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Summary. After a quick introduction of spiking neural P systems (a class of P
systems inspired from the way neurons communicate by means of spikes, electrical
impulses of identical shape), and presentation of typical results (in general equiva-
lence with Turing machines as number computing devices, but also other issues, such
as the possibility of handling strings or infinite sequences), we present a long list of
open problems and research topics in this area, also mentioning recent attempts to
address some of them. The bibliography completes the information offered to the
reader interested in this research area.

1 Forecast

It is obvious that the (human) brain structure and functioning, from neurons,
astrocytes, and other components to complex networks and complex (chem-
ical, electrical, informational) processes taking place in it, should be – and
only partially is – a major source of inspiration for informatics (we choose
this more general term rather that the restrictive, but usual, “computer sci-
ence”, in order to stress that we have in mind both mathematical approaches,
with intrinsic motivation, and practical approaches, both the theory of com-
putability and the use of computing machineries). If biology is such a rich
source of inspiration for informatics as natural computing proves, then the
brain should be the “golden mine” of this intellectual enterprise. Risking a
forecast, we believe that if something really great is to appear in informatics
in the near future, then this “something” will be suggested by the brain (and
this will probably be placed at the level of “strategies” of computing, not at
the “tactic” level – just in balance with the two computing devices already
learned from the brain activity and which can be considered the most central
notions in informatics, the Turing machine and the finite automaton).
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The previous statements do not intend to suggest that spiking neural P
systems are the answer to this learning-from-brain challenge, but only to call
(once again) the attention to this challenge. Becoming familiar with brain
functioning, in whatever reductionistic framework (as spiking neural P sys-
tems investigation is), can however be useful. After all, “the road of one thou-
sand miles starts with the first step”, Lao Tze said. . .

2 Some (Neural) Generalities

The neuron is a highly specialized cell, at the same time intricate and simple,
robust and fragile, like any other cell, but having the particularity of being
involved (in general) in huge networks by means of the synapses established
with partner neurons. It is not at all the intention of these lines to give any
biological information from this area, but only to point out some of the pe-
culiarities related to neurons and the brain: the functioning of each neuron
assumes chemical, electrical, and informational processing at the same time;
the axon is not a simple transmitter of impulses, but an information processor;
in the communication between neurons the spiking activity plays a central role
(which means that the distance in time between consecutive spikes is used to
carry information, that is, time is a support of information); the neurons are
not cooperating only through synapses, but their relationships are also regu-
lated through the calcium waves controlled by the astrocytes, “eavesdroppers”
of axons playing an important role in the neural communication; the brain
displays a general emergent behavior which, to the best of our knowledge,
cannot be explained only in terms of neuron interrelationships (something is
still missing in this picture, maybe of a quantum nature – as Penrose sug-
gests, maybe related to the organization of parts, maybe of a still subtler or
even unknown nature). Some of these ideas (especially spiking) are supposed
to lead to “neural computing of the third generation”, which suggests that
already computer scientists are aware of the possibility of major progresses to
be made (soon) on the basis of progresses in neuro-biology.

The bibliography of this note contains several titles, both from the general
biology of the cell [1], general neurology [51], and from neural computing based
on spiking [4], [36], [17], [33], [34], [35], about the axon as an information
processor [49], astrocytes and their role in the brain functioning [46], [50].
Of course, these titles are only meant to be initial “dendrites” to the huge
bibliography related to (computer science approaches to) brain functioning.

3 Spiking Neural P Systems – An Informal Presentation

Spiking neural P systems (SN P systems, for short) were introduced in [26]
in the precise (and modest: trying to learn a new “mathematical game” from
neurology, not to provide models to it) aim of incorporating in membrane
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computing ideas specific to spiking neurons; the intuitive goal was to have
(1) a tissue-like P system with (2) only one (type of) object(s) in the cells –
the spike, with (3) specific rules for evolving populations of spikes, and (4)
making use of the time as a support of information.

In what follows, we briefly describe several classes of SN P systems inves-
tigated so far, as well as some of the main types of results obtained in this
area.

In short, an SN P system (of the basic form – later called a standard SN
P system) consists of a set of neurons placed in the nodes of a directed graph
and sending signals (spikes, denoted in what follows by the symbol a) along
the arcs of the graph (these arcs are called synapses). The objects evolve by
means of spiking rules, which are of the form E/ac → a; d, where E is a
regular expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The
meaning is that a neuron containing k spikes such that ak ∈ L(E), k ≥ c, can
consume c spikes and produce one spike, after a delay of d steps. This spike is
sent to all neurons to which a synapse exists outgoing from the neuron where
the rule was applied. There also are forgetting rules, of the form as → λ, with
the meaning that s ≥ 1 spikes are removed, provided that the neuron contains
exactly s spikes.

