
Towards a P Systems Normal Form

Preserving Step-by-step Behavior

Roberto Barbuti1, Andrea Maggiolo-Schettini1, Paolo Milazzo1, Simone Tini2

1 Dipartimento di Informatica, Università di Pisa
Largo Pontecorvo 3, 56127 Pisa, Italy

2 Dip. di Scienze della Cultura, Politiche e dell’Informazione
Università dell’Insubria
Via Valleggio 11, 22100 Como, Italy

Summary. Starting from a compositional operational semantics of transition P Systems
we have previously defined, we face the problem of developing an axiomatization that is
sound and complete with respect to some behavioural equivalence. To achieve this goal,
we propose to transform the systems into a unique normal form which preserves the
semantics. As a first step, we introduce axioms which allow the transformation of mem-
brane structures with no dissolving rules into flat membranes. We discuss the problems
which arise when dissolving rules are allowed and we suggest possible solutions. We leave
as future work the further step that leads to the wanted normal form.

1 Introduction

We have recently defined a compositional operational semantics of P Systems as a
labeled transition system (LTS) [2]. The class of P Systems we have considered are
the so called transition P Systems with dissolving rules and without restrictions on
evolution rules. In the definition of the semantics, P Systems are seen as reactive

systems, namely as systems that can receive stimuli from an environment and can
react to these stimuli, possibly by sending some reply back to the environment. In
particular, membranes are seen as the entities that can receive stimuli, in terms
of objects, from an environment. The environment of a membrane can be another
membrane containing it and having some rules which send objects into it. As an
environment of a membrane we consider also other membranes possibly contained
in it and having some rules which send objects out. The objects received by a
membrane from the environment could enable the application of some rules of
the membrane that eventually could send some objects back to the environment,
namely to outer and inner membranes.

The LTS we have defined allows us to observe the behavior of membranes
in terms of objects sent to and received from inner and external membranes. A
state of the LTS is a configuration of the considered P System, and a transition

22 R. Barbuti et al.

from a state to another describes an execution step of the P System, in which
rules are applied according to maximal parallelism in all the membranes of the
system. Transitions are labeled with the multiset of objects received from the
environment, the multiset of objects sent to outer membranes, and the multiset of
objects sent to inner membranes in the described execution step. Other information
carried by labels is needed to build the LTS in a compositional way. This means
that the semantics of a complex system can be inferred from the semantics of its
components.

In [2] we have proved that some well–known behavioural equivalences such
as trace equivalence and bisimulation defined on our LTS are congruences. This
means that if we can prove that a membrane system that is a component of some
bigger system is behaviourally equivalent to another membrane system, then the
former can be replaced with the latter in the bigger system without changing the
global behaviour. In other words, there exists no environment in which the bigger
system with the original component reacts differently to stimuli with respect to
the same system with the replaced component.

Behavioural equivalences are powerful analysis tools as they allow us to com-
pare the behaviours of two systems and to verify properties of a system by as-
sessing the equivalence between such a system and another one known to satisfy
those properties. However, proving behavioural equivalence is not easy because the
semantics of a system often consists of infinite states and infinite transitions. For
this reason, it is usually important to find an axiomatization of some behavioural
equivalence, namely a sound and complete characterization of the equivalence in
terms of axioms on the syntax of systems. In this way the equivalence between two
systems could be proved by showing that there exists a sequence of applications of
such axioms that transform one system into the other. This allows the proof of the
equivalence to be performed without considering the (possibly complex) semantics
of the compared systems, and this usually favors the development of tools for the
comparison of systems.

We would like to define a sound and complete axiomatization of the semantics
we have given in [2]. It is not easy to prove soundness and completeness of an
axiomatization, namely that axioms relate behaviorally equivalent systems and
that all behaviourally equivalent systems are in the relation characterized by the
axioms. In particular, completeness proof is usually difficult. What can help to
prove this result is a notion of normal form to which all the considered systems
can be reduced. This could allow the set of axioms to be split into two subsets: one
consisting of the axioms that can be used to bring the systems into their normal
form and the other consisting of axioms that relate systems in normal form. This,
in turn, could allow the proof of completeness to be simplified by considering only
the axioms in the second set.

In this paper we perform the first steps towards the definition of a normal
form for P Systems preserving behavioural equivalences. In particular, we face the
problem of determining the membrane structure of the normal form of a system.
We start by considering P Systems without dissolving rules, and we show, by

Towards a P Systems Normal Form Preserving Step-by-step Behavior 23

giving a few axioms, that any P System in this class can be transformed into an
equivalent P System consisting of one only membrane (a flat system). In order
to obtain this result we slightly enrich the membranes of a P System, namely we
associate with each membrane an interface, that is a set of objects that are allowed
to be received by the membrane from the environment.

We also discuss the problem of considering P Systems containing dissolving
rules. We show that in this case it is no longer possible to find an equivalent flat
form, but we discuss how an alternative “standard” form can be reached.

Related work

Operational semantics for P Systems have been proposed in [1, 5, 6, 8]. All these
semantics are not compositional and have no notion of observable behavior. In
fact, they have not been defined with the aim of developing behavioural equiva-
lences. In particular, [1] aims at simplifying the development of an interpreter of P
Systems proved to be correct, [5] aims at proving the decidability of the divergence
problem for the considered variant of P Systems, [6] aims at describing the causal
dependencies occurring between applications of rules of a P System, and in [8] a
formal framework is proposed to describe a large number of variants of P Systems.

The flattening result we obtain by considering P Systems without dissolving
rules is similar to the result given in [3], where a notion of computational en-

coding is introduced and used to show that n–PBR Systems (PBR Systems with
n > 0 membranes) can be simulated by 0–PBR Systems (PBR Systems with no
membranes). We refer the reader to [4] for an introduction to PBR Systems. The
difference between the result given in [3] and ours is that the axioms we give to
transform a P System into its flat form is proved to preserve our compositional
semantics, hence it is sound with respect to any behavioural equivalence. The
flat system we obtain can replace the original one in any bigger system without
changing the global behaviour.

