
Ordinary Membrane Machines versus Other
Mathematical Models of Systems Realizing
Massively Parallel Computations

Adam ObtuÃlowicz

Institute of Mathematics of the Polish Academy of Sciences
E-mail: adamo@impan.gov.pl

Summary. A comparison of ordinary membrane machines, understood as certain recur-
sive families of deterministic P systems, with some other mathematical models of systems
realizing massively parallel computations is discussed. These mathematical models are
those which respect recursiveness of computational tasks of systems, i.e., the functions to
be computed are recursive functions and the decision problems correspond to recursive
sets. The comparison together with open problems is summarized in the enclosed tables,
where open problems are indicated by question mark “?”.

1 Introduction

We present and discuss a comparison of ordinary membrane machines, understood
as certain recursive families of deterministic P systems (for P systems see [23]),
with some other mathematical models of systems realizing massively parallel com-
putations. These mathematical models are those which respect recursiveness of
computational tasks of systems, i.e., the functions to be computed are recursive
functions and the decision problems correspond to recursive sets.

The comparison is discussed with regard to those (comparative) features of
the mathematical models which one can treat as advantageous features from the
logical or complexity theoretical point of view, or by means that they provide
natural extensions of the (classes of) models for application of other approaches
to computing than the discrete time approach or deterministic approach. The
mathematical models are chosen in such a way that for every comparative feature
there is provided at least one representative or typical example of a model of this
feature.

2 Compared Models and Their Features

We discuss the following mathematical models of systems realizing massively par-
allel computations.



236 A. ObtuÃlowicz

1: ordinary membrane machines defined to be recursive families Π = (Πi : i ∈
INP) of deterministic P systems Πi for recursive sets INP of input data, where
P systems Πi are constructs understood as in [23] and their determinism is
understood as in e.g. [16]. For more explanations see Remark 1 below;

2: Parallel Random Access Machines (PRAMs), cf. [9], [14], [20];
3: neural net models due to H. T. Siegelmann and E. D. Sontag, cf. [27];
4: R. Gandy’s machines, cf. [10] and [26], the parallelism of their computations

was pointed out in [7];
5: parallel Abstract State Machines and intra-step interacting Abstract State

Machines due to Y. Gurevich, cf. [2];
6: Connection Machines due to W. D. Hillis, cf. [12].

The above models are such that they respect recursiveness of computational
tasks understood as in Introduction.

The ordinary membrane machines require more explanations which are given
in the following remark.

Remark 1 A representative example of an ordinary membrane machine is dis-
cussed in [18], where input data in INP are propositional formulas Φ in conjunctive
normal form and the deterministic P systems ΠΦ—the elements of the family are
used to solve SAT problem in a polynomial time, like in [16]. More precisely, the
P system ΠΦ associated to a formula Φ generates that unique evolution process of
membrane systems which provides a decision in a polynomial time (with respect
to the number of clauses and the number of variables occurring in Φ) whether Φ
holds for some valuation of variables occurring in Φ. The above recursive family
of P systems was introduced in [18] to describe in a program-like uniform way the
P systems solving SAT problem in [16].

We use “membrane machines” to name the families in 1 because evolving
membrane systems are basic mechanisms of computations realized by P systems,
see [23]. The adjective “ordinary” is applied to distinguish the families in 1 from
other possible families of P systems, e.g. families of stochastic P systems or quan-
tum P systems.

Remark 2 An evolving membrane system or simply a membrane system S is
understood in the paper to be given by its underlying tree TS , i.e., finite non-
empty graph which is a tree, whose vertices, called membranes, are labeled by
multisets over the sets OS of objects of S. More precisely, there is given labeling
function MS : V (TS) → NOS of S defined on the set V (TS) of vertices of TS such
that the values MS(v) are functions f : OS → N valued in the set N of natural
numbers with 0. For an equivalence of the above treatment membrane systems with
the treatment of membrane systems understood as in [23] see Remark 2 in [19].

The comparison of the above models is discussed with regard to the following
features of them.

A: basic definitions of systems and computations realized by them are free from
concepts involving recursiveness, e.g., recursive families of programs, etc., and



Membrane Machines versus Other Models of Parallel Computations 237

the number of defining axioms and principles is finite and minimal in the sense
that leaving one of them does not suffice to prove recursiveness of computa-
tional tasks understood as in Introduction;

B: definition of computational complexity measure of consumed space during
computation is explicit, natural, and simple;

C: the modeled computations comprise a wide scope of possibilities of paral-
lelism from computations realized by distributed systems, with every processor
equipped with an (access) independent memory unit from other processors, to
systems with processors sharing an access to common memory unit like in the
case of PRAMs in 2;

D: solutions of NP complete problems in a polynomial time with an exponential
space expense are provided;

E: immediate extensions to randomized or quantum counterparts are provided,
like in [15], [17];

F: immediate extensions to continuous time computations are provided like in
[27];

G: explicit treatment of communication (interaction) with environment during
computation, understood as in Y. Gurevich’s papers ([2], [8]), is provided;

H: the models have an immediate realization by really existing devices (comput-
ers) in silicon or biochemical one.

