
Computational Complexity of Simple P Systems

Gabriel Ciobanu, Andreas Resios

“A.I.Cuza” University of Iaşi
Romania
gabriel@info.uaic.ro

Summary. We introduce a new class of membrane systems called simple P systems, and
study its computational complexity using the classical theory. We start by presenting the
knapsack problem and analyzing its space and time complexities. Then we study the
computational complexity of simple P systems by considering the static allocation of
resources enabling the parallel application of the rules. We show that the problem of
allocating resources for simple P systems is NP-complete by reducing it to the knapsack
problem. Thus we express the computational complexity of this class of P systems in
terms of classical complexity theory.

1 Introduction

We describe the computational complexity of the simple P systems in classical
complexity theory, extending the short note presented initially in [5]. Membrane
computing is a rather young field of natural computing which has been developing
very fast in the last decade. It combines the power of distributed parallel rewriting
systems with the power and context evolution to achieve computational universal-
ity. We use a subclass of transition P systems, simple P systems, where the left
side of the rules can contain only a single object with different multiplicity. We use
a classical combinatorial NP-complete problem, the knapsack problem, to show
that the static allocation of rules for this class is NP-complete.

The structure of this paper is as follows. In Section 2 we present a pseudo-
polynomial algorithm for the knapsack problem and study its complexity. Then
we give a short presentation of transition P systems, and introduce the simple P
systems in Section 3. Then we show that static allocation of the available resources
to rules is NP-complete. In Section 5 we present a new approach to study the
complexity of simple P systems. Conclusion and references end the paper.

108 G. Ciobanu, A. Resios

2 Knapsack Problem

The knapsack problem, a classical combinatorial optimization problem, refers to
finding a maximum total value given a set of objects values and weights, and a
weight limit. The discrete version refers to the fact that we can only include an ob-
ject as a whole, not just a part of it. Mathematically, the discrete knapsack problem
can be formulated as follows: given a bag of capacity c and n objects, labelled from
1, . . . , n, each having value pi and weight wi, maximize

∑n
i=1 pixi, xi ∈ {0, 1}, sub-

ject to
∑n

1 wixi ≤ c, where xi = 1 means that we take object i. This problem is
known to be an NP-complete problem. However, there exists a pseudo-polynomial
time algorithm using dynamic programming with running time of O(n · c). An al-
gorithm is said to run in pseudo-polynomial time if its running time is polynomial
in the numeric value of the input (however this can be exponential with respect
to the length). Formally, we say that a function f is pseudo-polynomial if f(n)
is no greater than a polynomial function of the problem size n and an additional
property of the input k(n). Note that pseudo-polynomial time becomes polynomial
time if the values are encoded in unary base.

The knapsack problem can be expressed as a optimization problem: as follows:

• Objective function

max
n∑

i=1

pixi

• Restrictions
– xi ∈ {0, 1};
–

∑n
1 wixi ≤ c.

To solve this problem using dynamic programming we need to define the notion of
a state and the transition between two states. For this problem a state is defined
by the number of objects we take into consideration. Thus we start with an initial
state where we do not have any object to choose from, and we make transitions to
the next state until we reach a final state. A transition is represented by the choice
between inserting the object in the bag or not. We denote by fi(X) the function
which answers the question “What is the optimal value obtained by using only i
objects and X weight?”. Thus a state i is defined by the function fi. The function
fi can be computed as follows:

fi(X) =

−∞ , X < 0
0 , i = 0 ∧ X ≥ 0
max{fi−1(X), fi−1(X − wi) + pi} , otherwise

(1)

The answer to the knapsack problem is given by the value of fn(c). The functions
fi can be stored as a table, and can be computed starting from the initial state
to the last state. Note that the current state depends only on the previous state,
thus we can store only the last two lines in the table. We use the example given
in Table 1 where we consider c = 10.

Computational Complexity of Simple P Systems 109

i 1 2 3

wi 3 5 6
pi 10 30 20

Table 1. Knapsack instance

X 0 1 2 3 4 5 6 7 8 9 10

f0 0 0 0 0 0 0 0 0 0 0 0
f1 0 0 0 10 10 10 10 10 10 10 10
f2 0 0 0 10 10 30 30 30 40 40 40
f3 0 0 0 10 10 30 30 30 40 40 40

Table 2. Values for f corresponding to instance defined in Table 1

We obtain Table 2 corresponding to the recurrence defined by f Note that function
fi has many repeating values. To solve the problem of space, we need to store only
the different values for fi. A possible solution is to associate with each different
value of fi a 3-uple (k,Wi,k, Ti,k) with the following meaning: k represents the
profit, Wi,k represents the sum of the objects weight which we can use to achieve
profit k, and Ti,k represents the objects which are used to achieve that profit.