Another normal form of P Systems is introduced in [9], where it is shown that
any P System of grade k (namely, in which the depth of the membrane nesting tree
is k) consisting of a composition of n membranes can be reduced to an equivalent
P System of grade 2 with the same number of membranes. In this case the P
System in normal form is equivalent to the original one in the sense that it can
generate the same language, where a word of the language is the concatenation of
the objects sent outside the skin membrane during the execution of the system.
This means that the original system and the one in normal form can be considered
as equivalent even if one of the two performs additional steps in which no objects
are sent out of the skin. The notion of equivalence we consider here, instead, is
stronger. In fact, in order to ensure that a system in normal form can always
replace its original system in any context, we need to require that the two systems
are step–by–step equivalent.

24 R. Barbuti et al.

2 The P Algebra: Syntax and Semantics

In this section we recall the P Algebra, the algebraic notation of P Systems we
have introduced in [2]. Constants of the P Algebra correspond to single objects or
single evolution rules, and they can be composed into membrane systems by using
operations of union, containment in a membrane, juxtaposition of membranes, and
so on. Terms of the P Algebra are the states of the LTS.

We assume that objects belong to an alphabet V , and we assume the usual
string notation to represent multisets of objects. For instance, to represent
{a, a, b, b, c} we may write either aabbc, or a2b2c, or (ab)2c. We denote multiset
(and set) union as string concatenation, hence we write u1u2 for u1 ∪ u2. For the
sake of readability, we shall write u → vhvo{vli} for the generic non–dissolving
evolution rule u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln), and u → vhvo{vli}δ
for the similar generic dissolving evolution rule.

The abstract syntax of the P Algebra is defined as follows.

Definition 1 (P Algebra). The abstract syntax of membrane contents c, mem-
branes m, and membrane systems ms is given by the following grammar, where l

ranges over IN and a over the set of object names V :

c ::= (∅, ∅)
∣

∣ (u → vhvo{vli}, ∅)
∣

∣ (u → vhvo{vli}δ, ∅)
∣

∣ (∅, a)
∣

∣ c ∪ c

m ::= [l c]l

ms ::= m
∣

∣ ms | ms
∣

∣ µ(m,ms)
∣

∣ v

A membrane content c represents a pair (R, u), where R is a set of evolution
rules and u is a multiset of objects. A membrane content is obtained through
the union operation ∪ from constants representing single evolution rules and
constants representing single objects, and can be plugged into a membrane with
label l by means of the operation [l]l of membranes m. As a consequence, given
a membrane content c representing the pair (R, u) and l ∈ IN, [l c]l represents
the membrane having l as label, R as evolution rules and u as objects. For the
sake of simplicity, we shall usually write (R1R2, u1u2) for (R1 u1)∪ (R2, u2), [l u]l
for [l (∅, u)]l and [l u1 → vh1vo1{vli1}, . . . , u1 → vhnvon{vlin}, u]l for [l (R, u)]l if
R = {u1 → vh1vo1{vli1}, . . . , u1 → vhnvon{vlin}}.

Membrane systems ms have the following meaning: ms1 | ms2 represents the
juxtaposition of ms1 and ms2, µ(m,ms) represents the hierarchical composition
of m and ms, namely the containment of ms in m, and v represents the dissolved

membrane. Juxtaposition is used to group sibling membranes, namely membranes
all having the same parent in a membrane structure. This operation allows hier-
archical composition µ to be defined as a binary operator on a single membrane
(the parent) and a juxtaposition of membrane (all the children) rather than on
n + 1 membranes, for any possible number of children n. Finally, the dissolved
membrane v will be used in the definition of the LTS to denote the state of a
membrane after the application of one of its dissolving rules.

Towards a P Systems Normal Form Preserving Step-by-step Behavior 25

�

	

�

�

	

�1

2

a → (aa, here)

c

a → (a, here)

ac → (a, out)δ

a → (cd, out)

e → (a, in2)

e

Fig. 1. An example of P System that may send out of the skin membrane a multiset of
objects cndn for any n ∈ IN.

As an example, the P System shown in Figure 1 corresponds to the following
membrane system:

µ([1 a → (cd, out) , e → (a, in2) , e]1 ,

[2 a → (aa, here) , a → (a, here) , ac → (a, out)δ , c]2) .

Moreover, a P System similar to the one shown in Figure 1, but in which membrane
1 contains also a membrane with label 3 containing, in turn, an object a and no
rules, corresponds to the following membrane system:

µ([1 a → (cd, out) , e → (a, in2) , e]1 ,

[2 a → (aa, here) , a → (a, here) , ac → (a, out)δ , c]2 | [3 a]3) .

The semantics of the P Algebra is given in terms of an LTS, namely a triple

(S,L, {
ℓ
−→ | ℓ ∈ L}), where S is a set of states, L is a set of labels, and

ℓ
−→⊆ S × S

is a transition relation for each ℓ ∈ L. As usual, we write s
ℓ
−→ s′ for (s, s′) ∈

ℓ
−→.

LTS labels can be of the following forms:

• (u,U, v, v′,M, I,O↑, O↓), describing a computation step performed by a mem-
brane content c, where:
– u is the multiset of objects consumed by the application of evolution rules

in c, as it results from the composition, by means of ∪ , of the constants
representing these evolution rules.

– U is the set of multisets of objects corresponding to the left hand sides of
the evolution rules in c.

– v is the multiset of objects in c offered for the application of the evolution
rules, as it results from the composition, by means of ∪ , of the con-
stants representing these objects. When operation [l]l is applied to c, it
is required that v and u coincide.

– v′ is the multiset of objects in c that are not used to apply any evolution
rule and, therefore, are not consumed, as it results from the composition, by
means of ∪ , of the constants representing these objects. When operation

26 R. Barbuti et al.

[l]l is applied to c, it is required that no multiset in U is contained in
v′, thus implying that no evolution rule in c can be further applied by
exploiting the available objects. This constraint is mandatory to ensure
maximal parallelism.

