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Summary. Spiking neural P systems and artificial neural networks are computational
devices which share a biological inspiration based on the transmission of information
among neurons. In this paper we present a first model for Hebbian learning in the frame-
work of Spiking Neural P systems by using concepts borrowed from neuroscience and
artificial neural network theory.

1 Introduction

When an axon of cell A is near enough to excite cell B or repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one

of the cells firing B, is increased.

D. O. Hebb (1949) [13]

Neuroscience has been a fruitful research area since the pioneering work of
Ramón y Cajal in 1909 [22] and after a century full of results on the man and the
mind, many interesting questions are today open problems. Two of such problems
of current neuroscience are the understanding of neural plasticity and the neural
coding.

The first one, the understanding of neural plasticity, is related to the changes in
the amplitude of the postsynaptic response to an incoming action potential. Elec-
trophysiological experiments show that the response amplitude is not fixed over
time. Since the 1970’s a large body of experimental results on synaptic plasticity
has been accumulated. Many of these experiments are inspired by Hebb’s postu-
lated (see above). In the integrate-and-fire formal spiking neuron model [9] and
also in artificial neural networks [12] is usual to consider a factor w as a measure
of the efficacy of the synapse from neuron to another.
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The second one, the neural coding, is related to the way in which one neuron
sends information to other ones. It is interested on the information contained in
the spatio-temporal pattern of pulses and on the code used by the neurons to
transmit information. This research area wonders how other neurons decode the
signal or if the code can be read by external observers and understand the message.
At present, a definite answer to these questions is not known.

The elementary processing units in the central nervous system are neurons
which are connected to each other in an intricate pattern. Cortical neurons and
their connections are packed into a dense network with more than 104 cell bodies
per cubic millimeter. A single neuron in a vertebrate cortex often connects to more
than 104 postsynaptic neurons.

The neuronal signals consist of short electrical pulses (also called action po-
tentials or spikes) and can be observed by placing a fine electrode close to the
soma or axon of a neuron. The junction between two neurons is a synapse and it is
common to refer to the sending neuron as a presynaptic cell and to the receiving
neuron as the postsynaptic cell.

Since all spikes of a given neuron look alike, the form of the action potential
does not carry any information. Rather, it is the number and the timing of spikes
which matter. Traditionally, it has been thought that most, if not all, of the relevant
information was contained in the mean firing rate of the neuron. The concept
of mean firing rates has been successfully applied during the last 80 years (see,
e.g., [18] or [14]) from the pioneering work of Adrian [1, 2]. Nonetheless, more
and more experimental evidence has been accumulated during recent years which
suggests that a straightforward firing rate concept based on temporal averaging
may be too simplistic to describe brain activity. One of the main arguments is
that reaction times in behavioral experiment are often too short to allow long
temporal averages. Humans can recognize and respond to visual scenes in less
than 400ms [24]. Recognition and reaction involve several processing steps from
the retinal input to the finger movement at the output. If at each processing
steps, neurons had to wait and perform a temporal average in order to read the
message of the presynaptic neurons, the reaction time would be much longer.
Many other studies show the evidence of precise temporal correlations between
pulses of different neurons and stimulus-dependent synchronization of the activity
in populations of neurons (see, for example, [5, 11, 10, 6, 23]). Most of these data
are inconsistent with a concept of coding by mean firing rates where the exact
timing of spikes should play no role.

Instead of considering mean firing rates, we consider the realistic situation in
which a neuron abruptly receives an input and for each neuron the timing of the
first spike after the reference signal contains all the information about the new
stimulus.

Spiking neural P systems (SN P systems, for short) were introduced in [15] with
the aim of incorporating in membrane computing1 ideas specific to spike-based
1 The foundations of membrane computing can be found in [20] and updated bibliogra-

phy at [25].
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neuron models. The intuitive goal was to have a directed graph were the nodes
represent the neurons and the edges represent de synaptic connections among
the neurons. The flow of information is carried on the action potentials, which
are encoded by objects of the same type, the spikes, which is placed inside the
neurons and can be sent from presynaptic to postsynaptic neurons according to
specific rules and making use of the time as a support of information.

This paper is a first answer to the question proposed by Gh. Păun in [21] related
to link the study of SN P systems with neural computing and as he suggests, the
starting point has been not only neural computing, but also recent discoveries in
neurology.

The paper is organized as follows: first we discuss about SN P systems with
input and delay and a new computational device called Hebbian SN P system unit
is presented. In section 3 we present our model of learning with SN P systems based
on Hebb’s postulate. An illustrative experiment carried out with the corresponding
software is shown in section 4. Finally, some conclusions and further discussion on
some topics of the paper are given in the last section.

2 SN P Systems with Input and Decay

An SN P system consists of a set of neurons placed in the nodes of a directed graph
and sending signals (called spikes) along the arcs of the graph (called synapses).
The objects evolve according to a set of rules (called spiking rules). The idea is
that a neuron containing a certain amount of spikes can consume some of them
and produce other ones. The produced spikes are sent (maybe with a delay of some
steps) to all neurons to which a synapse exists outgoing from the neuron where
the rule was applied. A global clock is assumed and in each time unit each neuron
which can use a rule should do it, but only (at most) one rule is used in each
neuron. One of the neurons is considered to be the output neuron, and its spikes
are also sent to the environment (a detailed description of SN P systems can be
found in [21] and the references therein).

