
Solving Numerical NP-complete Problems by
Spiking Neural P Systems with Pre–computed
Resources

Miguel A. Gutiérrez-Naranjo1, Alberto Leporati2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: magutier@us.es

2 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
E-mail: alberto.leporati@unimib.it

Summary. Recently we have considered the possibility of using spiking neural P systems
for solving computationally hard problems, under the assumption that some (possibly ex-
ponentially large) pre-computed resources are given in advance. In this paper we continue
this research line, and we investigate the possibility of solving numerical NP-complete
problems such as Subset Sum. In particular, we first propose a semi–uniform family of
spiking neural P systems in which every system solves a specified instance of Subset
Sum. Then, we exploit a technique used to calculate Iterated Addition with boolean
circuits to obtain a uniform family of spiking neural P systems in which every system
is able to solve all the instances of Subset Sum of a fixed size. All the systems here
considered are deterministic, but their size generally grows exponentially with respect to
the instance size.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [11] as
a new class of distributed and parallel computing devices, inspired by the neuro-
physiological behavior of neurons sending electrical impulses (spikes) along axons
to other neurons. SN P systems can also be viewed as an evolution of P systems
[24, 25, 27, 28] (the latest information can be found in [34]) corresponding to a
shift from cell-like to neural-like architectures. We recall that this biological back-
ground has already led to several models in the area of neural computation, e.g.,
see [19, 20, 8].



194 M.A. Gutiérez-Naranjo, A. Leporati

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consist of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to
send information to other neurons in the form of electrical impulses (also called
spikes) which are accumulated at the target cell. The applicability of each rule is
determined by checking the contents of the neuron against a regular set associated
with the rule. In each time unit, if a neuron can use one of its rules, then one of such
rules must be used. If two or more rules could be applied, then only one of them
is nondeterministically chosen. Thus, the rules are used in the sequential manner
in each neuron, but neurons function in parallel with each other. Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.
When a cell sends out spikes it becomes “closed” (inactive) for a specified period of
time, that reflects the refractory period of biological neurons. During this period,
the neuron does not accept new inputs and cannot “fire” (that is, emit spikes).
Another important feature of biological neurons is that the length of the axon
may cause a time delay before a spike arrives at the target. In SN P systems this
delay is modeled by associating a delay parameter to each rule which occurs in the
system. If no firing rule can be applied in a neuron, there may be the possibility
to apply a forgetting rule, that removes from the neuron a predefined number of
spikes.

Formally, a spiking neural membrane system (SN P system, for short) of degree
m ≥ 1, as defined in [10] in the computing version (i.e., able to take an input and
provide and output), is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) firing (also spiking) rules E/ac → a; d, where E is a regular expression
over a, and c ≥ 1, d ≥ 0 are integer numbers; if E = ac, then it is
usually written in the following simplified form: ac → a; d;

(2) forgetting rules as → λ, for s ≥ 1, with the restriction that for each
rule E/ac → a; d of type (1) from Ri, we have as 6∈ L(E) (the regular
language defined by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π.

A firing rule E/ac → a; d ∈ Ri can be applied in neuron σi if it contains k ≥ c
spikes, and ak ∈ L(E). The execution of this rule removes c spikes from σi (thus



Solving NP-complete Problems by SN P Systems 195

leaving k − c spikes), and prepares one spike to be delivered to all the neurons σj

such that (i, j) ∈ syn. If d = 0 then the spike is immediately emitted, otherwise it
is emitted after d computation steps of the system. As stated above, during these
d computation steps the neuron is closed, and it cannot receive new spikes (if a
neuron has a synapse to a closed neuron and tries to send a spike along it, then
that particular spike is lost), and cannot fire (and even select) rules. A forgetting
rule as → λ can be applied in neuron σi if it contains exactly s spikes, and no firing
rules are applicable. The execution of this rule simply removes all the s spikes from
σi.

The initial configuration of the system is described by the numbers n1, n2,
. . . , nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the contents of each neuron
and its state, which can be expressed as the number of steps to wait until it
becomes open (zero if the neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the
configuration where neuron σi contains ri ≥ 0 spikes and it will be open after
ti ≥ 0 steps, for i = 1, 2, . . . , m; with this notation, the initial configuration of the
system is C0 = 〈n1/0, . . . , nm/0〉.

A computation starts in the initial configuration. In order to compute a function
f : N→ N (functions of the kind f : Nα → Nβ , for any fixed pair of integers α ≥ 1
and β ≥ 1, can also be computed by using appropriate bijections from Nα and Nβ

to N), a positive integer number is given in input to a specified input neuron. In
the original model, as well as in some early variants, the number is encoded as the
interval of time steps elapsed between the insertion of two spikes into the neuron.
To pass from a configuration to another one, for each neuron a rule is chosen
among the set of applicable rules, and is executed. Generally, a computation may
not halt. However, in any case the output of the system is considered to be the
time elapsed between the arrival of two spikes in a designated output cell. Other
possibilities exist to encode input and output numbers, as discussed in [10]: as the
number of spikes contained in a given neuron at the beginning (resp., the end) of
the computation, as the number of spikes fired in a given interval of time, etc.

