
Fifth Brainstorming Week
on Membrane Computing

Sevilla, January 29–February 2, 2007

Miguel Angel Gutiérrez-Naranjo, Gheorghe Păun,
Alvaro Romero-Jiménez, Agust́ın Riscos-Núñez

Editors

Fifth Brainstorming Week
on Membrane Computing

Sevilla, January 29–February 2, 2007

Miguel Angel Gutiérrez-Naranjo, Gheorghe Păun,
Alvaro Romero-Jiménez, Agust́ın Riscos-Núñez

Editors

RGNC REPORT 01/2007

Research Group on Natural Computing

Sevilla University

Fénix Editora, Sevilla, 2007

c©Autores
ISBN: 978-84-611-6776-0
Depósito Legal: SE-2563–07
Edita: Fénix Editora

C/ Patricio Sáenz 13, 1 B
41004 Sevilla
fenixeditora1@telefonica.net
Telf. 954 41 29 91

Preface

This volume contains most of the papers emerged from the Fifth Brainstorming
Week on Membrane Computing (BWMC), held in Sevilla, from January 29 to
February 2, 2007, in the organization of the Research Group on Natural Computing
from the Department of Computer Science and Artificial Intelligence of Sevilla
University. The first edition of BWMC was organized at the beginning of February
2003 in Rovira i Virgili University, Tarragona, and the next three editions took
place in Sevilla at the beginning of February 2004, February 2005, and February
2006, respectively.

Keeping the tradition of previous meetings in this series, the fifth BWMC was
conceived as a period of active interaction among the participants, with the em-
phasis on exchanging ideas and cooperation, hence with only a few (“provocative”)
presentations scheduled in the first days of the meeting and with most of the time
devoted to the joint work. The efficiency of this type of meetings was again proved
to be very high and the present volume proves this assertion.

Pleasantly enough, after almost eight years since the research in this area was
initiated, membrane computing is still an expanding research field, both with many
theoretical issues of current interest, new problems and new research ideas, and
with a growing number of applications, especially in biology and medicine.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of the papers from these volumes will be considered for publi-
cation in a special issues of International Journal of Unconventional Computing
(after the first BWMC, a special issue of Natural Computing – volume 2, number
3, 2003, and a special issue of New Generation Computing – volume 22, num-
ber 4, 2004, were published; papers from the second BWMC have appeared in
a special issue of Journal of Universal Computer Science – volume 10, number

vi Preface

5, 2004, as well as in a special issue of Soft Computing – volume 9, number 5,
2005; a selection of papers written during the third BWMC have appeared in a
special issue of International Journal of Foundations of Computer Science – vol-
ume 17, number 1, 2006); after the fourth BWMC a special issue of Theoretical
Computer Science was edited – volume 372, numbers 2-3, 2007. Other papers elab-
orated during the fifth BWMC will be submitted to other journals or to suitable
conferences. The reader interested in the final version of these papers is advised
to check the current bibliography of membrane computing available in the Mi-
lano web page http://psystems.disco.unimib.it (with a mirror in China, at
http://bmc.hust.edu.cn/psystems).

The list of participants as well as their email addresses are given below, with
the aim of facilitating the further communication and interaction:

1. Ardelean Ioan, Institute of Biology of the Romanian Academy, Bucharest,
Romania,
ioan.ardelean@ibiol.ro

2. Balbont́ın-Noval Delia, University of Sevilla, Spain,
delia@us.es

3. Bernardini Francesco, Leiden University, The Netherlands,
bernardi@liacs.nl

4. Bianco Luca, University of Verona, Italy,
bianco@sci.univr.it

5. Busi Nadia, University of Bologna, Italy,
busi@cs.unibo.it

6. Cazzaniga Paolo, University of Milano-Bicocca, Italy,
cazzaniga@disco.unimib.it

7. Colomer Cugat M. Angels, University of Lleida, Spain,
Colomer@matematica.UdL.es

8. Cordón Franco Andrés, University of Sevilla, Spain,
acordon@us.es

9. Dı́az-Pernil Daniel, University of Sevilla, Spain,
sbdani@us.es

10. Ferretti Claudio, University of Milano-Bicocca, Italy,
ferretti@disco.unimib.it

11. Freund Rudolf, Technical University Wien, Austria,
rudi@emcc.at, rudi@logic.at

12. Garćıa Arnau Marc, Polytechnical University of Madrid, Spain,
mgarnau@gmail.com

13. Gheorghe Marian, University of Sheffield, United Kingdom,
marian@dcs.shef.ac.uk

14. Graciani Dı́az Carmen, University of Sevilla, Spain,
cgdiaz@us.es

15. Gutiérrez-Naranjo Miguel Angel, University of Sevilla, Spain,
magutier@us.es

Preface vii

16. Ionescu Mihai, University of Tarragona, Spain,
mihai caltun@yahoo.com

17. Leporati Alberto, University of Milano-Bicocca, Italy,
leporati@disco.unimib.it

18. Mardare Radu, University of Trento, Italy,
mardare@cosbi.eu

19. Mauri Giancarlo, University of Milano-Bicocca, Italy,
mauri@disco.unimib.it

20. Nepomuceno-Chamorro Isabel, University of Sevilla, Spain,
isabelnepomuc@yahoo.es

21. Nepomuceno-Chamorro Juan Antonio, University of Sevilla, Spain,
janepochamorro@yahoo.es

22. Păun Gheorghe, Institute of Mathematics of the Romanian Academy, Bucharest,
Romania, and University of Sevilla, Spain,
george.paun@imar.ro, gpaun@us.es

23. Pérez-Jiménez Mario de Jesus, University of Sevilla, Spain,
marper@us.es

24. Pescini Dario, University of Milano-Bicocca, Italy,
pescini@disco.unimib.it

25. Potapov Igor, University of Liverpool, United Kingdom,
igor@csc.liv.ac.uk

26. Ramirez Martinez Daniel, Univ. of Sevilla, Spain,
thebluebishop@gmail.com

27. Riscos-Núñez Agust́ın, University of Sevilla, Spain,
ariscosn@us.es

28. Romero-Campero Francisco José, University of Sevilla, Spain,
fran@us.es

29. Romero Jiménez Alvaro, University of Sevilla, Spain,
Alvaro.Romero@cs.us.es

30. Sancho Caparrini Fernando, University of Sevilla, Spain,
fsancho@us.es

31. Sburlan Dragoş, Constanţa University, Romania,
dsburlan@gmail.com

32. Sempere Luna José Maŕıa, Polytechnical University of Valencia, Spain,
jsempere@dsic.upv.es

33. Vaszil György, Hungarian Academy of Sciences, Budapest, Hungary,
vaszil@sztaki.hu

34. Verlan Sergey, University of Paris 12, Creteil, France,
verlan@univ-paris12.fr

35. Yokomori Takashi, Waseda University, Japan,
yokomori@waseda.jp

36. Zandron Claudio, University of Milano-Bicocca, Italy,
zandron@disco.unimib.it

viii Preface

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)– and all the
members of this group were enthusiastically involved in this (not always easy) work.
The meeting was supported from various sources: (i) Proyectos de Investigación
TIN2005–09345–C04–01 y TIN2006–13425 del Ministerio de Educación y Ciencia
of Spain, (ii) Grupo de Investigación en Computación Natural (PAI TIC 193) de
Junta de Andalucia, (iii) III Plan Propio de la Universidad de Sevilla, as well as
by the Department of Computer Science and Artificial Intelligence from Sevilla
University.

Gheorghe Păun
Mario de Jesús Pérez-Jiménez

(Sevilla, April 10, 2007)

Contents

Partial Versus Total Halting in P Systems
A. Alhazov, R. Freund, M. Oswald, S. Verlan . 1

Magnetotactic Bacteria and Their Significance
for P Systems and Nanoactuators
I.I. Ardelean, M. Ignat, C. Moisescu . 21

Networks of Cells and Petri Nets
F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan 33

Extended Spiking Neural P systems
with Excitatory and Inhibitory Astrocytes
A. Binder, R. Freund, M. Oswald, L. Vock . 63

Information Theory over Multisets
C. Bonchiş, C. Izbaşa, G. Ciobanu . 73

VisualTissue: A Friendly Tool to Study
Tissue P Systems Solutions for Graph Problems
R. Borrego-Ropero, D. Dı́az-Pernil, J.A. Nepomuceno 87

Towards a Causal Semantics for Brane Calculi
N. Busi . 97

Subset Sum with Tissue P Systems with Cell Division
D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo,
M.J. Pérez-Jiménez, A. Riscos-Núñez . 113

Polarizationless P Systems with Active Membranes
Working in the Minimally Parallel Manner
R. Freund, Gh. Păun, M.J. Pérez-Jiménez . 131

Spiking Neural P Systems: Stronger Normal Forms
M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Paton, P. Sosik 157

x Contents

A Membrane Computing Model for Ballistic Depositions
C. Graciani-Dı́az, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez 179

P Systems with Adjoining Controlled Communication Rules
M. Ionescu, D. Sburlan . 199

Several Applications of Spiking Neural P Systems
M. Ionescu, D. Sburlan . 213

On the Computational Power of Spiking Neural P Systems
A. Leporati, C. Zandron, C. Ferretti, G. Mauri . 227

Some Mathematical Methods and Tools
for an Analysis of Harmony-Seeking Computations
A. Obtu lowicz . 247

Twenty Six Research Topics About Spiking Neural P Systems
Gh. Păun . 263

Membrane Computing Schema Based on String Insertions
M.J. Pérez-Jiménez, T. Yokomori . 281

A Software Tool for Dealing with Spiking Neural P Systems
D. Ramı́rez-Mart́ınez, M.A. Gutiérrez-Naranjo . 299

On Two Families of Multiset Tree Automata
J.M. Sempere, D. López . 315

Author index . 325

Partial Versus Total Halting in P Systems

Artiom Alhazov1, Rudolf Freund2, Marion Oswald2, Sergey Verlan3

1 Department of Information Technologies
Abo Akademi University
Turku Center for Computer Science
FIN-20520 Turku, Finland
aalhazov@abo.fi

and
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD-2028, Moldova
aartiom@math.md

2 Faculty of Informatics
Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
{rudi,marion}@emcc.at

3 LACL, Département Informatique
UFR Sciences et Technologie
Université Paris XII
61, av. Général de Gaulle
94010 Créteil, France
verlan@univ-paris12.fr

Summary. We consider a new variant of the halting condition in P systems, i.e., a
computation in a P system is already called halting if not for all membranes a rule is
applicable anymore at the same time, whereas usually a computation is called halting if
no rule is applicable anymore in the whole system. This new variant of partial halting
is especially investigated for several variants of P systems working in different derivation
modes.

1 Introduction

In the seeding papers of Gheorghe Păun (e.g., see [19], [9]) introducing membrane
computing, membrane systems were introduced as systems with a hierarchical
(tree-like) structure and the rules being applied in a maximally parallel manner;
the results were taken as the contents of a specified output membrane in the final
configurations of halting computations, i.e., at the end of computations to which
no rule was applicable anymore. In this paper, we investigate a new variant of
halting – partial halting –, see [13], i.e., we consider a computation to halt as soon

2 A. Alhazov, R. Freund, M. Oswald, S. Verlan

as not for all membranes a rule is applicable anymore at the same time. Moreover,
we especially also consider the derivation mode of minimal parallelism (e.g., see
[7]), i.e., for each membrane, at least one rule – if possible – has to be applied, but
it is not required to use a maximal multiset of rules. Finally, in the asynchronous
derivation mode an arbitrary number of rules can be applied in parallel, and in the
sequential derivation mode exactly one rule has to be applied in each computation
step.

The paper is organized as follows: We first recall some well-known definitions,
notions, and results for matrix grammars and register machines and then define
a special model of P systems – P systems with permitting contexts – that covers
a lot of variants known from the literature such as antiport P systems, P systems
with conditional uniport rules, evolution/communication P systems, and P sys-
tems with boundary rules. For establishing our results, we especially consider the
new stopping mode of partial halting; we first state some general result and then
show that P systems using membrane rules with permitting contexts working in
the minimally parallel mode and with partial halting can only generate matrix
languages. On the other hand, we improve or newly establish results showing that
specific variants of P systems with permitting contexts such as antiport P systems,
P systems with conditional uniport rules, and evolution/communication P systems
together with the newly introduced variant of minimal parallelism and with total
halting are computationally complete.

2 Definitions

In this section, we first recall some basic notions and notations and then give pre-
cise definitions for matrix grammars, register machines, and a general model of
P systems using membrane rules with permitting contexts as they are considered
in this paper; moreover, we show how several well-known models of P systems (P
systems with symport/antiport rules, P systems with conditional uniport rules,
evolution/communication P systems, P systems with boundary rules) can be in-
terpreted as special variants of this general model.

2.1 Preliminaries

For the basic elements of formal language theory needed in the following, we refer
to [8] and [23]. We just list a few notions and notations: N denotes the set of non-
negative integers. V ∗ is the free monoid generated by the alphabet V under the
operation of concatenation and the empty string, denoted by λ, as unit element;
by NRE and NREG we denote the family of recursively enumerable sets and
regular sets of non-negative integers, respectively.

Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a symbol
ai in x is denoted by |x|ai

; the Parikh vector associated with x with respect to
(a1, ..., an) is

(
|x|a1

, ..., |x|an

)
. The Parikh image of a language L over (a1, ..., an)

Partial Versus Total Halting in P Systems 3

is the set of all Parikh vectors of strings in L. For a family of languages F, the
family of Parikh images of languages in F is denoted by PsF. A (finite) multiset
〈m1, a1〉 ... 〈mn, an〉 with mi ∈ N, 1 ≤ i ≤ n, can be represented by any string x the
Parikh vector of which with respect to (a1, ..., an) is (m1, ...,mn); if mi = 1 for all
1 ≤ i ≤ n, then x can also be represented by the corresponding set {m1, ...,mn}.

The family of recursively enumerable languages is denoted by RE, the family
of context-free and regular languages by CF and REG, respectively. The corre-
sponding families of languages over a k-letter alphabet are denoted by X (k) ,
X ∈ {RE,CF, REG}; for k = 1 we obtain PsX (1) = NX and, moreover,
NREG = NCF.

2.2 Matrix Grammars

A context-free matrix grammar (without appearance checking) is a construct
G = (N,T, S,M) where N and T are sets of non-terminal and terminal sym-
bols, respectively, with N ∩ T = ∅, S ∈ N is the start symbol, M is a finite set of
matrices, M = {mi | 1 ≤ i ≤ n}, where the matrices mi are sequences of the form
mi = (mi,1, . . . ,mi,ni

), ni ≥ 1, 1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n,
are context-free productions over (N,T). For mi = (mi,1, . . . ,mi,ni

) and v, w ∈
(N ∪ T)∗ we define v =⇒mi

w if and only if there are w0, w1, . . . , wni
∈ (N ∪ T)∗

such that w0 = v, wni = w, and for each j, 1 ≤ j ≤ ni, wj is the result of the
application of mi,j to wj−1. The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T)∗ , mij ∈ M for 1 ≤ j ≤ k, k ≥ 1
}

.

The family of languages generated by matrix grammars without appearance check-
ing (over a one-letter alphabet) is denoted by MATλ (MATλ (1)). It is known
that CF ⊂ MATλ ⊂ RE as well as PsCF ⊂ PsMATλ ⊂ PsRE, and espe-
cially NREG = NCF = PsMATλ (1) ⊂ NRE. For further details about matrix
grammars we refer to [8] and to [23].

2.3 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems often are based on the simulation of register machines; we refer to [17]
for original definitions, and to [11] for definitions like those we use in this paper:

An n-register machine is a construct M = (n, B, P, p0, ph) , where n is the
number of registers, B is a set of labels for injectively labelling the instructions in
P , p0 is the initial/start label, and ph is the final label.

The instructions are of the following forms:

– p : (A (r) , q, s) (ADD instruction)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) q and s.

4 A. Alhazov, R. Freund, M. Oswald, S. Verlan

– p : (S (r) , q, s) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to instruction
q, otherwise proceed to instruction s.

– ph : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(n1, ..., nβ) of natural numbers if, starting with the instruction with label p0 and
all registers containing the number 0, the machine stops (it reaches the instruction
ph : halt) with the first β registers containing the numbers n1, ..., nβ (and all other
registers being empty).

Without loss of generality, in the succeeding proofs we will assume that for
non-deterministic register machines in each ADD instruction p : (A (r) , q, s) ∈ P
and in each SUB instruction p : (S (r) , q, s) ∈ P the labels p, q, s are mutually
distinct (for a proof see [16]).

A register machine is called deterministic if and only if in every ADD instruc-
tion p : (A (r) , q, s) ∈ P we have q = s; in this case we also write p : (A (r) , q)
instead. A deterministic register machine M is said to accept a vector (n1, ..., nβ)
of natural numbers if, starting with the instruction with label p0 and registers 1 to
β containing the numbers n1, ..., nβ , the machine stops (it reaches the instruction
ph : halt) with the all registers being empty.

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets of
vectors of non-negative integers which can be generated by Turing machines, i.e.,
the family PsRE.

The results proved in [10] (based on the results established in [17]) and [11],
[14] immediately lead to the following results:

Proposition 1. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a non-deterministic (β + 2)-register machine M gen-
erating L in such a way that, when starting with all registers 1 to β+2 being empty,
M non-deterministically computes and halts with ni in registers i, 1 ≤ i ≤ β, and
registers β + 1 and β + 2 being empty if and only if (n1, ..., nβ) ∈ L. Moreover, the
registers 1 to β are never decremented.