By using this approach, we need to keep a list of 3-uples instead of the full
table. We now show an example of how we use this list to solve the problem. We
start with the list containing only {(0, 0, ∅)}. At each iteration we construct a new
list Ai that contains the 3-uples with the valid profits that we could obtain by
using the current object. The new list is obtain by merging the previous list with
the new constructed list: Li+1 = µ(Li, Ai), where µ(A,B) is the merging of two
list of 3-uples. For the instance previously presented we have:

L0 = {(0, 0, ∅)}
A0 = {(10, 3, {1})}
L1 = {(0, 0, ∅), (10, 3, {1})}
A1 = {(30, 5, {2}), (40, 8, {1, 2})}
L2 = {(0, 0, ∅), (10, 3, {1}), (30, 5, {2}), (40, 8, {1, 2})}
A2 = {(20, 6, {3}), (30, 9, {1, 3})})
L3 = {(0, 0, ∅), (10, 3, {1}), (20, 6, {3}), (30, 5, {2}), (40, 8, {1, 2})}

The solution to the problem is given by the last element of L3. In our example
it is given by (40, 8, {1, 2}), which means we can obtain a profit of 40 by taking
items 1 and 3 that weight 8.

The Algorithm 1 solves the knapsack problem using this approach. We now ex-
press the time and space complexity of Algorithm 1. We know that |Li+1| ≤ 2 · |Li|
because |Ai| ≤ |Li|. The computation of Li+1 from Li and Ai is done in
O(|Li| + |Ai|) = O(|Li|) time. We know that the 3-uples from Li satisfy the
relation:

110 G. Ciobanu, A. Resios

Algorithm 1 Knapsack(n,w,p,M)
1: L0 ← {(0, 0, ∅)}
2: for i← 1 to n do
3: Ai−1 ← ∅
4: for all (k, Wa,k, Ta,k) in Li−1 do
5: if Wa,k + wi ≤M then
6: Ai−1 ← Ai−1 ∪ {(k + pi, Wa,k + wi, Ta,k ∪ {i})}
7: end if
8: end for
9: Li ←Merge(Li−1, Ai−1)

10: end for
11: return last(Ln)

0 ≤ |Li| ≤ k ≤
i∑

j=1

pj ≤ n ·max{p1, . . . , pn}

It follows that |Li| ≤ n ·max{p1, . . . , pn}. In conclusion Algorithm 1 has the time
complexity:

O(
n∑

i=1

|Li|) = O(n2 ·max{p1, . . . , pn})

Note that this complexity is pseudo-polynomial, and if max{p1, . . . , pn} > 2n then
this algorithm runs in exponential time w.r.t the size of its input.
The space complexity is:

O(
n∑

i=1

|Li|) = O(
n∑

i=1

2i) = O(2n)

In the Merge procedure presented as Algorithm 2, when we have two items
with the same profit we choose the one with the lowest weight. This assures that
for each possible profit we have the minimum weight.

3 Simple P Systems

Membrane computing represents an unconventional paradigm of computing which
combines the power of distributed parallel rewriting systems with the power and
context evolution. Local rules and the evolution contexts are biological metaphors:
the rules are developmental rules in cells, and contexts denote division mechanisms
of cells and active/mobile membranes. There are several ingredients in membrane
systems which are meaningful from the point of view of biological media. The basic
model and many variants are described in [7], and some applications are presented
in [4]. Membrane computing is used both to model cells or biological systems and
to study the computability and complexity of a new and unconventional computing
device.

Computational Complexity of Simple P Systems 111

Algorithm 2 Merge(A,B)
1: S ← ∅, i← 1, j ← 1
2: n← min(|A|, |B|)
3: while i ≤ n && j ≤ n do
4: (k1, Wa,k1 , Ta,k1)← A[i], (k2, Wb,k2 , Tb,k2)← B[j]
5: if k1 < k2 then
6: S ← S ∪ {(k1, Wa,k1 , Ta,k1)}, i← i + 1
7: else if k1 > k2 then
8: S ← S ∪ {(k2, Wb,k2 , Tb,k2)}, j ← j + 1
9: else if k1 = k2 then

