
Dictionary Search and Update by P Systems with
String-Objects and Active Membranes

Artiom Alhazov2,1, Svetlana Cojocaru1, Ludmila Malahova1,
Yurii Rogozhin3,1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova, Academiei 5, Chişinău MD-2028 Moldova
{artiom,sveta,mal,rogozhin}@math.md

2 IEC, Department of Information Engineering, Graduate School of Engineering
Hiroshima University, Higashi-Hiroshima 739-8527 Japan

3 Rovira i Virgili University, Research Group on Mathematical Linguistics
Pl. Imperial Tàrraco 1, Tarragona 43005 Spain

Summary. Membrane computing is a formal framework of distributed parallel comput-
ing. In this paper we implement working with the prefix tree by P systems with strings
and active membranes.

1 Introduction

Solving most problems of natural language processing is based on using certain
linguistic resources, represented by corpora, lexicons, etc. Usually, these collections
of data constitute an enormous volume of information, so processing them requires
much computational resources. A reasonable approach for obtaining efficient solu-
tion is that based on applying parallelism; it has started to be promoted already
in 1970s. For instance, the possibilities of applying massive parallelism in Machine
Translation are considered in [4, 1]. We mention that many of the stages of text
processing (from tokenization, segmentation, lematizing to those dealing with nat-
ural language understanding) can be carried out by parallel methods. This justifies
the interest to applying methods offered by the biologically inspired models, and
by membrane computing in particular.

However, there are some issues that by their nature do not allow complete
parallelization, yet exactly they are often those “computational primitives” that
are inevitably used during solving major problems, like the elementary arithmetic
operations are always present in solving difficult computational problems. Among
such “primitives” in the computational linguistics there are handling of the dictio-
naries, e.g., dictionary lookup and dictionary completion. Exactly these problems
constitute the subject of the present paper. In our approach we speak about dic-
tionary represented by a prefix tree.

2 A. Alhazov et al.

Membrane systems are a convenient framework of describing computations on
trees. Since membrane systems are an abstraction of living cells, the membranes
are arranged hierarchically, yielding a tree structure.

2 Definitions

Membrane computing is a recent domain of natural computing started by Gh. Păun
in [2]. The components of a membrane system are a cell-like membrane structure, in
the regions of which one places multisets of objects which evolve in a synchronous
maximally parallel manner according to given evolution rules associated with the
membranes. The necessary definitions are given in the following subsection; see
also [3] for an overview of the domain and [5] for the comprehensive bibliography.

2.1 Computing by P systems

Let O be a finite set of elements called symbols; the set of words over O is denoted
by O∗, and the empty word is denoted by λ.

Definition 1. A P system with string-objects and input is a tuple

Π =
(
O, Σ,H, E, µ, M1, · · · ,Mp, R, i0

)
, where:

• O is the working alphabet of the system whose elements are called objects.
• Σ is an input alphabet.
• H is an alphabet whose elements are called labels.
• E is the set of polarizations.
• µ is a membrane structure (a rooted tree) consisting of p membranes injectively

labeled by elements of H.
• Mi is an initial multiset of strings over O associated with membrane i, 1 ≤ i ≤

p.
• R is a finite set of rules defining the behavior of objects from O and membranes

labeled by elements of H.
• i0 identifies the input region.

A configuration of a P system is its “snapshot”, i.e., the current membrane
structure and the multisets of strings of objects present in regions of the system.
While initial configuration is C0 = (µ,M1, · · · ,Mp), each subsequent configuration
C ′ is obtained from the previous configuration C by maximally parallel application
of rules to objects and membranes, denoted by C ⇒ C ′ (no further rules are
applicable together with the rules that transform C into C ′). A computation is
thus a sequence of configurations starting from C0, respecting relation ⇒ and
ending in a halting configuration (i.e., such one that no rules are applicable).

If M is a multiset of strings over the input alphabet Σ ⊆ O, then the initial
configuration of a P system Π with an input M over alphabet Σ and input region
i0 is

(µ,M1, · · · , Mi0−1,Mi0 ∪M, Mi0+1, · · · ,Mp).

Dictionary Search by P Systems with String-Objects 3

2.2 P systems with active membranes

To speak about P systems with active membranes, we need to specify the rules,
i.e., the elements of the set R in the description of a P system.

Due to the nature of the problem of this paper, the standard model was gen-
eralized in the following:

• Cooperative rules: a rule can consider consecutive symbols in a string (other-
wise, the time complexity would be much higher).

• String replication (to return the result without removing it from the dictio-
nary).

• Membrane creation (to add words to the dictionary).