We complete the above listed features A–H by the following comments and
remarks containing explanatory, representative, or typical examples.

Ad A. The class of Gandy’s machines in 4 is a representative example of a class
having the feature A. These machines are defined in an abstract mathematical way
in [10] by four principles and [10] contains the result that whatever is computable
by the devices satisfying these principles is also computable by Turing machines.
The principles are minimal in the sense that no three of them suffice to prove the
mentioned result.

Ad B. The class of ordinary membrane machines in 1 is an example of a class
having the feature B. Let for an ordinary membrane machine Π = (Πi | i ∈ INP) a
unique evolution process generated by Πi be presented by the following sequence
of length ni

Si
0 ⇒ Si

1 ⇒ . . . ⇒ Si
ni

,

where Si
0,Si

1, . . . ,Si
ni

are membrane systems such that Si
0 is the initial membrane

system of the process, Si
j evolves into Si

j+1 for all j with 0 ≤ j < ni, and Si
ni

is the
final membrane system of the process. Then one defines the claimed in B space
complexity measure SPACE(i) by

SPACE(i) = max
0≤j≤ni

∑

v∈V (TSi
j
)

(
1 +

∑

a∈OSi
j

MSi
j
(v)(a)

)
,

where V (TSi
j
), OSi

j
, MSi

j
are the set of vertices of the underlying tree TSi

j
, the set

of objects, and labeling function of Si
j , respectively, see Remark 2.



238 A. ObtuÃlowicz

Ad C. Some ordinary membrane machines together with evolution processes
generated by them can be treated as distributed systems such that every their pro-
cessor has an independent memory unit, see representative example in Remark 1.
In this example a membrane v of an evolving membrane system S can be treated
as a processor equipped with a memory unit containing MS(v), see [16] and [18]
for more details.

Ad D. The ordinary membrane machine shown in Remark 1 provides a solution
of NP complete problem SAT in a polynomial time with an exponential space
expense. The construction of this machine was inspired by the pioneering paper
[22]. For other related constructions see e.g. [24].

Ad E. Randomized P systems in [17] and quantum P systems in [15] give rise to
the extensions of ordinary membrane machines as claimed in E. We point out that
one may claim the extensions to randomized counterparts which could provide
probabilistic approach to P/NP conjecture proposed in [1].

Ad F. The class of models in 3 is an example of a class of models having
feature F because inductive next state formula for neural nets can be simply con-
verted to a system of ordinary differential equations. We point out here that one
may claim the extensions to continuous, analog models of computations which
could include continuous approach to P/NP conjecture in [5], [6].

Ad G. The attempts to describe the interconnections of membrane systems
with environment through their skins are shown among others in [21].

Ad H. The connection machines in 6 have a physical realization. Namely, the
Connection Machine Models CM-1, CM-2, and CM-5 were made by Thinking
Machines Corporation in Boston, between 1986 and 1996.

3 Concluding Discussion and Open Problems

The comparison of the ordinary membrane machines and the mathematical models
with regard to the features described in Section 2 is summarized in the following
tables, where new open problems are indicated by question mark “?”.

Table of answers to the question:
does X hold for i?

A B C D E F G H ?
1 ? Yes Yes Yes Yes ? Yes? ?
2 ? Yes No? Yes? Yes ? No ?
3 ? ? Yes? Yes? Yes Yes ? ?
4 Yes ? Yes? ? ? ? ? ?
5 ? ? Yes? Yes? ? ? Yes ?
6 ? ? ? ? ? ? ? Yes
?



Membrane Machines versus Other Models of Parallel Computations 239

For X ∈ {A, B, . . . , H}, 1 ≤ i ≤ 6, and open problems indicated by ‘?’, including
conjectures indicated by ‘Yes?’, ‘No?’, meant ‘rather Yes’ and ‘rather No’, respec-
tively, where the properties A, B, . . . , H correspond to the comparative features and
the numbers 1, 2, . . . , 6 correspond to the models as in the lists given in Section 2,
respectively.

Matrix-like table of answers to the question:
does i simulate j in polynomial slow-down?
(i—row, j—column)

1 2 3 4 5 6
1 Yes Yes ? ? ? Yes
2 No? Yes No? No? No? Yes
3 ? Yes Yes ? ? Yes
4 ? Yes Yes Yes Yes? Yes
5 ? Yes ? ? Yes Yes
6 No No No No No Yes

Open problems and conjectures are indicated by ‘?’, ‘Yes?’, ‘No?’ as in the first
table.