10: if Wa,k1 < Wb,k2 then // chose the one with minimum weight
11: S ← S ∪ {(k1, Wa,k1 , Ta,k1)}
12: else
13: S ← S ∪ {(k2, Wb,k2 , Tb,k2)}
14: end if
15: i← i + 1, j ← j + 1
16: end if
17: end while
18: if i ≤ n then
19: for j ← i to |A| do
20: S ← S ∪A[j]
21: end for
22: else
23: for i← j to |B| do
24: S ← S ∪B[i]
25: end for
26: end if
27: return S

The transition P system is represented by regions delimited by a membrane
structure that contains multisets of objects that evolve according to associated
rules. A computation consists of a number of transition between system config-
urations and the result is represented either by the objects present in the final
configuration in a specific membrane or by the objects which leave the outermost
membrane of the system (the skin membrane) during the computation.

Definition 1. A transition P system of degree n, n ≥ 1, is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . , Rn) ,

where

1. O is an alphabet of objects;
2. T ⊆ O (the output alphabet);
3. µ is a membrane structure of degree n;
4. wi, 1 ≤ i ≤ n, strings that represent multisets over V associated with the

regions of µ;

112 G. Ciobanu, A. Resios

5. Ri represents the rules from region µi of µ; an evolution rule is a pair (u, v)
written as u → v, where u is a string over O and v = v′ or v = v′δ, where v′

is a string over {ahere, aout, ainj |a ∈ O, 1 ≤ j ≤ n}, and δ is a special symbol
not in O; the length of u is called the radius of rule u → v. Ri, 1 ≤ i ≤ n, are
finite sets of evolution rules over O.

Definition 2. A simple P system is a transition P system where the left side of
a rule can contain a single object with an arbitrary multiplicity. Formally, a rule
u → v ∈ Ri has u = k · a, where k ∈ N and a ∈ O.

The membrane structure is a tree structure, where each node represents a mem-
brane. The relation between a child node and a parent node symbolizes that the
parent membrane contains the child membrane. To define the membrane structure
we consider the language MS over the alphabet {[,]} recursively defined as follows:

1. [] ∈ MS;
2. if µ1, . . . , µn ∈ MS, n ≥ 1 then [µ1 . . . µn] ∈ MS;
3. nothing else is in MS.

We define a binary relation ∼ over the elements of MS: x ∼ y if and only if we
can write x = µ1µ2µ3µ4, y = µ1µ3µ2µ4, for µ1µ4 ∈ MS and µ2, µ3 ∈ MS. We
denote by ∼ the reflexive and transitive closure of ∼ (note that ∼ is an equivalence
relation). We denote by MS the set of equivalence classes of MS with respect to
∼. A membrane structure is an element of MS, where each pair of matching
parentheses [,] is a membrane. The degree of a membrane structure is defined
as the number of membranes it contains. A natural way to represent membrane
structure is by a Venn diagram because this emphasizes the topological structure
between computing compartments.

A configuration of the system is given by the membrane structure and the contents
of each region. The initial configuration is a (n + 1)-tuple (µ,w1, . . . , wn). Having
the possibility to dissolve a membrane, we can obtain a configuration which has
only some of the initial membranes. Thus we define a configuration of Π as any
sequence (µ′, w′i1 , . . . , w

′
ik

), with µ′ a membrane structure obtained by dissolving
from µ all membranes different from i1, . . . , ik, with wij strings over O, 1 ≤ j ≤ k,
and {i1, . . . , ik} ⊆ {1, . . . , n}.
For two configurations C1 = (µ′, w′i1 , . . . , w

′
ik

), C2 = (µ′′, w′′j1 , . . . , w
′′
jk

) of Π we
write C1 ⇒ C2, and we say that we have a transition from C1 to C2 if we can
pass from C1 to C2 by using the evolution rules from Ri1 , . . . , Rik

. A sequence
of transitions between configurations of a given P system, Π is called a compu-
tation with respect to Π. A computation halts if there is no rule applicable to
the objects from the last configuration. The result of a computation is ΨT (w),
where w describes the multiset of output objects sent out by the system during
the computation. ΨT (w) is the Parikh mapping associated with T ; it is defined by
ΨT (w) = (|w|a1 , . . . , |w|an), where T = {a1, . . . , an}, w ∈ T ∗, and |w|ai denotes
the number of occurrences of ai in w. The set of such vectors ΨT (w) is denoted by
Ps(Π), and we say it is generated by Π.