An extension of theses type of rules was considered (with a mathematical
motivation) in [37], [14]: rules of the form E/ac → ap; d, with the meaning that
when using the rule, c spikes are consumed and p spikes are produced (one
assumes that c ≥ p, not to produce more than consuming). Because p can be
0 or greater than 0, we obtain a generalization of both spiking and forgetting
rules, while forgetting rules also have a regular expression associated with
them.

An SN P system (with standard as well with extended rules) works in the
following way. A global clock is assumed and in each time unit each neuron
which can use a rule should do it (the system is synchronized), but the work
of the system is sequential locally: only (at most) one rule is used in each
neuron. One of the neurons is considered to be the output neuron, and its
spikes are also sent to the environment. The moments of time when a spike
is emitted by the output neuron are marked with 1, the other moments are
marked with 0. This binary sequence is called the spike train of the system –
it might be infinite if the computation does not stop.

With a spike train we can associate various numbers, which can be con-
sidered as computed (we also say generated) by an SN P system. For instance,
in [26] only the distance between the first two spikes of a spike train was con-
sidered, then in [42] several extensions were examined: the distance between
the first k spikes of a spike train, or the distances between all consecutive
spikes, taking into account all intervals or only intervals that alternate, all
computations or only halting computations, etc.
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An SN P system can also work in the accepting mode: a neuron is desig-
nated as the input neuron and two spikes are introduced in it, at an interval
of n steps; the number n is accepted if the computation halts.

Two main types of results were obtained: computational completeness in
the case when no bound is imposed on the number of spikes present in the
system, and a characterization of semilinear sets of numbers in the case when
a bound is imposed.

Another attractive possibility is to consider the spike trains themselves as
the result of a computation, and then we obtain a device generating a (binary)
language. We can also consider both input and output neurons and then an
SN P system can work as a transducer. Such possibilities were investigated in
[43]. Languages – even on arbitrary (i.e., not only binary) alphabets – can be
obtained also in other ways: following the path of a designated spike across
neurons, as proposed in [12], or using rules of the extended form mentioned
above. Specifically, with a step when the system sends out i spikes, we as-
sociate a symbol bi, and thus we get a language over an alphabet with as
many symbols as the number of spikes simultaneously produced. This case
was investigated in [14], where representations or characterizations of various
families of languages were obtained. (An essential difference was found be-
tween the case when zero spikes sent out is interpreted as a symbol b0 and the
case when this is interpreted as inserting λ, the empty string, in the result.)

Other extensions were proposed in [24] and [22], where several output neu-
rons were considered, thus producing vectors of numbers, not only numbers. A
detailed typology of systems (and of sets of vectors generated) is investigated
in the two papers mentioned above, with classes of vectors found in between
the semilinear and the recursively enumerable ones.

The proofs of all computational completeness results known up to now
in this area are based on simulating register machines. Starting the proofs
from small universal register machines, as those produced in [29], one can find
small universal SN P systems (working in the generating mode, as sketched
above, or in the computing mode, i.e., having both an input and an output
neuron and producing a number related to the input number). This idea was
explored in [37] and the results are as follows: there are universal computing
SN P systems with 84 neurons using standard rules and with only 49 neurons
using extended rules. In the generative case, the best results are 79 and 50
neurons, respectively.

In the initial definition of SN P systems several ingredients are used (delay,
forgetting rules), some of them of a general form (unrestricted synapse graph,
unrestricted regular expressions). As shown in [21], several normal forms can
be found, in the sense that some ingredients can be removed or simplified
without losing the computational completeness. For instance, the forgetting
rules or the delay can be avoided, and the outdegree of the synapse graph
can be bounded by 2, while the regular expressions from firing rules can be of
very restricted forms. The dual problem, of the indegree bounding, was solved
(affirmatively) in [44].
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Besides using the rules of a neuron in the sequential mode introduced
above, it is possible to also use the rules in a parallel way. A possibility was
considered in [27]: when a rule is enabled, it is used as many times as possible,
thus exhausting the spikes it can consume in that neuron. As proved in [27],
SN P systems with the exhaustive use of rules are again universal, both in the
accepting and the generative cases.

In the proof of these results the synchronization plays a crucial role, but
both from a mathematical point of view and from a neuro-biological point
of view it is rather natural to consider non-synchronized systems, where the
use of rules is not obligatory: even if a neuron has a rule enabled in a given
time unit, this rule is not obligatorily used, the neuron may remain still,
maybe receiving spikes from the neighboring neurons; if the unused rule may
be used later, it is used later, without any restriction on the interval when
it has remained unused; if the new spikes made the rule non-applicable, then
the computation continues in the new circumstances (maybe other rules are
enabled now). This way of using the rules applies also to the output neuron,
hence now the distance in time between the spikes sent out by the system is
no longer relevant. That is why, for non-synchronized SN P systems we take
as a result of a computation the total number of spikes sent out; this, in turn,
makes necessary considering only halting computations (the computations
never halting are ignored, they provide no output). Non-synchronized SN P
systems were introduced and investigated in [8], where it is proved that SN
P systems with extended rules are still equivalent with Turing machines (as
generators of sets of natural numbers).