Proposition 2. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a deterministic (β + 2)-register machine M accepting
L in such a way that, when starting with n1, ..., nβ in registers 1 to β and with
register β + 1 and β + 2 being empty, M halts with all registers being empty if and
only if (n1, ..., nβ) ∈ L.

2.4 A General Model of P Systems with Permitting Contexts

We now introduce a general model of P systems with permitting contexts cov-
ering the most important models of communication P systems as well as evolu-
tion/communication P systems. For the state of the art in the P systems area, we
refer to the P systems web page [25].

Partial Versus Total Halting in P Systems 5

A P system (of degree d, d ≥ 1) with permitting contexts (in the following also
called P system for short) is a construct

Π = (V, T,E, µ, w0, w1, . . . , wd, R1, . . . , Rd, io) where

1. V is an alphabet; its elements are called objects;
2. T ⊆ V is an alphabet of terminal objects;
3. E ⊆ V is the set of objects occurring in an unbounded number in the environ-

ment;
4. µ is a membrane structure consisting of d membranes (usually labelled with i

and represented by corresponding brackets [i and]i, 1 ≤ i ≤ d);
5. wi, 1 ≤ i ≤ d, are strings over V associated with the regions 1, 2, . . . , d of µ;

they represent multisets of objects initially present in the regions of µ; w0 rep-
resents the multiset of objects from V rE initially present in the environment
(in the following we usually shall assume w0 = λ);

6. Ri, 1 ≤ i ≤ d, are finite sets of membrane rules with permitting contexts over
V associated with the membranes 1, 2, . . . , d of µ; these evolution rules in Ri

are of the form u
w [x

z → v
w [y

z , where w, z ∈ V ∗ are the contexts in the region
outside membrane i and inside membrane i, respectively, u outside membrane
i is replaced by v and x inside membrane i is replaced by y;

7. io is a number between 1 and d and it specifies the output membrane of Π.

The rule u
w [x

z → v
w [y

z from Ri is applicable if and only if the multiset uw
occurs in the region outside membrane i (in the following also denoted by ı̂) and
the multiset xz occurs in the region inside membrane i. The application of this rule
results in subtracting the multiset identified by u from the multiset in ı̂ and adding
v instead as well as subtracting x and adding y in the region inside membrane i.
The permitting contexts w and z themselves or subsets of w and z can be (part
of) permitting contexts in other rules and, moreover, even be modified by another
rule in the same derivation step. On the other hand, any object can be modified,
i.e., be part of u or x in a rule u

w [x
z → v

w [y
z , by only one application of one rule

in each derivation step. The rules to be applied in parallel and the objects to be
modified by these rules are chosen in a non-deterministic way.

Instead of writing u
w [x

z → v
w [y

z ∈ Ri we can also write u
w [i

x
z → v

w [i
y
z and

in this way collect all rules from the Ri, 1 ≤ i ≤ d, in one single set of rules
R =

{
u
w [

i

x
z →

v
w [

i

y
z |

u
w [x

z →
v
w [y

z ∈ Ri

}
.

The membrane structure and the multisets represented by wi, 0 ≤ i ≤ d, in Π
constitute the initial configuration of the system.

In the maximally parallel derivation mode, a transition from one configuration
to another one is obtained by the application of a maximal multiset of rules,
i.e., no additional rules could be applied anymore to the objects occurring in the
current configuration. The system continues maximally parallel derivation steps
until there remain no applicable rules in any region of Π; then the system halts
(total halting). We consider the number of objects from T contained in the output
membrane io at the moment when the system halts as the result of the underlying

6 A. Alhazov, R. Freund, M. Oswald, S. Verlan

computation of Π yielding a vector of non-negative integers for the numbers of
terminal symbols in the output membrane i0; observe that here we do not count
the non-terminal objects present in the output membrane. The set of results of
all halting computations possible in Π is denoted by Ps (Π), respectively. Below,
we shall consider variants of P systems using only rules of very restricted types α.
The family of all sets of vectors of non-negative integers computable by P systems
with d membranes and using rules of type α is denoted by PsgOPd (α, max,H).

When using the minimally parallel derivation mode, in each derivation step we
choose a multiset of rules from the Ri in such way that to this chosen multiset
no rule from a set Rj from which no rule has been taken so far, could be added
anymore to be applied in parallel with the rules already chosen.

In the asynchronous and the sequential derivation mode, in each derivation step
we apply an arbitrary number of rules/ exactly one rule, respectively. The corre-
sponding families of sets of vectors of non-negative integers generated by P systems
with d membranes and using rules of type α are denoted by PsgOPd (α, X, H),
X ∈ {min, asyn, sequ}.

If instead of the total halting we take partial halting, i.e., computations halting
as soon as in at least from one set of rules no rule is applicable anymore, the corre-
sponding families are denoted by PsgOPd (α, X, h), X ∈ {max,min, asyn, sequ}.

All these variants of P systems can also be considered as accepting devices,
the input being given as the numbers of objects in the distinguished membrane
i0. The corresponding families of sets of vectors of non-negative integers ac-
cepted by P systems with d membranes and using rules of type α are denoted
by PsaOPd (α, X, Y) , X ∈ {max,min, asyn, sequ}, Y ∈ {H,h}. In this case, it
also makes sense to consider deterministic P systems, i.e., systems where for each
configuration obtained in this system we can derive at most one configuration. The
corresponding families are denoted by DPsaOPd (α, X, Y).

If we only count the number of terminal objects and do not distinguish between
different (terminal) objects, in all the definitions given above, we replace Ps by
N . When the parameter d is not bounded, it is replaced by ∗.

In the following, we now consider several restricted variants of membrane rules
with permitting contexts well known from the literature.

P systems with symport/antiport rules

For definitions and results concerning P systems with symport/antiport rules, we
refer to the original paper [18] as well as to the overview given in [22]. An antiport
rule is a rule of the form u [x → x [u usually written as (x, out;u, in), ux 6= λ.
A symport rule is of the form [x → x [or u [→ [u usually written as (x, out),
x 6= λ, or (u, in), u 6= λ, respectively.

The weight of the antiport rule (x, out;u, in) is defined as max {|x| , |u|}. Using
only antiport rules with weight k induces the type α usually written as antik. The
weight of a symport rule (x, out) or (u, in) is defined as |x| or |u|, respectively.
Using only symport rules with weight k induces the type α usually written as

Partial Versus Total Halting in P Systems 7

symk. If only antiport rules (x, out;u, in) of weight ≤ 2 and with |x|+ |u| ≤ 3 as
well as symport rules of weight 1 are used, we shall write anti2′ .

P systems with conditional uniport rules

A conditional uniport rule is a rule of one of the forms ab [→ b [a , [ab → a [b ,
a [b → [ab , b [a → ab [, with a, b ∈ V ; in every case, the object a is moved across
the membrane, whereas the object b stays where it is. Using only rules of that kind
induces the type uni1,1. Conditional uniport rules were first considered in [24] for
the case of tissue P systems, showing computational completeness with maximal
parallelism and total halting (using 24 cells).

P systems with boundary rules and evolution/communication P
systems

In P systems with boundary rules as defined in [4], evolution rules as well as
communication rules with permitting contexts are considered. Usually, we only
consider evolution rules that are non-cooperative, i.e., of the form a → v with
a ∈ V and v ∈ V ∗; a rule a → v ∈ Ri corresponds to [a → [v ∈ Ri in our general
notation. The communication rules are symport or antiport rules with permitting
contexts, i.e., of the form u

w [x
z →

x
w [u

z .
In [5], boundary rules of the form u [x → v [y are considered, i.e., rewriting on

both sides of the membrane. In evolution/communication P systems as introduced
in [6], we allow non-cooperative evolution rules as well as antiport (of weight k) and
symport rules (of weight l), and we denote this type of rules by (ncoo, antik, syml).

3 Results

After recalling some general results for the new variant of partial halting already
established in [13], which immediately yield comparable computational complete-
ness results in the case of antiport P systems for total and partial halting, we prove
that P systems with permitting contexts working in the sequential, in the asyn-
chronous or even in the minimally parallel derivation mode and with partial halting
can only generate Parikh sets of matrix languages (regular sets of non-negative in-
tegers). On the other hand, specific variants of P systems with permitting context
such as P systems with antiport rules, P systems with symport rules, P systems
with conditional uniport rules, and evolution/communication P systems together
with the newly introduced variant of minimal parallelism and with total halting
are computationally complete.

3.1 General Observations

Looking carefully into the definitions of the derivation modes as well as the halting
modes explained above, we observe the following general results already established
in [13]:

8 A. Alhazov, R. Freund, M. Oswald, S. Verlan

Theorem 1. Any variant of P systems yielding a family of sets of non-negative
integers F when working in the derivation mode X, X ∈ {max,min, asyn, sequ},
with only one set of rules assigned to a single membrane and stopping with total
halting yields the same family F when working in the derivation mode X with only
one set of rules assigned to a single membrane when stopping with partial halting,
too.

Theorem 2. Any variant of P systems yielding a family of sets of non-negative
integers F when working in the derivation mode X, X ∈ {asyn, sequ}, with only
one set of rules assigned to a single membrane and stopping with total or partial
halting, respectively, yields the same family F when working in the minimally
parallel derivation mode and stopping with the corresponding halting mode, too.

For any P system using rules of type α, with a derivation mode X, X ∈
{min, asyn, sequ}, and partial halting, we only get Parikh sets of matrix languages
(regular sets of non-negative integers):

Theorem 3. For every X ∈ {min, asyn, sequ},
PsgOP∗ (α, X, h) ⊆ PsMATλ and NgOP∗ (α, X, h) ⊆ NREG.

Proof. We only prove PsgOP∗ (α, X, h) ⊆ PsMATλ; the second inequality
NgOP∗ (α, X, h) ⊆ NREG is a direct consequence of the first one, having
in mind that NREG = PsMATλ (1). Hence, let us start with a P system
Π = (V, T,E, µ, w1, . . . , wd, R1, . . . , Rd, io) using rules of a specific type α, working
with the derivation mode X. The stopping condition h – partial halting – then
guarantees that in order to continue a derivation there must exist a sequence of
rules 〈r1, . . . , rd〉 with ri ∈ Ri, 1 ≤ i ≤ d, such that all these rules are applicable
in parallel. We now consider all functions δ with δ (i, r) ∈ {0, 1} and δ (i, r) = 1 if
and only if the rule r ∈ Ri, 1 ≤ i ≤ d, is assumed to be applicable to the current
sentential form in a matrix grammar GM =

(
VM , T , S,M

)
generating represen-

tations of all possible configurations computable in the given P system Π with
the representation of an object a in membrane i as (i, a). We start with the ma-
trix (S → Kh (w)) where h (w) is a representation of the initial configuration. A
derivation step in Π then is simulated in GM as follows:

(i) We non-deterministically choose some δ as described above and use the
matrix (K → K (δ)). Afterwards, we use the matrix (K (δ) → K ′ (δ) , s1, ..., sm)
where each subsequence sj , 1 ≤ j ≤ m, checks the applicability of
a rule r ∈ Ri with δ (i, r) = 1. For checking the applicability of
u
w [x

z → v
w [y

z ∈ Ri, we have to check for the appearance of uw in
membrane ı̂ (the outer region of membrane i) and for the appearance of
xz in the (inner) region of membrane i. This can be done by the sub-
sequence ((̂ı, uw) → (̂ı, uw) , (̂ı, uw) → (̂ı, uw) , (i, xz) → (i, xz) , (i, xz) → (i, xz)),
where (i, v) → (i, v), for v = v1...vh, vj ∈ V , 1 ≤ j ≤ h, h ≥ 0, is a shortcut
for the sequence ((i, v1) → (i, v1) , ..., (i, vh) → (i, vh)) etc.

(ii) After that, we non-deterministically guess a sequence of rules 〈r1, . . . , rd〉
with ri ∈ Ri, ri = u(i)

w(i)
[x(i)
z(i)

→ v(i)
w(i)

[y(i)
z(i)

, and δ (i, ri) = 1, 1 ≤

Partial Versus Total Halting in P Systems 9

i ≤ d, such that all these rules are applicable in parallel. This can be
checked by the corresponding matrix (K ′ (δ) → K ′′ (δ) , t1, ..., td, t

′
1, ..., t

′
d) with

the subsequences ti, t′i, 1 ≤ i ≤ d, being defined (in the shortcut nota-
tion as above) by ti =

(
(̂ı, u (i)) →

(
ı̂, u (i)

)
, (i, x (i)) →

(
i, x (i)

))
and t′1 =((

ı̂, u (i)
)
→ (̂ı, u (i)) ,

(
i, x (i)

)
→ (i, x (i))

)
. Observe that only the objects in

u (i) and x (i) are assigned to the rule ri, whereas the permitting contexts w (i)
and z (i) may be contexts for another rule or be affected themselves by another
rule, and, moreover, that the applicability of the rules themselves has already been
checked in (i).

(iii) Finally, we take different matrices depending on the derivation mode:

1. In the sequential derivation mode, we only have to take all possible matrices
simulating the application of one rule u

w [x
z → v

w [y
z ∈ Ri with δ (i, r) = 1:

(K ′′ (δ) → Khı̂ (v)hi (y) , (̂ı, u) → λ, (i, x) → λ), where the morphisms hj are
defined by hj (a) = (j, a), 0 ≤ j ≤ d, a ∈ V , except h0 (a) = λ for a ∈ E
(these symbols, by definition, are available in an unbounded number in the
environment).

2. In the asynchronous derivation mode, we have to allow an arbitrary num-
ber of rules to be applied in parallel; we simulate the application of rules
sequentially, priming the results such that they cannot be used immediately.
Finally, if for the current derivation step, the application of no further rule is
intended, we can deprime the result symbols to be available for the simulation
of the next derivation step. In sum, we use the matrices (K ′′ (δ) → K ′′′ (δ)),
(K ′′′ (δ) → K ′′′ (δ)h′ı̂ (v) h′i (y) , (̂ı, u) → λ, (i, x) → λ) – where the morphisms
h′j are defined by h′j (a) = (j, a′), 0 ≤ j ≤ d, a ∈ V , except h′0 (a) = λ for a ∈ E

– for every rule u
w [x

z →
v
w [y

z ∈ Ri with δ (i, r) = 1, as well as
(
K ′′′ (δ) → K (δ)

)
,(

K (δ) → K (δ) , (j, a′) → (j, a)
)
, 0 ≤ j ≤ d, a ∈ V , and finally

(
K (δ) → K

)
.

3. For the minimally parallel mode, instead of (K ′′ (δ) → K ′′′ (δ)) as in
2, we simulate the application of a sequence of rules 〈r1, . . . , rd〉 with
ri ∈ Ri, 1 ≤ i ≤ d, ri = u(i)

w(i)
[x(i)
z(i)

→ v(i)
w(i)

[y(i)
z(i)

, and δ (i, ri) =
1 such that all these rules are applicable in parallel, which is ac-
complished by the matrix

(
K ′′ (δ) → K ′′′ (δ) h′

1̂
(v) h′1 (y) ...h′

d̂
(v)h′d (y) ,(

1̂, u (1)
)
→ λ, (1, x (1)) → λ, ...,

(
d̂, u (d)

)
→ λ, (d, x (d)) → λ

)
.

As a technical detail we have to mention that it does not matter whether all
the primed symbols are deprimed again, this would just make them unavailable
during the next steps. Any sentential form containing primed symbols is considered
to be non-terminal, hence, it cannot contribute to L (GM). Moreover, we have to
point out that every symbol e ∈ E from the environment being available there
in an unbounded number neither needs to be checked for appearance in 1̂ (= 0)
nor to be generated/eliminated or primed/deprimed, i.e., rules like (0, e) → λ,
(0, e) → (0, e), (0, e) → (0, e) have to be omitted.

10 A. Alhazov, R. Freund, M. Oswald, S. Verlan

Finally, we may stop the simulation of computation steps of Π and use the
matrices (K → F), (F → F, (i, a) → (i, a)) for every object a and every membrane
i, and the final matrix (F → λ) for generating a terminal string of GM .

Now, we have to extract the representations of final configurations from
L (GM): For every possibility of choosing a sequence of rules 〈r1, . . . , rd〉 with
ri ∈ Ri, 1 ≤ i ≤ d, such that all these rules are applicable in parallel, we construct
a regular set checking for the applicability of this sequence in any possible repre-
sentation of configurations of Π; then we take the union of all these regular sets
and take its complement thus obtaining a regular set R. In L (GM) ∩ R we then
find at least one representation for every final configuration of computations in Π,
but no representation of a non-final configuration.

Finally, let g be a projection with g ((i, a)) = λ for every i 6= i0 as well as
g ((i0, a)) = λ for a ∈ V r T and g ((i0, a)) = a for a ∈ T . Due to the closure
properties of MATλ, we obtain Ps (g (L (GM) ∩R)) = Ps (Π) ∈ PsMATλ.

3.2 Results for Symport/Antiport Systems

The following results are well known (e.g., see [20]; for an overview of actual results
also see [22]):

Theorem 4. PsgOP1 (anti2′ ,max, H) = DPsaOP1 (anti2′ ,max, H) = PsRE.

Theorem 5. For every X ∈ {asyn, sequ},
PsgOP∗ (anti∗, X,H) = PsgOP1 (anti2′ , X,H) = PsMATλ and
NgOP∗ (anti∗, X,H) = NgOP1 (anti2′ , X,H) = NREG .

Recently, for minimal parallelism, the following result was obtained, see [7]:

Theorem 6. NgOP3 (anti2,min, H) = NRE.