– M contains a membrane label l if some evolution rule in c is not applied
since its firing would imply sending objects to some child membrane labeled
l, but no child membrane labeled l exists. When the operation µ is applied
to ([l′c]l′ ,ms), for any membrane system ms and membrane label l′, it is
required that l is not a membrane in ms.

– I is the multiset of objects received as input from the parent membrane
and from the child membranes.

– O↑ is the multiset of objects sent as an output to the parent membrane.
– O↓ is a set of pairs (li, vli) describing the multiset of objects sent as an

output to each child membrane li.
• (M, I, O↑, O↓), describing a computation step performed by a membrane sys-

tem ms, where: I is a set of pairs (li, vli) describing the multiset of objects
received as an input by each membrane li in ms, and M , O↑ and O↓ are as in
the previous case.

Components I, O↓, O↑ in labels of the first form, and components I, O↓, O↑ in
labels of the second form, describe the input/output behavior of P Algebra terms,
namely what is usually considered to be the observable behavior. Labels of the
first form are more complex since u,U, v, v′ are needed to infer the behavior of
membrane contents compositionally. For the same reason M is used in both forms
of labels.

Now, LTS transitions are defined through SOS transition rules of the form
premises

conclusion
, where the premises are a set of transitions, and the conclusion is a tran-

sition. Intuitively, SOS transition rules permit us to infer moves of P Algebra terms
from moves of their subterms. Rules of the semantics are given in Appendix A.

3 Flattening Systems without Dissolving Rules

c→ (c, in3)

2

a→ (b, out)

3

c→ (a, out)

c→ (c3, here)

2

a→ (b, out)

c3
c3 → (a, here)

c
ac

ac

Fig. 2. An example of flattening of a P System without dissolving rules.

Towards a P Systems Normal Form Preserving Step-by-step Behavior 27

c→ (c, in3)

2:abc

a→ (b, out)

3:abc

c→ (a, out)

c→ (c3, here)
a→ (b, out)

c3
c3 → (a, here)

c

ac

ac

2:abc

Fig. 3. An example of flattening of a P System without dissolving rules in which mem-
branes are enriched with interfaces.

As shown in [3], any transition P System with a fixed membrane structure (i.e.
without dissolving rules) can be reduced to a flat form in which the membrane
structure consists only of one membrane. If we assume that membrane labels of a P
System are unique, this result can be obtained by moving objects and rules of inner
membranes into the external membrane, after suitable renaming. An example of
application of this technique is shown in Figure 2. However, the behaviour of the
flat membrane is the same as the behaviour of the original membrane structure
only under the assumption that the membrane cannot receive any object from the
external environment. In fact, if the external environment could send to the flat
membrane an object that is the renaming of some object originally in an inner
membrane, this could enable the application of some rules among those that have
been added to the external membrane by the flattening technique. In the example
of the figure, if the environment could send an object c3 inside the membrane on
the right, this would enable the application of rule c3 → (a, here) which would
result, after one more step, in the output of a b that would not be sent out by the
original system.

To solve this problem we consider a slightly extended variant of P Systems
in which each membrane is enriched with an interface, namely a set of objects
representing the only objects that can be received from the environment. This
means that if in the environment of a membrane there is a rule willing to send into
it some objects that are not in the corresponding interface, then such a rule will
never be applicable. Note that this extension is rather conservative, namely it is
always possible to find a set of objects large enough to ensure that the behaviour
of a P System extended with interfaces is the same as the intended behaviour of
the original P System. As an example, in Figure 3 we extend the P Systems of
Figure 2 with interfaces (placed together with membrane labels), and we obtain
that in this case the behaviour of the two systems is really the same, as now the
environment cannot send c3 into the external membrane.

Now we formally define the syntax of the P Algebra extended with interfaces
on membranes. The main difference with respect to the original syntax, given in
Definition 1, is that the operation [l]l of membranes m is extended with a set
of objects i. Moreover, since we aim at introducing a notion of flat membrane,

28 R. Barbuti et al.

namely a membrane which cannot have inner membranes, we extend the syntax of
the P Algebra also with a new operation [[l]]il denoting a membrane that cannot
be used as the first operand of a µ(,) operation.

Definition 2 (P Algebra with Interfaces). The abstract syntax of membrane
contents c, membranes m, and membrane systems ms is given by the following

grammar, where l ranges over IN, a over V and i ⊆ V :

c ::= (∅, ∅)
∣

∣ (u → vhvo{vli}, ∅)
∣

∣ (u → vhvo{vli}δ, ∅)
∣

∣ (∅, a)
∣

∣ c ∪ c

m ::= [l c]il

ms ::= m
∣

∣ ms | ms
∣

∣ µ(m,ms)
∣

∣ [[l c]]il
∣

∣ v

We also give the formal definition of the semantics of the P Algebra extended
with interfaces on membranes. The main difference with respect to the original
semantics is that the objects that can be received as an input by a membrane
must belong to the interface of the membrane itself. Moreover, the new semantics
has also to describe the behaviour of the new operation [[l]]il. Formally, the SOS
rules of the semantics of the P Algebra with Interfaces can be defined by starting
from those given in Appendix A. In order to describe the behaviour of interfaces
we replace rules (m1) and (m2) with the following four rules:

x
M,∅,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ 6∈ O↑

[l x]il
M,∅,O↑,O↓

−−−−−−−→ [l y]il

(m1′)

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ 6∈ O↑ Set(I) ⊆ i I 6= ∅

[l x]il
M,(l,I),O↑,O↓

−−−−−−−−−→ [l y]il

(m1′′)

x
M,∅,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ ∈ O↑

[l x]il
M,∅,O↑,O↓

−−−−−−−→ v

(m2′)

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ ∈ O↑ Set(I) ⊆ i I 6= ∅

[l x]il
M,(l,I),O↑,O↓

−−−−−−−−−→ v

(m2′′)

where Set(I) is the underlying set of multiset I, namely the set of all the objects
occurring in I. The rules (m1′) and (m1′′) replace the old rule (m1). Here we
distinguish the case I = ∅ and the case I 6= ∅, since we prefer to have ∅ instead
of (l, ∅) in the label component showing inputs received from the environment.
Finally, in order to describe the behaviour of flat membranes we add the following
four rules:

Towards a P Systems Normal Form Preserving Step-by-step Behavior 29

x
M,∅,O↑,∅
−−−−−−−→

u,U,u,v′
y δ 6∈ O↑

[[l x]]il
M,∅,O↑,∅
−−−−−−−→ [[l y]]il

(fm1′)

x
M,I,O↑,∅
−−−−−−→

u,U,u,v′
y δ 6∈ O↑ Set(I) ⊆ i I 6= ∅

[[l x]]il
M,(l,I),O↑,∅
−−−−−−−−→ [[l y]]il

(fm1′′)

x
M,∅,O↑,∅
−−−−−−−→

u,U,u,v′
y δ ∈ O↑

[[l x]]il
M,∅,O↑,∅
−−−−−−−→ v

(fm2′)

x
M,I,O↑,∅
−−−−−−→

u,U,u,v′
y δ ∈ O↑ Set(I) ⊆ i I 6= ∅

[[l x]]il
M,(l,I),O↑,∅
−−−−−−−−→ v

(fm2′′)

Notice that rules for [[l x]]il require that the multiset of objects sent to inner
membranes (fourth component of the label) is empty.

The new semantics rules, similarly to all the other rules of the semantics,
respect the constraints of the well–known de Simone format [7] which ensures
that all the behavioural equivalences considered in [2] are congruences.

Now, the flattening technique for systems without dissolving rules can be ex-
pressed be means of axioms. We first give some basic axioms on the commutativity
and associativity of the operations of the P Algebra and on simple properties of
membranes with empty interfaces and of flat membranes.

Definition 3 (Basic axioms). The basic axioms are the following:

c1 ∪ c2 = c2 ∪ c1 (∪1)

c1 ∪ (c2 ∪ c3) = (c1 ∪ c2) ∪ c3 (∪2)

ms1 | ms2 = ms2 | ms1 (|1)

ms1 | (ms2 | ms3) = ms1 | (ms2 | ms3) (|2)

[l1 c]∅l1 = [l2 c]∅l2 (if1)

ms = ms | [l R, ∅]∅l (if2)

[[l1 c]]∅l1 = [[l2 c]]∅l2 (if3)

ms = ms | [[l R, ∅]]∅l (if4)

[[l1 c]]il1 = µ
(

[l1 c]il1 , [l2 R, ∅]∅l2
)

(fm1)

[[l1 c]]il1 = µ
(

[l1 c]il1 , [[l2 R, ∅]]∅l2
)

(fm2)

30 R. Barbuti et al.

The first four axioms state commutativity and associativity of union of mem-
brane contents and juxtaposition of membrane systems. Axiom (if1) states that
if a membrane has empty interface then its name l1 can be changed into l2. The
reason is that l1 cannot receive any object from any outer membrane, and any
evolution rule sending objects to l1 is never applicable. Axioms (if2) and (fm1)
state that a membrane with no object and with empty interface can be juxtaposed
with any membrane system or inserted inside another membrane, since its rules
are never applicable. Axioms (if3), (if4) and (fm2) are the same as (if1), (if2)
and (fm1), respectively, but dealing with flat membranes.

The flattening technique we are going to define is based on renaming of ob-
jects. In the example of Figure 3, the object c contained in membrane 3 is re-
named into c3 when it is moved to membrane 2 in order to distinguish it from
the other object c that occurs in membrane 2. Consequently, rules of membranes
2 and 3 have to be modified before merging them in membrane 2 resulting from
flattening. For this reason, we define two functions FlatIn and FlatOut. The for-
mer gives the result of the renaming of the rules of the membrane that is re-
moved by the flattening. The latter gives the result of the renaming of the rules
of the membrane which contains the one that is removed. In order to avoid
ambiguities, in the definitions of FlatIn and FlatOut we shall use the notation
u → (vh, here)(vo, out)(vl1 , inl1) . . . (vln , inln) for evolution rules rather than the
more compact notation u → vhvo{vli}.

We assume that the alphabet V is partitioned as follows: V = V ∪(
⋃

L∈IN+ VL),

where V is the set of all objects without subscripts and VL is the set obtained by
adding L ∈ IN+ as a subscript to each object of V . In other words, if V = a, b, c, . . .,
then V1 = a1, b1, c1, . . ., V1·2 = a1·2, b1·2, c1·2, . . . and so on. Moreover, let Rid(u, l)
denote the multiset obtained by replacing each occurrence of each object aL in u

with an occurrence of object aL·l. For example, Rid(aabccc, 3) = a3a3b3c3c3c3 =
a2
3b3c

3
3, and Rid(aa1bb2, 3) = a3a1·3b3b2·3. The functions FlatIn and FlatOut are

defined as follows:

FlatIn (u → (vh, here)(vo, out)(vl1 , inl1) . . . (vln , inln) , l) =

Rid(u, l) → (Rid(vh, l)vo, here)(∅, out)(vl1 , inl1) . . . (vln , inln)

FlatOut (u → (vh, here)(vo, out)(vl1 , inl1) . . . (vli , inli) . . . (vln , inln) , li) =

u → (vhRid(vli , li), here)(vo, out)(vl1 , inl1) . . . (∅, inli) . . . (vln , inln)

Both FlatIn and FlatOut take a rule and a membrane label as arguments, and
give a new rule as result. In both cases the membrane label represents the label
of the membrane that is removed by the flattening. In the first case such a label
(denoted l) should not occur in the evolution rule, as the rule is assumed to be
one of those of the inner membrane involved in the flattening. In the second case
the label certainly occurs in the evolution rule (in fact it is denoted li) as the rule
is assumed to be one of those of the outer membrane involved in the flattening.
With abuse of notation we shall write FlatIn(R, l) for {FlatIn(r, l) | r ∈ R}, and
FlatOut(R, l) for {FlatOut(r, l) | r ∈ R}.

Towards a P Systems Normal Form Preserving Step-by-step Behavior 31

Now, the flattening technique is expressed by means of the following axioms.