4 Some (More) Formal Definitions

To make clearer some of the subsequent formulations, we recall here the defini-
tion of central classes of SN P systems, but more details should be found in the
papers mentioned in the bibliography. No general notions or notations from
language or automata theory, computability, complexity, computer science in
general, or membrane computing, are recalled.

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is
a construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of rules of the following general form:

E/ac → ap; d,
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where E is a regular expression with a the only symbol used, c ≥ 1,
and p, d ≥ 0, with c ≥ p; if p = 0, then d = 0, too.

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m
(synapses);

4. out ∈ {1, 2, . . . ,m} indicates the output neuron.

A rule E/ac → ap; d with p ≥ 1 is called a firing (we also say spiking)
rule; a rule E/ac → ap; d with p = d = 0 is written in the form E/ac → λ
and is called a forgetting rule. If L(E) = {ac}, then the rules are written in
the simplified form ac → ap; d and ac → λ. A system having only rules of the
forms E/ac → a; d and ac → λ is said to be restricted (we also use to say that
such a system is a standard one).

The rules are applied as follows: if the neuron σi contains k spikes, ak ∈
L(E) and k ≥ c, then the rule E/ac → ap; d ∈ Ri (with p ≥ 1) is enabled and
it can be applied; applying it means that c spikes are consumed, only k − c
remain in the neuron, the neuron is fired, and it produces p spikes after d time
units. If d = 0, then the spikes are emitted immediately, if d = 1, then the
spikes are emitted in the next step, and so on. In the case d ≥ 1, if the rule is
used in step t, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed,
and it cannot receive new spikes (if a neuron has a synapse to a closed neuron
and sends spikes along it, then the spikes are lost). In step t + d, the neuron
spikes and becomes again open, hence can receive spikes (which can be used
in step t+d+1). The p spikes emitted by a neuron σi are replicated and they
go to all neurons σj such that (i, j) ∈ syn (each σj receives p spikes). If the
rule is a forgetting one, hence with p = 0, then no spike is emitted (and the
neuron cannot be closed, because also d = 0).

In the synchronized mode, considered up to now in all SN P systems
investigations except [8], a global clock is assumed, marking the time for all
neurons, and in each time unit, in each neuron which can use a rule, a rule
must be used. Because two rules E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2

can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be
applied in a neuron, and then one of them is chosen non-deterministically. Note
that the neurons work in parallel (synchronously), but each neuron processes
sequentially its spikes, using only one rule in each time unit.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm of spikes present in each neuron. During the computation, a
configuration is described by both the number of spikes present in each neu-
ron and by the state of the neuron, more precisely, by the number of steps
to count down until it becomes open (this number is zero if the neuron is
already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neuron
σi, i = 1, 2, . . . , m contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps;
with this notation, the initial configuration is C0 = 〈n1/0, . . . , nm/0〉 (see an
example in Figure 2).

Using the rules as suggested above, we can define transitions among con-
figurations. Any sequence of transitions starting in the initial configuration is
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called a computation. A computation halts if it reaches a configuration where
all neurons are open and no rule can be used. With any computation, halting
or not, we associate a spike train, a sequence of digits 0 and 1, with 1 appear-
ing in positions which indicate the steps when the output neuron sends spikes
out of the system (we also say that the system itself spikes at that time).
With any spike train we can associate various numbers, which are considered
as computed (generated) by the system; in the spirit of spiking neural com-
puting, the distance between certain spikes are usually taken as the result of
a computation (e.g., the distance between the first two spikes). Because of
the non-determinism in using the rules, a given system computes in this way
a set of numbers. An SN P system can be also used in the accepting mode:
a number n is introduced in the system in the form of the distance between
two spikes entering a specified neuron, and this number is accepted if the
computation eventually halts.

We denote by Ngen(Π) the set of numbers generated (in the synchronized
way) by a system Π in the form of the number of steps elapsed between the
first two spikes of a spike train. Then, by Spik2SPm(rulek, consp, forgq, deld)
we denote the family of such sets of numbers generated by systems with at
most m neurons, each of them containing at most k rules, all of them of
the standard form, and each rule consuming at most p spikes, forgetting at
most q spikes, and having the delay at most d. When using extended SN
P systems, we use Spik2EPm(rulek, consp, prodq, deld) to denote the family
of sets Ngen(Π) generated by systems with at most m neurons, each of them
containing at most k rules (of the extended form), each spiking rule consuming
at most p spikes, producing at most q spikes, and having the delay at most
d. When any of the parameters m, k, p, q, d is not bounded, it is replaced by
∗. When using the rules in the exhausting or the non-synchronized mode, we
write Nex

gen(Π), Nnsyn
gen (Π), respectively, and the superscripts ex and nsyn are

also added to Spik in the families notation.
The notations should be changed when dealing with other sets of num-

bers than the distance between the first two spikes, with accepting systems,
when generating or accepting languages, but we do not enter here into details.
Instead, we close this section by introducing two important tools in present-
ing SN P systems, namely, the graphical representation and the transition
diagram.