We shall improve this result by showing that only two membranes are needed:

Theorem 7. PsgOP2 (anti2′ ,min, H) = PsRE.

Proof. We only give a sketch of the proof, because the basic ideas are the same as
in the usual proofs showing computational completeness for antiport P systems.
Now let M = (n, B, P, p0, ph) be a register machine generating an output vector
of dimension k (≤ n); then we construct the P system

Partial Versus Total Halting in P Systems 11

Π = (V, T, V, µ, p0, ZX,R1, R2, 2) ,
V = {p, p′, p′′, p′′′, p̃, p̃′, p̃′′, p̄, p̄′, p̄′′ | p ∈ B}

∪ {X, Y, Z, Z ′} ∪ {Ai | 1 ≤ i ≤ n} ,
T = {Ai | 1 ≤ i ≤ k} ,
µ = [1 [2]2]1,
R1 = R1,A ∪R1,S ∪R1,F ,
R1,A = {(p, out;Arq, in) , (p, out;Ars, in) | p : (A (r) , q, s) ∈ P} ,
R1,S = {(p, out; p′p′′, in), (p′′Ar, out; p′′′, in), (p′′X, out; p̄, in),

(p′′′X, out; p̃, in), (p̄, out; p̄′X, in), (p̄′, out; p̄′′Y, in),
(p̄′′, out; s, in), (p̃, out; p̃′X, in), (p̃′, out; p̃′′Y, in),
(p̃′′, out; q, in) | p : (S (r) , q, s) ∈ P} ,

R1,F = {(p′Y, out;Z ′, in) | p ∈ B r {ph}} ∪ {(Z ′, out) , (ZX, out;Z ′, in)} ,
R2 = R2,A ∪R2,S ∪R2,F ,
R2,A = {(Ai, in) | 1 ≤ i ≤ k} ,
R2,S = {(X, out; p′, in) | p ∈ B r {ph}} ∪ {(Z, out;XY, in) , (Z, in)} ,
R2,F = {(p′Y, out; ph, in) | p ∈ B r {ph}} ∪ {(ZX, out; ph, in) , (ph, out)} .

An ADD instruction p : (A (r) , q, s) ∈ P is simulated by using one of the rules
(p, out;Arq, in), (p, out;Ars, in) assigned to membrane 1; in case r is an output
register, the terminal symbol Ar is moved into the output region 2 by using (Ar, in)
from R2. A SUB instruction p : (S (r) , q, s) ∈ P is simulated by using the rules
from R1,S and R2,S in parallel. The final procedure in Π starts when the final
label ph appears; as the number of symbols p′ equals the number of symbols Y as
they have been introduced when simulating a SUB instruction, we finally eliminate
pairs p′Y from the system using the rules from R1,F and R2,F until finally only
ph remains in the skin membrane and the desired output is found in the second
membrane region, without any additional symbols remaining there anymore.

The general result in Theorem 1 and the special result in Theorem 4 immedi-
ately yield the following one:

Corollary 1. PsgOP1 (anti2′ ,max, h) = DPsaOP1 (anti2′ ,max, h) = PsRE.

With the other derivation modes and partial halting, we only get Parikh sets
of matrix languages (regular sets of non-negative integers), which is an immediate
consequence of Theorem 3:

Corollary 2. For every X ∈ {min, asyn, sequ},
PsgOP∗ (anti∗, X, h) = PsgOP1 (anti2′ , X, h) = PsMATλ and
NgOP∗ (anti∗, X, h) = NgOP1 (anti2′ , X, h) = NREG.

For symport rules, the following result is known (e.g., see [22]):

Theorem 8. PsgOP2 (sym2,max,H) = PsaOP2 (sym2,max,H) = PsRE.

Computational completeness can also be obtained with minimal parallelism
and total halting, whereas as a direct consequence of Theorem 3, we only get
Parikh sets of matrix languages (regular sets of non-negative integers) with partial
halting:

12 A. Alhazov, R. Freund, M. Oswald, S. Verlan

Theorem 9. PsgOP2 (sym3,min, H) = PsRE.

Proof. Let M = (n, B, P, p0, ph) be a register machine generating an output vector
of dimension k (≤ n); then we construct the P system

Π = (V, T,E, µ, p0, w1, w2, R1, R2, 2) ,
V = {p, p′, p′′, p′′′, p̃, p̃′, p̃′′, p̃′′′, p̄, p̄′, p̄′′, p̄′′′, p̂, p̂′ | p ∈ B}

∪ {Ai | 1 ≤ i ≤ n} ,
T = {Ai | 1 ≤ i ≤ k} ,
E = V r {p′h} ∪ {p′, p′′′, p̃′′, p̄, p̄′, p̄′′′, p̂′ | p ∈ B}
µ = [1 [2]2]1,
w1 = {p0, p

′
h} ∪ {p′, p′′′, p̃′′, p̄, p̄′′′ | p ∈ B} ,

w2 = {p̂′, p̄′ | p ∈ B} ,
R1 = R1,A ∪R1,S ∪R1,F ,
R1,A = {(pp′, out) , (p′Arp

′′, in) , (p′′p′′′, out) , (p′′′q, in) , (p′′′s, in)
| p : (A (r) , q, s) ∈ P, 1 ≤ r ≤ k}

∪ {(pp′, out) , (p′Arq, in) , (p′Ars, in)
| p : (A (r) , q, s) ∈ P, k < r ≤ n} ,

R1,S = {(pp′, out) , (p̃p̃′p′, in) , (p̃′p̃′′Ar, out) ,
(p̃′′p̃′′′, in) , (p̄p′′′p̃′′′, out) , (p̄p′′′q, in) ,
(p̃p̃′p̄′, out) , (p̄′p̄′′, in) , (p̄p̄′′p̄′′′, out) , (p̄p̄′′′s, in)
| p : (S (r) , q, s) ∈ P} ,

R1,F = {(p̂ip̂
′
ip̄
′
i, out) | 1 ≤ i ≤ l} ∪

{(
p̂′ip̂

′
i+1, in

)
| 1 ≤ i < l

}
∪ {(php′h, out) , (p′hp̂1, in)} ,

R2 = R1,A ∪R1,S ∪R2,F ,
R2,A = {(Ai, in) | 1 ≤ i ≤ k} ,
R2,S = {(p̃p̄, in) , (p̃p̄′, out) , (p̄′p̃′′′, in) , (p̄′p̄′′, in) ,

(p̄p̃′′′, out) , (p̄p̄′′, out) | p : (S (r) , q, s) ∈ P} ,
R2,F = {(p̂i, in) , (p̂i, out) , (p̂ip̂

′
ip̄
′
i, out) | 1 ≤ i ≤ l} .

An ADD instruction p : (A (r) , q, s) ∈ P , k < r ≤ n, is simulated by sending
out the label of the instruction p together with p′ which returns with Ar as well as
the label of the next instruction q or s to be simulated. The simulation of an ADD
instruction p : (A (r) , q, s) ∈ P , 1 ≤ r ≤ k, takes two steps more – after sending
out p, p′ we return with p′ and Ar as well as with p′′ which is sent out together with
p′′′; p′′′ then returns with the label of the next instruction q or s to be simulated,
whereas in the meantime Ar has got the chance to enter membrane 2.

In the case of a SUB instruction p : (S (r) , q, s) ∈ P , p′ returns with p̃ and
p̃′. Whereas p̃ enters membrane 2 together with p̄, p̃′ gets the chance to take one
copy of Ar out of region 1 using the rule (p̃′p̃′′Ar, out). Depending on whether this
rule had to be applied or not, the simulation proceeds until finally the label of the
corresponding instruction to be simulated next is brought in together with p′′′ or
p̄′′′, respectively. We should like to mention that all the symbols from V r E used
during the simulation finally have returned to their original locations.

When the computation of the register machine stops, the label ph appears; in
order to clean the elementary membrane region 1 from non-terminal symbols we

Partial Versus Total Halting in P Systems 13

have to use the rules from R1,F and R2,F ; the labels from B are assumed to be
ordered in a sequence p1 to pl. The symbols p̄′i are taken out one after the other
using the rules (p̂ip̂

′
ip̄
′
i, out); the rules (p̂i, in) and (p̂i, out) could be used for an

unbounded number of steps, but for obtaining a terminating computation at some
moment the rule (p̂ip̂

′
ip̄
′
i, out) has to be used twice. The computation halts when

all p̄′i have been taken out.

Corollary 3. For every X ∈ {min, asyn, sequ},
PsgOP∗ (sym∗, X, h) = PsMATλ and NgOP∗ (sym∗, X, h) = NREG.

3.3 Results for P Systems with Conditional Uniport Rules

Using only conditional uniport rules of type uni1,1, we again obtain computational
completeness, even with the minimally parallel derivation mode, together with
total halting, whereas, as a direct consequence of Theorem 3, with partial halting
we only get Parikh sets of matrix languages (regular sets of non-negative integers)
with the minimally parallel derivation mode.

Theorem 10. PsgOP13 (uni1,1, X,H) = PsRE, for every X ∈ {min,max}.

Proof. We only give a sketch of the proof showing how register machine instruc-
tions can be simulated, using the following membrane structure:

[1 [2 [2′]2′]2 [3 [6]6 [7 [7′]7′]7 [8 [8′]8′]8]3 [4]4 [5 [5′ [5′′]5′′]5′]5]1

Throughout the proof we will use a specific notation for the conditional uni-
port rules to illustrate the trajectories of the objects, in a more relaxed way also
allowing symport rules of weight one (observe that we could use dummy objects as
conditions). Now let i be a membrane and ı̂ be the surrounding membrane (for the
skin membrane 1 this is the environment 0) ; then we use the following notations
(a, b are arbitrary objects):

(i, a, ı̂) represents [
i

a → a [
i
,

(̂ı, a, i) represents a [
i
→ [

i

a ,

(i, a → ı̂, b) represents b [i
a → ab [i ,

(̂ı, a → i, b) represents a [i
b → [i

ab ,

(i, a [b] → ı̂) represents [
i

ab → a [
i

b ,

(̂ı, a [b] → i) represents ab [
i
→ b [

i

a .

Moreover, we will use the shortcut notation

(A,B; i1, . . . , ik; j1, . . . , jk−1)

which corresponds to the following group of rules:

14 A. Alhazov, R. Freund, M. Oswald, S. Verlan

0

1

�
�

�

A
A
A
A
A
A
AA

@
@

@
2

2′

5

@
@

@@
5′

5′′

3

�
�

�
6

@
@

@
8

8′

7

7′

4

Fig. 1. Membrane structure

(it, B, jt)
(jt, B, j′t)
(j′t, B, jt)
(it, A[B], it+1)
(it, B → it+1, A)
for all 1 ≤ t ≤ k − 1

Informally, this means that the symbols A and B travel together from membrane i1
to membrane ik following the path i1, . . . , ik. The rules above permit to implement
this behavior in 2k steps, because if something else happens, then symbol B will
be trapped between membranes jt and j′t. Of course, we assume that B can never
go out from membrane jt and that B cannot interact with other symbols during
its move along the path.

The system is constructed as follows: membrane 8 holds the current state, mem-
brane 7 holds values of registers, membranes 4, 5 and 6 hold additional symbols.
Membrane 2 and all primed membranes are used to trap symbols.

For simulating an ADD instruction, the state symbol from membrane 8 travels
with an accompanying symbol (from membrane 6) to membrane 5. The accompa-
nying symbol then brings a second accompanying symbol from the environment
and both of them move the new state and a copy of the register object Ar to the
corresponding membranes. After that, the first accompanying symbol returns to
its original location.

Partial Versus Total Halting in P Systems 15

The SUB instruction is simulated in an even easier way. The state symbol
brings two symbols from membrane 6 to membrane 3. While it travels with one
of these symbols to membrane 5, the second one tries to decrement the register.
Now depending on the position of this second symbol (membrane 3 if the register
is zero, or membrane 1 if the register is not zero) the corresponding new state is
chosen.

We remark, that finally all involved symbols return to their original locations.
Moreover, we always move groups of two symbols and if a rule not conforming to
the scenario above is applied, then one of these symbols is trapped.

In more detail, for the simulation of an ADD instruction p : (A (r) , q, s) the
following rules are used:

I. (Ip, p; 3, 1, 5; 7, 2)
II. (Tp, Ip; 5, 1; 5′)

III. (Ip, Ar; 1, 3, 7; 2, 8)
IV. (Xp, q; 1, 3, 8; 2, 7)
V. (Xp, s; 1, 3, 8; 2, 7)

1. (8, p, 3) 2. (6, Ip → 3, p)
3. (3, Ip, 6) 4. (7, Ip, 3)
5. (0, Ar → 1, Ip) 6. (0, Xp → 1, T ′′

p)
7. (5, T ′

p → 1, Tp) 8. (5, q → 1, Tp)
9. (5, s → 1, Tp) 10. (1, T ′

p, 5)
11. (1, Tp[q], 5) 12. (1, Tp[s], 5)
13. (4, T ′′

p → 1, T ′
p) 14. (1, T ′′

p , 4)
15. (1, Tp, 2) 16. (1, Xp, 2)
17. (2, Tp, 2′) 18. (2, Xp, 2′)
19. (2′, Tp, 2) 20. (2′, Xp, 2)
21. (8, Xp, 8′)

The simulation usually starts with p in membrane 8, with Ip being in membrane
6, and q, s in membrane 5, respectively.

Symbol p goes to membrane 3 and brings there symbol Ip from membrane 6.
After that they both travel to membrane 5. There symbol Ip is moved together
with symbol Tp to membrane 1. After that Ip brings one Ar from the environment
and they travel together to membrane 7 and continue afterwards to membrane 3
and 6. In the meanwhile, symbol Tp in membrane 1 brings T ′

p and q or s (in this
order, otherwise the state symbol will be trapped in membrane 2). At the same
time when q (or s) is brought in membrane 1, symbol T ′′

p is brought into membrane
1 by T ′

p. After that symbol Tp is sent to membrane 5 and at the same time symbol
Xp is brought into membrane 1 by the symbol T ′′

p . Finally, symbols Xp and q (or
s) go together to membrane 8. We remark that the rules 3, 10 or 14 may be used
instead of some rules of the chain presented above. But in this case symbol p or
symbol Tp will be trapped. We also remark that Xp and q will be ready to move
to membrane 3 after Ip and Ar have arrived there.

16 A. Alhazov, R. Freund, M. Oswald, S. Verlan

The simulation of a SUB instruction p : (A (r) , q, s) is performed by the fol-
lowing rules:

I. (M ′
p, p; 1, 5; 2)

II. (Mp, A; 3, 1; 8)
III. (q, M ′

p; 5, 1; 5′)
IV. (s,M ′

p; 5, 1; 5′)
V. (Mp, q; 1, 3; 2)

1. (8, p, 3) 2. (6,Mp → 3, p)
3. (6,M ′

p → 3, p) 4. (3,M ′
p[Mp], 6)

5. (3,Mp → 6,M ′
p) 6. (7, Ar → 3,Mp)

7. (3,Mp[p], 1) 8. (3, p → 1,M ′
p)

9. (1,M ′
p, 3) 10. (1, s → 3,Mp)

11. (1, Ar[Mp], 0) 12. (3, q[Mp], 8)
13. (3, s[Mp], 8) 14. (3, p, 7)
15. (7, p, 7′) 16. (7′, p, 7)

The simulation usually starts with object p in membrane 8, whereas Mp,M
′
p

are found in membrane 6, q, x in membrane 5, and Ar possibly in membrane 7.
Symbol p first goes from membrane 8 to membrane 3 and after that brings

there symbol M ′
p. After that it moves symbol M ′

p to membrane 1 and brings
symbol Mp to membrane 3. Further, p moves to membrane 1 and Mp may bring
a symbol Ar to membrane 3. If it succeeds, then both symbols Mp and Ar move
to membrane 1 and after that symbol Ar is sent out. In the meanwhile p and M ′

p

move to membrane 5. From there, M ′
p brings either q or s to membrane 1. Now

if it brought q and the register was not zero (Mp is in membrane 1) then Mp will
bring q to membrane 8. Otherwise, q will be trapped in membrane 2. If s was
brought into membrane 1 by M ′

p, and the value of register was zero, then this s
will move to membrane 3 and further to membrane 8. It is easy to observe that the
symbols Mp and M ′

p return to membrane 6 by themselves. They can do this at any
moment of the computation, but only after the state symbol q or s has returned
to membrane 8 they can do this without provoking an infinite computation.

3.4 Results for Evolution/Communication P Systems

For evolution/communication P systems, the constructions from [2], Theorems 1
and 2, and from [3], Theorems 4.3.1 and 4.3.2, already show the computational
completeness, using two membranes, for the minimally parallel setup (when work-
ing in the maximally parallel way, the system never applies simultaneously more
than one rule from the same set of rules assigned to a membrane):

Corollary 4. For X ∈ {min,max},
PsgOP2 ((ncoo, anti1, sym1) , X,H) = PsRE, X ∈ {min,max}.

Partial Versus Total Halting in P Systems 17

We can extend these results by showing that deterministic evolution-
communication P systems with non-cooperative evolution rules and communica-
tion rules of weight one (also see [1]) are computationally complete, using three
membranes.

Theorem 11. For X ∈ {min,max},
DPsaOP3((ncoo, sym1, anti1) , X,H) = PsRE.

Proof. Consider a deterministic register machine M = (n, B, P, p0, ph). Let us
denote the set of labels of SUB instructions by B−.