Computational Complexity of Simple P Systems 113

4 Complexity of the Parallel Application of Rules by Static
Allocation of Resources

We now study the computational power of simple P systems coming from the
maximal parallel and nondeterministic application of the rules. To express this in
terms of computational complexity, we envision a device capable of solving this
problem and we express its complexity. We call this device a resource allocator,
and abbreviate it by RA. Two operational semantics of membrane systems were
defined in [1] and [2]. They differ only in the way the maximal parallel application
of rules is described, and reflect the fact that resource allocation to rules can be
done either statically or dynamically. A dynamic resource allocation is based on
applying rules one by one in a nondeterministic manner until there is no applicable
rule left [1].

An alternative is given by static allocation [2], where the existing resources
are distributed in a nondeterministic and maximal way to the rules which then
are applied in parallel. The equivalence between static and dynamic allocation
semantics is proved in [2].

Therefore the purpose of the resource allocator is to allocate multisets of ob-
jects to rules such that the evolution is then done in a maximal parallel and
nondeterministic way. Given this setup, the maximal parallel application of rules
depends on RA being able to solve an instance of the discrete knapsack problem.
The nondeterminism comes from the fact that we can choose different multisets of
rules that correspond to the solution of the knapsack problem given the contents
of RA and we choose one in a nondeterministic way. We can associate a resource
allocator with every membrane of a simple P system. Given the parallel evolution
of membranes, we note that every resource allocator resolves a particular instance
associated with its membrane, and each one operates independent of the others.
We represent multisets as a string over their support alphabet. A resource alloca-
tor can be formally defined as a mapping RA : O∗ → (O∗)|R|+1, where O is the
alphabet of objects, w ∈ O∗ and R is the set of rules associated with a membrane:

RA(w) = {(w1, w2, . . . , w|R|, w′) | wi * w′, i = 1, |R| ∧
|R|∑

i=1

wi + w′ = w} (2)

The resource mapping problem can be formulated as follows: given a resource
allocator RA of a simple P system, decide which of the rules are applied such
that the system evolves in a maximal parallel and nondeterministic way. Formally,
given (µ,w,R, RA) where

• µ is a membrane structure of a P system,
• w is the multiset of objects associated with µ,
• R is the set of rules associated with µ,
• RA is the resource allocator associated with µ,

114 G. Ciobanu, A. Resios

maximize |∑|R|
i=1 wi|, where (w1, w2, . . . , w|R|, w′) ∈ RA(w) and ∃ u1, . . . , u|R|

such that ui → vi ∈ R ∧ ui 6= uj ,∀i 6= j ∧ ∃ ki ∈ N wi = ki · ui, ∀i = 1, |R| and
∀u → v ∈ R we have that u * w′.

Note that the maximal parallel rewriting comes from the fact that the RA
chooses nondeterministically which multiset of rules to apply (by assigning re-
sources w1, w2, . . . , w|R| to each rule), and the set is maximal because we cannot
apply another rule using the remaining resources w′. When we have multiple so-
lutions to the problem, we chose one nondeterministically.

To clarify the definition we give the following example: suppose that the re-
source allocator RA has to distribute the multiset 10a to the rules 4a → b, 3a → c
and 2a → d. We can now distribute the resources according to our definition in
multiple ways. We show only a few:

10a ⇒ 2 · 4a + 0 · 3a + 1 · 2a (no remaining a)
10a ⇒ 0 · 4a + 3 · 3a + 0 · 2a (remaining 1 a)
10a ⇒ 1 · 4a + 1 · 3a + 1 · 2a (remaining 1 a)

Note that it is not possible to use the remaining resources to apply another rule,
i.e. in our example we cannot have more than one remaining a because that means
that we can apply another rule.

We show that the problem of resource mapping in simple P systems (shortly
RMP) can be reduced to the discrete knapsack problem (shortly KNAP). In
order to prove this, we first make a Karp reduction from KNAP to RMP.

Definition 3. Let A,B be two decision problems over the alphabet Σ. We say
that A can be Karp (or polynomial) reduced to B, and write A ≤m B if ∃f :
Σ∗ → Σ∗, where f can be computed in deterministic polynomial time such that
x ∈ A ⇔ f(x) ∈ B, ∀x ∈ Σ∗.

Lemma 1. KNAP ≤m RMP.