A useful extension to the standard model defined above, already considered in
[15, 16, 17, 12], is to use several input neurons, so that the introduction of the
encoding of an instance of the problem to be solved can be done in a faster way,
introducing parts of the code in parallel in various input neurons. Formally, we
can define an SN P system of degree (m, `), with m ≥ 1 and 0 ≤ ` ≤ m, just like
a standard SN P system of degree m, the only difference being that now there
are ` input neurons denoted by in1, . . . , in`. A valid input for an SN P system of
degree (m, `) is a set of ` binary sequences, that collectively encode an instance of
a problem.

The previous definitions cover many types of systems/behaviors. By neglecting
the output neuron we can define accepting SN P systems, in which the natural
number (or the vector of natural numbers, in the case of systems having ` > 1 input
neurons) given in input is accepted if the computation halts. On the other hand, by
ignoring the input neuron (and thus starting from a predefined input configuration)



196 M.A. Gutiérez-Naranjo, A. Leporati

we can define generative SN P systems. In [11] it was shown that generative SN
P systems are universal, that is, can generate any recursively enumerable set of
natural numbers. Moreover, a characterization of semilinear sets was obtained by
spiking neural P systems with a bounded number of spikes in the neurons. These
results can be obtained also for some restricted forms of SN P systems: [9] shows
that one of the following features can be avoided while keeping universality: time
delay greater than 0, forgetting rules, outdegree of the synapse graph greater than
2, and regular expressions of complex form. In [6] it is shown that universality is
kept even if we remove some combinations of two of the above features. Finally, in
[29] the behavior of SN P systems on infinite strings and the generation of infinite
sequences of 0 and 1 was investigated, whereas in [3] SN P systems were studied
as language generators (over the binary alphabet {0, 1}).

Spiking neural P systems can also be used to solve decision problems, both in
a semi–uniform and in a uniform way. When solving a problem Q in the semi–
uniform setting, for each specified instance I of Q we build an SN P system ΠQ,I ,
whose structure and initial configuration depend upon I, that halts (or emits a
specified number of spikes in a given interval of time) if and only if I is a positive
instance of Q. On the other hand, a uniform solution of Q consists in a family
{ΠQ(n)}n∈N of SN P systems such that, when having an instance I ∈ Q of size
n, we introduce a polynomial (in n) number of spikes in a designated (set of)
input neuron(s) of ΠQ(n) and the computation halts (or, alternatively, a specified
number of spikes is emitted in a given interval of time) if and only if I is a positive
instance. The preference for uniform solutions over semi–uniform ones is given
by the fact that they are more strictly related to the structure of the problem,
rather than to specific instances. If the instances of a problem Q depend upon two
parameters (as is the case of Subset Sum, where n + 1 is the number of integer
values contained into the generic instance (V = {v1, v2, . . . , vn}, S), and k is the
number of bits needed to represent each of these values), then we will denote the
family of SN P systems that solves Q by {ΠQ(〈n, k〉)}n,k∈N, where 〈n, k〉 indicates
the positive integer number obtained by applying an appropriate bijection (for
example, Cantor’s pairing) from N2 to N.

The present paper considers SN P systems for solving decision problems, contin-
uing the papers [17], [16] and [15], where we dealt with the NP-complete decision
problems Subset Sum, sat and 3-sat. For all these problems, constant time and
polynomial time solutions were provided by using SN P systems constructed both
in the semi-uniform and in the uniform setting, working in a non-deterministic
way, and also using a series of ingredients added to SN P systems of the standard
form: rules that produce several spikes at a time, the possibility to have a choice
between spiking rules and forgetting rules, forgetting rules controlled by regular
expressions, rules applied in the maximal parallel way, etc. Here we consider a
different situation: we assume that a pre-computed (standard) SN P system is
given in advance, possibly having an exponential size with respect to the size of
the instances of the problem we want to solve, and we provide a semi–uniform
and a uniform constructions that solve Subset Sum in a polynomial time. All the



Solving NP-complete Problems by SN P Systems 197

systems we will propose work in a deterministic way. Note that this setting was
already considered in [12], where polynomial time uniform solutions to sat and
3-sat were provided.

An important observation is that we will not specify how our pre-computed
systems could be built. However, we require that such systems have a regular
structure, and that they do not contain neither “hidden information” that sim-
plify the solution of specific instances, nor an encoding of all possible solutions
(that is, an exponential amount of information that allows to cheat while solving
the instances of the problem). These requirements were inspired by open prob-
lem Q27 in [27]. Let us note in passing that the regularity of the structure of
the system is related to the concept of uniformity, that in some sense measures
the difficulty of constructing the system. For example, when considering families
{C(n)}n∈N of boolean circuits, or other computing devices whose number of inputs
depends upon an integer parameter n ≥ 1, it is required that for each n ∈ N a
“reasonable” description (see [2] for further discussion on the meaning of the term
“reasonable” in this context) of C(n), the circuit of the family which has n inputs,
can be produced in polynomial time and logarithmic space (with respect to n) by
a deterministic Turing machine whose input is 1n, the unary representation of n.
In this paper we will not delve further into the details concerning uniformity; we
just rely on reader’s intuition, by stating that it should be possible to build the
entire structure of the system using only a polynomial amount of information and
a controlled replication mechanism, as it already happens in P systems with cell
division.