Π =
(
V, T, V, [1 [2]2[3]3]1, p0, λ, λ, R1, R2, R3, 1

)
,

V = B ∪ {lj | l ∈ B−, 0 ≤ j ≤ 7} ∪ {q}
∪ {Ai | 1 ≤ i ≤ n} ∪ {ij | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} ,

T = {Ai | 1 ≤ i ≤ k} ,
R1 = {l → Ail

′ | (l : A (i) , l′) ∈ P} ∪ {lj → lj+1 | l ∈ B−, j ∈ {0, 1, 2, 5, 6}}
∪ {l → l0i1, l4 → l5q, l7 → l′′ | l : (S (i) , l′, l′′) ∈ P} ,

R2 = {i1 → i2, i3 → λ | 1 ≤ i ≤ n} ∪ {l3 → l4 | l ∈ B−} ,
∪ {(i1, in), (i2, out;Ai, in), (i3, in) | 1 ≤ i ≤ n}
∪ {(i2, out; l3, in), (l4, out) | l : (S (i) , l′, l′′) ∈ P} ,

R3 = {i2 → i3 | 1 ≤ i ≤ n} ∪ {q → λ} ∪ {l3 → l′ | l ∈ B−}
∪ {(i2, in), (i3, out; q, in) | 1 ≤ i ≤ n}
∪ {(i3, out; l3, in), (l′, out) | l : (S (i) , l′, l′′) ∈ P} .

An ADD instruction l : (A (i) , l′) ∈ P is implemented by the single non-
cooperative evolution rule l → Ail

′.
The simulation of a SUB instruction l : (S (i) , l′, l′′) ∈ P is described in a

depictive way in the following tables. Decrementing register i works as follows:

step 0 1 2 3 4
region 2 i1 i2 ai

rules 2 (i1, in) i1 → i2 (i2, out;Ai, in)
region 1 lAi l0i1Ai l1Ai l2Ai l3i2
rules 1 l → l0i1 l0 → l1 l1 → l2 l2 → l3
region 3
rules 3 (i2, in)

step 5 6 7 8
region 2 i3
rules 2 (i3, in) i3 → λ
region 1 l3 l3 i3 l′

rules 1
region 3 i2 i3 l3 l′

rules 3 i2 → i3 (i3, out; l3, in) l3 → l′ (l′, out)

If register i is empty, i.e., if there is no object Ai, the simulation works as
follows:

18 A. Alhazov, R. Freund, M. Oswald, S. Verlan

step 0 1 2 3 4
region 2 i1 i2 i2
rules 2 (i1, in) i1 → i2 (i2, out; l3, in)
region 1 l l0i1 l1 l2 l3
rules 1 l → l0i1 l0 → l1 l1 → l2 l2 → l3
region 3
rules 3

step 5 6 7 8 9 10
region 2 l3 l4 i3
rules 2 l3 → l4 (l4, out) (i3, in) i3 → λ
region 1 i2 l4 l5q l6i3 l7
rules 1 l4 → l5q l5 → l6 l6 → l7 l7 → l′′

region 3 i2 i3 i3 q
rules 3 (i2, in) i2 → i3 (i3, out; q, in) q → λ

The main idea of the construction is similar to that in [1]: if the object Ai is
present in region 2, it is exchanged with object i2 while object l2 changes to l3;
otherwise object l3 is exchanged with i2 in the next step. The trajectory of object
i2 is the same in both cases: it enters membrane 3, is renamed, exits and enters
membrane 2, where it is erased. The behavior of object l3 indirectly depends on
the presence of Ai via i2 or i3: in the decrement case it enters membrane 3, is
renamed to l′ and returns to region 1, while in the zero-case it enters membrane
2, is renamed to l4, exits, and produces two objects; one of them helps i3, while
the other one produces l′′, thus finishing the simulation.

4 Conclusion

In this paper, we have investigated a new variant of halting – we call it partial
halting – in membrane systems where all membranes are required to allow for
the application of a rule at the same time in order to keep a computation alive.
Obviously, for systems with only one membrane this way of halting is equivalent
with the original one where a system halts if and only if no rule is applicable
anymore in the whole system – we also call this total halting. Besides this general
result, we also have shown that P systems working in the minimally parallel mode,
the asynchronous or the sequential derivation mode and with partial halting can
only generate Parikh sets of matrix languages/regular sets, the same what we
obtain with the sequential and the asynchronous derivation mode and total halting.

Comparing the results for total and partial halting for the minimally parallel
derivation mode elaborated above, we realize that for any of the specific restricted
variants α of P systems with permitting contexts we have

PsgOP∗ (α, min, h) ⊆ PsMATλ $ PsRE = PsgOP∗ (α, min,H) and
NgOP∗ (α, min, h) = NREG $ NRE = NgOP∗ (α, min, H) ,

Partial Versus Total Halting in P Systems 19

i.e., in the case of the minimally parallel derivation mode the halting condition
– total in contrast to partial halting – makes the difference. Intuitively speaking,
the requirement for a computation to continue only if for every membrane a rule
is applicable, together with the minimally parallel derivation mode means that
we do not have the possibility of appearance checking and therefore cannot sim-
ulate the zero test for register machines, hence, we cannot obtain computational
completeness.

In the future, the new variant of partial halting should also be investigated
for other variants of P systems working in the different derivation modes, with
multisets of objects, but also with strings, arrays, etc.

Acknowledgements.

Artiom Alhazov gratefully acknowledges support by the Academy of Finland,
project 203667; he also acknowledges the project 06.411.03.04P from the Supreme
Council for Science and Technological Development of the Academy of Sciences of
Moldova. The work of Marion Oswald was supported by FWF-project T225-N04.
2006.

References

1. A. Alhazov: On determinism of evolution-communication P systems, Journal of Uni-
versal Computer Science 10, 5, 2004, 502–508.

2. A. Alhazov, Number of protons/bi-stable catalysts and membranes in P systems.
Time-freeness. In: [15], 79–95.

3. A. Alhazov: Communication in Membrane Systems with Symbol Objects, Ph.D.
Thesis, Tarragona, Spain, 2006.

4. F. Bernardini, V. Manca: P systems with boundary rules. In: [21], 107–118.
5. F. Bernardini, F. J. Romero-Campero, M. Gheorghe, M.J. Pérez-Jiménez, M. Mar-

genstern, S. Verlan, N. Krasnogor: On P systems with bounded parallelism. In: G.
Ciobanu, Gh. Păun (Eds.): Pre-Proc. of First International Workshop on Theory and
Application of P Systems, Timisoara, Romania, September 26–27, 2005, 31–36.

6. M. Cavaliere: Evolution-communication P systems. In: [21], 134–145.
7. G. Ciobanu, Linqiang Pan, Gh. Păun, M.J. Pérez-Jiménez: P systems with minimal

parallelism, accepted for TCS.
8. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory, Springer-

Verlag, Berlin, 1989.
9. J. Dassow, Gh. Păun: On the power of membrane computing, Journal of Universal

Computer Science 5 (2) (1999), 33–49.
10. R. Freund, M. Oswald: GP Systems with Forbidding Context. Fundamenta Infor-

maticae 49, 1–3 (2002), 81–102.
11. R. Freund, M. Oswald: P Systems with activated/prohibited membrane channels. In:

[21], 261–268.
12. R. Freund, M. Oswald: P systems with conditional communication rules assigned to

membranes, Journal of Automata, Languages and Combinatorics 9, 4 (2004), 387–
397.

20 A. Alhazov, R. Freund, M. Oswald, S. Verlan

13. R. Freund, M. Oswald: P systems with partial halting, submitted, 2007.
14. R. Freund, Gh. Păun: From Regulated Rewriting to Computing with Membranes:

Collapsing Hierarchies. Theoretical Computer Science 312 (2004), 143–188.
15. R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): Membrane Computing. 6th

International Workshop WMC 2005, Vienna, Austria, Lecture Notes in Computer
Science 3850, Springer-Verlag, 2006.

16. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel states.
Theoretical Computer Science 330 (2005), 101–116.

17. M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

18. A. Păun, Gh. Păun: The power of communication: P systems with symport/ antiport,
New Generation Computing 20, 3 (2002), 295–306.

19. Gh. Păun: Computing with membranes, J. of Computer and System Sciences 61, 1
(2000), 108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi).

20. Gh. Păun: Computing with Membranes: An Introduction, Springer-Verlag, Berlin,
2002.

21. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane Computing.
International Workshop WMC 2002, Curteă de Argeş, Romania, Revised Papers.
Lecture Notes in Computer Science 2597, Springer-Verlag, Berlin (2003).

22. Y. Rogozhin, A. Alhazov, R. Freund: Computational power of symport/antiport:
history, advances, and open problems. In: [15], 1–30.

23. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (3 volumes),
Springer-Verlag, Berlin, 1997.

24. S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern: On communication in tissue
P systems: conditional uniport. Pre-proceedings of Membrane Computing. Interna-
tional Workshop, WMC7, Leiden, The Netherlands, 2006, 507–521

25. The P Systems Web Page: http://psystems.disco.unimib.it.

Magnetotactic Bacteria and Their Significance for
P Systems and Nanoactuators

Ioan I. Ardelean1, Mircea Ignat2, Cristina Moisescu1

1 Institute of Biology of the Romanian Academy
Centre of Microbiology
Splaiul Independentei 296, Bucharest 060031, Romania
ioan.ardelean@ibiol.ro

2 INCDIE ICPE-CA – Dep.1/10
Splaiul Unirii Nr. 313, Bucharest 030139, Romania

Summary. In the framework of the dialog between P systems and Microbiology, in this
paper we focus on the magnetotactic behavior of magnetotactic bacteria, namely the
orientation along the Earth’s geomagnetic field lines. Magnetic properties and magne-
totactic behavior could be used to obtained micro- and nanoactuators for the desired
distribution at nanometer level of either intact magnetotactic bacteria or isolated intact
magnetosomes with significant potential application in the construction of magnetic logic
gates. Furthermore, (precise) distribution of intact magnetotactic bacteria or isolated in-
tact magnetosomes by carefully using rather strong external magnetic fields could be
described by P systems as a discontinuous process, whose potential for nanoactuators
and magnetic microchips is increasing in evidence.

1 Introduction

The cell structure and function is one root of the emergence of P systems (Păun,
2000, 2001, 2002); moreover since the early days of P systems it become evident
that its formalism has the potential to describe different biological processes occur-
ring within the cell (Păun, 2002) and this trend is under increase with significant
results (see Ciobanu et al., 2006; Hoogeboom et al., 2006, and references herein).

Here we focus on our proposal that magnetotactic bacteria could add some new
insights into P systems, mainly with respect to the potential to use cell components
for the construction of a P system-based computer.

In 1975 Robert Blakemore published his paper on magnetotactic bacteria
(MTB). He stated that MTB’s main functional characteristic is magnetotaxis,
the orientation along the Earth’s geomagnetic field lines (Blakemore, 1975). Mag-
netotaxis is determined by the presence inside the cell of particles named magneto-
somes. These were originally defined as intracellular, magnetic single-domain (SD)
crystals of a magnetic iron mineral (magnetite or greigite) that are enveloped by a

22 I.I. Ardelean, M. Ignat, C. Moisescu

trilaminate structure, the magnetosome membrane. The discovery of MTB stim-
ulated interest among microbiologists, physicists, engineers, geologists, chemists
(Mann et al., 1990; Schüler and Frankel, 1999) and today the subject has be-
come a bona fide field of research in microbiology (Bazylinski and Frankel, 2004).
Probably it is the time for MTB to receive more attention from P systems, too.

Here we put forward that MTB or isolated magnetosomes are significant for
membrane computing for the following reasons:

1. The synthesis of magnetite from iron salts is a complex process involving both
plasma and magnetosome membranes (Schüler, 2002, 2004). Furthermore, iso-
lated magnetosomes devoid of their membranes are no longer organized in an
oriented chain; thus, the magnetosome membrane seems to be essential for
the chain arrangement of magnetosomes both in vivo and in vitro, and this
membrane has not been yet the subject of any P systems approach.

2. This process – not yet known in detail – could offer the possibility for P systems
to develop quantitative discrete models for synergic biochemical and biophys-
ical processes occurring at those biological membranes. This mathematical
description could be further used for:
a) to better understand the overall process of magnetosome formation and

its regulation, by identification of still unknown functional proteins and/or
regulatory components, by the use of different strategies developed within
P systems; (i) metabolic P graphs (MPG) seems appropriate to identify
new functional and regulatory components in different biological processes
(Manca, 2006) not yet exploited with respect to MTB; (ii) as well as the
proposed mesoscopic approach which is more tractable than the micro-
scopic chemistry, but it provides a finer and better understanding than the
macroscopic chemistry modeled by ordinary differential equations (Pérez-
Jiménez et al., 2006);

b) on line control of an in vitro reactor able to mimic the function of both
plasma and magnetosome membranes in order to convert soluble nonmag-
netic iron salts to magnetic nanocrystals.

3. MTB or isolated magnetosomes can contribute to the connection between P
systems and the emerging domain of nanobiotechnology with special emphasis
on the following:
i) the construction of nanoobjects and their precise deposition/localization:

MTB synthesize magnetic nanocrystals which can follow precise move-
ments, orientations, and depositions by the use of either magnetotactic
behavior of MTB or by (rather strong) external magnetic fields (see bel-
low);

ii) to offer the opportunity to P systems to develop a software for discon-
tinuous controlling and modelling of microdevices to be constructed (see
below) for precise and oriented movement and deposition of MTB and
their magnetosomes;

Magnetotactic Bacteria and Their Significance for P Systems 23

iii) to monitor the precise and oriented movement and deposition of MTB
which transport at their cell surfaces different chemically linked molecules
of functional significance, as for example immunoglobulins (see below).

4. Oriented MTB/magnetosomes chains could be used for the construction of
magnetic logic gates. There are already experimental reports showing the in-
creasing scientific interest in precise deposition of biotic magnetic crystals for
the construction of magnetic logic gates able to execute logical NAND and
NOR operations (Haque et al., 2004). These pioneering experimental results
are directly related to the emerging filed of quantum dot magnetic computing
from which there are expected huge effects on the speed of computation and
on a new proposed generation of computers based on magnetism rather than
electricity. We put forward that magnetic properties of single domain mag-
netic nanocrystals produced by MTB could be more appropriate than abiotic
magnetic nanocrystals for the construction of magnetic logic gates and for the
already proposed generation of computers based on magnetism rather than
electricity. The properties of these magnetic computers could be further im-
proved by the use of P system based software; this proposal is sustained by
the already contribution from P systems to the field of quantum dot magnetic
computing (Leporati et al., 2006; Leporati and Felloni, 2007).

2 Magnetotactic Bacteria

The morphology of single celled MTB is diverse (spirilla, vibrioids, cocci, rods to
ovoid) and there are reports on multi- celled magnetotactic prokaryotes. MTB’s
main functional characteristic is magnetotaxis, the orientation along the Earth’s
geomagnetic field lines (Blakemore, 1975). Magnetotaxis is determined by the pres-
ence inside the cell of particles named magnetosomes (Frenkel and Blackmore,
1980; Frenkel et al., 1997)

Magnetosomes were originally defined as intracellular, magnetic single-
domain (SD) crystals of a magnetic iron mineral that are enveloped by a tril-
aminate structure, the magnetosome membrane (MM). In other words, a magne-
tosome consists of magnetic iron mineral particles (the inorganic phase) enclosed
within a membrane (the organic phase). In Figure 1 there is presented an original
image of M. gryphiswaldense cell.

The organic phase (the magnetosome membrane or the magnetosome vesicle),
consists in Magentospirillum strains (M. magnetotacticum or M. gryphiswaldense)
of a bilayer of about 3-4 nm containing phospholipids and proteins. In the last
few years the study of the proteins found in magnetosome membranes has raised
a special interest because it was expected that these proteins would enable the
processes of mineral formation of nanocrystals to be regulated by biochemical
pathways (Schüler and Frankel, 1999; Bazylinski and Frankel, 2004).

The magnetosome particle is characterized by a nearly perfect crystallinity
and the size and morphology of magnetic crystals are species specific and uniform

24 I.I. Ardelean, M. Ignat, C. Moisescu

Fig. 1. Transmission electron microscope image of an intact cell of Magnetospirilum gry-
physwaldense; one can see the chain of magnetosomes as dark bodies inside the bacterial
cell (light grey).

within a single cell, for example, in M. gryphiswaldense the dimension of mag-
netosomes is around 45 nm (Schüler, 2004). This uniformity is an advantage of
biogenic magnetic nanocrystals of MTB used for different bio(nano)technological
application (Schüler and Frankel, 1999; Bazylinski and Frankel, 2004), as com-
pared with biogenic magnetic nanocrystals produced by other types of bacteria
or by artificial/abiogenic magnetic nanocrystals obtained by man using different
physical/chemical protocols (Matsunaga, 1991; Schüler and Frankel, 1999). Bio-
genic magnetic nanocrystal can be produced by metabolic activities of dissimila-
tory iron-reducing bacteria and sulphate-reducing bacteria. This process is known
as biologically induced mineralization. However, unlike the mineral particles in
the magneto-tactic bacteria, biologically induced mineralization is not controlled
by the organism and is characterized by no uniformity in size distributions and
non-unique crystal habits.

Magnetotactic Bacteria and Their Significance for P Systems 25

We believe that the uniformity of biogenic magnetic nanocrystals of MTB can
be further exploited for the construction of magnetic logic gates at nanometre level,
with better results than the use of either abiotic magnetic nanocrystals or those
produced by dissimilatory iron-reducing bacteria and sulphate-reducing bacteria.