Proof. We consider only the decision version of RMP and KNAP, because ev-
ery optimization problem can be reduced to a decision one. We consider that
the value of each object is equal with its weight, thus the knapsack problem be-
comes the subset sum problem (subset sum is also a NP-complete problem). We
use the name KNAP because we are mainly interested in an implementation of
the resource allocator. We transform in polynomial time an instance of KNAP
into an instance of RMP. We denote the transformation by f(c, n,W,P), and
we show that KNAP(c, n,W,P) = yes implies RMP(f(c, n,W,P)) = yes, and
KNAP (c, n, W,P) = no implies RMP(f(c, n, W,P)) = no. The transfor-
mation f has to create an instance of the RMP problem. We need to define a
membrane structure µ, the set R of rules, a multiset w of objects in µ, and the
resource allocator RA.
We use the same notations as above:

Computational Complexity of Simple P Systems 115

µ is an arbitrary membrane structure,
w = ac, a ∈ O,

R = {awi → b | b ∈ O, wi ∈ W, ∀i = 1, n},
RA is a resource allocator defined as in equation (2). (3)

The transformation f is defined by the equations presented in (3). The membrane
structure of µ can be chosen arbitrary because it is not involved in the distribution
of object to rules. To express the capacity c of the knapsack, we define the contents
of the membrane structure µ as a multiset composed of a single object a with
multiplicity c. For every object we define a rule, such that if the object is used in
the knapsack problem, then it will be used by RA only once. The transformation
can be done in polynomial time with respect to the number of objects.

For the first part of the implication we start from KNAP(c, n,W,P) =
yes, and we need to show that RMP(f(c, n, W,P)) = yes. Let us assume
that RMP(f(c, n, W,P)) = no. This implies that there exists a better solu-
tion to the instance f(c, n,W,P). Let the solution be |∑|R|

i=1 w̄i| ≤ |w|, where
(w̄1, w̄2, . . . , w̄|R|, w′) ∈ RA(w). We know that |∑|R|

i=1 w̄i| > |∑|R|
i=1 wi| because we

assumed we have a better solution. Using this solution we construct a solution to
KNAP(c, n, W,P) as follows:

x′i =

{
1 , if 0 < |w̄i|
0 , otherwise

(4)

Note that if we have |w̄i|, then rule ri has been used. We then have:
∑n

i=1 pix
′
i =∑n

i=1 |w̄i|x′i = |∑n
i=1 w̄i| > |∑n

i=1 wi| =
∑n

i=1 pixi, because we assumed that
we have a better solution. Thus we have KNAP (c, n, W,P) = no, which is a
contradiction.

Now we prove that

KNAP(c, n, W,P) = no implies RMP(f(c, n,W,P)) = no

We consider that the decision problem was for the optimal value of T . Let us
assume that we have RMP (f(c, n, W,P)) = yes, and the solution of this in-
stance is formed by the following allocation: (w̄1, w̄2, . . . , w̄|R|, w′) ∈ RA(w) and
|∑|R|

i=1 w̄i| = T . Like in the first implication, we construct an instance of KNAP
such that KNAP(c, n,W,P) = yes. We construct this instance of KNAP as
follows:

x′i =

{
1 , if 0 < |w̄i|
0 , otherwise

(5)

We have
∑n

i=1 pix
′
i = T . This is a contradiction, because we have KNAP

(c, n, W,P) = no.

116 G. Ciobanu, A. Resios

Theorem 1. RMP is NP-complete.

Proof. We have

• KNAP ≤m RMP, by Lemma 1,
• KNAP is NP-complete,
• NP is closed under ≤m.

Therefore RMP is NP-complete.

5 Complexity of Simple P Systems

We now present a way to use classic complexity theory classes to study the com-
plexity of simple P systems. To use such an approach we need to take into account
the distribution of objects to rules, rather than the number of steps performed
in a computation because parallel evolution can consume more resources than
sequential evolution w.r.t the number of steps.

We now extend the approach from [5], where the authors show that a P system
can evolve using an NP oracle that solves the resource allocation problem for
each of the membranes from the system. We avoid the oracle by using the resource
allocator described in Section 4 which ensures the maximal parallelism and a
nondeterministic evolution. Thus the parallel evolution of simple P systems can
be viewed as a sequence of independent steps. Maximal parallel evolution means
that we cannot apply another rule with the contents left in the membrane after
the application of the selected rules. The maximal parallel application of rules
depends on RA being able to solve an instance of the discrete knapsack problem
and retrieve the solutions within a profit range that corresponds to this kind of
evolution.