The paper is organized as follows. In section 2 we recall the definition of the
Subset Sum problem, as well as a classical solution algorithm based on the dy-
namic programming paradigm. In section 3 we elaborate such an algorithm to
obtain a family of SN P systems that solves Subset Sum in a semi–uniform way.
In section 4 we propose a completely different construction, that allows to uni-
formly solve all the instances of Subset Sum of any specified size; the instances
are provided in input to the systems of the family by specifying their values in
binary form. Finally, section 5 contains the conclusions and some directions for
further research.

2 The Subset Sum Problem

Subset Sum is one of the most known NP-complete decision problems. We can
state it as follows, in a form which is equivalent to the one given in [7, p. 223].

Problem 1. Name: Subset Sum.

• Instance: a (multi)set V = {v1, v2, . . . , vn} of positive integer numbers, and
a positive integer number S.

• Question: is there a sub(multi)set B ⊆ V such that
∑

b∈B

b = S?



198 M.A. Gutiérez-Naranjo, A. Leporati

The following well known algorithm [5] solves Subset Sum by using the Dy-
namic Programming technique. In particular, the algorithm returns 1 on positive
instances, and 0 on negative instances.

Subset Sum({v1, v2, . . . , vn}, S)
for j ← 0 to S

do M [1, j]← 0
M [1, 0]←M [1, v1]← 1
for i← 2 to n

do for j ← 0 to S
do M [i, j]←M [i− 1, j]

if j ≥ vi and M [i− 1, j − vi] > M [i, j]
then M [i, j]←M [i− 1, j − vi]

return M [n, S]

In order to look for a subset B ⊆ V such that
∑

b∈B b = S, the algorithm uses an
n × (S + 1) matrix M whose entries are from {0, 1}. It fills the matrix by rows,
starting from the first row. Each row is filled from left to right. The entry M [i, j]
is filled with 1 if and only if there exists a subset of {v1, v2, . . . , vi} whose elements
sum up to j. The given instance of Subset Sum is thus a positive instance if and
only if M [n, S] = 1 at the end of the execution.

Since each entry is considered exactly once to determine its value, the time
complexity of the algorithm is proportional to n(S +1) = Θ(nS). This means that
the difficulty of the problem depends on the value of S, as well as on the magnitude
of the values in V . In fact, let K = max{v1, v2, . . . , vn, S}. If K is polynomially
bounded with respect to n, then the above algorithm works in polynomial time.
On the other hand, if K is exponential with respect to n, say K = 2n, then the
above algorithm may work in exponential time and space. This behavior is usually
referred to in the literature by telling that Subset Sum is a pseudo–polynomial
NP–complete problem.

The fact that in general the running time of the above algorithm is not poly-
nomial can be immediately understood by comparing its time complexity with the
instance size. The usual size for the instances of Subset Sum is Θ(n log K), since
for conciseness every “reasonable” encoding is assumed to represent each element
of V (as well as S) using a string whose length is O(log K). Here all logarithms are
taken with base 2. Stated differently, the size of the instance is usually considered
to be the number of bits which must be used to represent in binary S and all the
integer numbers which occur in V . If we would represent such numbers using the
unary notation, then the size of the instance would be Θ(nK). But in this case we
could write a program which first converts the instance in binary form and then
uses the above algorithm to solve the problem in polynomial time with respect
to the new instance size. We can thus conclude that the difficulty of a numerical
NP–complete problem depends also on the measure of the instance size we adopt.
Indeed, Subset Sum is not NP-complete in the strong sense, meaning that it does



Solving NP-complete Problems by SN P Systems 199

not remain NP-complete when we represent its instances in unary form [7]. Stated
otherwise, strongly NP-complete problems remain NP-complete even when the
numbers contained into their instances are small.

As a consequence of these observations, the SN P systems that we will consider
in section 4 will take in input the instances of Subset Sum as n + 1 strings
encoded in binary form, where the length of each string will be k = log K. Before
presenting the uniform solution of section 4, in the next section we first elaborate
the above dynamic programming algorithm to provide a semi–uniform family of
SN P systems that solves the Subset Sum problem.

3 A Semi–uniform Solution to Subset Sum

Let SS(n, k) denote the set of instances of Subset Sum which can be built by using
n + 1 positive k-bit integer numbers. In this section we present a semi–uniform
family {Π(I)}I∈SS(n,k) of SN P systems such that for every I ∈ SS(n, k) the
system Π(I) determines whether I = ({v1, v2, . . . , vn}, S) is a positive instance of
Subset Sum. The size of Π(I) will be Θ(nS), hence exponential with respect to
the instance size. However, the computation time of Π(I) will be linear in n and
independent of k.