In this section we introduce the Hebbian SN P system unit which is an SN P
system with m + 1 neurons (m presynaptic neurons linked to one postsynaptic
neuron) endowed with input and decay. At the starting point all the neurons are
inactive. At rest, the membrane of biological neurons has a negative polarization of
about −65mV , but we will consider the inactivity by considering the the number
of spikes inside the neuron is zero. The dynamics of a Hebbian SN P system
unit is quite natural. At the starting point, all neurons are at rest and in a certain
moment the presynaptic neurons receive spikes enough to activate some rules. The
instant of the arrival of the spikes can be different for each presynaptic neuron.
These spikes activate one rule inside the neurons and the presynaptic neurons send
spikes to the postsynaptic neuron. In the postsynaptic neuron a new rule can be
triggered or not, depending on the arrival of spikes and it may send a spike to the
environment.
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2.1 The Input

The basic idea in SN P systems taken from biological spiking neuron models is
the codification of the information in time. The information in a Hebbian SN P
system unit is also encoded in the time in which the spikes arrive to the neuron
and the time in which the new spikes are emitted. The input will be also encoded
in time. The idea behind this codification is that the presynaptic neurons may
not be activated at the same moment. If we consider a Hebbian SN P system
unit as part of a wide neural network, it is quite natural to think that the spikes
will not arrive to the presynaptic neurons (and consequently, their rules are not
activated) at the same time. In this way, if we consider a Hebbian SN P system
unit with m presynaptic neurons {u1, . . . , um}, an input will consist of a vector
~x = {x1, . . . , xm} of non-negative integers where xi represents the time unit of the
global clock in which the neuron ui is activated2.

2.2 The Decay

The effect of a spike on the postsynaptic neuron can be recorded with an intra-
cellular electrode which measures the potential difference between the interior of
the cell and its surroundings. Without any spike input, the neuron is at rest cor-
responding to a constant membrane potential. After the arrival of the spike, the
potential changes and finally decays back to the resting potential. The spikes, have
an amplitude of about 100mV and typically a duration of 1-2 ms. This means that
if the total change of the potential due to the arrival of spikes is not enough to
activate the postsynaptic neuron, it decays after some milliseconds and the neuron
comes back to its resting potential (see Fig. 1).

This biological fact is not implemented in current SN P systems, where the
spikes can be inside the neuron for a long time if they are not consumed by any
rule. In the Hebbian SN P system unit, we introduce the decay in the action
potential of the neurons. When the impulse sent by a presynaptic neuron arrives
to the postsynaptic neuron, if it is not consumed for triggering any rule in the
postsynaptic neuron it decays and its contribution to the total change of potential
in the postsynaptic neuron decreases with time. This decayed potential is still able
to contribute to the activation of the postsynaptic rule if other spikes arrive to
the neuron and the addition of all the spikes trigger any rule. If this one does not
occur, the potential decays and after a short time the neuron reaches the potential
at rest. Figure 2 shows a scheme in which two presynaptic neurons send two spikes
each of them at different moments to a postsynaptic neuron. Figure 3 shows the
changes of potential in the postsynaptic neuron till reaching the threshold for firing
a response.

In order to formalize the idea of decay in the framework of SN P systems we
introduce a new type of extended rules: the rules with decay. They are rules of the
form
2 In Section 5 we discuss about other codings for the input.
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Fig. 1. Dynamics of one spike

Fig. 2. Two presynaptic and one postsynaptic neuron

E/ak → (ap, S); d

where, E is a regular expression over {a}, k and p are natural numbers with
k ≥ p ≥ 0, d ≥ 0 and S = (s1, s2, . . . , sr) is a finite non-increasing sequence of
natural numbers called the decaying sequence where s1 = k and sr = 0 . If E = ak,
we will write ak → (ap, S); d instead of ak/ak → (ap, S); d.

The intuition behind the decaying sequence is the following. When the rule
E/ak → (ap, S); d is triggered at t0 we look in S = (s1, . . . , sr) for the greatest
l such that p ≥ sl. Such sl spikes are sent to the postsynaptic neurons according
with the delay d in the usual way. Notice that sl can be equal to p, so at this point
this new type of rule is a generalization of the usual extended rules.

At t0+d+1, the sl spikes arrive to the postsynaptic neurons. The decay of such
spikes is determined by the decaying sequence. If the spikes are not consumed by
the triggering of a rule in the postsynaptic neuron, they decay and at time t0+d+2
we will consider that sl−sl+1 spikes have disappeared and we only have sl+1 spikes
in the postsynaptic neuron. If the spikes are not consumed in the following steps
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by the triggering of a postsynaptic rule, at t0 + d + 1 + r− l the number of spikes
will be decreased to sr = 0 and the spikes are lost.

This definition of decay3 can be seen as a generalization of the decaying spikes
presented in [7]. In that paper a decaying spike a is written in the form (a, e),
where e ≥ 1 is the period. From the moment a spike (a, e) arrives in a neuron,
e is decremented by one in each step of computation. As soon as e = 0, the
corresponding spike is lost and cannot be used anymore.

In this way, a rule E/ak → ap; d (k > p) where ap are p decaying spikes (a, e)
can be seen with our notation as E/ak → (ap, S); d with S = (s1, . . . , se+2), s1 = k,
s2 = · · · = se+1 = p and se+2 = 0.

2.3 Hebbian SN P System Units

Hebbian SN P system units are SN P systems with a fixed topology endowed with
input and decay. They have the following common features:

• The initial number of the spikes inside the neurons is always zero in all Hebbian
SN P system units, so we do not refer to them in the description of the unit.

• All the presynaptic neurons are linked to the postsynaptic neuron and these are
all the synapses in the SN P system, so they are not provided in the description.