Each step is composed of three stages: the first consists of the assignment
of objects to rules according to the resource allocator, the second represents the
distribution of the results obtained from applying the selected rules, and finally
the dissolution of certain membranes.

The first stage ensures a maximal parallel application of rules and consists of
the creation of an instance of the discrete knapsack problem based on the multiset
from the membrane, followed by solving the instance and obtaining the results.
The second stage moves the objects obtained from the previous stage according to
their tags. In the third stage we dissolve all membranes that contain the special
symbol δ by transferring their resources to their parents (as an exception we do
not transfer the δ symbols).

For the first stage of the process we present a function that transforms an instance
of the resource allocation problem into an knapsack instance such that we can
obtain the solution to the RMP instance by solving the transformed instance.

Given a membrane we define: the capacity c of the knapsack, the number n of
objects, the weight wi and value pi for each object i:

Computational Complexity of Simple P Systems 117

c = |w|;
n = |{wik

| wik
defined object}| ;

wik
= k · |ui|, where R = {r1, . . . , rm}, ri = ui → vi, ui ∈ O∗ ∧
k = 1, p where p = max{j ∈ N | w′ ⊆ w ∧ w′ = j · ui}; i = 1, |R|;

pik
= wik

(6)

The transformation f is defined by the equations (6). Note that we do not need
to use all the contents of the membrane. We denote by w the contents of the
membrane, and by v the multiset which we intend to consume. We now have
w = v + v′ which links w and v, where ∀u → v ∈ R we have that u * v′. This
restriction assures us that we cannot apply a rule with the remaining contents of
the membrane. In the knapsack problem an item can be used only once, but in
membrane systems, because of maximal parallelism, a rule can be applied several
times to all objects which it can process. Thus we need to define for every rule
a “class” of items which represent all the possible ways in which a rule could be
used. We denote by W the set of items defined; thus we have |W | ≤ c · |R|. The
profit of an object is defined as the number of symbols it consumes – because we
are interested in consuming as many symbols as possible. The transformation f
can be computed in polynomial time with respect to |w|.

In the first stage we transform an instance of the resource allocation problem
to an instance of the knapsack problem by using the function f . Then we solve the
created instance, and obtain the rules which can be applied in parallel, together
with the multiplicity of each rule. We can now express the computational com-
plexity of each stage with respect to the input, represented by the multiset of the
membrane.

For the first stage we need to express a relation between the number of objects
created and the size of the multiset. From equations (6) we have that each ui → vi

rule can introduces a maximum of |w|
|ui| objects. Summing these relations for each

rule we have that:

n ≤
|R|∑

i=1

|w|
|ui| = |w|

|R|∑

i=1

1
|ui|

Note that
∑|R|

i=1
1
|ui| is a constant associated with the membrane, because the

rules of a membrane do not change in the process of evolution. We denote this
constant with S, and have that n ≤ |w| · S. Thus the complexity of this stage is
O(n) = O(|w| · S).

For the second stage we use a pseudo-polynomial algorithm for knapsack with a
complexity of O(n · c), where n is the number of objects, and c is the capacity of
the knapsack. By using the relations (from the first stage) between the number
of objects and the capacity, we have that the second stage has a complexity of
O(|w| · S · |w|) = O(|w|2 · S).

118 G. Ciobanu, A. Resios

The third stage consists of applying the rules according to the solution from
the knapsack problem. Note that a maximal parallel evolution does not imply
a maximum profit. According to this, we chose nondeterministically a solution
that corresponds to such a behaviour. Using the knapsack algorithm we compute
all valid profits, so we need to chose only the ones which correspond to such an
evolution. To achieve this, we define for each symbol a minimum allowed profit
expressed as the difference between the multiplicity of the symbol from the input
multiset and the minimum multiplicity of a rule that uses the symbol. Formally,
pmin

a = w(a) − minu→v∈R{u(a)|u(a) > 0} + 1. We introduce a lower bound in
terms of profit, defined by summing the minimum allowed profit for each sym-
bol. This assures that no rule can be applied using the remaining multiset. We
know that for the pseudo-polynomial algorithm for knapsack we can retrieve the
selected objects in O(n), thus the complexity of this step is O(|w| ·S). During this
backtracking process we nondeterministically choose a rule that corresponds to
the object chosen. Thus we obtain a multiset of rules that corresponds to maximal
parallel evolution because no rule can be applied with the remaining contents and
the evolution is nondeterministic because of the way the rules were chosen.