System Π(I) is depicted in Figure 1 in a schematic way. The system is com-
posed by n layers, horizontally arranged, one for each iteration of the dynamic
programming algorithm illustrated in the previous section. The computation starts
in the first (the uppermost) layer, and proceeds downwards until the lowest (i.e.,
the n-th) layer has been reached. The neurons of the first layer contain the firing
rule a→ a; 0, that propagates the spikes eventually contained in these neurons to
the appropriate neurons of the second layer. All the other neurons, from layer 2
down to layer n, contain two firing rules:

a→ a; 0 and a2 → a; 0

that make the neurons operate like or boolean gates.
The connections among the neurons depend upon the instance I = ({v1, v2,

. . . , vn}, S) of Subset Sum to be solved. Precisely, to determine the value of
M [i, j] in the above algorithm we need to compute the maximum between the
values M [i− 1, j] and M [i− 1, j − vi], provided that j − vi ≥ 0, otherwise we put
M [i, j] equal to M [i− 1, j]. The rationale behind these formulas is the following:
as stated above, M [i, j] has to be set to 1 if and only if there exists a subset of
{v1, v2, . . . , vi} such that the sum of its elements is equal to j. Thus we have two
possibilities: either the subset contains vi, or not. In the former case, there must
be a subset of {v1, v2, . . . , vi−1} such that the sum of its elements is equal to j−vi

(that is, M [i − 1, j − vi] must be 1); in the latter case, there must be a subset of
{v1, v2, . . . , vi−1} whose elements sum up to j (that is, M [i− 1, j] = 1). If j < vi

then clearly vi cannot be in any subset of {v1, v2, . . . , vi} whose sum is equal to
j, and thus in this case we only check the value of M [i− 1, j]. If i = 1 then these



200 M.A. Gutiérez-Naranjo, A. Leporati

Fig. 1. A schematic view of the system Π(I) used to solve a specified instance I =
({v1, v2, . . . , vn}, S) of Subset Sum, where each of the values v1, v2, . . . , vn, S is a k-bit
positive integer number



Solving NP-complete Problems by SN P Systems 201

formulas cannot clearly be applied. However, we note that the only two subsets of
{v1} we can build are the empty set ∅ and {v1} itself, hence M [1, 0] = M [1, v1] = 1
whereas M [1, j] = 0 for all j 6∈ {0, v1}. Since the admissible values of M [i−1, j] and
of M [i− 1, j− vi] are 0 and 1, computing the maximum is the same as computing
a logical or. In the system depicted in Figure 1, the j-th neuron from the left,
0 ≤ j ≤ S, corresponds to M [i, j]. We denote 1 (resp., 0) by the presence (resp.,
absence) of a spike. Such a neuron, for 1 ≤ i ≤ n, has a synapse going to the

Fig. 2. The two cases to be considered to compute the value of M [i, j]

neuron that corresponds to M [i + 1, j], and possibly (if vi+1 + j ≤ S) another
synapse going to the neuron that corresponds to M [i + 1, j + vi+1] (see Figure 2).
In the last layer, only the neuron that corresponds to M [n, S] has a synapse going
to a neuron named out, which is the output neuron and does not contain any rule.

In the initial configuration of the system, one spike is put in the neurons that
correspond to M [1, 0] and M [1, v1]; all the other neurons are empty. During the
i-th computation step, with 1 ≤ i ≤ n − 1, the neurons in the i-th layer perform
their computation, and send the corresponding result to the appropriate neurons
of the next layer. At the n-th computation step, all the neurons in the last layer
send the spikes produced by them to the environment (where they are lost) but
the rightmost neuron, that sends the result of its computation (0 or 1 spikes) to
neuron out. Hence, the instance I of Subset Sum represented by the structure
and the initial configuration of Π(I) is positive if and only if one spike arrives in
neuron out during the n-th computation step. After the result of the computation
(0 or 1 spikes in neuron out) has been produced, the computation halts and the
spike eventually contained in neuron out remains there. The computation time of
Π(I) is linear in n, independent of the values v1, v2, . . . , vn and S contained in I,
but the number of neurons in the system is n(S +1)+1, which is exponential with
respect to the instance size. This last fact would be considered unacceptable in
traditional complexity theory, but recall that in this paper (as well as in [12]) we



202 M.A. Gutiérez-Naranjo, A. Leporati

are assuming that exponential size resources — encoded in exponential size SN P
systems of regular structure — are admitted.

The structure of Π(I) is indeed very regular: all the instances composed by
n integer values plus a required sum equal to S produce systems having n layers,
each composed by S + 1 neurons. The values v1, v2, . . . , vn determine some of the
connections between the neurons (all the other connections go from every neuron
in each layer to the neuron that occurs in the same position in the next layer);
precisely, for all i ∈ {1, 2, . . . , n − 1} the value vi determines the presencce of a
synapse from every j-th neuron in layer i, such that j+vi+1 ≤ S, to the (j+vi+1)-
th neuron of layer i+1. Value v1 also determines the neuron in the first layer (apart
from the leftmost) that will receive one spike in the initial configuration. An open
question, that we will not address in this paper, is: what kind of operations are
needed to augment the power of deterministic Turing machines so that, given any
instance I of Subset Sum, the new machine is able to produce a “reasonable”
description of Π(I) in a polynomial time? Note that in this case we should also
recast the meaning of the term “reasonable”, since in [7] this notion concerns only
polynomial size constructions.

4 A Uniform Solution to Subset Sum

Let us present now a uniform family {Π(〈n, k〉)}n,k∈N of SN P systems that solves
the Subset Sum problem in a uniform way. Precisely, for all n, k ∈ N the system
Π(〈n, k〉) will solve all the instances I ∈ SS(n, k) which are composed by n + 1
positive k-bit integer numbers. Such instances are provided in input in binary
form, as a sequence of (n + 1)k bits that are fed to the system in parallel (which
means that each bit is inserted into an appropriate input neuron).