• The output neuron is the postsynaptic one.

Bearing in mind these features, we describe a Hebbian SN P system unit in the
following way.
3 Further discussion about the decay can be found in Section 5.

Fig. 3. The potential at the postsynaptic neuron
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Definition 1. A Hebbian SN P system unit of degree m is a construct

HΠ = (O, u1, . . . , um, v),

where:

• O = {a} is the alphabet (the object a is called spike);
• u1, . . . , um are the presynaptic neurons. Each presynaptic neuron ui has asso-

ciated a set of rules Ri = {Ri1, . . . , Rili} where for each i ∈ {1, . . . ,m} and
j ∈ {1, . . . , li}, Rij is a decaying rule of the form:

ak → (anij , S); dij

We will call nij the presynaptic potential of the rule and dij is the delay of
the rule. Note that all rules are triggered by k spikes. The decaying sequence S
will be discussed below.

• v is the postsynaptic neuron which contains only one postsynaptic rule E∗
p/ap →

a; 0 where E∗
p is the set4 of regular expressions {n ∈ N |n ≥ p}. We will call p

the threshold of the postsynaptic potential of the Hebbian SN P system unit.

By considering the decaying sequences we can distinguish among three types
of Hebbian SN P system units:

• Hebbian SN P system units with uniform decay. In this case the decaying
sequence S is the same for all the rules in the m presynaptic neurons.

• Hebbian SN P system units with locally uniform decay. In this case the decaying
sequence S is the same for all the rules in each presynaptic neuron.

• Hebbian SN P system units with non-uniform decay. In this case each rule has
associated a decaying sequence.

A Hebbian SN P system unit is an abstract machine where a global clock is
assumed (the system is synchronized). It takes an input and can provide an output
or not, depending if the potential in the postsynaptic neuron reaches or not its
threshold. The concept of input of a Hebbian SN P system unit is defined as
follows:

Definition 2. An input for a Hebbian SN P system unit of degree m is a vector
~x = (x1, . . . , xm) of m non-negative integers xi.

A Hebbian SN P system unit with input is a pair (HΠ,~x) where HΠ is Hebbian
SN P system unit and ~x is an input for it.

The intuitive idea behind the input is encoding the information in time. Each
xi represent the moment, according to the global clock, in which one spike is
provided to each presynaptic neuron.
4 This rule is an adaptation of the concept of a rule from an extended spiking neural P

system with thresholds taken from [7].
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2.4 How it works

In this subsection we provide a description of the semantics of a Hebbian SN P
system unit. As we saw before, each xi in the input ~x = (x1, . . . , xm) represents
the time in which k spikes are provided to the neuron ui. At the moment xi in
which the spike arrives to the neuron ui one rule (ak → (anij , S); dij) is chosen in
a non-deterministic way among all the rules of the neuron.

Applying it means that k spikes are consumed and we look in S = (s1, . . . , sr)
for the greatest l such that nij ≥ sl. Such sl spikes are sent to the postsynaptic
neurons according to the delay dij in the usual way, i.e., sl spike arrive to the
postsynaptic neuron at the moment xi + dij + 1. The decay of such spikes is
determined by the decaying sequence. As we saw above, if the spikes are not
consumed by the triggering of a rule in the postsynaptic neuron, they decay and
at time xi + dij +2 we will consider that sl− sl+1 spikes have disappeared and we
only have sl+1 spikes in the postsynaptic neuron. If the spikes are not consumed
in the following steps by the triggering of a postsynaptic rule, at x0 +dij +1+r− l
the number of spikes will be decreased to sr = 0 and the spikes are lost.

The potential on the postsynaptic neuron depends on the contributions of the
chosen rules in the presynaptic neurons. Such rules send spikes that arrive to the
postsynaptic neuron at different moments which depend on the input (the moment
in which the presynaptic neuron is activated) and the delay of the chosen rule. The
contribution of each rule to the postsynaptic neuron also changes along the time
due to the decay.

Formally, the potential of the postsynaptic neuron is a natural number calcu-
lated as a function R∗ which depends on the time t, on the input ~x and on the
rules chosen in each neuron R∗(R1i1 , . . . , Rmim , ~x, t) ∈ N. Such a natural number
represents the number of the spikes at the moment t in the postsynaptic neurons
and it is the result of adding the contributions of the rules R1i1 , . . . , Rmim .

The Hebbian SN P system unit produces an output if the rule of the postsy-
naptic neuron v, E∗

p/ap → a is triggered, i.e., if at any moment t the amount of
spikes in the postsynaptic neuron is greater than or equal to the threshold p, then
the rule is activated and triggered. If there does not exist such t, then the Hebbian
SN P system unit does not send any spike to the environment.

Bearing in mind the decay of the spikes in the postsynaptic neuron, if any
spike has been sent out by the postsynaptic neuron after an appropriate number
of steps, any spike will be sent to the environment. From a practical point of view
we have a bound for the number of steps in which the spike can be expelled, so we
have a decision method to determine if the input ~x provided to the Hebbian SN
P system unit produces or not an output.

Example 1. Let us consider the following Hebbian SN P system unit

HΠ = (O, u1, u2, v)

with non-uniform decay, where:
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• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have associ-

ated the sets of rules R1 = {R11, R12, R13} and R2 = {R21, R22}, respectively,
with

R11 ≡ a3 → (a2, (3, 2, 0)); 0 R21 ≡ a3 → (a2, (3, 2, 0)); 1
R12 ≡ a3 → (a, (3, 1, 0)); 1 R22 ≡ a3 → (a, (3, 1, 0)); 0
R13 ≡ a3 → (a3, (3, 0)); 0

• v is the postsynaptic neuron which contains only one postsynaptic rule
E∗

2/a2 → a; 0.