From the first table and its first row we conclude that despite the treatment of
natural computing as less important than e.g. multicore computing, cf. [25], or not
worth to mention, cf. [3], the bio-inspired membrane computing, a vital part of
natural computing, contains ordinary membrane machines which are computation
models of advantageous features from complexity theoretical point of view (see
features B, C, D) and open for extensions to new approaches to computing outlined
among others in [4].

References

1. Arora, S., and Safra, Sh., Probabilistic checking of proofs: a new characterization of
NP , in: Proc. 33rd IEEE Symp. on Foundation of Computer Science, 1992, 2–12.

2. Blass, A., and Gurevich, Yu., Algorithms: a quest for absolute definitions , Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 81 (2003), 195–225.

3. Buss, S. R., Kechris, A. S., Pillay, A., Shore, S. A., The prospects for mathematical
logic in the twenty-first century , the independent presentations included in panel
discussion at The Annual Meeting of the Association for Symbolic Logic held in
Urbana–Champaign, June 2000.

4. Calude, C. S., and Păun, Gh., Bio-steps beyond Turing , BioSystems 77 (2004), 175–
194.

5. Costa, J. F., and Mycka, J., An analytic condition for P ⊂ NP , March 2006.
6. Costa, J. F., and Mycka, J., The conjecture P 6= NP presented by means of some

class of real functions , 2007.
7. Dahlhaus, E., and Makowsky J. A., Gandy’s principles for mechanisms as a model

for parallel computation, in: The Universal Turing Machine: a Half-Century Survey,
ed. R. Herken, second ed., Springer, Wien-New York 1995, pp. 283–288.



240 A. ObtuÃlowicz

8. Dershowitz, N., and Gurevich, Yu., A natural axiomatization of Church’s thesis , July
2007.

9. Fich, F. E., The Complexity of Computation on the Parallel Random Access Machine ,
Chapter 21.

10. Gandy, R., Church’s thesis and principles for mechanisms , in: The Kleene Sympo-
sium, eds. J. Barwise et al., North-Holland, Amsterdam 1980, pp. 123–148.

11. Grover, L., and Rudolph, T., How significant are the known collision and element
distinctness quantum algorithms? , arXiv: quant-ph/0309123v1, 16 Sep 2003.

12. Hillis, W. D., The Connection Machines , Cambridge, Mass. 1985.
13. Hirvensalo, M., Quantum Computing , second edition, Springer, Berlin 2004.
14. Karp, R. M., and Ramachandran, V., Parallel algorithms for shared-memory ma-

chines, in: Handbook of Theoretical Computer Science, Vol. A: Algorithms and
Complexity, MIT Press, Cambridge 1990, 869–941.

15. Leporati, A., Pescini, D., and Zandron, C., Quantum energy-based P systems , in:
Proc. Brainstorming Workshop on Uncertainty in Membrane Computing, Palma de
Mallorca, November 2004.

16. ObtuÃlowicz, A., Deterministic P systems for solving SAT problem , Romanian Journal
of Information Science and Technology 4 (2001), 195–201.

17. ObtuÃlowicz, A., Probabilistic P systems , in: Membrane Computing, Lecture Notes in
Comput. Sci. 2597, Springer, Berlin 2003, 377–387.

18. ObtuÃlowicz, A., Note on some recursive family of P systems with active membranes ,
P systems Web page, 2003.

19. ObtuÃlowicz, A., Gandy’s principles for mechanisms and membrane computing , in:
Proc. Cellular Computing (Complexity Aspects), ESF PESC Exploratory Work-
shop, January 31–February 2, 2005, ed. M. A. Gutiérrez-Naranjo et al., Sevilla 2005,
pp. 267–276.

20. Papadimitriou, Ch. H., Computational Complexity , Addison–Wesley, Reading 1994.
21. Păun, A., and Păun, Gh., The power of communication: P systems with sym-

port/antiport , New Generation Computing 20 (2002), 295–306.
22. Păun, Gh., P systems with active membranes: Attacking NP complete problems , Jour-

nal of Automata, Languages and Combinatorics 6 (2000), 75–90.
23. Păun, Gh., Membrane Computing. An Introduction , Springer-Verlag, Berlin 2002.
24. Perez Jimenez, M. J., Romero Jimenez, A., and Caparrini, F. S., Decision P systems

and P 6= NP conjecture, in: Membrane Computing, Lecture Notes in Comput. Sci.
2597, Springer, Berlin 2003, 388–399.

25. Scott, D. S., Looking to the Future, talk given at CiE (Computability in Europe)
Conference, Siena, July 2007,
http://www.mat.unisi.it/~sorbi/sito/CiETalks/ScottCiE07.pdf.

26. Sieg, W., Computability Theory , Seminar Lectures, University of Bologna, November
2004, http://www.phil.cmu.edu/
summerschool/2006/Sieg/computability theory.pdf

27. Siegelmann, H. T., and Sontag, E. D., On the computational power of neural nets ,
J. Comput. System Sci. 50 (1995), 132–150.