Definition 4 (Flattening axioms). Let R1 and R2 be sets of evolution rules

containing no dissolving rule, and let R1 and u1 contain no objects in VL·l2 . The

flattening axioms are the following:

ms 6= v VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1]i1l1 , [l2 R2, u2]i2l2 | ms
)

= µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2)]i1l1 , ms

) (f1)

ms 6= v VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | ms
)

= µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2)]i1l1 , ms

) (f2)

VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1]i1l1 , [l2 R2, u2]i2l2
)

= [[l1 R
′
1R

′
2 , u1Rid(u2, l2)]]i1l1

(f3)

VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2
)

= [[l1 R
′
1R

′
2 , u1Rid(u2, l2)]]i1l1

(f4)

1:abe

2:abe

a→ (b, out)

e

3:abe

4:abe

e→ (e, out)
e

ea→ (e, here)(b, out)

b→ (b, out)

ea→ (e, here)(a, in2)(a, in3)

Fig. 4. An example of P System.

As an example, let us consider the P System in Figure 4 which corresponds to the
P Algebra term t = µ(m1 , m2 | µ(m3,m4)) where:

m1 = [1 R1, e]abe
1 with R1 = {ea → (e, here)(a, in2)(a, in3) , b → (b, out)}

m2 = [2 R2, ∅]abe
2 with R2 = {a → (b, out)}

m3 = [3 R3, ∅]abe
3 with R3 = {ea → (e, here)(b, out)}

m4 = [4 R4, e]abe
4 with R4 = {e → (e, out)} .

Now, we have that

32 R. Barbuti et al.

µ(m3,m4)
(f3)
= [[3 FlatOut(R3, 4)FlatIn(R4, 4) , ∅Rid(e, 4)]]abe

3

= [[3 ea → (e, here)(b, out) , e4 → (e, here) , e4]]abe
3 .

Let us denote with fm3 the flat membrane we have obtained. Now, we can go on
applying axioms as follows:

t = µ(m1 , m2 | µ(m3,m4)) = µ(m1 , m2 | fm3)

(f1)
= µ([1 FlatOut(R1, 2)FlatIn(R2, 2) , eRid(∅, 2)]abe

1 ,

[[3 ea → (e, here)(b, out) , e4 → (e, here) , e4]]abe
3)

= µ([1 ea → (ea2, here)(a, in3) , b → (b, out) , a2 → (b, here) , e]abe
1 ,

[[3 ea → (e, here)(b, out) , e4 → (e, here) , e4]]abe
3)

(f4)
= [[1 ea → (ea2a3, here) , b → (b, out) , a2 → (b, here) ,

e3a3 → (e3, here)(b, out) , e43 → (e3, here) , ee43]]abe
1 .

Proposition 1 (soundness). The portions of the LTS that are rooted in terms

equated by axioms (f1)–(f4) are isomorphic.

Proof. We start with the proof for (f1). We prove that the portion of the LTS
rooted in µ

(

[l1 R1, u1]i1l1 , [l2 R2, u2]i2l2 | ms
)

is isomorphic to a part of the portion

of the LTS rooted in µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2)]i1l1 , ms

)

. More precisely, we prove

that, given any transition µ
(

[l1 R1, u1]i1l1 , [l2 R2, u2]i2l2 | ms
) l
→ t, for any term t,

then there is a transition µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2)]i1l1 , ms

) l
→ t′ such that t and

t′ are equated by the same axiom (f1).
Take any transition from µ

(

[l1 R1, u1]i1l1 , [l2 R2, u2]i2l2 | ms
)

. Such a transition
must be inferred from a transition of each of its three components. These three
transitions have the following shape:

[l1 R1, u1]i1l1
M1,{(l1,I1)},O

↑

1
,O

↓

1−−−−−−−−−−−−−→ [l1 R1, u
′
1]i1l1 (1)

[l2 R2, u2]i2l2
M2,{(l2,I2)},O

↑

2
,∅

−−−−−−−−−−−−→ [l2 R2, u
′
2]i2l2 (2)

ms
M,I,O↑,∅
−−−−−−→ ms′ (3)

Then, transitions (2) and (3) originate transition

[l2 R2, u2]i2l2 | ms
∅,{(l2,I2)}I,O

↑

2
O↑,∅

−−−−−−−−−−−−−−→ [l2 R2, u
′
2]i2l2 | ms′ (4)

by semantic rule (jux1). The transition from µ
(

[l1 R1, u1]i1l1 , [l2 R2, u2]i2l2 | ms
)

is
inferred through semantic rule (h1) from (1) and (4) and takes the shape:

Towards a P Systems Normal Form Preserving Step-by-step Behavior 33

µ
(

[l1 R1, u1]i1l1 , [l2 R2, u2]i2l2 | ms
)

∅,{(l1,I1\(O
↑O

↑

2
)},O

↑

1
,∅

−−−−−−−−−−−−−−−−→

µ
(

[l1 R1, u
′
1]i1l1 , [l2 R2, u

′
2]i2l2 | ms′

)

(5)

provided that:

1. O
↓
1 ≏ I ∪ {(l2, I2)};

2. O↑O
↑
2 ⊆ I1.

Note that the first constraint above implies that there exists some O
′↓
1 such that

O
↓
1 = {(l2, I2)} ∪ O

′↓
1 (6)

Now, (1) can be inferred through (m1′) or (m1′′). The two cases are similar, let
us assume the case (m1′). Analogously, let us assume that (2) is inferred through
semantic rule (m2′). The two originating transitions have the shape:

(R1, u1)
M1,I1,O

↑

1
,{(l2,I2)}∪O

′↓

1−−−−−−−−−−−−−−−→
v1,U1,v1,v′

1

(R1, u
′
1) (7)

(R2, u2)
M2,I2,O

↑

2
,∅

−−−−−−−−→
v2,U2,v2,v′

2

(R2, u
′
2) (8)

for suitable values v1, U1, v
′
1, v2, U2, v

′
2.