Notice that in this example, the rules send all the presynaptic potential to the
postsynaptic neuron but it only lasts one time unit before being lost. If they are
not consumed immediately, they disappear.

Case 1: Let us consider the input ~x = (0, 0), i.e., at t = 0 three spikes are
placed in each presynaptic neuron. We represent the contribution of each rule for
~x = (0, 0) in the following table. Notice that for t ≥ 3 the contribution is zero for
all the rules.

R11 R12 R13 R21 R22

t = 1 2 0 3 0 1
t = 2 0 1 0 2 0

Considering the different contributions of the rules and bearing in mind that
in each neuron only one rule is non-deterministically chosen, the changes in the
postsynaptic potential for ~x = (0, 0) are described in the following table.

R11 R21 R12 R21 R13 R21 R11 R22 R12 R22 R13 R22

t = 1 2 0 3 3 1 4
t = 2 2 3 2 0 1 0

Notice that with the input ~x = (0, 0), the postsynaptic neuron activates the
rule at t = 1 if the chosen rules are R11 R21, R13 R21, R11 R22 or R13 R22. If the
chosen rules are R12 R21, then the rule is activated at t = 2 and if the chosen rules
are R12 R22 then the postsynaptic rule is not activated.

Case 2: Let us consider now the input ~x = (1, 0), i.e., at t = 0 three spikes are
placed in the presynaptic neuron u2 and in t = 1 other three spikes are placed in
u1. As above, we represent the contribution for ~x = (1, 0) in the following table.

R11 R12 R13 R21 R22

t = 1 0 0 0 0 1
t = 2 2 0 3 2 0
t = 3 0 1 0 0 0

The changes of the potential R∗ in the postsynaptic potential for ~x = (1, 0)
are described in the following table.
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R11 R21 R12 R21 R13 R21 R11 R22 R12 R22 R13 R22

t = 1 0 0 0 1 1 1
t = 2 4 2 5 2 0 3
t = 3 0 1 0 0 1 0

In this case, with the input ~x = (1, 0), the postsynaptic neuron triggers its rule
at t = 2 but if the chosen rules are R12 R22.

3 Learning

If we look at the Hebbian SN P system units as computational devices where the
target is the transmission of information, we can consider that the device successes
if a spike is sent to the environment and it fails if the spike is not sent. In this
way, the lack of determinism in the choice of rules is a crucial point in the success
of the devices because as we have seen above, if we provide several times the same
input, the system can succeed or not.

In order to improve the design of these computational devices and in a narrow
analogy with the Hebbian principle, we introduce the concept of efficacy in the
Hebbian SN P system units. Such efficacy is quantified by endowing each rule with
a weight that changes along the time, by depending on the contribution of the rule
to the success of the device.

According to [8], in Hebbian learning, a synaptic weight is changed by a small
amount if presynaptic spike arrival and postsynaptic firing coincides. This simul-
taneity constraint is implemented by considering a parameter sij which is the
difference between the arrival of the contribution of the rule Rij and the postsy-
naptic firing. Thus, the efficacy of the synapses such that its contributions arrive
repeatedly shortly before a postsynaptic spike occurs is increased (see [13] and [3]).
The weights of synapses such that their contributions arrive to the postsynaptic
neuron after the postsynaptic spike is expelled are decreased (see [4] and [16]).
This is basically the learning mechanism suggested in [17].

3.1 The Model

In order to implement a learning algorithm in our Hebbian SN P system units, we
need to extend it with a set of weights that measure the efficacy of the synapses.
The meaning of the weights is quite natural and it fits into the the theory of arti-
ficial neural networks [12]: The amount of spikes that arrives to the postsynaptic
neuron due to the rule Rij depends on the contribution of each rule and also on
the efficacy of the synapse wij . As usual in artificial neural networks, the final
contribution will be the contribution sent by the rule multiplied by the efficacy
wij .

We fix these concepts in the following definition.
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Definition 3. An extended Hebbian SN P system unit of degree m is a construct

EHΠ = (HΠ,w11, . . . , wmlm),

where:

• HΠ is a Hebbian SN P system unit of degree m and the rules of the presynaptic
neuron ui are Ri = {Ri1, . . . , Rili} with i ∈ {1, . . . , m}.

• For each rule Rij with i ∈ {1, . . . , m} and j ∈ {1, . . . , li}, wij is a real number
which denotes the initial weight of the rule Rij.

Associating a weight to each rule means to consider an individual synapse for
each rule instead of a synapse associated to the whole neuron. The idea of consid-
ering several synapses between two neurons is not new in computational neuron
models. For example, in [19] the authors present a model for spatial and temporal
pattern analysis via spiking neurons where several synapses are considered. The
same idea had previously appeared in [8]. Considering several rules in a neuron and
one synapse associated to each rule allows us to design an algorithm for changing
the weight (the efficacy) of the synapse according to the result of the different
inputs.

The concept of input of a extended Hebbian SN P system unit is similar to the
previous one. The information is encoded in time and the input of each neuron
denotes the moment in which the neuron is excited.

Definition 4. An input for an extended Hebbian SN P system unit of degree m
is a vector ~x = (x1, . . . , xm) of m non-negative integers xi.

An extended Hebbian SN P system unit with input is a pair (EHΠ,~x) where
HΠ is an extended Hebbian SN P system unit and ~x is an input for it.