Figures 1, 2 are recalled from [9]. The graphical representation of an SN P
system is rather intuitive: the neurons are represented by membranes, placed
in the nodes of a directed graph whose arrows represent the synapses; an
arrow also exits from the output neuron, pointing to the environment; in each
neuron we specify the rules and the spikes present in the initial configuration.

Figure 1 represents the initial configuration of a system Π. We have three
neurons, labeled with 1, 2, 3, with neuron σ3 being the output one. Each
neuron contains two rules, with neurons σ1 and σ2 having the same rules
(firing rules which can be chosen in a non-deterministic way, the difference
between them being in the delay from firing to spiking), and neuron σ3 having
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r21 : a → a; 0

r22 : a → a; 1

a2

r31 : a → a; 0

r32 : a2 → λ

Fig. 1. The initial configuration of the SN P system Π

one firing and one forgetting rule. In the figure, the rules are labeled, and these
labels are useful below, in relation with Figure 2.

This figure can be used for analyzing the evolution of the system Π: be-
cause the system is finite, the number of configurations reachable from the
initial configuration is finite, too, hence, we can place them in the nodes of a
graph, and between two nodes/configurations we draw an arrow if and only if
a direct transition is possible between them. In Figure 2 there are also indi-
cated the rules used in each neuron, with the following conventions: for each
rjk we have written only the subscript jk, with 31 being written in bold face,
in order to indicate that a spike is sent out of the system at that step; when
a neuron σj , j = 1, 2, 3 uses no rule, we have written j0, and when it spikes
(after being closed for one step), we write js.

The functioning of the system, both as a number generator and as a string
generator, can easily be followed on this diagram. The transition diagram is
very useful as a tool involved in the formal verification of an SN P system. A
way to automatically generate such a diagram is also a part of the software
described in [47].

5 Open Problems and Research Topics

The following list of problems should be read with the standard precautions:
it is not meant to be exhaustive, there is no ordering of the problems (accord-
ing to their significance/interest), some problems are very general, others are
much more particular, in many cases the formulation is preliminary/informal
and addressing the problem should start with a precise/suitable formulation,
in many cases related results exist in the literature, and so on. Most problems
are stated in a short way, with reference to the discussion from Section 3 and
the definitions from Section 4.
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Fig. 2. The transition diagram of system Π from Figure 1

A. Let us start with a general and natural idea: linking the study of
SN P systems with neural computing. This can be a rich source of ideas,
based on transferring from an area to the other one research topics which
make sense also in the destination framework. What means, for instance,
training (in general, learning, adaptation, evolving) in terms of SN P systems?
More elementary: what means solving a problem by using an SN P system,
implicitly, what means to solve a problem in a better way? Maybe the starting
point should not be (only) neural computing, which is already an abstract,
specialized, reductionistic framework, but (also) from neurology, from learning
in the general psycho-pedagogical sense.
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This problem is related to another general, natural, and important one:
bringing more ingredients from neurology. Just a few quick ideas: consider-
ing an energy associated with firing/spiking; taking into consideration the
antiport processes which are performed in synapses; introducing circadian
periodicity in the functioning of neurons and of nets of neurons, with “tired-
ness”, “resting periods”, etc. How can a natural notion such as “‘memory”
captured in this framework (short-term, long-term memory, forgetting infor-
mation, etc.)?

B. In particular, the recent discoveries related to the role of astrocytes in
the functioning of the brain need to be examined and formalized. Astrocytes
are a class of cells that form a supporting and insulating structure for the
neurons, but also participate in the process of communication between neu-
rons. They “listen” the spikes passing along axons and accordingly regulate
the release of neurotransmitters from the nerve terminals, thus relating in an
intricate way the functioning of different neighboring axons. The regulation
is either excitatory or inhibitory, and it is done by means of calcium waves.
We refer to [46] and [50] for further details – and further references. How can
astrocytes be considered in an SN P system and with what consequences?