Hence, the rules can be of the following forms:

(a∗) [a → b]e
h,

for h ∈ H, e ∈ E, a, b ∈ O∗

(evolution rules, associated with membranes and depending on the label and
the polarization of the membranes, but not directly involving the membranes,
in the sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(a∗r) [a → b||c]e
h
,

for h ∈ H, e ∈ E, a, b, c ∈ O∗

(like the previous case, but with string replication);
(b∗) a[]e1

h → [b]e2
h ,

for h ∈ H, e1, e2 ∈ E, a, b ∈ O∗

(communication rules; an object is introduced into the membrane; the object
can be modified during this process, as well as the polarization of the membrane
can be modified, but not its label);

(c∗) [a]e1
h
→ []e2

h
b,

for h ∈ H, e1, e2 ∈ E, a, b ∈ O∗

(communication rules; an object is sent out of the membrane; the object can
be modified during this process; also the polarization of the membrane can be
modified, but not its label);

(d∗) [a]e
h
→ b,

for h ∈ H, e ∈ E, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(g∗) [a → [b]e2
g

]e1
h

,
for g, h ∈ H, e1, e2 ∈ E, a, b ∈ O∗

(membrane creation rules; an object is moved into a newly created membrane
and possibly modified).

Additionally, we will write ∅ in place of some strings on the right-hand side of
the rules, meaning that the entire string is deleted.

The rules of types (a∗), (a∗r) and (g∗) are considered to only involve objects,
while all other rules are assumed to involve objects and membranes mentioned in

4 A. Alhazov et al.

their left-hand side. An application of a rule consists in replacing a substring de-
scribed in the left-hand side of a string in the corresponding region (i.e., associated
to a membrane with label h and polarization e for rules of types (a∗), (a∗r) and
(d∗), or associated to a membrane with label h and polarization e1 for rules of type
(c∗), or immediately outer of such a membrane for rules of type (b∗)), by a string
described in the right-hand side of the rule, moving the string to the corresponding
region (that can be the same as the source region immediately inner or immedi-
ately outer, depending on the rule type), and updating the membrane structure
accordingly if needed (changing membrane polarization, creating or dissolving a
membrane).

The rules can only be applied simultaneously if they involve different objects
and membranes (we repeat that rules of type (a) are not considered to involve a
membrane), and such parallelism is maximal if no further rules are applicable to
objects and membranes that were not involved.

3 Dictionary

Dictionary search represents computing a string-valued function

{ui −→ vi | 1 ≤ i ≤ d}

defined on a finite set of strings.
We represent such a dictionary by the skin membrane containing the membrane

structure corresponding to the prefix tree of {ui | 1 ≤ i ≤ d}, with strings vi′ in
regions corresponding to the nodes associated to ui. Due to technical reasons, we
assume that for every l ∈ A1, the skin contains a membrane with label l. We also
suppose that the source words are non-empty.

For instance, the dictionary {bat −→ flying, bit −→ stored} is represented by

[[]0
a
[[[$flying$′]0

t
]0
a
[[$stored$′]0

t
]0
i

]
b
[]0

c
· · · []0

z
]0
0

Let A1, A2 be the alphabets of the source and target languages, respectively.
Consider a P system corresponding to the given dictionary.

Π =
(
O,Σ, H, E, µ, M1, · · · ,Mp, R, i0

)
,

O = A1 ∪A2 ∪ {?, ?′, $, $′, $1, $2, fail} ∪ {?i | 1 ≤ i ≤ 11} ∪ {!i | 1 ≤ i ≤ 4},
Σ = A1 ∪A2 ∪ {?, ?′, !, $, $′},
H = A1 ∪ {0}, E = {0,+,−},
µ and sets Mi, 1 ≤ i ≤ p, are defined as described above,
i0 = 1,

so only the rules and input semantics still have to be defined.

Dictionary Search by P Systems with String-Objects 5

3.1 Dictionary search

To translate a word u, input the string ?u?′ in region 1. Consider the following
rules.

S1 ?l[]0
l
→ [?]0

l
, l ∈ A1

Propagation of the input into the membrane structure, reaching the location cor-
responding to the input word.

S2 [??′]0
l
→ []−

l
∅, l ∈ A1

Marking the region corresponding to the source word.

S3 [$ → $1||$2]−l , l ∈ A1

Replicating the translation.

S4 [$2]e
l
→ []0

l
$2, l ∈ H, e ∈ {−, 0}

Sending one copy of the translation to the environment.

S5 [$1 → $]0l , l ∈ A1

Keeping the other copy in the dictionary.
The system will send the translation of u in the environment. This is a simple

example illustrating search. If the source word is not in the dictionary, the system
will be blocked without giving an answer. The following subsection shows a solution
to this problem.

3.2 Search with fail

The set of rules below is considerably more involved than the previous one. How-
ever, it handles 3 cases: a) the target word is found, b) the target word is missing
in the target location, c) the target location is unreachable.

F1 [? →?1||?2]00

Replicate the input.

F2 [?2 →?3]00
Delay the second copy of the input for one step.

F3 ?1l[]0
l
→ [?1]+

l
, l ∈ A1

Propagation of the first copy towards the target location, changing the polarization
of the entered membrane to +.

F4 ?3l[]+l → [?3]0l , l ∈ A1

Propagation of the second copy towards the target location, restoring the polar-
ization of the entered membrane.

6 A. Alhazov et al.

F5 [?1l → [?4]−
l

]0
k
, l, k ∈ A1

If a membrane corresponding to some symbol of the source word is missing, then
the first copy of the input remains in the same membrane, while the second copy
of the input restores its polarization. Creating a membrane to handle the failure.