The semantics

As we saw before, each xi in the input ~x = (x1, . . . , xm) represents the time in
which the presynaptic neuron ui is activated. The formalization of the activation
of the neuron in this case differs from the Hebbian SN P system units. The idea
behind the formalization is still the same: the postsynaptic neuron receives a little
amount of electrical impulse according to the excitation time of the presynaptic
neuron and the efficacy of the synapsis. The main difference is that we consider that
there exist several synapses between one presynaptic neuron and the postsynaptic
one (one synapse for each rule in the neuron) and the potential is transmitted
along all these synapses according to their efficacy.

Extending the Hebbian SN P system units with efficacy in the synapses and
considering that there are electrical flow along all of them can be seen as a general-
isation of the Hebbian SN P system units. In Hebbian SN P system units only one
rule Rij is chosen in the presynaptic neuron ui and the contribution emitted by
Rij arrives to the postsynaptic neuron according to the decaying sequence. Since
the weight wij multiplies the contribution in order to compute the potential that
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arrives to the postsynaptic neuron, we can consider the Hebbian SN P system unit
as an extended Hebbian SN P system unit with the weight of the chosen rule Rij

equals to one and the weight of the remaining rules equals to zero.
At the moment xi in the presynaptic neuron ui we will consider that all

rules (ak → (anij , S); dij) are activated. The potential on the postsynaptic neu-
ron depends on the contributions of the rules in the presynaptic neurons and
the efficacy of the respective synapses. Let us consider that at time xi the rule
(ak → (anij , S); dij) is activated and the efficacy of its synapse is represented by
the weight wij . When the rule (ak → (anij , S); dij) is triggered at t0 we look in
S = (s1, . . . , sr) for the greatest l such that p × wij ≥ sl. Then sl spikes are sent
to the postsynaptic neurons according with the delay d in the usual way.

At t0+d+1, the sl spikes arrive to the postsynaptic neurons. The decay of such
spikes is determined by the decaying sequence. If the spikes are not consumed by
the triggering of a rule in the postsynaptic neuron, they decay and at time t0+d+2
we will consider that sl−sl+1 spikes have disappeared and we only have sl+1 spikes
in the postsynaptic neuron. If the spikes are not consumed in the following steps
by the triggering of a postsynaptic rule, at step t0 + d + 1 + r − l the number of
spikes will be decreased to sr = 0 and the spikes are lost. The extended Hebbian
SN P system unit produces an output if the rule of the postsynaptic neuron v,
E∗

p/ap → a is triggered.
Bearing in mind the decay of the spikes in the postsynaptic neuron, if the

output has not been produced after an appropriate number of steps, no spike will
be sent to the environment. From a practical point of view we have a bound for the
number of steps in which the spike can be expelled, so we have a decision method
to determine if the input ~x provided to the extended Hebbian SN P system unit
produces or not an output.

Example 2. Let us consider the extended Hebbian SN P system unit of degree m
with uniform decay:

HΠ = (O, u1, u2, v, w11, w12, w13, w21, w22),

where:

• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have asso-

ciated sets of rules R1 = {R11, R12, R13} and R2 = {R21, R22}, respectively,
with

R11 ≡ a100 → (a40, S); 0 R21 ≡ a100 → (a80, S); 1
R12 ≡ a100 → (a70, S); 1 R22 ≡ a100 → (a40, S); 0
R13 ≡ a100 → (a30, S); 0

The decaying sequence is the same for all the rules, S = (100, 80, 70, 30, 15, 0)
• v is the postsynaptic neuron, and it contains only one postsynaptic rule

E∗
70/a70 → a; 0.
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• The initial weights are w11 = 0.9, w12 = 1.2, w13 = 0.5, w21 = 0 and w22 = 1

In order to compute the function of the postsynaptic potential we need an
input. Let us consider ~x = (1, 0). Let us focus on the first rule R11 ≡ a100 →
(a40, S); 0. At t = 1 the rule is activated. According to its efficacy, 30 spikes will
be placed in the postsynaptic neuron at t = 2, since 70 > 40 × 0.9 = 36 ≥ 30.
At t = 3 the contribution of this rule is 15 due to the decay and for t ≥ 4 the
contribution is zero. The second rule R12 ≡ a100 → (a70, S); 1 is also activated
at t = 1. Due to the delay d12 = 1, the spikes sent by this rule will be placed
at the postsynaptic neuron at t = 3. The number of emitted spikes will be 80
since 100 > 70× 1.2 = 84 ≥ 80. These spikes will decay in the following steps. We
summarize the contributions in the following table. The last column represents the
final contribution in the postsynaptic neuron by adding the partial contribution
of all the rules.

R11 R12 R13 R21 R22

∑
t = 1 0 0 0 0 30 30
t = 2 30 0 15 0 15 60
t = 3 15 80 0 0 0 95
t = 4 0 70 0 0 0 70
t = 5 0 30 0 0 0 30
t = 6 0 15 0 0 0 15

At time t = 3 the postsynaptic potential reaches the value 95 and it is the fist
time that it is grater than the threshold, so the postsynaptic rule E∗

70/a70 → a; 0
is activated and in the next step one spike is sent to the environment.

3.2 The Learning Problem

Let us come back to the Hebbian SN P system units. In such units, provided an
input ~x, success can be reached or not (i.e., the postsynaptic rule is triggered or
not) depending on the non-deterministically rules chosen. In this way, the choice
of some rules is better than the choice of other ones, by considering that a rule is
better than another if the choice of the former leads us to the success with a higher
probability than the choice of the latter. Our target is to learn which are the best
rules according to this criterion.