Notice that this implies that Set(I1) ⊆ i1. From (7) we infer

(R′
1, u1)

M1,I
↑

1
,O

↑

1
,O

′↓

1−−−−−−−−−→
v1,U1,v1,v′

1

(R′
1, u

′
1 \ (Rid(I2, l2))) (9)

By removing input O
↑
2 we infer

(R′
1, u1)

M1,I1\O
↑

2
,O

↑

1
,O

′↓

1−−−−−−−−−−−→
v1,U1,v1,v′

1

(R′
1, u

′
1 \ (O↑

2Rid(I2, l2))) (10)

From (8) we infer:

(R′
2,Rid(u2, l2))

M2,∅,∅,∅
−−−−−−−→
v̂2,Û2,v̂2,v̂′

2

(R′
2,Rid(u′

2 \ I2, l2)O
↑
2) (11)

where v̂2, Û2, v̂2 denote Rid(v2, l2), Rid(U2, l2), Rid(v′
2, l2), respectively.

Through semantic rule (u1), from (10) and (11) we infer

(R′
1R

′
2, u1Rid(u2, l2))

M1M2,I1\O
↑

2
,O

↑

1
,O

′↓

1−−−−−−−−−−−−−→
v1v̂2,U1⊕Û2,v1v̂2,v′

1
v̂′
2

(R′
1R

′
2, u

′
1Rid(u′

2, l2)) (12)

By applying semantic rule (m1), which is applicable since Set(I1) ⊆ i1, we infer:

34 R. Barbuti et al.

[l1 R
′
1R

′
2, u1Rid(u2, l2)]i1l1

M1M2,{(l1,I1\O
↑

2
)},O

↑

1
,O

′↓

1−−−−−−−−−−−−−−−−−−→ [l1 R
′
1R

′
2, u

′
1Rid(u′

2, l2)]i1l1 (13)

We already know that O
↓
1 ≏ I ∪ {(l2, I2)}, O↑O

↑
2 ⊆ I1 and O

↓
1 = {(l2, I2)} ∪ O

′↓
1 .

Therefore, O
′↓
1 ≏ I and O↑ ⊆ I1 \ O

↑
2 . So, we can apply the semantic rule (h1) to

infer that (3) and (13) originate

µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2)]i1l1 , ms

)

∅,{(l1,I1\O↑O
↑

2
)},O

↑

1
,∅

−−−−−−−−−−−−−−−→

µ
(

[l1 R
′
1R

′
2, u

′
1Rid(u′

2, l2)]i1l1 , ms′
)

. (14)

Summarizing, we have proved that if we take any transition from term
µ

(

[l1 R1, u1]i1l1 , [l2 R2, u2]i2l2 | ms
)

we have a corresponding transition from term

µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2)]i1l1 , ms

)

, where the two transitions have the same label
and have terms related by axiom (f1) in the right side.

The converse is similar, with the use of premise VL·l2 ∩ i1 = ∅.
The proof of the case of axiom (f2) is the same as the one of axiom (f1),

but for minor differences in transition labels. Moreover, the cases of axioms (f3)
and (f4) are analogous to the case of (f1) and (f2), respectively, thanks to ba-
sic axioms that allow us to rewrite the term [[l1 R

′
1R

′
2 , u1Rid(u2, l2)]]i1l1 as the

term µ
(

[l1 R
′
1R

′
2 , u1Rid(u2, l2)]i1l1 , [l ∅]∅l

)

and µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2
)

as

the term µ
(

[l1 R1, u1]i1l1 , [[l2 R2, u2]]i2l2 | [l ∅]∅l
)

.

Theorem 1. Any membrane system µ(m,ms) with multisets of objects and evolu-

tion rules built over V , without dissolving rules and with membranes having unique

labels, can be reduced to an equivalent flat membrane.

Proof. This can be proved by induction on the number of membrane nodes in the
membrane nesting tree of µ(m,ms). If the membrane nesting tree contains two
membranes, namely µ(m,ms) is either µ([l1 c1]l1 , [l2 c2]l2) or µ([l1 c1]l1 , [[l2 c2]]l2),
then the proof follows immediately from axioms (f3) and (f4). If the membrane
nesting tree contains more that two membranes, then the proof can be done by re-
sorting to the induction hypothesis after applying one of the axioms (f1), (f2), (f3)
and (f4) to one of the leaves of the tree.

Since the size of a term is always finite (and consequently the membrane nesting
tree is finite) the flat form is reached after a finite number of steps. The facts
that no dissolving rules are present, that multisets of objects and evolution rules
are built by using objects from V and that membranes are labeled with unique
labels, ensure that the assumptions and the premises of the axioms are always
satisfied. Finally, Proposition 1 ensures that all the applications of the flattening
axioms preserve the behaviour, hence the behaviour of the final flat membrane is
equivalent to the one of the original membrane system.

Towards a P Systems Normal Form Preserving Step-by-step Behavior 35

4 Problems that Arise with Dissolving Rules and Possible

Solutions

c → (c, in3)

2:abc

a → (b, out)

3:abc

c → (a, out)δ

c → (c3, here)|¬d

a → (b, out)

a3c3
c3 → (ad, here)|¬d

ac

ac

ac

2:abc

a3 → (b, out)|d

Fig. 5. Example of flattening in which the inner membrane contains a dissolving rule.

In the membrane obtained by our flattening technique, dissolution of a mem-
brane contained in another one has to be simulated. In general, when a dissolving
rule is applied in a membrane, we have that (i) the objects of such a membrane
become immediately available to the outer membrane, (ii) rules of such a mem-
brane disappear, and (iii) rules of the outer membrane which send objects to the
membrane that has been dissolved become no longer applicable.

One possible way of simulating dissolution is by replacing δ with a special
object d in every dissolving rule and using such a special object as a promoter or
inhibitor of some rules obtained by the flattening (after extending the syntax and
the semantics of the P Algebra to deal with promoters and inhibitors). This would
allow (ii) and (iii) to be simulated by using d as an inhibitor of those rules obtained
by the flattening and corresponding to the rules of the dissolved membrane and
to the rules sending objects to the dissolved membranes. Moreover, (i) can be
simulated by defining the flattening in such a way that the rules of the outer
membrane are copied with the objects they consume renamed, in order to allow
such rules to be applied to the objects representing the objects of the dissolved
membrane. These new rules should have d has a promoter.