Figure 3 depicts the system Π(〈n, k〉) in a schematic way. The instance I ∈
SS(n, k) is inserted into the leftmost neurons, which are labelled with a name
that indicates the bit which has to be inserted. These neurons simply propagate
their spikes to subsystems Sum1, Sum2, . . ., Sum2n−1 by using a firing rule of
type a → a; 0. The Sum subsystems are bijectively associated to every possible
non-empty subset of {v1, v2, . . . , vn}. As the name indicates, every Sum subsystem
computes the sum of the elements of the corresponding subset of {v1, v2, . . . , vn},
and thus the synapses outgoing from the leftmost neurons reflect this situation;
that is, a synapse leaving from neuron vi,j , 1 ≤ i ≤ n and 1 ≤ j ≤ k, reaches
the subsystem Sum` if and only if value vi is involved in the sum computed by
Sum`. The sums are computed in binary (we will return later on this point) and
hence every Sum subsystem produces a bit vector as a result. This vector is then
compared with the sequence of bits that compose the value S; the comparison is
performed by the Compare subsystems, that produce a 1 (that is, a spike) if and
only if the two sequences given in input are equal. Recall that two integer numbers
expressed in binary form are equal if and only if their binary expansions are equal;
the comparison thus amounts to compute the following boolean function:



Solving NP-complete Problems by SN P Systems 203

Fig. 3. A schematic view of the system Π(〈n, k〉) used to solve all the instances of Subset
Sum which are composed by n + 1 positive k-bit integer numbers

Compare(x0, . . . , xk−1, y0, . . . , yk−1) =
k−1∧

i=0

(¬(xi ⊕ yi)
)

= ¬
(

k−1∨

i=0

(xi ⊕ yi)

)

where x =
∑k−1

i=0 xi2i and y =
∑k−1

i=0 yi2i are the numbers to be compared, and
∨,∧,¬,⊕ denote the or, and, not and xor (also Parity) logical connectives,
respectively. Figure 4 shows an SN P (sub)system which can be used to compute
this function. This subsystem works as follows. Bits xi and yi are xored by the
neurons depicted on the left of the figure. The neuron labelled with ∨ computes
the logical or of its inputs: precisely, it emits one spike if and only if at least one
spike enters into the neuron. Neuron res receives the output produced by ∨ and



204 M.A. Gutiérez-Naranjo, A. Leporati

Fig. 4. The subsystem of Π(〈n, k〉) that compares two k-bit natural numbers

computes its logical negation (not). In order to be able to produce one spike if no
spikes come from res, we use one auxiliary neuron that sends to res one spike after
two computation steps. Indeed, the delay of the rule contained in neuron 1 (whose
contents will be initialized with one spike at the beginning of the computation)
should be set in order to make neuron 1 fire exactly when the results computed
by the Sum subsystems reach the Compare subsystems (plus two steps).

Observe that S is a k-bit number, just like v1, v2, . . . , vn, and thus if we sum a
subset of these latter values we could easily end up with a result that needs more
than k bits to be expressed in binary form, thus complicating a little bit the com-
parison with S. However, recall that k = log K where K = max{v1, v2, . . . , vn, S},
and thus for reasonable values it is very likely that a large portion of the most
significant bits of v1, v2, . . . , vn is equal to zero. Anyway, just to be cautious, since
the Compare subsystems perform a k-bit comparison, we should avoid the situ-
ation in which a Sum subsystem produces an m-bit sequence, with m > k, such
that its k less significant bits coincide with the bits that compose S. Fortunately
it is easy to check whether we are in this situation: we just design each of the Sum
subsystems so that it produces an m-bit sequence, where m = k + dlog2 ne (in
facts the maximum integer number that we can represent using k bits is 2k − 1,
so if we sum n of such numbers we obtain a result which is less than n2k, that
requires k + dlog2 ne bits to be represented in binary form), and we check that the
m − k most significant bits of this sequence are all zero. This is easily done by
sending these bits (that is, the corresponding spikes) to a neuron whose contents
(the presence of at least one spike) signals to the user of the system that the above
situation occured.



Solving NP-complete Problems by SN P Systems 205

The core of the system is composed by the Sum subsystems. In a generic Sum
subsystem, r values from the set {v1, v2, . . . , vn} have to be summed together,
and this sum has to be performed in polynomial time. If r = 2 then we can use
either a traditional or a carry look-ahead adder [32, p. 6]. Let x =

∑k−1
i=0 xi2i

and y =
∑k−1

i=0 yi2i be the two k-bit binary numbers to be summed. We denote
by s0, s1, . . . , sk the bits of the sum, and by c0, c1, . . . , ck the carries generated
during the addition. The traditional addition algorithm (which can be trivially
implemented using a boolean circuit) puts s0 = x0 ⊕ y0, c0 = 0, and then defines
inductively ci = (xi−1 ∧ yi−1)∨ (xi−1 ∧ ci−1)∨ (yi−1 ∧ ci−1) (that is, ci = 1 if and
only if at least two of xi−1, yi−1, ci−1 is 1), si = xi ⊕ yi ⊕ ci for 1 ≤ i < k, and
sk = ck. Such an algorithm sums the two k-bit integer numbers in O(k) steps.