Using the example in Section 4, we show how we can distribute 10a as 3 ·
3a(remaining 1a). Using equations (6) we obtain the items in Table 3. By applying
the knapsack algorithm we get the results in Table 4. In this case, the value of
pmin

a = 10 − 2 + 1 = 9. Using the recurrence relation defined in equation (1) we
obtain the items used of the solution. At each step i = 1, n we test whether the
item n− i+1 was included in the knapsack or not. According to pmin

a the starting
value can be 9 or 10. Suppose we start with the value 9. To test if object 7 was
used we find the maximum of f6(9) = 9 and f6(9−10)+10 = −∞. The maximum
is f6(9). We continue until we reach the f0 line.

i 1 2 3 4 5 6 7

wi 2 3 4 6 8 9 10
pi 2 3 4 6 8 9 10

Table 3. Items obtained using the transformation for the example in Section 4

This process is illustrated in Table 5, where X represents the remaining weight
in the knapsack, fi−1(X) and fi−1(X−wi)+pi represent the alternatives between
including or not the object and max represent the chosen value. The recurrence is
also illustrated in Table 6, where the value chosen at step i is highlighted with a
box and a subscript indicating the step. The solution is given by object 6 which has
weight 9 and profit 9. This object corresponds to the multiset of rules composed
of three times the rule with 3a as left-hand side. In conclusion, the algorithm tells
us we can apply the rule with 3a three times and process only 9a out of 10a.

Thus a complexity of a single evolution step for a membrane is

O(|w| · S) + O(|w|2 · S) + O(|w| · S).

Computational Complexity of Simple P Systems 119

X 0 1 2 3 4 5 6 7 8 9 10

f0 0 0 0 0 0 0 0 0 0 0 0
f1 0 0 2 2 2 2 2 2 2 2 2
f2 0 0 2 3 3 5 5 5 5 5 5
f3 0 0 2 3 4 5 6 7 7 9 9
f4 0 0 2 3 4 5 6 7 8 9 10
f5 0 0 2 3 4 5 6 7 8 9 10
f6 0 0 2 3 4 5 6 7 8 9 10
f7 0 0 2 3 4 5 6 7 8 9 10

Table 4. Solution to the knapsack instance in Table 3

i 7 6 5 4 3 2 1

X 9 9 0 0 0 0 0

fi−1(X) 9 9 0 0 0 0 0

fi−1(X − wi) + pi −∞ 9 −∞ −∞ −∞ −∞ −∞
max f6(9) f5(0) f4(0) f3(0) f2(0) f1(0) f0(0)

Table 5. The backtracking process

X 0 1 2 3 4 5 6 7 8 9 10

f0 0
7

0 0 0 0 0 0 0 0 0 0

f1 0
6

0 2 2 2 2 2 2 2 2 2

f2 0
5

0 2 3 3 5 5 5 5 5 5

f3 0
4

0 2 3 4 5 6 7 7 9 9

f4 0
3

0 2 3 4 5 6 7 8 9 10

f5 0
2

0 2 3 4 5 6 7 8 9 10

f6 0 0 2 3 4 5 6 7 8 9
1

10

f7 0 0 2 3 4 5 6 7 8 9
0

10

Table 6. Finding the solution to the knapsack instance in Table 3

After all membranes have evolved through these three stages, we need to dis-
tribute the resources produced by them to show how the multiset of each mem-
brane evolves. Thus we seek to find a relation between the contents of two con-
secutive configurations. Formally for two configurations C1 = (µ,wi1 , . . . , wik

),
C2 = (µ′, w′j1 , . . . , w

′
jl

), where C1 ⇒ C2 we need to express the relation between
w′jp

p = 1, l and wiqq ∈ 1, k. The contents of a membrane change from the applica-
tion of rules. Following the definition of a rule, we see that we have four different
situations for a new produced symbol: the symbol remains in the membrane, the
symbol goes to the parent membrane, the symbol goes to a specific membrane, and
the membrane dissolves passing all its contents to the parent. We know that µ′ is
obtained from µ by dissolving some of the membranes, thus l ≤ k. We introduce a
function t : 1, k → 1, l where t(p) = 1 if the membrane with label p from µ is not
dissolved and t(p) = 0 otherwise. We introduce the following notations:

120 G. Ciobanu, A. Resios

• walloc
i the multiset allocated by the resource allocator for membrane i;

• selected : N2 → N, selected(i, j) = k, where k ∈ {k ·uj | ∃uj → vj ∈ Ri ∧ wj =
k ·uj ∧ wj has been allocated to rule j} representing the number of times rule
uj → vj ∈ Ri has been selected by the resource allocator;