Formally, a learning problem is a 4-uple (EHΠ,X, L, ε), where:

• EHΠ is an extended Hebbian SN P system unit
• X = { ~x1, . . . ~xn} is a finite set of inputs of EHΠ.
• L : Z→ Z is a function from the set of integer numbers onto the set of integer

numbers. It is called the learning function.
• ε is a positive constant called the rate of learning.

The output of a learning problem is an extended Hebbian SN P system unit.
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Informal description of the algorithm

Let us consider an extended Hebbian SN P system EHΠ, a learning function
L : Z → Z and a rate of learning ε.. Let us consider an input ~x and we will
denote by t~x the moment when the postsynaptic neuron reaches the potential for
the trigger of the postsynaptic neuron. If such potential is not reached (and the
postsynaptic neuron is not triggered) then t~x = ∞.

On the other hand, for each rule Rij ≡ ak → (anij , S); dij of a presynaptic
neuron we can compute the moment t~xij in which its contribution to the postsy-
naptic potential arrives to the postsynaptic neuron. It depends on the input ~x and
the delay dij of the rule

t~xij = ~xi + dij + 1

where ~xi is the i-th component of ~x.
We are interested in the influence of the rule Rij on the triggering of the

postsynaptic neuron. For that we need to know the difference between the arrival
of the contribution t~xij and the moment t~x in which the postsynaptic neuron is
activated.

For each rule Rij and each input ~x, such a difference is

s~x
ij = t~x − t~xij

• If s~x
ij = 0, then the postsynaptic neuron reaches the activation exactly in the

instant in which the contribution of the rule Rij arrives to the postsynaptic
neuron. This fact leads us to consider that the contribution of Rij to the post-
synaptic potential has had a big influence on the activation of the postsynaptic
neuron.

• If s~x
ij > 0 and it is small, then the postsynaptic neuron reaches the activation a

bit later than the arrival of the contribution of the rule Rij to the postsynaptic
neuron. This fact leads us to consider that the contribution of Rij to the
postsynaptic potential has influenced on the activation of the postsynaptic
neuron due to the decay, but it is not so important as in the previous case.

• If s~x
ij < 0 or s~x

ij > 0 and it is not small, then the contribution of Rij has no
influence on the activation of the postsynaptic neuron.

The different interpretations of small or big influence are determined by the
different learning functions L : Z → Z. For each rule Rij and each input ~x,
L(s~x

ij) ∈ Z measures de degree of influence of the contribution of Rij to the
activation of the postsynaptic neuron produced by the input ~x.

According to the principle of Hebbian learning, the efficacy of the synapses
such that their contributions influence on the activation of the postsynaptic neuron
must be increased. The weights of synapses such that their contributions have no
influence on the activation of the postsynaptic neuron are decreased.

Formally, given an extended Hebbian SN P system HΠ, a learning function
L : Z → Z, a rate of learning ε and an input ~x of HΠ, the learning algorithm



A First Model for Hebbian Learning with SN P Systems 225

outputs a new extended Hebbian SN P system HΠ ′ which is equal to HΠ, but
the weights: each wij has been replaced by a new w′ij

w′ij = wij + εL(s~x
ij)

Depending on the sign of L(s~x
ij), the rule Rij will increase or decrease its

efficacy. Note that L(s~x
ij) is multiplied by the rate of learning ε. This rate of

learning is usual in learning process in artificial neural networks. It is usually a
small number which guarantees that the changes on the efficacy are not abrupt.

Finally, given a learning problem (HΠ, X, L, ε), the learning algorithm takes
~x ∈ X and outputs HΠ ′. In the second step, the learning problem (HΠ ′, X −
{~x}, L) is considered and we get a new HΠ ′. The process finishes when all the
inputs has been consumed and the algorithm outputs the last extended SN P
system unit.

Example 3. Let us consider the extended Hebbian SN P system unit of degree m
with uniform decay:

HΠ = (O, u1, u2, v, w11, w12, w13, w21, w22),

where:

• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have associ-

ated the sets of rules R1 = {R11, R12, R13} and R2 = {R21, R22}, respectively,
with

R11 ≡ a100 → (a40, S); 0 R21 ≡ a100 → (a80, S); 1
R12 ≡ a100 → (a70, S); 1 R22 ≡ a100 → (a40, S); 0
R13 ≡ a100 → (a30, S); 0

The decaying sequence is the same for all the rules, S = (100, 80, 70, 30, 15, 0)
• v is the postsynaptic neuron which contains only one postsynaptic rule

E∗
70/a70 → a; 0.

• The initial weights are w11 = 1.0, w12 = 1.0, w13 = 1.0, w21 = 1.0 and
w22 = 1.0

Let us consider the learning problem (EHΠ,X, L, ε), where

• EHΠ is the extended Hebbian SN P system unit described above.
• X = { ~x1, ~x2} with ~x1 = (0, 2) and ~x2 = (0, 0).
• L is the learning function L : Z→ Z

L(s) =





4 if s = 0
2 if s = 1
1 if s = 2
−1 otherwise
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• The rate of learning ε = 0.1

Step 1: Let us consider the input ~x = (0, 2). The contribution can be sum-
marised in the following table:

R11 R12 R13 R21 R22

∑
t = 1 30 0 30 0 0 60
t = 2 15 70 15 0 0 100
t = 3 0 30 0 0 30 60
t = 4 0 15 0 80 15 110
t = 5 0 0 0 70 0 70
t = 6 0 0 0 30 0 30
t = 7 0 0 0 15 0 15

Therefore, at time t = 2 the potential of the postsynaptic neuron reaches a
value greater than the threshold 70, then t(0,2) = 2. We can compute now the
values t

(0,2)
ij = xi + dij + 1, s

(0,2)
ij = t(0,2) − t

(0,2)
ij and L(s(0,2)

ij ) for every rule Rij .