An attempt in this respect is that from [3], where some preliminary (com-
putability) results were obtained. Then, a particular case, much simpler, was
considered in [41], in the following setup. A further component of an SN P
system is considered, astro ⊆ sun≤k; an element of this set is called astrocyte.
The idea is that such an astrocyte controls a number t of axons (actually,
synapses, because syn identifies synapses) less than or equal to a given con-
stant k and, if a number of spikes are transmitted along the t axons, then
only one of them is selected and let to go, all others are simply removed.
Because exactly one spike is moved along the controlled axons, this can lead
to deadlock situations, where several astrocytes controlling common axons
cannot work together according to the previous definition. The occurrence of
such a deadlock in SN P systems with astrocytes is proved in [41] to be unde-
cidable. Another result proved in [41] concerns the possibility of passing from
a system with astrocytes with an arbitrary degree (the constant k above) with
an equivalent system having the minimal degree, two. For the case of gener-
ating numbers (in the sense of the set Ngen(Π) defined above) the answer is
affirmative, the minimal degree can be reached.

Many issues are left open in [41]: changing the definition in order to avoid
the deadlock; studying astrocytes of a more realistic type (for instance, con-
trolling axons, not synapses); dealing also with unsynchronized systems, etc.

The neuron-astrocyte coupling is based on signaling pathways of a kind
which reminds the controlling pathways which were recently modeled and
simulated in terms of P systems in many papers, and this suggests the next
general research challenge: applications (in neurology). This is perhaps a too
ambitious goal at this stage of the development of the study of SN P systems
and it is first necessary to have answers to the previous two problems, but
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it is important to keep in mind the possibility of applications when devising
new classes of SN P systems. It is difficult to forecast which would be the
most promising types of applications – looking for conceptual clarifications,
for analytical results, for computer experiments and simulations, for all these
intertwined? Of course, the cooperation with a biologist/neurologist would be
very important in this respect.

Making a step from neurobiology to mathematics, the problem appears to
consider systems using more than one type of spikes. At the first sight, this
is against the spirit of spiking neural computing, and can lead to standard
membrane systems. Still, the question makes sense in various setups. For in-
stance, neurology deals both with excitatory and inhibitory impulses, both in
neurons and at the level of astrocytes. How inhibitory spikes can be defined
and used?

C. Then, there are features of SN P systems which were not considered
for general P systems. Using a regular expression for enabling a rule looks
like controlling the application of rules by means of promoters, inhibitors,
activators, but a notion of delay does not exits in membrane computing. Can
it be of any interest also for usual P systems? Then, defining the result of a
computation in a P system in terms of the time elapsed between two specified
events, in particular, sending a given object outside, was briefly investigated
in [6], but this issue deserves further research efforts.

Conversely, there are many ingredients of usual P systems which were not
considered for SN P systems and might make sense also in this area, at least
at a mathematical level. Of a particular interest can be tools to exponentially
increase the working space in a polynomial (if possible, even linear) time, for
instance, by operations similar to cell division and cell creation in P systems
with active membranes. How new neurons can be created (added to a system)
in such a way to make possible polynomial solutions to computationally hard
(typically, NP-complete) problems? The brain is supposed to be a very effi-
cient computing device – how SN P systems can be made efficient from this
point of view?

D. This touches a more general issue, that of considering SN P systems
with a dynamical structure. The dynamism can be achieved both in terms of
neurons and synapses, or only for synapses. From birth to maturity, the brain
essentially evolves at the level of synapses, learning means establishing new
synapses, cutting them, making them more stable/fast when used frequently,
and so on and so forth. How this can be incorporated in SN P systems?
A related idea is to associate a duration to each synapse (which is not of
interest when the duration is constant), and to vary it in time, according to
the intensity of using that synapse, and this looks rather motivated from a
learning point of view.

Making synapses to have a duration or a length, depending on their use,
can be related to a similar idea [16] at the level of spikes: considering a duration
of life also for spikes, in the form of a decaying constant associated with them
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(at the level of the whole system, or locally, for each neuron). If a spike is not
used a number of steps larger than the decaying threshold, then it is removed
(a sort of forgetting rules are thus implicitly acting, depending on the age of
each spike).

E. Moving further to theoretical issues, let us consider an idea related
both to “classic” membrane computing and to the efficiency issue: using the
rules in a parallel manner. This has been already considered in [27], in the
particular form of using the rules in the exhaustive mode: if a neuron contains
kn + r spikes and has a rule E/an → a; d such that akn+r ∈ L(E) and
k ≥ 1, 0 ≤ r < n, then the rule is enabled and it is applied k times; kn
spikes are consumed, r remain unused, and k are produced. Besides continuing
the research from [27] (where it is only proved that SN P systems with an
exhaustive use of rules are Turing complete both in the generative and the
accepting modes), several other problems remain to be investigated. Actually,
most problems usually considered for SN P systems with a sequential use of
rules can be formulated also for the exhaustive mode: generating or accepting
languages, translating strings of infinite sequences, looking for small universal
systems, etc.