A carry look-ahead adder operates by computing the values of the carries ci in a
finite number of steps, indepedent of k, starting from the values of x0, x1, . . . , xk−1

and y0, y1, . . . , yk−1. The crucial observation is that a carry is generated at position
i if and only if both input bits xi and yi are 1, and a carry is eliminated at position
i if and only if both input bits xi and yi are 0. This observation yields to the
following definitions: for 0 ≤ i < k, let:

gi = xi ∧ yi (position i generates a carry)
pi = xi ∨ yi (position i propagates a carry)

Now, a carry ripples into position i if and only if there exists a position j < i
where a carry is generated, and all positions in between propagate it. Formally:

ci =
i−1∨

j=0


gj ∧

i−1∧

k=j+1

pk


 for 1 ≤ i ≤ k (1)

Once we have computed the carries, the bits of the sum are computed as before:
s0 = x0 ⊕ y0, si = xi ⊕ yi ⊕ ci for 1 ≤ i < k, and sk = ck. It is easily seen that
the above formulas allow to compute all the ci in parallel, since they only depend
on the input bits x0, x1, . . . , xk−1 and y0, y1, . . . , yk−1, in constant time: all gi and
pi are computed in one step, and two more steps are needed to compute the ands
and the ors that appear in (1). By using xor (⊕) gates, all the bits of the sum
are computed in one more step.

The boolean circuit that implements a carry look-ahead adder can be easily
simulated by an SN P system, simply substituting every logical gate with an
appropriate neuron. Figure 5 shows this mapping from and, or and xor gates to
neurons. When needed, for example when the output value of a gate has to skip one
or more layers and go directly to one of the subsequent layers, for synchronization
purposes we can also use delay neurons, that contain the rule a → a; d for an
appropriate value of d. It is clear that the size of the SN P system thus obtained
is polynomially related with the size of the simulated boolean circuit, and that if
the simulated circuit performs its computations in constant time then also the SN
P system performs its computations in constant time.



206 M.A. Gutiérez-Naranjo, A. Leporati

Fig. 5. Simulation of n-input and, or and xor gates by means of single–neuron SN P
systems

If we need to compute the sum of r > 2 binary numbers of length k, then a
slightly more complicated construction is needed. As shown in [32, p. 13], while
designing a boolean circuit that computes the Iterated Addition (that is, the
sum of n natural numbers, each of n bits), the addition of three k-bit binary
numbers a =

∑k−1
i=0 ai2i, b =

∑k−1
i=0 bi2i and c =

∑k−1
i=0 ci2i can be reduced to the

addition of two (k + 1)-bit numbers e and d, by defining:

e0 = 0
ei = (ai−1 ∧ bi−1) ∨ (ai−1 ∧ ci−1) ∨ (bi−1 ∧ ci−1) for all 1 ≤ i ≤ k

di = ai ⊕ bi ⊕ ci for 0 ≤ i < k

dk = 0

The rationale behind these formulas is the following. If we look at a single position
i, then we have to add ai, bi and ci. The result is given by the two bit number
ei+1di; bit ei+1 is 1 if and only if at least two of the bits ai, bi and ci are 1, and
di = 1 if and only if an odd number of ai, bi and ci is 1. We can thus conclude
that a + b + c = d + e.



Solving NP-complete Problems by SN P Systems 207

If we are given r > 2 binary numbers of length k, we can group them into three
elements sets (plus one set with only one or two numbers, if r is not a multiple
of 3), and then compute for each set as just explained two numbers whose sum
is equal to the sum of all the three numbers from the set. In this way we end up
with r′ numbers of k + 1 bits each, where:

r′ =





2
3 r if r ≡ 0 mod 3
2
3 (r − 1) + 1 if r ≡ 1 mod 3
2
3 (r − 2) + 2 if r ≡ 2 mod 3

In any case, if r > 2 then r′ ≤ 4
5 r. Thus, given r numbers of k bits each, by

iterating this reduction procedure O(log r) times we end up with two numbers
of k + O(log r) bits each. These two numbers can then be added using a carry
look-ahead adder, as explained above. In the worst case, we have to add all the
numbers from {v1, v2, . . . , vn}. The reduction process can thus be implemented by
a O(log n) depth boolean circuit, since each reduction involves a constant depth
(and bounded fan-in) circuit. At the end of the reduction process we have to add
two (k + O(log n))-bit numbers, which can be done by a boolean circuit of poly-
nomial (quadratic in k + O(log n)) size and constant depth. The fan-in of such
a circuit is unbounded, and thus also the in-degree of the neurons of the SN P
system that simulates it is unbounded. However, any unbounded fan-in and or or
gate can be simulated by a polynomial size logarithmic depth circuit composed
by bounded fan-in and and or gates, and thus we can conclude that the Sum
subsystems can be implemented by polynomial size SN P systems which are com-
posed by a logarithmic number of layers and whose in-degree is bounded (that is,
constant). The same argumentation holds for the Compare subsystems: they can
be implemented as polynomial size logarithmic depth or/xor circuits of bouded
fan-in, and hence as polynomial size SN P systems composed by a logarithmic
number of layers, each composed by constant in-degree neurons. Finally, the large
or that provides the output to the environment has 2n − 1 inputs, and thus it
can be realized as an exponential size polynomial depth tree of bounded fan-in or
gates.