F6 [?1?′ →?7]0
l
, l ∈ A1

Target location found, marking the first input copy.

F7 [?7]0
l
→ []−

l
∅, l ∈ A1

Marking the target location.
In either case, some membrane has polarization −. It remains to send the

answer out, or fail if it is absent. The membrane should be deleted in the fail case.

F8 [$ → $1||$2]−l , l ∈ A1

Replicating the translation.

F9 [$2]e
l
→ []0

l
$2, l ∈ H, e ∈ {0,−}

Sending one copy of the translation out.

F10 [$1 → $]0
l
, l ∈ A1

Keeping the other copy in the dictionary.

F11 [?3 →?5]−l , l ∈ A1

The second copy of input will check if the translation is available in the current
region.

F12 ?3l[]−
l
→ [?5]−

l
, l ∈ A1

The second copy of input enters the auxiliary membrane with polarization −.

By now the second copy of the input is in the region corresponding to either
the search word, or to its maximal prefix plus one letter (auxiliary one).

F13 [?5 →?6]−
l

, l ∈ A1

It waits for one step.

F14 [?6 → ∅]0
l
, l ∈ A1

If the target word has been found, the second copy of the input is erased.

F15 [?6]−l → []0l ?8, l ∈ A1

If not, the search fails.

F16 [?8]0l → []0l ?8, l ∈ A1

Sending the fail notification to the skin.

F17 [?8l →?8]0
0

Dictionary Search by P Systems with String-Objects 7

Erasing the remaining part of the source word.

F18 [?8?′]0
l
→ []0

l
fail

Answering fail.

F19 [?4 →?9]−l , l ∈ A1

F20 [?9 →?10]−
l

, l ∈ A1

F21 [?10 →?11]−
l

, l ∈ A1

If the target location was not found, the first input copy waits for 3 steps while
the membrane with polarization − handles the second input copy.

F22 [?11]0
l
→ ∅, l ∈ A1

Erasing the auxiliary membrane.

3.3 Dictionary update

To add a pair of words u −→ v to the dictionary, input the string !uv′ in region
1. Consider the following rules.

U1 [! →!1||!2]00
Replicate the input.

U2 [!2 →!3]0
0

Delay the second copy of the input for one step.

U3 !1l[]0l → [!1]+l , l ∈ A1

Propagation of the first copy towards the target location, changing the polarization
of the entered membrane to +.

U4 !3l[]+
l
→ [!3]0

l
, l ∈ A1

Propagation of the second copy towards the target location, restoring the polar-
ization of the entered membrane.

U5 [!1 →!4]0
l
, l ∈ A1

If a membrane corresponding to some symbol of the source word is missing, then
the first copy of the input remains in the same membrane, while the second copy of
the input restores its polarization. Marking the fist copy of the input for creation
of missing membranes.

U6 [!4l → [!4]+
l

]0
k
, l, k ∈ A1

Creating missing membranes.

U7 [!4$ → $]0l , l ∈ A1

8 A. Alhazov et al.

Releasing the target word in the corresponding location.

U8 [!3$ → ∅]0
l
, l ∈ A1

Erasing the second copy of the input.

We underline that the constructions presented above also hold in a more gen-
eral case, i.e., when the dictionary is a multi-valued function. Indeed, multiple
translations can be added to the dictionary as multiple strings in the region as-
sociated to the input word. The search for a word with multiple translations will
lead to all translations sent to the environment. The price to pay is that the con-
struction is no longer deterministic, since the order of application of rules S4 or
F9 to different translations is arbitrary. Nevertheless, the constructions remain
“deterministic modulo the order in which the translations are sent out”.

4 Discussion

In this paper we presented the algorithms of searching in a dictionary and com-
pleting it implemented as membrane systems. We underline that the systems are
constructed as reusable modules, so they are suitable for using as sub-algorithms
for solving more complicated problems.

The scope of handling dictionaries is not limited to the dictionaries in the clas-
sical sense. Understanding a dictionary as introduced in Section 3, i.e., a string-
valued function defined on a finite set of strings, leads to direct applicability of
the proposed methods to handle alphabets, lexicons, thesaura, dictionaries of ex-
ceptions, and even databases.

Acknowledgments

All authors gratefully acknowledge the support by the Science and Technology
Center in Ukraine, project 4032. Artiom Alhazov gratefully acknowledges the sup-
port of the Japan Society for the Promotion of Science and the Grant-in-Aid for
Scientific Research, project 20·08364. Yurii Rogozhin gratefully acknowledges the
support of the European Commission, project MolCIP, MIF1-CT-2006-021666.

References

1. H. Kitano: Challenges of massive parallelism. Proceedings of the 13th International
Joint Conference on Artificial Intelligence, Chambery, France, 1993, vol. 1, 813–834.

2. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

3. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, 2002.
4. E. Sumita, K. Oi, O. Furuse, H. Iida, T. Higuchi, N. Takahashi, H. Kitano: Example-

based machine translation on massively parallel processors. Proceedings of the 13th
International Joint Conference on Artificial Intelligence, Chambery, France, 1993,
vol. 2, 1283–1289.

5. P systems webpage. http://ppage.psystems.eu/.