It is still an enigma on how MM actually work in the process of controlled min-
eralization of iron during the process of magnetosome formation, but pioneering
work had identified both at genetic and proteomic level the genes and magne-
tosome membrane proteins involved in magnetite formation. When the precise
biological knowledge of the proteins/items involved in the magnetic nanocrystal
formation will be achieved, it is expected that P systems could develop a model
of this membrane processes, as it already started to carry out for other biological
processes occurring at/within membranes: respiratory electron transport (Arde-
lean and Cavaliere, 2003; Ardelean et al., 2004; Cavaliere and Ardelean, 2006)
the function of mechanosensitive channels (Ardelean et al., 2006) and many other
processes (Ciobanu et al., 2006). medskip

Magnetotaxis. The passive orientation of MTB along the Earth’s geomag-
netic field lines is called magnetotaxis (Blakemore, 1975). Magnetotaxis is deter-
mined by the presence of magnetosomes. Dead cells containing magnetosomes also
align along the geomagnetic field lines (around 0.05 mT), whereas alive MTB with
no magnetosomes, do not align.

When magnetosomes are arranged in a single chain, as in the Magnetospirillum
species, magnetostatic interactions between the single-magnetic domain particles
cause the particle magnetic moments to spontaneously move parallel to each other
along the chain direction. This results in a permanent magnetic dipole associated
with the chain with a natural magnetization approaching the saturation magneti-
zation and is sufficiently large enough to be oriented along the geomagnetic field
at an ambient temperature (Frankel and Blakemore, 1980).

It is proposed that in natural environments magnetotaxis enables the cells to
locate and maintain an optimal position in water columns or in sediments, with
respect to their main metabolically needs: molecular oxygen and organic nutrients.

It is our hope that carefully deposition of MTB by the use of P systems-based
models of magnetotactic behavior of intact cells during chemotaxis, and gently
liberation of intact magnetosomes chains (retaining the surrounding membrane
of each individual magnetosome particle) could be used for the construction of
magnetic logic gates.

Magnetomanipulation of MTB. The orientation of MTB along the lines of
magnetic field can be used to obtain in the lab surfaces covered by cells aligned with
respect to the direction of the imposed magnetic field generated by two magnetic
bars. This magnetomanipulation of magnetosome containing cells depends on their
magnetotactic movement. In Figure 2 there are presented original images (optical
microscope) concerning the experimental orientation of intact MTB on glass by the
use of an external magnetic field; for the sake of simplicity the microscope images
are accompanied by schematic drawings illustrating more clearly the orientation
of MTB cells.

26 I.I. Ardelean, M. Ignat, C. Moisescu

Fig. 2. The orientation of MTB along the lines of magnetic field; original optical mi-
croscope images (bright field, cells colored by basic fuxine) and schematic drawings: up
= horizontal, center = vertical, and bottom = mixed (horizontal–vertical) orientation of
MTB.

Magnetotactic Bacteria and Their Significance for P Systems 27

Controlled assembly of magnetic nanoparticles into ordered structures was
demonstrated by manipulating magnetotactic bacteria in a fluid with microelec-
tromagnets (Lee et al., 2004). The advantage of using magnetotactic bacteria cells
is that the cellular bodies enclosing the magnetic chains prevent the magnetic ag-
gregation of the bacteria, making it possible to use the bacteria as a carrier of
ordered magnetic nanoparticles.

Microelectromagnets, consisting of multiple layers of lithographically patterned
conductors, generate versatile magnetic fields on micrometer length scales, allowing
sophisticated control of magnetotactic bacteria inside a microfluidic chamber (Lee
et al., 2004). A single bacterium was stably trapped and its orientation was con-
trolled; multiple groups of bacteria were assembled in a fluid. After positioning the
bacteria, their cellular membranes were removed by cell lysis, leaving a chain and a
ring of magnetic nanoparticles on a substrate. Thus, the authors demonstrated that
the magnetic nanoparticles grown by the bacteria can be assembled into ordered
structures. The new proposed approach, combining biomineralization and micro-
manipulation, can become a new method for growing and assembling nanoparticles
into customized structures. Moreover, though integrated sensory means and new
algorithms, the magnetotactic bacteria-based system could adapt or change the
direction of motion from new occurring conditions (Lee et al., 2004).

It is our claim that a P system-based program could be more appropriate to
model and control the direction of motion of these magnetotactic bacteria and to
obtain ordered cells with magnetosomes useful for the construction of magnetic
logic gates. The following picture suggests the use of a carefully designed (and
constructed!) microdevice for true bacterial races!

The development of future autonomous bacterial microrobots (Martel, 2006)
is another trend in which MTB can be involved. Acting like a compass, this chain
of magnetosomes enables the bacteria to orient themselves and swim along the
lines of a magnetic field. Hence, the basic control method consists of modifying
the swimming paths of the MTB with the generation of local directional mag-
netic fields using small programmed electrical currents passing through special
embedded conductor networks. This new method referred to as controlled bacte-
rial micro-actuation is a serious candidate for its integration in future untethered
microrobots operating in an aqueous medium, as originally proposed by the au-
thors (Martel, 2006). The implementation of such bio-carriers with (non magnetic)
micro-objects being propelled by a single MTB was also demonstrated. The effect
of various diameters MTB-pushed beads on the velocity of this bio-carrier and the
retarding effect caused by the proximity of the walls of the microchannels were
also investigated. Thus by exploiting the motility of MTB, the electrical energy
required to propel such a robot is null and the authors estimate that by pushing
the limit of miniaturization or feature sizes to what is possible with actual micro-
fabrication methods, a small current as low as 100 µA could be sufficient to control
groups of pre-selected and most responsive MTB from a microcircuit embedded in
the microrobot.

28 I.I. Ardelean, M. Ignat, C. Moisescu

Fig. 3. Schematic picture of a microdevice for bacterial races (bacteriodrome?).

In our opinion such un-tethered microrobots could be used to transport bio-
genic magnetite produced by other bacterial cells, attached at their surface, and to
release these nanocrystals at precise sites. Furthermore the concept of controlled
bacterial micro-actuation (Martel, 2006) can be applied to obtain regular arrays
of MTB which can be the basis for the construction of magnetic logic gates.

We have already designed a magneto-mechanical model of MTB with special
emphasis on possible application in the field of nanoactuation (fore more details,
see Ignat and Ardelean, 2004; Ignat et al. 2005, 2007). For example, the magneto-
some chain microstructure can be moved and controlled with a 3 D system using
magnetic levitation that represents an interesting microrobotic element.

The nanostructure of MTB suggests a nano- or micromanipulator structure
which includes a flexible chain support with flexible joins and with magnetic ele-
ments which are small permanent magnets. These micromanipulator systems basi-
cally work within small magnetic gaps between the electromagnets (which generate
the variable magnetic fields) and the motile chain. In Figure 4 there are presented
some proposed structures for either flexible or rigid manipulators.

Our proposal to use magnetosomes, biogenic magnetic crystals covered by their
biological membrane, as natural materials for the construction of magnetic logic
gates and to construct nanoacutators based on either MTB or isolated intact
magnetosomes could be helpful for the bottom up construction of a P systems-

Magnetotactic Bacteria and Their Significance for P Systems 29

Fig. 4. Microarchitecture of nano or micro-magneto-manipulators.

based computer using natural components (biogenic magnetic nanocrystals) and
P system-based software.

This proposal for the use of natural components for in vitro implementation of
P systems and for the construction of a P system-based computer is in the line with
the progresses made in the last four decades in incorporating different biological
molecules into artificial membranes (Ottowa and Tien, 2002) which opened the
way towards an in vitro implementation of P systems (see Ardelean, 2006, for
more details).

Acknowledgements

Thanks are due to CEEX-MATNANTCH PROGRAME for partly supporting the
work (Contract 2037/2006) and to both CEEX-MATNANTCH PROGRAME and
THE ORGANIZING COMMITTEE for financial support to attend the 5th Brain-
storming Week on Membrane Computing, Sevilla, 2007.

References

1. I.I. Ardelean (2006): Biological roots and applications of P systems. Further sugges-
tions. In [12], 1–17.

2. I.I. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy (2006): P system models
for mechanosensitive channels. In [8], 43–81.

3. I.I. Ardelean, D. Besozzi, C. Manara (2004): Aerobic respirations a bio-logic cir-
cuit containing molecular logic gates. In Pre-Proc. of Fifth Workshop on Membrane

30 I.I. Ardelean, M. Ignat, C. Moisescu

Computing, WMC5 (G. Mauri, Gh. Păun, C. Zandron, eds.), Universita di Milano-
Bicocca, June 14-16, 2004, 119–125.

4. I.I. Ardelean, M. Cavaliere (2003): Modelling biological processes by using a proba-
bilistic P system software. Natural Computing, 2 (2003), 173–197.

5. D.A. Bazylinski, R.B. Frankel (2004): Magnetosome formation in prokaryotes. Nature
Reviews, 2 (2004), 217–230.

6. R.P. Blakemore (1975): Magnetotactic bacteria. Science, 190 (1975), 377–379.
7. M. Cavaliere, I. Ardelean (2006): Modelling respiration in bacteria and respira-

tion/photosynthesis interaction in cyanobacteria. In [8], 129–159.
8. G. Ciobanu, M. Pérez-Jiménez, Gh. Păun, eds. (2006): Applications of Membrane

Computing. Springer-Verlag, Berlin.
9. R.B. Frankel, D.A. Bazylinski, M.S. Johnson, B.L. Taylor (1997): Magneto-aerotaxis

in marine coccoid bacteria. Biophys. J., 73 (1997), 994–1000.
10. R.B. Frankel, R.P. Blakemore (1980): Navigational compass in magnetic bacteria. J.

Magnet Magnet Matter, 15-18 (1980), 1562–1564.
11. S.A. Haque, M. Yamamoto, R. Nakatani, Y. Endo (2004): Magnetic logic gate for

binary computing, Science and Technology of Advanced Materials, 5, 1-2 (2004), 79–
82.

12. H.J. Hoogeboom, Gh. Păun, G. Rozenberg, A. Salomaa, eds. (2006): Proc. Workshop
on Membrane Computing, WMC7, Leiden, The Netherlands, LNCS 4361, Springer-
Verlag, Berlin.

13. M. Ignat, I.I. Ardelean (2004): Distinct nanobiological structure: magnetotactic bac-
teria. Models and applications in the electromechanical nanoactuation. Romanian
Journal of Physics, 9-10 (2004), 835–847.

14. M. Ignat, I.I. Ardelean, J. Pintea, Cr. Cojocaru (2005): Experimental aspects and
magnetic characterization of Magnetospirillum gryphiswaldense. Proceedings of The
4th National Conference on New Research Trends in Material Science, ARM 4,
September 2005, vol. I, 433–441.

15. M. Ignat, G. Zărnescu, S. Soldan, I.I. Ardelean, C. Moisescu (2007): Magneto-
mechanic model of the magnetotactic bacteria. Applications in the microactuator
field. Journal of Optoelectronics and Advanced Materials, 9, 4 (2007), 1169–1172.

16. H. Lee, A.M. Purdon, V. Chu, R.M. Westervelt (2004): Controlled assembly of mag-
netic nanoparticles from magnetotactic bacteria using microelectromagnets arrays.
Nano Lett., 4, 5 (2004), 995–998.

17. A. Leporati, S. Felloni (2007): Three “quantum” algorithms to solve 3-SAT. Theo-
retical Computer Science, 372, 2-3 (2007), 196–217.

18. A. Leporati, G. Mauri, C. Zandron (2005): Quantum sequential P systems with unit
rules and energy assigned to membranes. In Membrane Computing: 6th International
Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005 (R. Freund, Gh. Păun,
G. Rozenberg, A. Salomaa, eds.), LNCS 3850, Springer-Verlag, Berlin, 310–325.

19. V. Manca (2006): MP Systems approaches to biochemical dynamics: biological
rhytms and oscillations. In [12], 86–100.

20. S. Mann, N.H.C. Sparks, R.G. Board (1990): Magnetotactic bacteria: microbiology,
biomineralization, palaeomagnetism and biotechnology. Adv. Microbiol. Physiol, 31
(1990), 125–181.

21. S. Martel (2006): Controlled bacterial micro-actuation. In Proc. of the Int. Conf. on
Microtechnologies in Medicine and Biology, Okinawa, Japan, May 9-12, 2006.

22. T. Matsunaga (1991): Applications of bacterial magnets. Trends Biotechnology, 9
(1991), 91–95.

Magnetotactic Bacteria and Their Significance for P Systems 31

23. A. Ottova, H.T. Tien (2002): The 40th anniversary of bilayer lipid membrane re-
search. Bioelectrochemistry, 56 (2002), 171–173.

24. Gh. Păun (2000): Computing with membranes. Journal of Computer and Systems
Sciences, 61 (2000), 108–143.

25. Gh. Păun (2001): From cells to computers. Computing with membrane (P systems).
BioSystems, 59 (2001), 139–158.

26. Gh. Păun (2002): Membrane Computing. An Introduction. Springer-Verlag, Berlin.
27. M.J. Pérez-Jiménez, F.J. Romero-Campero (2006): P systems, a new computational

modelling tool for Systems Biology. Transactions on Computational Systems Biology,
VI. Lecture Notes in Bioinformatics, 4220, 176–197.

28. D. Schüler (2002): The biomineralization of magnetosomes in Magnetospirillum
gryphiswaldense. Int. Microbiol., 5 (2002), 209–214.

29. D. Schüler (2004): Molecular analysis of a subcellular compartment: the magnetosome
membrane in Magnetospirillum gryphiswaldense. Arch. Microbiol., 181 (2004), 1–7.

30. D. Schüler, R.B. Frankel (1999): Bacterial magnetosomes: microbiology, biominer-
alization and biotechnological applications. Appl. Microbiol. Biotechnol., 52 (1999),
464–473.

Networks of Cells and Petri Nets

Francesco Bernardini1, Marian Gheorghe2,
Maurice Margenstern3, Sergey Verlan4

1 Leiden Institute of Advanced Computer Science, Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
bernardi@liacs.nl

2 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

3 Université Paul Verlaine - Metz, UFR MIM, LITA, EA 3097
Ile du Saulcy, 57045 Metz Cédex, France
margens@univ-metz.fr

4 LACL, Département Informatique, Université Paris 12
61 av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Summary. We introduce a new class of P systems, called networks of cells, with rules
allowing several cells to simultaneously interact with each other in order to produce
some new objects inside some other output cells. We define different types of behavior
for networks of cells by considering alternative strategies for the application of the rules:
sequential application, free parallelism, maximal parallelism, locally-maximal parallelism
and minimal parallelism. We devise a way for translating network of cells into place-
transition nets with localities (PTL-nets, for short) - a specific class of Petri nets. Then,
for such a construction, we show a behavioral equivalence between network of cells and
corresponding PTL-nets only in the case maximal parallelism, sequential execution, and
free parallelism, whereas we observe that, in the case of locally-maximal parallelism and
minimal parallelism, the corresponding PTL-nets are not always able to mimic the be-
havior of network of cells. Also, we address the reverse problem of finding a corresponding
network of cells for a given PTL-net by obtaining similar results concerning the relation-
ships between their semantics. Finally, we present network-of-cells-based models of two
classical synchronization problems: producer/consumer and dining philosophers.

1 Introduction

Membrane computing is an emerging branch of natural computing which deals
with distributed and parallel computing devices of a bio-inspired type, which are
called membrane systems or P systems (see [17], [18], and also [1] for a compre-
hensive bibliography). P systems, originally devised by Gh. Păun in [17], are in-
troduced as computing devices which abstract from the structure and functioning

34 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

of living cells - they are defined as a hierarchical arrangement of regions delim-
ited by membranes (membrane structure), with each region having associated a
multiset of objects and a finite set of rules. Rules typically encode mechanisms
for consuming/producing objects (evolution) and mechanisms for moving objects
across the membranes (communication). For consuming/producing objects, mul-
tiset rewriting (i.e., replacing a multiset with another one) is the most generally
used mechanism, whereas, for communication, various mechanisms with different
biological inspiration have been proposed such as: targets here, in, out [18], sym-
port/antiport [18], conditional uniport [25], boundary rules [4], and carriers [16].
In particular, symport/antiport, conditional uniport and boundary rules introduce
in P systems the concept of coupled transport: communication is achieved through
cooperation between two or more objects possibly placed in two distinct regions
- the inside and the outside of a membrane. The class of P systems was later ex-
tended to tissue P systems [15, 19] – a variant of P systems where the underlying
structure is defined as an arbitrary graph. Nodes in the graph represent cells which
are able to communicate objects alongside the edges of this graph. Specifically, for
this communication, the mechanisms of symport/antiport and conditional uniport
are transferred to tissue P systems [18, 25] so to have models where communica-
tion is achieved through interactions between two neighboring cells (i.e., two cells
which are directly connected by means of an edge in the underlying graph). More-
over, it is possible to have tissue P systems where a cell receives objects from a
neighboring cell non-deterministically chosen [3], or where a cell produces signals
which are replicated and simultaneously sent to all neighboring cells [15].