Then, the problem arises to consider other forms of parallelism, at the level
of each neuron or at the level of the whole system. What about using several
rules at the same time, in the same way as the rules of a usual P system are
applied in the maximally parallel manner? Variants inspired from grammar
systems area can also be considered, thus obtaining a bounded parallelism: at
least k, at most k, exactly k rules to be used at a time. This last idea can be
transferred also at the level of neurons: in each step, only a prescribed number
of neurons, non-deterministically chosen, to be active. Finally, one can borrow
to this area the idea of minimal parallelism from [15]: when a neuron can use
at least one rule, then at least one must be used, without any restriction about
how many. Similarly, we can extend this to the whole system or to pre-defined
blocks of the system: if at least one neuron from a block can fire, then at least
one should do it, maybe more. A significant non-determinism is introduced in
this way in the functioning of the system.

F. When the number of rules to be used in each neuron is “at least zero”
(and this is equivalent with making evolve “at least zero” neurons at a time),
we get the rather natural idea of a non-synchronized functioning of an SN P
system. In such a case, in each time unit, any neuron is free to use a rule or
not.

We have described the functioning of such a system in the end of Section
3. We only recall that, because now “the time does not matter”, the spike
train can have arbitrarily many occurrences of 0 between any two occurrences
of 1, hence the result of a computation can no longer be defined in terms of
the steps between two consecutive spikes, but as the total number of spikes
sent into the environment by (or contained in) the output neuron. In this way,
only halting computations can be considered as successful.
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In [8] it is proved that SN P systems with extended rules are Turing equiva-
lent even in the non-synchronized case, but the problem was left open whether
this is true also for systems using standard rules. The conjecture is that this
does not happens, hence that synchronization plays a crucial role in this case.
If true, such a result would be of a real interest.

Similar to the exhaustive mode of using rules, also the non-synchronization
can be investigated in relation with many types of problems usual in the SN
P systems area: handling languages, looking for small universal systems, etc.

A related issue is to consider the class of systems for which the synchro-
nization does not matter, i.e., they generate/accept the same set of numbers
in both modes. Furthermore, time-free, clock-free, time-independent systems
can be considered, in the same way as in [5], [7], [48].

G. Several times so far, the idea of efficiency was invoked, with the need
to introduce new ingredients in the area of SN P systems in such a way to
make possible polynomial solutions to intractable problems. Actually, such a
possibility was already considered in [10]: making use use of arbitrarily large
pre-computed resources. The framework is the following: an arbitrarily large
net of neurons is given, of a regular form (as the synapse graph) and with
only a few types of neurons (as contents and rules) repeated indefinitely;
the problem to be solved is plug-in by introducing a polynomial number of
spikes in certain neurons (of course, polynomially many), then the system is
left to work autonomously; in a polynomial time, it activates an exponential
number of neurons, and, after a polynomial time, it outputs the solution to
the problem. The problem considered in [10] was the SAT problem.

This strategy is attractive from a natural computing point of view (we
may assume that the brain is arbitrarily large with respect to the small num-
ber of neurons currently used, the same with the cells in liver, etc.), but it
has no counterpart in the classic complexity theory. A formal framework for
defining acceptable solutions to problems by making use of pre-computed re-
sources needs to be formulated and investigated. What kind of pre-computed
workspace is acceptable, i.e., how much information may be provided for free
there, what kind of net of neurons and what kind of neurons? (We have to
prevent “cheating” by already placing the answer to the problem in the given
resources and then “solving” the problem just by visiting the right place where
the solution waits to be read.) What means introducing a problem in the ex-
isting device? (Only spikes, also rules, or maybe also synapses?) Defining
complexity classes in this case remains as an interesting research topic.

In fact, SN P systems contains an in-built ingredient which makes them
intrinsically efficient: by definition, the use of a rule takes one time unit; how-
ever, using a rule E/ac → a; 0 means (i) checking whether or not the neuron
is covered by the regular expression E, (i) removing c spikes, and (iii) produc-
ing one spike. Step (i) assume solving the membership problem for a regular
expression in constant time, in one step, which is not as known for regular
languages, whose membership problem is of a linear complexity (the parsing
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time is proportional with the length of the parsed string). This means that we
tacitly introduced an oracle, of a rather simple form – a regular set, but still
bringing a considerable speed-up. Details can be found in [31], [32], where it is
also proved that in certain cases this oracle does not help, a deterministic SN
P system with particular regular expressions can be simulated in polynomial
time by a deterministic Turing machine.

In the above mentioned papers, one also address another interesting issue:
solving decidability problems in constant time, in a non-deterministic way.
This possibility is illustrated with solutions to SAT and Subset-Sum. Uniform
solutions (still non-deterministic) to these problems are provided in [30].

Anyway, the complexity investigations in the SN P systems area need and
deserve further efforts. Defining complexity classes (for deterministic or non-
deterministic systems, with or without pre-computed resources), clarifying the
role of “oracles” involved in applying the spiking rules (the brain seems to have
such capabilities, e.g., when recognizing patterns), improving and extending
the results from [31], [32], [30], ways to generate an exponential working space,
other ideas inspired from neuro-biology are only a few topics to explore.