• where
i =

⋃{k · vj(ahere) · a | ∃uj → vj ∈ Ri ∧ k = selected(i, j)} representing
the multiset of objects produced by the selected rules which remain in i;

• win
i =

⋃{k · s · a | ∃uj → vj ∈ Rl ∧ k = selected(l, j) ∧ s = vj(aini
) +

vj(aout), i is the parent of l}} representing the multiset of objects which have
been produced by other membranes and have been transported to membrane
i;

• wdis
i =

⋃{w | ∃uj → vjδ ∈ Rl ∧ selected(l, j) > 0 ∧ w the contents of
l ∧ i is the parent of l} representing the multiset of objects produced by rules
which dissolve a membrane.

Thus we have the following relations:

w′jp
=

{
wjp

− walloc
jp

+ where
jp

+ win
jp

+ wdis
jp

, t(jp) = 1
0 , otherwise

(7)

This means that the local symbols are first transported, followed by the sym-
bols from other membranes, and finally the symbols produced by dissolving a
membrane. We do this in order to ensure that the produced symbols reach their
destination membrane. If we do not consider dissolution as the last operation, the
symbols that were supposed to reach other membranes would pass on to the parent
of the dissolving membrane.

6 Conclusion

In this paper we describe the computational complexity of the simple P system in
classical complexity theory, extending the approach shortly presented in [5]. We
show that the complexity of certain membrane systems called simple P systems can
be studied using the classical complexity theory. The evolution of such a system is
studied by using a resource allocator which solves the resource allocation problem
using a well-known combinatorial problem.

The allocation of the resources to the rules is an important step in the non-
deterministic and maximally parallel evolution of a simple P system. We consider
the static allocation of resources towards the parallel application of the rules, and
study the computational complexity of a subclass of P systems by reducing the
resource allocation problem to the knapsack problem.

Trading space for time (as many models of natural computing), one can show
that PMC = PSPACE, where PMC is the class of problems which can be solved
in polynomial time by P systems of a given type [8, 9]. Membrane computing brings
PSPACE to polynomial time in the sense that given a problem X ∈ PSPACE
there exists a deterministic Turing machine that constructs in polynomial time ΠX ,

Computational Complexity of Simple P Systems 121

a P system that solves X in polynomial time. Computing PSPACE in polynomial
time means that we have a family of membrane systems for a given PSPACE
problem such that the n-th membrane system solves the problem in polynomial
time for inputs of size less than or equal to n. Recently, Sosik and Rodriguez-Paton
provide a characterization of PSPACE by showing that confluent P systems with
active membranes solve in polynomial time exactly the class of problems PSPACE
[10].

References

1. O. Andrei, G. Ciobanu, D. Lucanu. A Rewriting Logic Framework for Operational
Semantics of Membrane Systems, Theoretical Computer Science vol. 373, 163-181,
2007.

2. O. Agrigoroaiei, G. Ciobanu. Rewriting Logic Specification of Membrane Systems
with Promoters and Inhibitors, to appear in Electronic Notes of Theoretical Computer
Science, 2008.

3. C.S. Calude, Gh. Păun. Bio-steps Beyond Turing. BioSystems vol.77, 175-194, 2004.
4. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez. Application of Membrane Computing,

Springer, 2006.
5. G. Ciobanu, M. Gontineac. Mealy Membrane Automata and P Systems Complexity.

In M.A.Gutierrez-Naranjo, Gh.Păun, M.J.Perez-Jimenez (Eds.): Cellular Computing;
complexity aspects, ESF PESC Exploratory Workshop, Fenix Editora, Sevilla, 149-
164, 2005.

6. T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms, MIT Press,
1990.

7. Gh. Păun. Membrane Computing. An Introduction, Springer, 2002.
8. Gh. Păun. P Systems with Active Membranes: Attacking NP Complete Problems,

J. Autom. Lang. Comb. vol.6(1), 75-90, 2001.
9. M. Perez Jimenez, A.R. Jimenez, F. Sancho-Caparrini. Complexity Classes in Models

of Cellular Computing with Membranes, Natural Computing vol.2, 265-285, 2003.
10. P. Sosik, A. Rodriguez-Paton. Membrane Computing and Complexity Theory: A

characterization of PSPACE. Journal of Computer and System Sciences vol 73(1),
137-152, 2007.