The work done in [7, 13, 12] then showed that the aforementioned features
of transformation and communication in P systems can be interpreted as transi-
tions in place-transition nets (PT-nets, for short) – a specific class of Petri nets
(e.g., see [21, 22, 8, 11]). This is done by mapping each rule into a transition with
places corresponding to the left-hand side of the rule as input, and with places
corresponding to the right-hand side of the rule as output; each place in fact
represent the occurrence of a certain object inside a certain membrane. Thus, pro-
duction/consumption of objects and movement of objects across the membranes
are both reflected into modifications on the distributions of tokens inside the places
of a PT-net. Specifically, this construction was initially applied in [7] to P systems
with boundary rules - which encompass symport/antiport and conditional uniport
too - and then re-used in [13, 12] for the basic model of P systems where communi-
cation is controlled by targets here, in, out. Moreover, contributions [13, 12] devise
a formal framework for describing the behavior of P systems in terms of causal-
ity/concurrency and for reasoning about reachability, conflicts and soundness of
these systems by starting from their translation into PT-nets; this is done by using
the PT-net representation of a membrane system is therefore to define the seman-
tics of these systems in terms of sequences of events which consume some resources
in order to produce some new ones (process semantics). This construction, which
is a standard asynchronous PT-net, is extended in [12, 13] to PT-nets operating
in a maximally parallel way and to PT-nets with localities operating in a locally-

Networks of Cells and Petri Nets 35

maximal parallel way. PT-nets with localities are a class of PT-nets introduced
in [13] where each transition belongs to certain location, in a way that resembles
the distribution of the rules over the various regions of a membrane system. This
makes possible to distinguish between the globally and locally synchronous behav-
ior (maximal parallelism), globally asynchronous but locally synchronous behavior
(locally-maximal parallelism), and asynchronous behavior.

In this paper, we introduce a new class of P systems which we call networks
of cells. Network of cells are characterized by rules which allow several cells to
simultaneously interact with each other in order to produce some new objects
inside some other output cells. They are motivated by the observation made in [24]
that basic forms of coupled transport like symport/antiport can be expressed in
terms of two cells synchronizing on certain inputs in order to produce some outputs.
In this respect, networks of cells are not limited to have only two synchronizing cells
on their left-hand side and two output cells on their right-hand side. Then, similarly
to what was done [13, 12], we define different types of behavior for networks of
cells by considering different strategies for the application of the rules: sequential
application, free parallelism, maximal parallelism and locally-maximal parallelism
plus minimal parallelism [6]. Next, we extend to networks of cells the construction
devised in [7, 13, 12] for translating membrane systems into PT-nets with localities
(PTL-net, for short) by showing that interaction rules of networks of cells can still
be represented as transitions of PTL-nets. However, we are able to establish a
behavioral equivalence between network of cells and corresponding PTL-nets only
in the case maximal parallelism, sequential execution, and free parallelism (i.e.,
only for globally and locally synchronous behavior, and asynchronous behavior) as
we observe that, in the case of locally-maximal parallelism and minimal parallelism,
the corresponding PTL-net is not always able to mimic the behavior of the original
network of cells. This allows us to point out differences between the concept of
cells used in our model and that of locality introduced in [13] for PT-nets. Also,
we address the reverse problem of finding a corresponding network of cells for a
given PTL-net by obtaining similar results concerning the relationships between
their semantics. Finally we present network-of-cells-based models of two classical
synchronization problems: producer/consumer and dining philosophers. These are
devised by starting from existing PT-net solutions with the aim of illustrating
differences in the two modeling approaches.

2 Preliminaries

We recall some basic notions concerning strings and multisets (e.g., see [23, 18] for
further details).

An alphabet is any finite and non-empty set. The elements of an alphabet
are called symbols. Let V be an alphabet. A string over V is any finite sequence
consisting of zero or more symbols from V ; the same symbol may occur repeated
several times inside the same string. The sequence containing no symbols is called

36 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

empty string and it is denoted by λ. The set of all strings (respectively of all
non-empty strings) over V is denoted by V ∗ (respectively V +). If x, y ∈ V ∗, then
their catenation is xy ∈ V ∗ (the catenation of two strings is the string obtained
by the juxtaposition of the two strings, that is, by writing one string after the
other one). Catenation is an associative operation and the empty string λ acts as
an identity: xλ = λx = x, for all x ∈ V ∗. Moreover, for any i ≥ 1, we denote by xi

the catenation of i copies of the string x; we set x0 = λ by definition. The length
of a string x ∈ V ∗, denoted by |x|, is the number of all occurrences in x of symbols
from V ; the number of occurrences in x of a symbol a ∈ V is denoted by |x|a. Yet
again, by definition, we set |λ| = 0 and |λ|a = 0, for all a ∈ V . The set of symbols
from V occurring in a string x is denoted by ℵ(x). We also use V to denote the
set of strings from V ∗ of length equal to 1.

Let V be an alphabet. A (finite) multiset (over V) is a mapping M : V −→ N,
where N denotes the set of natural numbers (0 included); for every a ∈ V , M(a) is
called the multiplicity of a (in M). A multiset over V is usually given in the form
of a string over V ; each string x ∈ V ∗ in fact identifies a multiset M such that,
for every a ∈ V , M(a) = |x|a. On the other hand, every multiset M over V is
representable by means of any string x ∈ V ∗ such that, for every a ∈ V , |x|a = a
– the order of the symbols in such a string is not important. Therefore, from this
moment on, we will use strings to represent multisets and, given x ∈ V ∗, we will
use the expression “multiset x” to refer to a multiset representable by means of
string x. Thus, for x ∈ V ∗, for a ∈ V , the multiplicity of a in x is |x|a, and the
size of multiset x (i.e., the sum of all multiplicities) is the value |x|. Moreover, for
x, y ∈ V ∗, we say that multiset x and multiset y are equal, and we write x = y,
if, for all a ∈ V , |x|a = |y|a. We say that multiset x includes multiset y, and we
write x w y, if, for all a ∈ V , we have |x|a ≥ |y|a. If that is the case, we also say
that y is included in x, and we write y v x. The union of multiset x and multiset
y, denoted by x t y, is a multiset w such that, for all a ∈ V , |w|a = |x|a + |y|a.

The notion of a rewriting rule between strings can be naturally transferred to
multisets. A multiset rewriting rule is a pair (u, v), with u, v two multisets, which
is written in the form u → v. Given a multiset w and a rewriting rule u → v, if
u v w, then the rule u → v is applicable to the multiset w; if that is the case, the
result of the application of the rule u → v to the multiset w is the multiset w′

such that, for all a ∈ V , |w′|a = |w|a − |u|a + |v|a. If that is case, then we also say
that the multiset w can evolve by means of the multiset rewriting rule u → v.

3 Networks of Cells

Here we introduce a general model of membrane systems which allows us to capture
the essential features of most variants of cell-like P systems and tissue P systems.

Definition 1 (network of cells). A network of cells of degree n ≥ 1 (an NC of
degree n ≥ 1, for short) is a construct:

Π = (V, w1, w2, . . . , wn, R),

Networks of Cells and Petri Nets 37

where:

1. V is an alphabet;
2. wi ∈ O∗, for all 1 ≤ i ≤ n, is the multiset initially associated to cell i;
3. R is a finite set of interaction rules of the form

(u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh)

where (a) 1 ≤ k, h ≤ n, (b) for all 1 ≤ l, l′ ≤ k, ul ∈ V +, (c) 1 ≤ il ≤ n and
l 6= l′ implies il 6= il′ , (d) for all 1 ≤ r, r′ ≤ h, vr ∈ V ∗, 1 ≤ jr ≤ n, and r 6= r′

implies jr 6= jr′ .

A network of cells consists of n cells numbered from 1 to n with each one of them
containing a multiset of objects over V (initially cell i contains multiset wi). Cells
can interact with each other by means of the rules in R. An interaction rule of
the form (u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh) specifies that, whenever, at the
same time, for all 1 ≤ l ≤ k, cell il contains at least one occurrence of multiset
ul, an occurrence of the multiset ul is consumed inside cell il, for all 1 ≤ l ≤ k,
and a multiset vr is produced inside cell jr, for all 1 ≤ r ≤ h. In other words,
an interaction rule simultaneously rewrites some multisets inside cells i1, . . . , ik in
order to produce some new multisets inside cells j1, . . . , jh. Notice also that, for
an interaction rule (u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh), for all 1 ≤ l, l′ ≤ k, we
have ul ∈ V + (i.e., a multiset on the left-hand side of the rule cannot be empty)
and l 6= l′ implies il 6= il′ (i.e., the left-hand side of the rule must involve a set
of distinct cells), and, for all 1 ≤ r, r′ ≤ h, we have vr ∈ V ∗ (i.e., a multiset on
the right-hand side of the rule can be empty) and r 6= r′ implies jr 6= jr′ (i.e., the
right-hand side of the rule must involve a set of distinct cells).

For an interaction rule ρ of the form (u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh),
cells i1, . . . , ik are called input cells, the set {i1, . . . , ik} is denoted by Input(ρ)
and k is called the input radius of ρ; cells j1, . . . , jh are called output cells, the
set {j1, . . . , jh} is denoted by Output(ρ) and h is called the output radius of
ρ; the cooperation degree of ρ is the value max{|ui| | 1 ≤ i ≤ k}; the left-
hand side (u1, i1) . . . (uk, ik) is denoted by lhs(ρ) whereas the right-hand side
(v1, j1) . . . (vh, jh) is denoted by rhs(ρ). Also, for such a rule ρ, for all 1 ≤ i ≤ n,
we use lhsi(ρ) to denote the multiset u if (u, i) ∈ lhs(ρ), or λ if i /∈ Input(ρ); we
use rhsi(ρ) to denote the multiset v if (v, i) ∈ rhs(ρ), or λ if i /∈ Output(ρ).

Notice that the structure of an NC corresponds neither to a tree as in cell-like
P systems nor to a graph as in tissue P systems (e.g., see [18] for definitions of cell-
like P systems and tissue P systems), though some models of cell-like P systems
and tissue P systems can be seen as special variants of NC’s. The possibility
of representing existing variants of P systems as NC’s is illustrated through the
following examples.

Example 1. A basic P system [18] is defined as a hierarchical arrangement of mem-
branes; each membrane delimits a region which contains a multiset of objects and
finite set of evolution rules. If V is the alphabet of the system, then an evolution

38 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

rule has the form u → (u1, t1)(u2, t2) . . . (uq, tq) with u ∈ V ∗, for all 1 ≤ r ≤ q,
ur ∈ V ∗ and tr ∈ {here, out, inj}. If such a rule is associated to a region i, then
multiset u can be replaced by multisets u1, u2, . . . , uq and each multiset ur is moved
across the membranes depending on the target tr: ur remains inside membrane i
when tr = here, ur is moved outside membrane i when tr = out, ur is moved into
region j when tr = inj with j a membrane directly contained into region i.

A basic P system can be represented as an NC which has as many cells as
the membranes in the P system and which contains, for every region i of the P
systems, for every evolution rule u → (u1, t1)(u2, t2) . . . (uq, tq) associated to region
i, an interaction rule (u, i) → (u1, j1)(u2, j2) . . . (uq, jq), with distinct j1, j2, . . . , jq,
such that, for all 1 ≤ r ≤ q, if tr = here, then jr = i; if tr = inj , then jr = j; if
tr = out, then jr is equal to the index of the directly upper region.

Example 2. P systems with boundary rules [4] extend basic P systems with rules
which allow direct interactions between the inside and the outside of a region. In
their most general form (e.g., see [5]), boundary rules are of the form u [i v → u′ [i v′

with i the index of a membrane in the system and u, v, u′, v′ ∈ V ∗, for V the
alphabet of the system.

These rules can be represented in NC’s as interactions of the form (u, j)(v, i) →
(u′, j)(v′, i) with j the membrane which directly contains membrane i. In this way,
we can for instance capture the features of symport/antiport rules [18]:

• an antiport rule (x, in; y, out) associated to membrane i is no more than an
interaction rule (x, j)(y, i) → (y, j)(x, i) with j the membrane which directly
contains membrane i;

• a symport rule (x, out) associated to membrane i is no more than an interaction
rule (x, i) → (x, j) with j the membrane which directly contains membrane i;

• a symport rule (x, in) associated to membrane i is no more than an interaction
rule (x, j) → (x, i) with j the membrane which directly contains membrane i.

Example 3. An evolution-communication model of tissue P systems is proposed in
[3] that is based on graphs of cells where each cell contains a multiset of objects
and a finite set of rules of the forms x → y (transformation rules) and (x; y, in)
(communication rules) with x, y two multisets over a given alphabet. A transfor-
mation rule x → y associated to a cell i specifies that a multiset x placed inside cell
i can be replaced by a multiset y which remains inside cell i. A communication rule
(x; y, in) associated to a cell i instead specifies that, in presence of a multiset x,
a multiset y can be moved from a neighboring cell j non-deterministically chosen
into cell i.

Such a tissue P system can be represented as an NC with the same number
of cells which contains an interaction rule (x, i) → (y, i), for every transformation
rule x → y associated to cell i of the tissue P system, and a set of interaction
rules {(x, i)(y, j) → (xy, j) | {i, j} is an edge of the graph underlying the tissue P
system}, for every communication rule (x; y, in) in the tissue P system associated
to cell i.

Networks of Cells and Petri Nets 39

We now pass to precisely define the execution semantics of networks of cells
by identifying different strategies for the application of the rules. To this aim, we
first give the following definitions.

Definition 2 (configuration). Let Π = (V,w1, w2, . . . , wn, R) be a network of
cells. A configuration of Π is any tuple (w′1, . . . , w

′
n) with wi ∈ O∗, for all 1 ≤ i ≤

m. The initial configuration of Π is the tuple (w1, . . . , wn).

Definition 3 (multiset of applicable rules). Let Π = (V, w1, w2, . . . , wn, R)
be a network of cells and let C = (w′1, . . . , w

′
n) be a configuration of Π. A multiset

of applicable rules (w.r.t. Π and C) is any function ΓC : R → N such that, for all
1 ≤ i ≤ n, (

⊔
r∈R(lhsi(r))ΓC(r)) v w′i.

Free parallelism

Free parallelism means that, in each step, any multiset of applicable rules can be
used to make an NC transit from a configuration to another one by applying all
the selected rules in parallel at the same time. In membrane computing literature,
this semantics is also called asynchronous behavior (e.g., see [9]).

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Π transits in one step from configuration C to configuration C ′ in a freely-parallel
way, and we write C ⇒free C ′, if there is a multiset of applicable rules ΓC such
that, for all 1 ≤ i ≤ n, w′′i = (w′i \ (

⊔
r∈R(lhsi(r))ΓC(r))) ∪ (

⊔
r∈R(rhsi(r))ΓC(r)).

Thus, in a freely-parallel step, an arbitrary multiset of applicable rules is se-
lected and these rules are applied in parallel by consuming all the multisets on
their left-hand sides and producing all the multisets on their right-hand sides in
the respective places.

Sequential execution

Sequential execution means that, in each step, only one rule is applied to make an
NC transit from a configuration to another one.

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Π transits in one step from configuration C to configuration C ′ in a sequential
way, and we write C ⇒seq C ′, if C ⇒free C ′ for some multiset of applicable rules
ΓC with |ΓC | = 1.

Thus, a sequential step is a freely-parallel step where the number of rules used
is equal to 1.

Maximal parallelism

Maximal parallelism means that, in each step, any maximal multiset of applicable
rules can be used to make an NC transit from a configuration to another one by

40 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

applying all the selected rules in parallel at the same time; a maximal multiset
of applicable rules is any multiset of applicable rules to which no other rules can
be added so to obtain another multiset of applicable rules. Maximal parallelism is
the type of behavior which was associated to membrane systems in their original
definition [17], and it is the semantics most commonly adopted in the area of
membrane computing (e.g., see [1], [18]).

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Π transits in one step from configuration C to configuration C ′ in a maximally-
parallel way, and we write C ⇒max C ′, if C ⇒free C ′ for some multiset of appli-
cable rules ΓC such that, for all r ∈ R, there is 1 ≤ i ≤ n with lhs(r)i 6= λ and
lhsi(r) 6v (w′i \ (

⊔
r∈R(lhsi(r))ΓC(r))).

Thus, a maximally-parallel step is a freely-parallel step where rules are applied
in parallel in an exhaustive way: once the multisets on the left-hand side of these
rules are consumed, no other rule has to be applicable to the objects left inside
the cells.

Locally-maximal parallelism

Locally-maximal parallelism, which was introduced in [13], specifies that, in each
step, if a cell is involved in the application of (at least) one rule, then a maximal
number of objects are consumed in this cell by applying in parallel as many rules
that involve this cell as possible.

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Π transits in one step from configuration C to configuration C ′ in a locally-
maximally-parallel way, and we write C ⇒lmax C ′, if C ⇒free C ′ for some multiset
of applicable rules ΓC such that, for all 1 ≤ i ≤ n, if there is r′ ∈ R with ΣC(r′) > 0
and lhsi(r′) 6= λ, then, for all r ∈ R with lhs(r)i 6= λ, there is 1 ≤ j ≤ n with
lhs(r)j 6= λ and lhsj(r) 6v (w′j \ (

⊔
r∈R(lhsj(r))ΓC(r))).

Thus, a locally-maximally parallel step is a freely-parallel step where if a cell is
involved in the application of one rule, then a maximal number of rules involving
this cell is applied in parallel at the same time. In other words, in a locally-
maximally parallel step, every cell that gets involved tries to participate in as
many interactions as possible depending on the objects currently available inside
the cell and on the presence of other cells competing for the same objects.

Minimal parallelism

Minimal parallelism, which was introduced in [6], means that, in each step, ev-
ery cell that can participate in at least one interaction must get involved in the
application of at least one rule.