The system Π(〈n, k〉) thus obtained is able to solve all the instances I ∈
SS(n, k) of Subset Sum which can be expressed as sequences of n + 1 natural
numbers, each of k bits. The family {Π(〈n, k〉)}n,k∈N thus constitutes a uniform
solution to the Subset Sum problem. The size of Π(〈n, k〉) is exponential with re-
spect to the instance size, but the computation time it takes to determine whether
the instance I ∈ SS(n, k) is positive or not is polynomial with respect to n and
k. The fact that I is a positive instance is signalled by the emission of a spike
from neuron out; in any case, after computing the solution the system halts. An
important observation is that the system Π(〈n, k〉) has a very regular structure,
and hence also in this case we can assume that it can be built in a polynomial
time by a deterministic Turing machine whose computational power has been aug-
mented by adding some controlled duplication instruction. Just like in the case of



208 M.A. Gutiérez-Naranjo, A. Leporati

the semi–uniform solution illustrated in the previous section, it is an open problem
to determine how precisely this controlled duplication instruction should work.

5 Conclusions and Directions for Future Research

We have proposed two families of spiking neural P systems that solve Subset
Sum, the well known NP-complete decision problem. The peculiarity and impor-
tance of Subset Sum, while trying to assess the computational power of a new
computational device, is that it is a numerical NP-complete problem, and the
difficulty of solving it depends upon the magnitude of the integer numbers that
appear in its instances. To be precise it is not NP-complete in the strong sense,
and hence the problem becomes easy to solve (through a well known algorithm
which is based on the dynamic programming paradigm) when the numbers con-
tained into the instances are small; equivalently, we can say that it becomes easy
to solve when its instances are expressed in unary form.

For this reason, after showing in section 3 how for any instance of Subset
Sum an SN P system that solves it can be built (thus working in the so called
semi–uniform setting), in section 4 we have illustrated a uniform solution. Pre-
cisely, we have defined a family {Π(〈n, k〉)}n,k∈N of SN P systems such that for
all n, k ∈ N the system Π(〈n, k〉) solves all the instances I ∈ SS(n, k) which are
composed by n+1 positive k-bit integer numbers. The system Π(〈n, k〉) performs
its computations in a time which is polynomial in n and k, but its size generally
grows exponentially with respect to these parameters. However the structure of
Π(〈n, k〉) is so regular that we can assume that the system may be built in a
polynomial time by a deterministic Turing machine whose computational power
has been augmented by adding to its set of instructions some form of controlled
duplication, that replicates (possibly substituting some pieces of the structure)
part of the output it has built up to that moment.

It is important to note that, as proved in [16], an SN P system of polyno-
mial size cannot solve in a deterministic way and in a polynomial time an NP-
complete problem (unless P = NP), hence efficient solutions to NP-complete
problems cannot be obtained without introducing features which enhance the effi-
ciency (pre-computed resources, ways to exponentially grow the workspace during
the computation, non-determinism, and so on). A more careful examination of
such features – in particular, possible relations with the well known notions of
uniformity traditionally studied in the theory of circuit complexity – is a research
direction of a clear interest.

Acknowledgements

The ideas exposed in this paper emerged during the Sixth Brainstorming Week on
Membrane Computing, held in Seville from February 4 to February 8, 2008.

The first author wishes to acknowledge the support of the project TIN2006-
13425 of the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER



Solving NP-complete Problems by SN P Systems 209

funds, and the support of the project of excellence TIC-581 of the Junta de An-
dalućıa.

The work of both authors was partially supported by the project “Azioni In-
tegrate Italia-Spagna - Theory and Practice of Membrane Computing” (Acción
Integrada Hispano-Italiana HI 2005-0194).

References

1. A. Alhazov, M.J. Pérez-Jiménez. Uniform solution to qsat using polarizationless
active membranes. In M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J.
Romero-Campero (eds.), Fourth Brainstorming Week on Membrane Computing,
RGCN Report 02/2006, Sevilla University, Fénix Editora, Vol. I, 29–40.

2. J.L. Balcázar, J. Dı́az, J. Gabarró. Structural Complexity. Voll. I and II, Springer-
Verlag, Berlin, 1988–1990.

3. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez. On string lan-
guages generated by spiking neural P systems. In M.A. Gutiérrez–Naranjo, Gh. Păun,
A. Riscos–Núñez, F.J. Romero–Campero (eds.), Fourth Brainstorming Week on
Membrane Computing, RGCN Report 02/2006, Sevilla University, Fénix Editora,
Vol. I, 169–194.

4. H. Chen, M. Ionescu, T.-O. Ishdorj. On the efficiency of spiking neural P systems.
Proc. 8th Intern. Conf. on Electronics, Information, and Communication, Ulanbator,
Mongolia, June 2006, 49–52.