After computing the values L(s(0,2)
ij ) for every rule Rij , the new weights are

calculated as

w′ij = wij + ε L(s(0,2)
ij )

These values are summarised in the following table

t
(0,2)
ij s

(0,2)
ij L(s(0,2)

ij ) wij w′ij
R11 1 1 2 1 1.2
R12 2 0 4 1 1.4
R13 1 1 2 1 1.2
R21 4 −2 −1 1 0.9
R22 3 −1 −1 1 0.9

Therefore, after this fist step the new weights are w′11 = 1.2, w′12 = 1.4, w′13 =
1.2, w′21 = 0.9 and w′22 = 0.9.

Step 2: Let us consider the new extended Hebbian SN P system unit built by
replacing the initial weights by the new w′ij and let us consider the second input
~x2 = (0, 0). The contribution can be summarized in the following table.

R11 R12 R13 R21 R22

∑
t = 1 30 0 30 0 30 90
t = 2 15 80 15 70 15 195
t = 3 0 70 0 30 0 100
t = 4 0 30 0 15 0 45
t = 5 0 15 0 0 0 15

Therefore, at time t = 1 the potential of the postsynaptic neuron reaches a
value greater than the threshold 70, then t(0,0) = 1. We can compute now the
values t

(0,0)
ij = xi + dij + 1, s

(0,0)
ij = t(0,0) − t

(0,0)
ij and L(s(0,0)

ij ) for every rule Rij .
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After computing the values L(s(0,0)
ij ) for every rule Rij , the new weights are

calculated as

w′′ij = w′ij + ε L(s(0,0)
ij )

These values are summarized in the following table

t
(0,2)
ij s

(0,2)
ij L(s(0,2)

ij ) w′ij w′′ij
R11 1 0 4 1.2 1.6
R12 2 −1 −1 1.4 1.3
R13 1 0 4 1.2 1.6
R21 2 −1 −1 0.9 0.8
R22 1 0 4 0.9 1.3

Therefore, after this fist step the new weights are w′11 = 1.6, w′12 = 1.3, w′13 =
1.6, w′21 = 0.8 and w′22 = 1.3.

The use of weights needs more discussion. The weights are defined as real
numbers and membrane computing devices are discrete. If we want to deal with
discrete computation in all the steps of the learning process we have to choose the
parameters carefully. The following result gives a sufficient constraint for having
an integer number of spikes at any moment.

Theorem 1. Let a be the greatest non-negative integer such that for all presynaptic
potential nij there exists an integer zij such that nij = xij × 10a.

Let b be the smallest non-negative integer such that for all initial weight wij and
for the rate of learning ε there exist the integers kij and k such that wij = kij×10b

and ε = k × 10b.
If a−b ≥ 0, then for all presynaptic potential nij and all the weights w obtained

along the learning process, nij × w is an integer number.

In other words, if there exists a and b such that all the presynaptic potentials
nij can be expressed as nij = xij × 10a for an appropriate integer xij and the
initial weights wij and rate of learning ε can be expressed as wij = kij × 10b

and ε = k × 10b for appropriate integer numbers kij , k and a − b ≥ 0 then for
all presynaptic potential nij and all the weights w obtained along the learning
process, nij × w is an integer number.

Proof. It suffices to consider the recursive generation of new weights wn+1 = wn +
εL(sn) and therefore

wn+1 = w0 + ε(L(s0) + · · ·+ L(sn)).

If we develop nij × wn+1 according to the statement of the theorem, we have

nij × wn+1 = xij × 10a × [k0 × 10−b + (k × 10−b(L(s0) + · · ·+ L(sn)))]
= 10a−b × xij × [k0 + k(L(s0) + · · ·+ L(sn))]

Since xij × [k0 + k(L(s0) + · · · + L(sn))] is an integer number, if a − b ≥ 0 then
nij × wn+1 is an integer number.
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4 An Experiment

Let us consider the Hebbian SN P system

HΠ = (O, u1, u2, v)

with uniform decay, where:

• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have associ-

ated the sets of rules R1 = {R11, R12, R13} and R2 = {R21, R22}, respectively,
with

R11 ≡ a3000 → (a3000, S); 0 R21 ≡ a3000 → a1000; 0
R12 ≡ a3000 → (a2000, S); 1 R22 ≡ a3000 → a3000; 3
R13 ≡ a3000 → (a2000, S); 7

• The decaying sequence is S = (3000, 2800, 1000, 500, 0).
• v is the postsynaptic neuron which contains only one postsynaptic rule

E∗
1200/a1200 → a; 0.

Let EHΠ be the Hebbian SN P system unit HΠ extended with the initial
weights w11 = 0.5, w12 = 0.5, w13 = 0.5, w21 = 0.5 and w22 = 0.5.

Let us consider the learning problem (EHΠ,X, L, ε) where

• EHΠ is the extended Hebbian SN P system unit described above,
• X is a set of 200 random inputs (x1

i , x
2
i ) with 1 ≤ 1 ≤ 200 and x1

i , x
2
i ∈

{0, 1, . . . , 5}
• L is the learning function L : Z→ Z

L(s) =





3 if s = 0
1 if s = 1
−1 otherwise

• The rate of learning is ε = 0.001

We have programmed an appropriate software for dealing with this learning
problems. After applying the learning algorithm, we obtain a new extended Heb-
bian SN P system unit similar to EHΠ but with the weights

w11 = 0.754, w12 = 0.992, w13 = 0.3, w21 = 0.454, w22 = 0.460

Fig 4 shows the evolution of the weights of the synapses.
The learning process shows clearly the differences among the rules.