Specifically, let Π = (V, w1, w2, . . . , wn, R) be a network of cells and let
C = (w′1, . . . , w

′
n), C ′ = (w′′1 , . . . , w′′n) be two configurations of Π. We say that

Networks of Cells and Petri Nets 41

Π transits in one step from configuration C to configuration C ′ in a minimally-
parallel way, and we write C ⇒min C ′, if C ⇒free C ′ for some multiset of appli-
cable rules ΓC such that, for all 1 ≤ i ≤ n, if there is no r′ ∈ R with ΓC(r′) > 0
and lhsi(r′) 6= λ, then, for all r ∈ R with lhs(r)i 6= λ, there is 1 ≤ j ≤ n with
lhs(r)j 6= λ and lhsj(r) 6v (w′j \ (

⊔
r∈R(lhsj(r))ΓC(r))).

Thus, a minimally-parallel step is a freely-parallel step where a maximal num-
ber of cells, which are selected depending on the current distribution of objects
inside the cells, evolve in parallel at the same time; each one of the selected cells
has to participate in at least one interaction, and no other rule has to be applicable
in parallel at the same time that involve any cell different from the selected ones.

Example 4. Let UNO = (V, aa, aa, bb, c, R) be an NC where R contains the
following interaction rules:

1. (a, 1) → (a, 1)(a, 2),
2. (a, 1) → (a, 1)(b, 3),
3. (c, 4)(a, 2)(b, 3) → (b, 2)(a, 3),
4. (b, 2) → (b, 2)(c, 4),
5. (c, 4)(b, 3) → (cc, 4)(b, 3),
6. (c, 4)(b, 2) → (bb, 3),
7. (c, 4)(a, 1) → (a, 4)(a, 2)(a, 3).

This NC has rules with input radius at most 2 and cooperation degree 1. The
initial configuration is given by the tuple C0 = (aa, aa, bb, c). To the initial config-
uration, we can apply rule 1 with multiplicity at most 2, rule 2 with multiplicity at
most 2, rule 3 with multiplicity at most 1, rule 5 with multiplicity at most 1, and
rule 7 with multiplicity at most 1. However, with respect to C0, it is not possible
to apply all these rules in parallel (e.g., only one rule between rules 3, 5 and 7 can
be applied because cell 4 contains only one object c).

Thus, in the case of free-parallelism, for any configuration C ′ obtained by ap-
plying any combination of the aforementioned rules that is a multiset of applicable
rules, we have C0 ⇒free C ′. For instance, if rule 1 is applied with multiplicity 2
and rule 3 is applied with multiplicity 1, we have C0 ⇒ (aa, aaab, ab, λ).

In the case of sequential execution, only one of the aforementioned rules is
going to be applied with multiplicity 1 to the initial configuration. This gives us
five possible transitions: C0 ⇒seq (aa, aaa, bb, c) when rule 1 is applied, C0 ⇒seq

(aa, aa, bbb, c) when rule 2 is applied, C0 ⇒seq (aa, ab, ab, λ) when rule 3 is applied,
C0 ⇒seq (aa, aa, bb, cc) when rule 5 is applied and C0 ⇒seq (a, aaa, abb, a) when
rule 7 is applied.

If maximal parallelism is adopted, then a maximal number of the aforemen-
tioned rules is applied to the initial configuration C0. Specifically, we have the
following possibilities: rule 1 (rule 2) applied with multiplicity 2 in parallel with
another rule chosen between rules 3 and 5; rule 1 applied in parallel with rule 2
(both with multiplicity 1) together with another rule chosen between rules 3 and

42 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

5; rule 1 (rule 2) applied with multiplicity 1 in parallel with rule 7. For instance,
if we choose this latter combination, we have C0 ⇒max (a, aaaa, abb, a).

In the case of locally-maximal parallelism, we have to make sure that if a cell
evolves by means of at least one rule, then all other rules affecting that same
cell that can be applied in parallel are effectively applied within the same step of
execution. Specifically, for the initial configuration C0, this means that whenever
rule 1, or 2 (rule 7) is used, then another rule chosen between rules 1, 2 and 7
(rules 1 and 2) is always applied in parallel in the same step. On the other hand,
we have C0 ⇒lmax (aa, ab, ab, λ) by just applying rule 3 because there are no other
rules involving cell 2, or 3 or 4 that can be applied in parallel at the same time.
Also, we have C0 ⇒seq (aa, aa, bb, cc) by just applying rule 5 because there are no
other rules involving cell 3 or 4 that can be applied in parallel at the same time.

In the case of minimal parallelism, a maximal number of cells evolve in parallel
at the same time with each one of the selected cells participating in at least one
interaction. Specifically, for the initial configuration C0, this means that rule 3
(rule 5) is always used in parallel with at least an application of rule 1 or 2.
However, with respect to C0, we have C0 ⇒min (a, aaa, abb, aa) by just applying
rule 7 because there are no rules involving cells 2 or 3 which can be applied in
parallel at the same time.

Remark 1. Locally-maximal parallelism was introduced in [13, 12] only for the
basic model of P systems where rules are precisely assigned to regions delimited
by membranes and the left-hand side of every rule involves only objects inside
the region which the rule is assigned to. Therefore, locally-maximal parallelism
is defined in [13, 12] by simply stating that, in each step, a certain number of
membranes is selected and a maximal number of rules is applied inside each one of
these membranes. In the case of NC’s, interaction rules may involve objects placed
inside different cells, hence locally-maximal parallelism is defined with respect to a
certain group of cells: in each step, a multiset of applicable rules can be used only
if it is maximal with respect to the cells which appear on the left-hand side of the
rules in it. However, if the rules of NC’s are restricted to have input radius equal
to 1, then the present notion of locally-maximal parallelism is consistent with the
semantics given in [13, 12] for the basic model of P systems.

Remark 2. The minimally-parallel semantics for NC’s is not defined in terms of
number of rules which are applied inside the cells, as in [6], but it is defined with
respect to the number of cells which can evolve in parallel at the same time.
Specifically, in each minimally-parallel step, a multiset of applicable rules can be
used only if there are no cells which do not appear on the left-hand side of any rule
in it and which some rules can be applied to; the multiset of applicable rules has
not to be maximal neither locally nor globally though. Minimal parallelism was
instead defined in [6] for P systems with symport/antiport where every membrane
has its own set of rules, hence, in each step, for each one of these sets of rules, if
there is a rule which is applicable, then at least one rule from that set is going
to be applied irrespective of the fact that an antiport rule involves two distinct

Networks of Cells and Petri Nets 43

regions at the same time. Therefore, although symport/antiport can be expressed
as interaction rules of NC’s, the notion of minimal parallelism proposed in [6] for
symport/antiport differs from the one considered here because interaction rules of
NC’s are not assigned a priori to any cell. However, if rules of NC’s are restricted
to have input radius equal to 1, then our minimally-parallel semantics for NC’s is
consistent with the idea from [6], that is, in each step, if at least one rule may be
used inside a region, then at least one rule is applied inside that region.

Remark 3. From a computational point of view (in the usual sense of membrane
computing), if we consider NC’s operating according to maximal parallelism, then
it is obvious that they are computationally complete and that the hierarchy on
the number of cells collapses at level 1. Moreover, the universality results obtained
for catalytic P systems and evolution-communication P systems (e.g., see [14], [3],
[10]) can be directly transferred to NC’s: NC’s with rules of input radius at most 2
are computationally complete and, for such systems, the hierarchy on the number
of cells collapses at level 2. More precisely, for NC’s corresponding to catalytic P
systems, we have universality for input radius at most 1 and cooperation degree at
most 2 [10], whereas, for evolution-communication P systems, we have universality
for input radius at most 2 and cooperation degree at most 1 when antiport rules
are used, or for input radius at most 1 and cooperation degree at most 2 when
symport rules are used [14]. On the other hand, the computational power of NC’s
operating in a sequential manner, in a freely-parallel manner, in a locally-maximal
parallel manner, or in a minimally parallel manner requires further investigations.

4 PT Nets with Localities

We introduce the class of Petri nets called place-transition nets with localities in
the form reported in [12].

Definition 4 (PTL-net). A PT-net with localities (a PTL-net, for short) is a
construct:

N = (P, T, W,M0, L),

where

1. P is a finite set of symbols whose elements are called places,
2. T is a finite set of symbols whose elements are called transitions,
3. W : (P × T) ∪ (T × P) → N is the weight function,
4. M0 ∈ P ∗ is a multiset over P called the initial marking,
5. L : T → N is a locality mapping;

and such that P ∩ T = ∅.
PTL-nets are usually represented by diagrams where places are drawn as circles,
transitions are drawn as squares, and a directed arc (x, y) is added between x and
y if W (x, y) ≥ 1. Moreover, transitions are annotated with their localities and the

44 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

arcs are annotated with their weights if these are 2 or more. Localities are used to
partition the set of transitions into subsets of transitions which logically belongs
to distinct locations.

Given a PTL-net N , the pre- and post-multiset of a transition t are respectively
the multiset preN (t) and the multiset postN (t) such that, for all p ∈ P , |p|preN (t) =
W (p, t) and |p|postN (t) = W (t, p). A configuration of N , which is called a marking,
is any multiset over P ; in particular, for every p ∈ P , |p|M represents the number of
tokens present inside place p. Then, we recall from [12] the notion of an execution
mode for a PTL-net by giving the following definitions.

Definition 5 (free-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let M
be a marking of N . A multiset of transitions U ∈ T ∗ is free-enabled at marking
M if (

⊔
t∈T (preN (t))|t|U) v M .

Definition 6 (seq-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let M
be a marking of N . A multiset of transitions U ∈ T ∗ is seq-enabled at marking M
if U is free-enabled at marking M and |U | = 1.

Definition 7 (max-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let
M be a marking of N . A multiset of transitions U ∈ T ∗ is max-enabled at
marking M if U is free-enabled at marking M and, for all t ∈ T , preN (t) 6v
(M \ (

⊔
t∈T (preN (t))|t|U)).

Definition 8 (lmax-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let M
be a marking of N . A multiset of transitions U ∈ T ∗ is lmax-enabled at marking
M if U is free-enabled at marking M and, for all l ∈ L(T), if there is t ∈ T
with L(t) = l and |U |t > 0, then, for all t′ ∈ T with L(t′) = l, preN (t′) 6v
(M \ (

⊔
t∈T (preN (t))|t|U)).

Definition 9 (min-enabled). Let N = (P, T, W,M0, L) be a PTL-net and let M
be a marking of N . A multiset of transitions U ∈ T ∗ is min-enabled at marking
M if U is free-enabled at marking M and, for all l ∈ L(T), if there is no t ∈ T
with L(t) = l and |U |t > 0, then, for all t′ ∈ T with L(t′) = l, preN (t′) 6v
(M \ (

⊔
t∈T (preN (t))|t|U)).

Definition 10 (m-execution). Let N = (P, T, W,M0, L) be a PTL-net and
let m ∈ {free, seq, max, lmax, min}. The m-execution of N is the relation-
ship ;m⊆ P ∗ × P ∗ such that, for all M, M ′ ∈ P ∗, M ;m M ′ iff, M ′ =
(M \ (

⊔
t∈T (preN (t))|t|U)) for some U ∈ T ∗ which is m-enabled at marking M .

Thus, an m-execution of a PTL-net N represents a transition step which makes
possible to derive a new marking from a given one by firing a certain number of
transitions in parallel at the same time. The firing of each transition results in
the consumption of its pre-multiset of places from the given marking and in the
production of its post-multiset of places in the new marking; the number of tran-
sitions that can fire in parallel within a transition step depends on the execution

Networks of Cells and Petri Nets 45

mode m ∈ {free, seq, max, lmax, min} and it has to be consistent with the cur-
rent availability of tokens inside each place (i.e., for each place, the number of its
tokens consumed cannot be greater than its multiplicity in the current marking).
Specifically, the aforementioned execution modes identify the following behaviors
for a PTL-net:

• free-execution: in each transition step, an arbitrary number of transitions fire
by providing that these constitute a free-enabled multiset of transitions (i.e.,
the union of their pre-multisets has to be contained in the current marking).

• seq-execution: in each transition step, only one transition fires that is chosen
amongst those whose pre-multiset of place is contained in the current marking
(i.e., in order to fire, a transition has to be enabled at the current marking);

• max-execution: in each transition step, a maximal number of transitions fire
by providing that these constitute a free-enabled multiset of transitions which
no other transition can be added to in order to obtain another free-enabled
multiset of transitions (i.e., the selected transitions has to consume a maximal
number of places so that no other transition can fire in parallel at the same
time);

• lmax-execution: in each transition step, an arbitrary set of localities is selected
and, for each one of these localities, a maximal number of transitions fire (i.e.,
for each selected locality, a maximal number of places is consumed so that no
other transition belonging to the same locality can fire in parallel at the same
time);

• min-execution: in each transition step, for each locality such that there is at
least one enabled transition associated to that locality, at least one transition
fire (i.e., the selected multiset of transitions has to involve a maximal set of lo-
calities, although the number of firing transition belonging to the same locality
has not necessarily to be maximal with respect to the current marking).

Notice that seq-execution is called min-execution in [13, 12], whereas the present
notion of min-execution is introduced as a counterpart of the minimally-parallel
semantics previously used in the area of membrane computing [6]; this latter notion
of minimal parallelism is in fact not considered in [13, 12].

5 Network of Cells versus PTL-nets

We start by extending to the class of network of cells the basic construction devised
in [7, 12, 13] to transform membrane systems into “equivalent” PTL-nets.

Definition 11. Let Π = (V, w1, w2, . . . , wn, R) be a network of cells.

1. The extended alphabet of Π, denoted by EΠ , is the set {(a, i) | a ∈ V, 1 ≤ i ≤
n}.

2. For all 1 ≤ i ≤ n, the i labeling of Π is the mapping hi,Π : V ∗ → E∗
Π such that,

for all a ∈ V , hi,Π(a) = (a, i) and, for all u, v ∈ V ∗, hi,Π(uv) = hi,Π(u)h(v).

46 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

3. For all r ∈ R of the form (u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh), the
cell-labeled version of r, denoted by CL(r), is the (multiset rewriting) rule
hi1,Π(u1) . . . hik,Π(uk) → hj1,Π(v1) . . . hjh,Π(vh).

Thus, for all 1 ≤ i ≤ n, the i labeling assigns to every object of a given multiset
the label i; the cell-labeled version of an interaction rule is a multiset rewriting
rules where the localization of the multisets inside the cells is given by the labels
assigned to the objects. This idea of assigning a label to the objects in order to
represent their localization inside the cells is central to the following construction
which shows how to define a corresponding PTL-net for every network of cells.

Definition 12 (corresponding PTL-net). Let Π = (V, w1, w2, . . . , wn, R)
be a network of cells where rules in R are labeled in a one-to-one manner
with values in {1, 2, . . . , |R|}. The PTL-net corresponding to Π is N (Π) =
(EΠ , {1, 2, . . . , |R|},W,M0, L), where: for all p ∈ EΠ , t ∈ {1, 2, . . . , |R|},
W (p, t) = m iff t is the label of a rule r ∈ R with m = |lhs(CL(r))|p, and
W (t, p) = m iff t is the label of a rule r ∈ R with m = |rhs(CL(r))|p;
M0 = h1,Π(w1)h2,Π(w2) . . . hn,Π(wn); for all t ∈ {1, 2, . . . , |R|}, L(t) = 0.

Thus, an NC Π is transformed into a PTL-net which contains a place for each
cell in Π and for each object possibly present inside this cell, and a transition for
each rule in Π. More precisely, in the corresponding PTL-net, occurrences of the
same symbol inside different cells are represented as occurrences of tokens inside
different places, each one of them identifying the presence of that symbol inside a
certain cell. The consumption of objects from certain places and the production
of new objects in other cells are then reflected in the movement of tokens between
the respective places; pre- and post-multisets of the transitions in fact correspond
to left-hand sides and right-hand sides of the rules in Π respectively.

As an example, we show in Figure 1 the PTL-net corresponding to the NC
UNO of Example 4.

Next, similar to what was done in [13, 12], we introduce the notion of equiva-
lence between the behavior of an NC and that of its corresponding PTL-net.

Definition 13 (m-equivalence). Let Π = (V, w1, w2, . . . , wn, R) be a net-
work of cells and let N (Π) be its corresponding PTL-net. For m ∈
{free, seq, max, lmax, min}, we say that Π is m-equivalent to N (Π), and we
write Π ≡m N (Π), if, for every two configurations C = (w′1, . . . , w

′
n), C ′ =

(w′′1 , . . . , w′′n) of Π, C ⇒m C ′ iff h1,Π(w′1) . . . hi,n(w′n) ;m h1,Π(w′′1) . . . hi,n(w′′n).

Thus, it is easy to see that the following proposition holds.

Proposition 5.1 For any network of cells Π, for m ∈ {free, seq,max}, we have
that Π ≡m N (Π).

On the other hand, since all the transitions of the corresponding PTL-net are
assigned to the same locality, we have that, for some network of cells Π, Π 6≡lmax

N (Π) and Π 6≡min N (Π). However, we can think of choosing a different locality

Networks of Cells and Petri Nets 47

Fig. 1. PTL-net N (UNO) with its initial marking.

mapping for the construction of Definition 12 in order to establish the equivalence
between the locally-maximal (or minimally-parallel) semantics of networks of cells
and the locally-maximal (or minimally-parallel) execution of the corresponding
PTL-net. To this aim, given an NC Π = (V, w1, w2, . . . , wn, R), and a function
F : {1, . . . , |R|} → N, it is useful to consider the PTL-net N (Π, F) which is
constructed as the one of Definition 12 except for the locality mapping which is
replaced by F . Thus, we can ask whether, for any NC Π = (V,w1, w2, . . . , wn, R),
there exists a F : {1, . . . , |R|} → N such that Π ≡lmax N (Π,F) (or Π ≡min

N (Π, F)), or not.