H. Coming back to the initial definitions, there are several technical issues
which are worth clarifying (most probably, for universality and maybe also
for efficiency results, they do not matter, but it is also possible to exist other
situations where these details matter). For instance, the self-synapses are not
allowed in the synapse graph. However, a neuron with a rule a → a and a
self-synapse can work forever, hence it can be used for rejecting a computation
in the case when successful computations should halt. Similarly, (in the initial
definition from [26]) the forgetting rules as → λ were supposed to have as /∈
L(E) for all spiking rules E/ac → a; d from the same neuron, while in extended
rules E/ac → ap; d it was assumed that c ≥ p. Is there any situation where
these restrictions make a difference? Then, in [21] it was shown that some of
the ingredients used in the definition of SN P systems with standard rules can
be avoided. This is the case with the delay, the forgetting rules, the generality
of regular expressions. Can these normal forms be combined, thus avoiding at
the same time two of the mentioned features?

What then about using a kind of rules of a more general form, namely
E/an → af(n); d, where f is a partial function from natural numbers to natural
numbers (maybe with the property f(n) ≤ n for all n for which f is defined),
and used as follows: if the neuron contains k spikes such that ak ∈ L(E), then
c of them are consumed and f(c) are created, for c = max{n ∈ N | n ≤ k,
and f(n) is defined}; if f is defined for no n smaller than or equal to k, then
the rule cannot be applied. This kind of rules looks both adequate from a
neurobiological point of view (the sigmoid excitation function can be captured)
and powerful from a mathematical point of view (arbitrarily many spikes can
be consumed at a time, and arbitrarily many produced).

J. A standard problem when dealing with accepting devices concerns the
difference between deterministic and non-deterministic systems. Are they dif-
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ferent in power, does determinism imply a decrease of the computing power?
Up to now, all computability completeness proofs for the accepting version of
SN P systems of various types were obtained for deterministic systems. Are
there classes (maybe non-universal) for which the determinism matters?

Actually, the problem can be refined. The determinism is defined usually in
terms of non-branching during computations: a computation is deterministic
if for every configuration there is (at most) one next configuration. A first
subtle point: is this requested for all possible configurations or only for all
configurations which are reachable from the initial one?

Maybe more interesting for SN P systems is the possibility to define a
strong determinism, in terms of rules: an SN P system is said to be strongly
deterministic if L(E)∩L(E′) = ∅ for all rules E/ac → a; d and E′/ac′ → a; d′

from any neuron. Obviously, such a system is deterministic also when defining
this notion in terms of branching (even for arbitrary configurations, not only
for the reachable ones).

Is any class of SN P systems for which these types of determinism are
separated?

K. Different from the case of general P systems, where finding infinite
hierarchies on the number of membranes was a long awaited result, for SN P
systems one can easily find such hierarchies, based on the characterization of
semilinear sets of numbers (by means of systems with a bounded number of
spikes in their neurons): if for each finite automaton with n states (using only
one symbol) one can find an equivalent SN P system with g(n) neurons, and,
conversely, for each SN P system with m neurons one can find an equivalent
(i.e., generating strings over an one-letter alphabet whose lengths are numbers
generated/accepted by the SN P system) with h(m) states, then, because there
is an infinite hierarchy of regular one-letter languages in terms of states, we get
an infinite hierarchy of sets of numbers with respect to the number of neurons.
Still, several problems arise here. First, not always the characterization of
semilinear sets of numbers is based on proving the equivalence of bounded SN
P systems with the finite automata. Then, this reasoning only proves that the
hierarchy is infinite, not also that it is “dense” (connected is the term used in
classic descriptional complexity: there is n0 such that for each n ≥ n0 there is
a set Qn whose neuron-complexity is exactly n). Finally, what about finding
classes intermediate between semilinear and Turing computable for which the
hierarchy on the number of neurons is infinite (maybe connected)?

The previous question directly suggests two others. The first one is looking
for small universal SN P systems (here “universal” is understood in the sense
of “programmable” – the existence of a fixed system which can simulate any
particular system after introducing a code of the particular system in it –
not in the sense of “Turing complete”, although there is a direct connection
between these two notions). This question is considered in [37] for SN P sys-
tems with standard and with extended rules, working either in the computing
mode or in the generating mode. For standard rules, 84 and 76 neurons were
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used, while for extended rules 49 and 50 neurons were used, respectively. Are
these results optimal? A negative answer is expected (however, a significant
improvement is not very probable). What about universal SN P systems of
other types – in particular, with exhaustive or non-synchronized use of rules?