We give a simple example of flattening with dissolution of inner membranes in
Figure 5. Here, the rule causing dissolution of membrane 3 is rewritten into a new
rule having objects renamed as described in the previous section and producing d.
Now, both the rule originally in 2 and sending objects to 3, and the rule originally
in 3 require that d has not yet been produced. Moreover, a new rule promoted by
d has been introduced to simulate that the objects originally in membrane 3 are
available in membrane 2 after its dissolution.

The flattening technique explained in the previous section cannot be applied
if the outer membrane contains a dissolving rule. As an example, let us consider
Fig. 6, where flattening is applied. We can provide a context in which the original
membrane system and the flat membrane behave differently (see Fig. 7). The point

36 R. Barbuti et al.

c→ (c, in3)

2:abc

a→ (b, out)δ

3:abc

c→ (a, out)

c→ (c3, here)
a→ (b, out)δ

c3c3 → (a, here)

c

ac

ac

2:abc

Fig. 6. Example of flattening in which the outer membrane contains a dissolving rule.

c→ (c, in3)

2:abc

a→ (b, out)δ

3:abc

c→ (a, out)

b→ (c3, here)
a→ (b, out)δ

c3

c3 → (a, here)

c

ab

ab

b→ (c, in3)

a→ (a, out)

c

c→ (c, in3)

2:abc

1:abc

a→ (a, out)

c

1:abc

eventually applied, leading

Here c→ (c, in3) can be

to an output of a after
a few steps.

be applied.

Here c→ (c, in3) cannot

Fig. 7. Example of context in which the two membranes systems in Figure 6 behave
differently.

is that the rule of membrane 1 sending object c to membrane 3 can be eventually
applied if and only if membrane 3 still exists after the dissolution of membrane 2.
In this case the only possible solution is to avoid flattening of membrane structures
in which the outermost membrane can be dissolved. As a consequence, a general
normal form for P Systems will have two shapes:

• If the external membrane of a membrane structure cannot be dissolved its
normal form is a single flat membrane that cannot be dissolved.

• If the external membrane of a membrane structure can be dissolved its normal
form is a structure consisting only of membranes that can be dissolved, but for
innermost membranes that might be non–dissolvable.

Towards a P Systems Normal Form Preserving Step-by-step Behavior 37

5 Conclusions and Future Work

We have faced the problem of defining a flattening technique for P Systems defined
by means of axioms on terms of the algebra of such systems we have introduced in
[2], the P Algebra, and preserving the semantics. We have formally defined such
a technique in the case of P Systems without dissolving rules. This has required
extending the syntax and the semantics of the P Algebra with a notion of inter-
face and with a notion of flat membrane, defining some axioms and proving that
these axioms preserve the semantics. We have discussed the problems that arise
when dissolving rules are taken into account, and we have proposed some possible
solutions to these problems.

Our long term aim is to define a normal form of P System. In order to reach
the normal form of a P System, in addition to apply our flattening technique we
would also need to transform rules and objects of such a system into some minimal
form. We believe that, given two systems in normal form, it will be possible to
check their equivalence as follows:

• if they are both flat, they should contain the same rules and objects, up to a
suitable renaming;

• if they are both non flat because the external membrane contain a dissolv-
ing rule (see Section 4), they should have the same membrane structure of
equivalent membranes.

Acknowledgments

This research has been partially supported by MiUR PRIN 2006 Project “Biolog-
ically Inspired Systems and Calculi and their Applications (BISCA)”. We thank
Pierluigi Frisco for interesting discussions.

References

1. O. Andrei, G. Ciobanu, D. Lucanu. A Rewriting Logic Framework for Operational
Semantics of Membrane Systems. Theoret. Comp. Sci. 373 (2007) 163–181.

2. R. Barbuti, A. Maggiolo–Schettini, P. Milazzo, S.Tini. Compositional Semantics
and Behavioral Equivalences for P Systems. Theoret. Comput. Sci., in press.

3. L. Bianco, V. Manca. Encoding–Decoding Transitional Systems for Classes of P
Systems. Workshop on Membrane Computing (WMC 2005), LNCS 3850, pp. 134–
143, Springer, 2006.

4. L. Bianco, F. Fontana, G. Franco, V. Manca. P Systems for Biological Dynamics.
In: Applications of Membrane Computing, Springer, Berlin, 2006.

5. N. Busi. Using Well–structured Transition Systems to Decide Divergence for Cat-
alytic P Systems. Theoret. Comput. Sci. 372 (2007) 125–135.

6. N. Busi. Causality in Membrane Systems. Workshop on Membrane Computing
(WMC 2007), LNCS 4860, pp. 160–171, Springer, 2007.

38 R. Barbuti et al.

7. R. de Simone. High Level Synchronization Devices in Meije-SCCS. Theoret. Com-
put. Sci. 37, pp. 245–267, 1985.

8. R. Freund, S. Verlan. A Formal Framework for Static (Tissue) P Systems. Work-
shop on Membrane Computing (WMC 2007), LNCS 4860, pp. 271–284, Springer,
2007.

9. I. Petre. A Normal Form for P-Systems. Bulletin of the EATCS 67 (1999) 165–172.

A Rules of the Operational Semantics

In this section we recall the rules of the operational sematics of the P Algebra
given in [2].