5. T.H. Cormen, C.H. Leiserson, R.L. Rivest, Introduction to Algorithms. MIT Press,
Boston, 1990.

6. M. Garćıa-Arnau, D. Peréz, A. Rodŕıguez-Patón, P. Sośık. Spiking Neural P Systems.
Stronger Normal Forms. In M.A. Gutiérrez-Naranjo, Gh. Păun, A. Romero-Jiménez,
A. Riscos-Núñez (eds.), Fifth Brainstorming Week on Membrane Computing, RGCN
Report 01/2007, Sevilla University, Fénix Editora, 157–178.

7. M.R. Garey, D.S. Johnson. Computers and Intractability. A Guide to the Theory on
NP–Completeness. W.H. Freeman and Company, 1979.

8. W. Gerstner, W. Kistler. Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge University Press, 2002.

9. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth.
Normal Forms for Spiking Neural P Systems. Theoretical Computer Science, 372(2-
3):196–217, 2007.

10. M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez. Computing with spiking neural
P systems: Traces and small universal systems. In C. Mao, T. Yokomori, B.-T. Zhang
(eds.), DNA Computing, 12th International Meeting on DNA Computing (DNA12),
Revised Selected Papers, LNCS 4287, Springer-Verlag, Berlin, 1–16, 2006.

11. M. Ionescu, Gh. Păun, T. Yokomori. Spiking neural P systems. Fundamenta Infor-
maticae, 71(2-3):279–308, 2006.

12. T.-O. Ishdorj, A. Leporati. Uniform Solutions to SAT and 3-SAT by Spiking Neural P
Systems with Pre-computed Resources. Natural Computing, in press. A preliminary
version appeared as Turku Centre for Computer Science – TUCS Report No. 876,
2008.

13. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. A fast P system for
finding a balanced 2–partition. Soft Computing, 9(9):673–678, 2005.



210 M.A. Gutiérez-Naranjo, A. Leporati

14. S.N. Krishna, R. Rama. A variant of P systems with active membranes: Solving
NP-complete problems. Romanian Journal of Information Science and Technology,
2(4):357–367, 1999.

15. A. Leporati, G. Mauri, C. Zandron, Gh. Păun, M.J. Pérez-Jiménez. Uniform Solu-
tions to SAT and Subset Sum by Spiking Neural P Systems. Submitted for publica-
tion, 2008.

16. A. Leporati, C. Zandron, C. Ferretti, G. Mauri. On the computational power of
spiking neural P systems, Intern. J. Unconventional Computing, 2007, in press.

17. A. Leporati, C. Zandron, C. Ferretti, G. Mauri. Solving Numerical NP-complete
Problems with Spiking Neural P Systems. In G. Eleftherakis, P. Kefalas, Gh. Păun,
G. Rozenberg, A. Salomaa (eds.) Membrane Computing, International Workshop,
WMC8, Selected and Invited Papers, LNCS 4860, Springer-Verlag, Berlin, 336–352,
2007.

18. A. Leporati, C. Zandron, M.A. Gutiérrez-Naranjo. P systems with input in binary
form. International Journal of Foundations of Computer Science, 17(1):127–146,
2006.

19. W. Maass. Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK, 8(1):32–36, 2002.

20. W. Maass, C. Bishop (eds.). Pulsed Neural Networks, MIT Press, Cambridge (MA),
1999.

21. A. Obtulowicz. Deterministic P systems for solving sat problem. Romanian Journal
of Information Science and Technology, 4(1–2):551–558, 2001.

22. C.H. Papadimitriou. Computational Complexity, Addison-Wesley, 1994.
23. A. Păun, Gh. Păun. Small universal spiking neural P systems. BioSystems, 90(1):48–

60, 2007.
24. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,

1(61):108–143, 2000. See also Turku Centre for Computer Science – TUCS Report
No. 208, 1998.

25. Gh. Păun. Computing with membranes. An introduction. Bulletin of the EATCS,
67:139–152, February 1999.

26. Gh. Păun. P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

27. Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
28. Gh. Păun, G. Rozenberg. A guide to membrane computing. Theoretical Computer

Science, 287(1):73–100, 2002.
29. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg. Infinite spike trains in spiking neural

P systems. Submitted for publication.
30. M.J. Pérez-Jiménez, A. Riscos-Núñez. Solving the Subset Sum problem by active

membranes. New Generation Computing, 23(4):367–384, 2005.
31. M.J. Pérez-Jiménez, A. Riscos-Núñez. A linear–time solution to the Knapsack prob-

lem using P systems with active membranes. In C. Mart́ın-Vide, Gh. Păun, G. Rozen-
berg, A. Salomaa (eds.), Membrane Computing, 4th International Workshop, WMC
2003, Revised Selected and Invited Papers, LNCS 2933, Springer-Verlag, Berlin, 250–
268, 2004.

32. H. Vollmer, Introduction to Circuit Complexity: A Uniform Approach. Springer–
Verlag, Berlin, 1999.

33. C. Zandron, C. Ferretti, G. Mauri. Solving NP-complete Problems Using P Systems
with Active Membranes. In I. Antoniou, C.S. Calude, M.J. Dinneen (eds.), Uncon-
ventional Models of Computation, Springer-Verlag, Berlin, 289–301, 2000.

34. The P systems Web page: http://ppage.psystems.eu