L. Problem K also suggests to look for classes of SN P systems which are
not equivalent with Turing machines, but also not computing only semilinear
sets of numbers, hence equivalent in power with finite automata. This does not
look as an easy question, but it is rather interesting, in view of the possibility
of finding classes of systems with decidable properties, but (significantly) more
powerful than bounded SN P systems. Such a class would be attractive also
from the point of view of applications, because of the possibility of finding
properties of the modeled processes by analytical, algorithmic means.

Again in a direct continuation with the previous issue, there appears the
need to find characterizations of classes of languages, other than finite, regu-
lar, and recursively enumerable, in terms of SN P systems. The investigations
from [9], [12], [14] have left open these questions, and this fits with the general
situation in membrane computing (as well as in DNA computing): the Chom-
sky hierarchy seems not to have a counterpart in nature, families like those of
linear, context-free, and context-sensitive languages do not have (easy) charac-
terizations in bio-inspired computing models. The same challenge appears for
families of languages generated by L systems (sometimes, with the exception
of ET0L languages).

L systems can be related with SN P systems also at the level of infinite
sequences: both by iterating morphisms (D0L systems) and by taking infinite
spike trains we can get classes of infinite sequences. Directly as spike trains we
have binary sequences, but, for extended rules (and for SN P systems with a
parallel use of rules) we can get as an output of a computation a string or an
infinite sequence over an arbitrary alphabet. A preliminary examination of the
binary case was done in [43], but many problems were left open, starting with
the comparison of SN P systems as tools for handling infinite sequences (of
bits) with other tools from language and automata theory (with ω-languages
computed by finite automata, Turing machines, etc.) and with known infinite
sequences, e.g., those from [52].

A particular problem from [43] is the following. SN P systems cannot
compute arbitrary morphisms, but only length preserving morphisms (codes).
An extension of these latter functions are the so-called k-block morphisms,
which are functions f : {0, 1}k −→ {0, 1}k (for a given k ≥ 1) prolonged
to f : {0, 1}ω −→ {0, 1}ω by f(x1x2 . . .) = f(x1)f(x2) . . .. In [43] it is only
shown that 2-block morphisms can be computed by SN P systems, and the
conjecture was formulated that this is true for any k.

In general, more should be found about the use of SN P systems as tools
for transducing strings and infinite sequences.
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Maybe useful in addressing the previous problem – and interesting also
from other points of view (e.g., if starting investigations in terms of process al-
gebra), is the issue of compositionality: looking for ways to pass from given sys-
tems to more complex systems, for instance, to systems generating/accepting
the result of an operation between the sets of numbers or the languages gener-
ated/accepted by the initial systems. Morphisms were mentioned also above,
but there are many other set-theoretic or language-theoretic operations to con-
sider, as well as serial and parallel composition, embedding as a subsystem,
etc. Of course, a central point in such operations is that of synchronization. It
is expected that the case of non-synchronized systems is much easier (maybe,
instead, less interesting theoretically).

M. We have mentioned at the beginning of these notes that the axon is
not a simple transmitter of spikes, but a complex information processor. This
suggests considering computing models based on the axon functioning (Ran-
vier nodes amplification of impulses, and other processes) and a preliminary
investigation was carried out in [13]. Many questions remain to be clarified
in this area (see also the questions formulated in [13]), but a more general
and probably more interesting problem appears, namely, of combining neu-
rons and axons (as information processing units) in a global model; maybe
also astrocytes can be added, thus obtaining a more complex model, closer to
reality.

N. We will conclude with two general issues, where nothing was done up to
now. First, SN P systems have a direct (pictural) similarity with Petri nets,
where tokens (like spikes) are moved through the net according to specific
rules. Bridging the two areas looks then rather natural – with “bridging”
understood as a move of notions, tools, results in both directions, from Petri
nets to SN P systems and the other way round.

Then, directly important for possible applications is the study of SN P
systems as dynamical systems, hence not focusing on their output, but on
their evolution, on the properties of the sequences of configurations reachable
from each other. The whole panoply of questions from the (discrete) dynamical
systems theory can be brought here, much similar to what happened in general
membrane computing.

6 Final Remarks

Many other open problems and research topics can be found in the papers
devoted to SN P systems – the interested reader can check the titles below in
this respect (the bibliography contains most of the papers about SN P systems
which we were aware of at the beginning of December 2007). On the other
hand, because the research in this area is quite vivid, it is possible that some
of these problems were solved at the same time or shortly after writing these
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notes, without being possible to mention the respective results here. That is
why, the reader is advised to follow the developments in this area, for instance,
through the information periodically updated at the Milano web page [54]. In
particular, one can find there the paper [40], on which the present paper is
based.
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12. H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa: On trace languages gen-
erated by spiking neural P systems. In [18], Vol. I, 207–224, and Proc. Eighth
International Workshop on Descriptional Complexity of Formal Systems (DCFS
2006), June 21-23, 2006, Las Cruces, New Mexico, USA, 94–105.



Spiking neural P systems. Recent results, research problems 19
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