment, so we will attempt to scale to
those systems to obtain better performance in our simulated codes.

Acknowledgement

The first three authors acknowledge the support of the project TIN2006–13425
of the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds,
and the support of the “Proyecto de Excelencia con Investigador de Reconocida
Vaĺıa” of the Junta de Andalućıa under grant P08–TIC04200. The last three au-
thors acknowledge the support of the project from the Spanish MEC and Euro-

56 M.A. Mart́ınez–del–Amor et al.

pean Commission FEDER funds under grants “Consolider Ingenio-2010 CSD2006-
00046” and “TIN2006-15516-C04-03”, as well as by the EU FP7 NoE HiPEAC
IST-217068.

References

1. A. Alhazov, M.J. Pérez–Jiménez: Uniform solution of QSAT using polarizationless
active membranes. In J. Durand-Lose, M. Margenstern, eds., Machines, Computa-
tions, and Universality. LNCS 4664, Springer, 2007, 122–133.

2. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan:
Brook for GPUs: stream computing on graphics hardware. SIGGRAPH ’04, ACM
Press (2004), 777–786.

3. G. Ciobanu, Gh. Păun, M.J. Pérez–Jiménez, eds.: Applications of Membrane Com-
puting. Springer, 2006.

4. D. Dı́az–Pernil, I. Pérez–Hurtado, M.J. Pérez–Jiménez, A. Riscos–Núñez: P–Lingua:
A programming language for membrane computing. In D. Dı́az–Pernil, M.A.
Gutiérrez–Naranjo, C. Graciani–Dı́az, Gh. Păun, I. Pérez–Hurtado, A. Riscos–Núñez,
eds., Proceedings of the 6th Brainstorming Week on Membrane Computing, Sevilla,
Fénix Editora, 2008, 135–155.

5. M. Garćıa–Quismondo, R. Gutiérrez–Escudero, I. Pérez–Hurtado, M.J. Pérez–
Jiménez: P–Lingua 2.0: added features and first applications. In this volume.

6. M. Garland, S.L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, V. Volkov: Parallel computing experiences with CUDA. IEEE Micro, 28,
4 (2008), 13–27.

7. N.K. Govindaraju, D. Manocha: Cache–efficient numerical algorithms using graphics
hardware. Parallel Comput., 33, 10–11 (2007), 663–684.

8. M.A. Gutiérrez–Naranjo, M.A. Mart́ınez–del–Amor, I. Pérez–Hurtado, M.J. Pérez–
Jiménez: Solving the N −Queens puzzle with P systems. In this volume.

9. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez: Available mem-
brane computing software. In G. Ciobanu, Gh. Păun, M.J. Péréz–Jiménez (eds.)
Applications of Membrane Computing, Springer–Verlag, 2006. Chapter 15 (2006),
411–436.

10. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez: Towards a program-
ming language in cellular computing. Electronic Notes in Theoretical Computer Sci-
ence, 123 (2005), 93–110.

11. M. Harris, S. Sengupta, J.D. Owens: Parallel prefix sum (Scan) with CUDA. GPU
Gems, 3 (2007).

12. T.D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, M. Ujaldon: Biomedical
image analysis on a cooperative cluster of GPUs and multicores. ICS ’08: Proceedings
of the 22nd annual international conference on Supercomputing, ACM, 2008, 15–25.

13. M.D. Lam, E.E. Rothberg, M.E. Wolf: The cache performance and optimizations of
blocked algorithms. ASPLOS-IV: Proceedings of the fourth international conference
on Architectural support for programming languages and operating systems, ACM,
1991, 63–74.

14. E. Lindholm, J. Nickolls, S. Oberman, J. Montrym: NVIDIA Tesla. A unified graphics
and computing architecture. IEEE Micro, 28, 2 (2008), pp. 39–55.

Simulation of Recognizer P Systems by Using Manycore GPUs 57

15. W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard: Cg – a system for programming
graphics hardware in a C–like language. SIGGRAPH ’03, ACM, 2003, 896–907.

16. J. Michalakes, M. Vachharajani: GPU acceleration of numerical weather prediction.
IPDPS, 2008, 1–7.

17. J. Nickolls, I. Buck, M. Garland, K. Skadron: Scalable parallel programming with
CUDA. Queue, 6, 2 (2008), pp. 40–53.

18. J D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips: Gpu com-
puting. Proceedings of the IEEE, 96, 5 (2008), 879–899.

19. J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E. Lefohn, T.J.
Purcell: A survey of general–purpose computation on graphics hardware. Computer
Graphics Forum, 26, 1 (2007), pp. 80–113.

20. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208.

21. M. J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini: Complexity classes
in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),
265–285.

22. M. J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini: A polynomial com-
plexity class in P systems using membrane division. In E. Csuhaj–Varjú, C. Kintala,
D. Wotschke, G. Vaszil, eds., Proceedings of the 5th Workshop on Descriptional Com-
plexity of Formal Systems, DCFS 2003, Budapest, 2003, 284–294.

23. A. Ruiz, M. Ujaldon, J.A. Andrades, J. Becerra, K. Huang, T. Pan, J.H. Saltz: The
GPU on biomedical image processing for color and phenotype analysis. BIBE, 2007,
1124–1128.

24. S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk, W. mei Hwu: Optimiza-
tion principles and application performance evaluation of a multithreaded GPU using
CUDA. Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, 2008, 73–82.

25. S. Ryoo, C.I. Rodrigues, S.S. Stone, J.A. Stratton, Sain-Zee Ueng, S.S. Baghsorkhi,
W.W. Hwu: Program optimization carving for GPU computing. J. Parallel Distrib.
Comput., 68, 10 (2008), 1389–1401.

26. NVIDIA CUDA Programming Guide 2.0, 2008: http://developer.download.

nvidia.com/compute/cuda/2 0/docs/NVIDIA CUDA Programming Guide 2.0.pdf

27. GPGPU organization. World Wide Web electronic publication: www.gpgpu.org
28. NVIDIA CUDA. World Wide Web electronic publication: www.nvidia.com/cuda