• The worst rule is R13. In a debugging process of the design of an SN P System
network that rule should be removed. The value of the weight has decreased
along all the learning process. This fact means that the rule has never con-
tributed to the success of the unit and then it can be removed. The reason is
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Fig. 4. The evolution of the weights

clear. The rule emits four spikes and the postsynaptic rule is activated with
two spikes. Even with the decay, the potential provided by the rule is too much
for triggering the rule.

• On the other extreme, the best rules are R11 and R21. In most of the cases,
(not all) these rules have been involved in the success of the unit.

• The other two rules R21 and R22 have eventually contributed to the success of
the unit but not so clearly as R11 and R21. We can also guess the reasons. For
R11, the presynaptic potential, 1000, has little influence in the postsynaptic
potential and for R22, the presynaptic potential is larger than the threshold,
but it has a large delay, so the arrival of its potential to the postsynaptic neuron
is often later than the activation of the postsynaptic rule.
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5 Conclusions and Future Work

The integration in an unique model of concepts from neuroscience, artificial neural
networks and spiking neural P systems is not an easy task. Each of the three fields
have its own concepts, languages and features. The work of integration consists
on choosing ingredients from each field and trying to compose a computational
device with the different parts. This means that some of the ingredients used in
the devices presented in this paper are not usual in the SN P systems framework.
Although the authors have tried to be as close to the SN P system spirit as possible
some remarks should be considered.

In the paper, the input of the device is provided as a vector (t1, . . . , tm) of
non-negative integers, where ti represents the moment in which one rule (non-
deterministically chosen) of the neuron ui is activated. Obviously, this is not the
usual way to provide the input to an SN P system. Nonetheless, the information
encoded in the vector (t1, . . . , tm) can be provided to the input neurons by m spike
trains were all the elements are 0’s and there is only one 1 in the position ti. In
this way, the input is encoded by m spike trains, which is closer to the standard
inputs in SN P systems.

The idea of providing the input with a spike train of 0’s and only one 1 in
the position ti carries out new problems. In the literature of SN P systems, in the
instant ti only one spike is supplied to the neuron ui. In our device we want that
a rule of type ar → ap; d is activated with r > 1. At this point we can consider
several choices. The first one is to consider that at time ti the spike train provides
r spikes, but this choice lead us far from the SN P system theory. A second option
is to consider that the spike trains have r consecutive 1’s and each of them provide
one spike. The remaining elements in the train are zeros. In this way the moment
ti will be the instant in which the r spikes have been provided to the neuron. A
drawback for this proposal can be that r can be a big number and this increase
the number of steps of the device. A third choice is to consider amplifier modules
as in Figure 5. The leftmost neuron receives a spike train where all the elements
are 0’s but the ti − th which is 1. At the moment ti only one spike is supplied to
the neuron. At ti + 1, one spike arrives to the r postsynaptic neurons, and each of
them sends one spike to the rightmost neuron, so at ti + 2 exactly r spikes arrive
simultaneously to the last neuron.

These three solutions can be an alternative to the use of the vector (t1, . . . , tm)
and deserve to be considered for further research in this topic.

Another main concept in this paper is the delay. It has strong biological intu-
ition, but it is difficult to insert into the SN P systems theory. The main reason
is that if we consider the spike as the information unit it does not make sense to
talk about a half of a spike or a third of a spike. In that sense, the approach to
decay from [7] is full of sense since one spike exists or it is lost, but its potential it
is not decreasing in time.

The key point for the decay in this paper is taken from the definition of extended
SN P systems. In such devices, a neuron can send a different amount of spikes
depending on the chosen rule. So, in such devices the information is not only
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Fig. 5. Amplifier module

encoded in the time between two consecutive spikes, but on the number of spikes.
This lead us to define the decay as a decrement in the number of spikes. In this
way, we can consider that a pulse between two neurons is composed by a certain
number of spikes which can be partially lost depending on the time.

In this paper, such a decay has been implemented by extending the rules with
a finite decreasing sequence which can be uniform, locally-uniform or non uniform
for the set of rules. Other implementations are also possible. Probably, the decay
can also be implemented with an extra neuron as in Figure 6 which sends to the
final neuron a decaying sequence of spikes.
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Fig. 6. Including a decay neuron

The use of weights also deserves to be discussed. In Theorem 1 we provide
sufficient conditions for handling at every moment an integer number of spikes. In
this way, the presented devices keep the principle of discrete computation of SN
P systems. Nonetheless, further questions should be considered. For example, the
use of negative weights or weights greater than one. Should we consider negative
weights and/or a negative contribution to the postsynaptic potential? On the other
hand, the use weights greater than one leads us to consider that the contribution of
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one rule to the postsynaptic potential is greater than its own presynaptic potential.
Can the efficiency of the synapses amplify the potential beyond the number of
emitted spikes?

More technical questions are related to the rate of learning and to the algo-
rithm of learning. Both concepts have been directly borrowed from artificial neural
networks and need deeper study in order to adapt them to the specific features of
SN P systems.

As a final remark, we consider that this paper opens a promising line research
bridging SN P systems and artificial neural networks without forgetting the bio-
logical inspiration and also opens a door to applications of SN P systems.
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