A.1 Rules for membrane contents

I ∈ V ∗ n ∈ IN

(u → vhvo{vli}, ∅)
∅,I,vn

o
,{(li,vn

li
)}

−−−−−−−−−−−→
un,{u},∅,∅

(u → vhvo{vli}, Ivn
h)

(mc1n)

I ∈ V ∗ n ∈ IN n > 0

(u → vhvo{vli}δ, ∅)
∅,I,Ivn

o
vn

h
δ,{(li,vn

li
)}

−−−−−−−−−−−−−−→
un,{u},∅,∅

v

(mc2n)

I ∈ V ∗

(u → vhvo{vli}δ, ∅)
∅,I,∅,∅
−−−−−→
∅,{u},∅,∅

(u → vhvo{vli}δ, I)
(mc3)

I ∈ V ∗ M ⊆ Labels({vli}) M 6= ∅

(u → vhvo{vli}, ∅)
M,I,∅,∅
−−−−−−→
∅,∅,∅,∅

(u → vhvo{vli}, I)
(mc4)

I ∈ V ∗ M ⊆ Labels({vli}) M 6= ∅

(u → vhvo{vli}δ, ∅)
M,I,∅,∅
−−−−−−→
∅,∅,∅,∅

(u → vhvo{vli}δ, I)
(mc5)

I ∈ V ∗

(∅, a)
∅,I,∅,∅
−−−−−→
∅,∅,a,∅

(∅, I)
(mc6)

I ∈ V ∗

(∅, a)
∅,I,∅,∅
−−−−−→
∅,∅,∅,a

(∅, Ia)
(mc7)

I ∈ V ∗

(∅, ∅)
∅,I,∅,∅
−−−−−→
∅,∅,∅,∅

(∅, I)
(mc8)

Towards a P Systems Normal Form Preserving Step-by-step Behavior 39

A.2 Rules for union of membrane contents

x1

M1,I1,O
↑
1

,O
↓
1−−−−−−−−−→

u1,U1,v1,v′
1

y1 x2

M2,I2,O
↑
2

,O
↓
2−−−−−−−−−→

u2,U2,v2,v′
2

y2
M1M2 ∩ Labels(O↓

1 ∪IN O
↓
2) = ∅

v′
1v

′
2 0 U1 ⊕ U2 δ 6∈ O

↑
1O

↑
2

x1 ∪ x2

M1M2,I1I2,O
↑
1

O
↑
2

,O
↓
1
∪INO

↓
2−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′
1
v′
2

y1 ∪ y2

(u1)

x1

M1,I1,O
↑
1

,O
↓
1−−−−−−−−−→

u1,U1,v1,v′
1

y1 x2

M2,I2,O
↑
2

,O
↓
2−−−−−−−−−→

u2,U2,v2,v′
2

y2
M1M2 ∩ Labels(O↓

1 ∪IN O
↓
2) = ∅

v′
1v

′
2 0 U1 ⊕ U2 δ ∈ O

↑
1 δ 6∈ O

↑
2

x1 ∪ x2

M1M2,I1I2,O
↑
1

O
↑
2

Objects(y2),O
↓
1
∪INO

↓
2−−−−−−−−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′
1
v′
2

v

(u2)

x1

M1,I1,O
↑
1

,O
↓
1−−−−−−−−−→

u1,U1,v1,v′
1

y1 x2

M2,I2,O
↑
2

,O
↓
2−−−−−−−−−→

u2,U2,v2,v′
2

y2
M1M2 ∩ Labels(O↓

1 ∪IN O
↓
2) = ∅

v′
1v

′
2 0 U1 ⊕ U2 δ ∈ O

↑
1 ∩ O

↑
2

x1 ∪ x2

M1M2,I1I2,O
↑
1

O
↑
2

,O
↓
1
∪INO

↓
2−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′
1
v′
2

v

(u3)

A.3 Rules for single membranes and juxtaposition of membranes

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ 6∈ O↑

[l x]l
M,{(l,I)},O↑,O↓

−−−−−−−−−−−→ [l y]l

(m1)

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ ∈ O↑

[l x]l
M,{(l,I)},O↑,O↓

−−−−−−−−−−−→ v

(m2)

x1

M1,I1,O
↑
1

,∅
−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2 δ 6∈ O

↑
1O

↑
2

x1|x2

∅,I1I2,O
↑
1

O
↑
2

,∅
−−−−−−−−−−→ y1|y2

(jux1)

x1

M1,I1,O
↑
1

,∅
−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2 δ ∈ O

↑
1 , δ 6∈ O

↑
2

x1|x2

∅,I1I2,(O
↑
1

O
↑
2
)−δ,∅

−−−−−−−−−−−−−→ y2

(jux2)

x1

M1,I1,O
↑
1

,∅
−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2 δ ∈ O

↑
1 ∩ O

↑
2

x1|x2

∅,I1I2,(O
↑
1

O
↑
2
),∅

−−−−−−−−−−−−→ v

(jux3)

40 R. Barbuti et al.

A.4 Rules for hierarchy of membranes

x1

M1,{(l1,I1)},O
↑
1

,O
↓
1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2

O
↓
1 ≏ I2 O

↑
2 ⊆ I1

M1 ∩ Labels(I2) = ∅ δ 6∈ O
↑
1O

↑
2

µ(x1, x2)
∅,(l1,I1\O

↑
2
),O

↑
1

,∅
−−−−−−−−−−−−→ µ(y1, y2)

(h1)

x1

M1,{(l1,I1)},O
↑
1

,O
↓
1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2

O
↓
1 ≏ I2 O

↑
2 ⊆ I1 δ ∈ O

↑
1

M1 ∩ Labels(I2) = ∅ δ 6∈ O
↑
2

µ(x1, x2)
∅,{(l1,I1\O

↑
2
)},O

↑
1
−δ,∅

−−−−−−−−−−−−−−−−→ y2

(h2)

x1

M1,{(l1,I1)},O
↑
1

,O
↓
1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2

O
↓
1 ≏ I2 O

↑
2 − δ ⊆ I1 δ 6∈ O

↑
1

M1 ∩ Labels(I2) = ∅ δ ∈ O
↑
2

µ(x1, x2)
∅,{(l1,I1\O

↑
2
)},O

↑
1

,∅
−−−−−−−−−−−−−−→ y1

(h3)

x1

M1,{(l1,I1)},O
↑
1

,O
↓
1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2

O
↓
1 ≏ I2 O

↑
2 − δ ⊆ I1

M1 ∩ Labels(I2) = ∅ δ ∈ O
↑
1 ∩ O

↑
2

µ(x1, x2)
∅,{(l1,I1\O

↑
2
)},O

↑
1

,∅
−−−−−−−−−−−−−−→ v

(h4)