Proposition 5.2 There exists a network of cells Π with 3 rules such that, for all
F : {1, 2, 3} → N, we have that Π 6≡lmax N (Π, F).

Proof. Let DUE = ({a, b}, aa, bb, R) be an NC where R contains: rule (a, 1) →
(aa, 1) labeled by 1, rule (a, 1)(b, 2) → (a, 2)(b, 1) labeled by 2, and rule (b, 2) →
(bb, 2) labeled by 3. Then, let us suppose that DUE ≡lmax N (DUE,F) for some
F : {1, 2, 3} → N.

By Definition 12, PTL-net N (DUE, F) is the PTL-net (P, T, W,M0, L) with
P = {(a, 1), (a, 2), (b, 1), (b, 2)}, T = {1, 2, 3}, W ((a, 1), 1) = 1, W (1, (a, 1)) = 2,

48 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

W ((a, 1), 2) = 1, W ((b, 2), 1) = 1, W (2, (b, 1)) = 1, W (2, (a, 2)) = 1, W ((b, 2), 3) =
1, W (3, (b, 2)) = 2, W (x, y) = 0 in all other cases, and M0 = (a, 1)(a, 1)(b, 2)(b, 2).

Now, we observe that if F (1) = F (3), then, for the initial configuration C0 of
DUE, C0 ⇒lmax (aaaa, bb), but M0 6;lmax (a, 1)(a, 1)(a, 1)(a, 1)(b, 2)(b, 2). This
is because if transition 1 and transition 2 are assigned the same locality, then it
is not possible to fire transition 1 with multiplicity 2 without firing in parallel
transition 3 with multiplicity 2. This contradicts our hypothesis, hence it has to
be F (1) 6= F (3) irrespectively of the value of F (2).

Next, if F (1) 6= F (2), then M0 ;lmax (a, 1)(b, 1)(a, 2)(b, 2)(b, 2) by selecting
localities F (2) and F (3), but C0 6⇒lmax (ab, abb). This is because rule 2 involves
cell 1, hence it is not possible to apply rule 2 in parallel with rule 3 without
applying at the same time rule 1. Yet again, this contradicts our hypothesis, hence
it has to be F (1) = F (2). The same reasoning applies to the case F (2) 6= F (3):
M0 ;lmax (a, 1)(a, 1)(b, 1)(a, 2)(b, 2), but C0 6⇒lmax (aab, ab). Therefore, it has to
be F (1) = F (2) = F (3) but this is in contrast with our earlier observation that it
has to be F (1) 6= F (3) in order to have DUE ≡lmax N (DUE, F).

Thus, we can conclude that there is no F : {1, 2, 3} → N such that DUE ≡lmax

N (DUE, F). ut
Proposition 5.2 shows that, in the case of locally-maximal parallelism, it is not

always possible for the corresponding PTL-net to mimic the behavior of the original
network of cells. The intuitive reason for this is that interaction rules may involve
several cells at the same time and locally-maximal parallelism for NC’s is defined
with respect to the cells involved rather than with respect to the rules applied;
localities in PTL-nets are instead associated with transitions and determine which
transitions fire in parallel within a step of executions irrespectively of the places
involved. However, for an NC with interaction rules of input radius at most 1 (i.e.,
interaction rules that involve at most one cell in their left-hand side), it is easy to
construct a corresponding PTL-net which exhibits an equivalent behavior even for
locally-maximally parallelism. This is the case for the basic model of P systems as
shown in [13, 12].

A similar result can be obtained for minimal parallelism.

Proposition 5.3 There exists a network of cells Π with 3 rules such that, for all
F : {1, 2, 3} → N, we have that Π 6≡min N (Π, F).

Proof. Let DUE = ({a, b}, aa, bb, R) be the NC used in the proof of Proposition
5.2 with its initial configuration C0 = (aa, bb) . Then, let us suppose that DUE ≡m

N (DUE, F) for some F : {1, 2, 3} → N. PTL-net N (DUE,F) is the same as the
one defined in the proof of Proposition 5.2.

Now, we observe that if F (1) = F (2) = F (3), then, by firing only transition 1
with multiplicity 1, M0 ;min (a, 1)(a, 1)(a, 1)(b, 2)(b, 2), but C0 6⇒min (aaa, bb).
This is because rule 1 involves only cell 1, hence, since we are operating according
to the minimal parallelism, it is not possible to apply rule 1 with multiplicity 1
without applying in parallel at the same time at least another rule involving cell
2. This contradicts our hypothesis, hence it cannot be F (1) = F (2) = F (3).

Networks of Cells and Petri Nets 49

Next, if F (1) 6= F (2), then, by applying rule 2 with multiplicity 1, C0 ⇒min

(ab, ab) but M0 6;min (a, 1)(b, 1)(a, 2)(b, 2). This is because, since we are operating
according to minimal parallelism, it is not possible to fire transition 2 with mul-
tiplicity 1 without firing in parallel at the same time at least another transition
belonging to locality F (1) 6= F (2). The same reasoning apply to case F (2) 6= F (3).
Therefore, it has to be F (1) = F (2) and F (2) = F (3) but this is in contrast with
our earlier observation that it cannot be F (1) = F (2) = F (3) in order to have
DUE ≡min N (DUE, F).

Thus, we can conclude that there is no F : {1, 2, 3} → N such that DUE ≡min

N (DUE, F). ut
Proposition 5.3 shows that, even for minimal parallelism, it is not always pos-

sible for the corresponding PTL-net to mimic the behavior of the original network
of cells. Proposition 5.2 and Proposition 5.3 are both based on the fact that an
NC may contain both rules of input radius 1 with a local scope and rules of radius
greater than 1 which in a sense belong to different cells at the same time.

We pass now to consider the reverse problem of finding for every PTL-net a
corresponding network of cells with an equivalent behavior.

Definition 14. Let N = (P, T, W,M0, L) be a PTL-net.

1. A cell mapping for N is any surjective function C : P → {1, . . . , n} with n ≥ 1.
2. For all t ∈ T , for any cell mapping C for N , the pre-partition of t (w.r.t.

C), denoted by prepC(t), is the string (w1, c1)(w2, c2) . . . (wk, ck) such that
preN (t) = w1w2 . . . wk, for all 1 ≤ i ≤ k, wi 6= λ and C(ℵ(wi)) = {ci}, and,
for all 1 ≤ i, j ≤ k with i 6= j, C(ℵ(wi)) 6= C(ℵ(wj)).

3. For all t ∈ T , for any cell mapping C for N , the post-partition of t (w.r.t.
C), denoted by postpC(t), is the string (w1, c1)(w2, c2) . . . (wk, ck) such that
postN (t) = w1w2 . . . wk, for all 1 ≤ i ≤ k, wi 6= λ and C(ℵ(wi)) = {ci}, and,
for all 1 ≤ i, j ≤ k with i 6= j, C(ℵ(wi)) 6= C(ℵ(wj)).

4. For every marking M of N , for any cell mapping C for N , the partition of M
(w.r.t. C), denoted by partC(M), is the string (w1, c1)(w2, c2) . . . (wk, ck) such
that M = w1w2 . . . wk, for all 1 ≤ i ≤ k, wi 6= λ and C(ℵ(wi)) = {ci}, and,
for all 1 ≤ i, j ≤ k with i 6= j, C(ℵ(wi)) 6= C(ℵ(wj)).

5. For every marking M of N , for any cell mapping C : P → {1, . . . , n}
for N , the extended partition of M (w.r.t. C), denoted by expC(M), is
the tuple (w1, w2, . . . , wn) such that M = w1w2 . . . wn with partC(M) =
(wc1 , c1)(wc2 , c2) . . . (wck

, ck) for some {c1, c2, . . . , ck} ⊆ {1, 2 . . . , n} and wi =
λ for all i 6∈ {c1, c2, . . . , ck}.

Thus, given a network of cells N , we use the cell mapping to associate places to
certain cells and we use the concept of partition to distribute the places (i.e., their
multiple occurrences) to these cells. Specifically, we give the following definition.

Definition 15 (corresponding NC). Let N = (P, T, W,M0, L) be a PTL-
net and let C : P → {1, . . . , n} be a cell mapping for N . The network of

50 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

cells corresponding to N (w.r.t. C) is P(N,C) = (P, w1, w2, . . . , wn, R) where:
expC(M0) = (w1, w2, . . . , wn) and

R = {(u1, i1) . . . (uk, ik) → (v1, j1) . . . (vh, jh) |
t ∈ T, prepC(t) = (u1, i1) . . . (uk, ik), postpC(t) = (v1, j1) . . . (vh, jh)}.

Thus, we can construct different NC’s corresponding to the same PTL-net depend-
ing on the way we decide to assign places to cells; the unique constraint is that
multiple occurrences of the same place have to remain confined within the same
cell. At one end, a PTL-net can be translated into an NC with one cell where all
the rules have input radius equal 1; every rule corresponds to a transition and these
rules are no more than multiset rewriting rules. At the opposite end, a PTL-net
can be translated into an NC with as many cells as its places; every rule corre-
sponds to a transition and the its input radius is equal to the cardinality of the
support of the pre-multiset of this transition. Notice that the locality mapping of
a PT-net has no direct counterpart in the corresponding NC’s.

Next, we introduce the notion of equivalence between a PTL-net and its cor-
responding NC’s.

Definition 16 (m-equivalence). Let N = (P, T, W,M0, L) be a PTL-net and let
C : P → {1, . . . , n} be a cell mapping for N . For m ∈ {free, seq, max, lmax, min},
we say that N is m-equivalent to P(N, C), and we write N ≈m P(N, C) if, for
every two markings M1,M2, M1 ;m M2 iff expC(M1) ⇒m expCM2.

Thus, we can state the fundamental property which relates PTL-nets and cor-
responding NC’s.

Proposition 5.4 For any PTL-net N = (P, T, W,M0, L), for any cell mapping
C for N , for m ∈ {free, seq, max}, we have that N ≈m P(N, C). Moreover,
if L(T) = { l } for some l ≥ 0, then, for any cell mapping C for N , for m ∈
{lmax, min}, we have that N ≈m P(N,C).

Therefore, the general equivalence between a PTL-net and its corresponding
NC’s can only be established for free-parallelism, sequential execution and max-
imal parallelism. For locally-maximal parallelism and minimal parallelism, the
aforementioned equivalence can be established only for PTL-nets where all tran-
sitions are assigned to the same locality. In fact, the following results holds.

Proposition 5.5 There exists a PTL-net N such that, for any cell mapping C
for N , for m ∈ {lmax, min}, we have that N 6≈m P(N, C).

Proof. Let NONE be the PTL-net of Figure 2 where: transition R is assigned
locality 1, transition S is assigned locality 2, and transition T is assigned locality
2; the initial marking of NONE is M0 = aabb. Then, let us suppose that there is
a cell mapping C for NONE such that NONE ≈m P(NONE, C).

Now, if C({a, b} = {1} (i.e., if P(NONE, C) contains only one cell), then it is
obvious that NONE 6≈m P(NONE, C). Therefore, it has to be C({a, b} = {1, 2}

Networks of Cells and Petri Nets 51

(i.e., P(NONE, C) has to contain two cells) in order to be able to distinguish
between locality 1 and 2.

Then, if C(a) = 1 and C(b) = 2, then, by Definition 15, P(NONE, C) contains
rules: (a, 1) → (aa, 1), (a, 1)(b, 2) → (b, 2), and (b, 2) → (bb, 2). Thus, M0 ;lmax

aabb by firing transition R and transition S belonging to the same locality, but
expC(M0) = (aa, bb) 6⇒lmax (aa, bb). This is because rule (a, 1)(b, 2) → (b, 2)
involve cell 1 as well as cell 2, hence we cannot apply rule (a, 1) → (aa, 1) in
parallel with rule (a, 1)(b, 2) → (b, 2) without applying at the same time rule
(b, 2) → (bb, 2). This contradicts our hypothesis. For symmetry, the same reasoning
apply to the case C(a) = 2 and C(b) = 1.

Therefore, we can conclude that, for any cell mapping C for N , we have that
N 6≈lmax P(N,C).

For a minimally-parallel execution, it is easy to go through the same cases
as above and verify that, for any cell mapping C for N , we have that N 6≈min

P(N,C). ut

Fig. 2. PTL-net NONE with its initial marking where transition R is assigned to
locality 1, transition S is assigned to locality 2, and transition T is assigned to locality 2.

Finally, we stress once more the differences between cells and places. Cells of an
NC are bags of objects that can contain multiple occurrences of different symbols,
each one of them representing a different sort of objects; cells are seen as distinct
components of a larger system whose behavior is given by their interactions; the
adopted semantics determines which and how many cells become active from time
to time. Places of a PTL-net store a number of tokens, each one of them repre-
senting a distinct occurrence of a specific place; places with their number of tokens
represent resources that have to be acquired by transitions in order to fire, and,
in PTL-nets, one usually abstracts from the actual location of these resources.
Therefore, when translating a PTL-net into an NC, one has to make some extra
assumptions about the assignment of places to cells, although, in general, one can

52 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

always see a PTL-net as an NC with one cell containing a finite set of multisets of
rewriting rules.

6 Case-Studies

We present NC’s solutions to two classical synchronization problems: pro-
ducer/consumer and dining philosophers. The proposed models are derived from
standard solutions based on Petri Nets.

6.1 Producer/Consumer

We consider the simpler version of the producer/consumer system from [20]: dis-
tinguished items are produced, delivered to a buffer, later removed from the buffer,
and finally consumed. The buffer is assumed to have capacity for one item. More-
over, like in [20], we abstract from any concrete instance of the aforementioned
operations and we focus only on the “interplay” between produce/deliver and re-
move/consume, and on the events necessary for their synchronization.

Specifically, we consider two sub-systems named producer and consumer, re-
spectively, which “synchronize” (or “interact”, or “communicate”) through a
shared buffer. The producer has two states: “ready to produce” and “ready to de-
liver”. The consumer has two states: “ready to remove” and “ready to consume”.
The buffer has two states: “filled” and “empty”. In state “ready to produce”,
the producer executes the operation “produce” and moves to state “ready to de-
liver”; in state “ready to produce”, if the buffer is “empty”, the producer executes
the operation “deliver”, which fills the buffer, and moves back to state “ready
to produce”. Similarly, in state “ready to remove”, if the buffer is “empty”, the
consumer execute the operation “remove”, which empties the buffer, and moves
to state “ready to consume”; in state “ready to consume”, the consumer executes
the operation “consume” and moves back to state “ready to remove”.

PTL-Net Representation

The PTL-net model of the aforementioned producer/consumer system, which is
presented in [20], is reported in Figure 3, with its initial marking AEG, where:

A ≡ “ready to produce”,
B ≡ “ready to deliver”,
F ≡ “filled”,
E ≡ “empty”,
G ≡ “ready to remove”,
H ≡ “ready to consume”,
p ≡ “produce”,
d ≡ “deliver”,

Networks of Cells and Petri Nets 53

Fig. 3. PTL-net model of a producer/consumer system.

r ≡ “remove”,
c ≡ “consume”.

The unique transition enabled at the initial marking AEG is transition p (“pro-
duce”), and, when fired, it transfers a token from place A (“ready to produce”) to
place B (“ready to deliver”). Next, transition d (“deliver”) is enabled and, when
fired, it produces a token in place F (i.e., the buffer is filled) and a token in place
A (“ready to produce”). Then, transition r (“remove”) can fire which produces a
token in place E (i.e., the buffer is emptied) and a token in place H (“ready to
consume”). Finally, a token can be returned to place G (“ready to remove”) by
firing transition c (“consume”).

We remark that:

• seq-execution and free-execution are non-deterministic; after transition d has
fired, both transition p and transition r are enabled and, after transition r has
fired, both transition d and transition c are enabled;

• max-execution is deterministic;
• if transitions p and d are assigned to a certain locality (i.e., the producer) and

transition r and c to another one (i.e., the consumer), then lmax-execution is
equivalent to free-execution;

• if transitions p and d are assigned to a certain locality (i.e., the producer) and
transition r and c to another one (i.e., the consumer), then min-execution is
equivalent to max-execution;

• irrespectively of the semantics, in each step, at least one transition is always
enabled (liveness);

• irrespectively of the semantics, the consumer can consume only after having
received an item from the buffer (i.e., only after having performed a “remove”
operation);

• irrespectively of the semantics, after having produced an item, the producer
has to deliver it into the buffer before returning to producer; the delivering can
take place only when the buffer has been emptied.

54 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

NC Representation

As pointed out in Section 5, it is possible to find different NC’s corresponding
to the PTL-net of Figure 3. Here, in order to model the aforementioned pro-
ducer/consumer system, we consider an NC PC with 3 cells. Cell 1 represents the
producer, cell 2 represents the consumer, whereas cell 3 represents the buffer.

Cell 1 stores an object which specifies the states of the producer; this can be
either A (“ready to produce”) or B (“ready to deliver”). Similarly, cell 2 stores an
object which specifies the state of the consumer; this can be either G (“ready to
remove”) or H (“ready to consume”). Cell 3 instead stores an object representing
the state of the buffer, either F (“filled”) or E (“empty”). The initial configuration
is the tuple (A,G, E).

The desired behavior is then implemented by considering the following rules:

1. (A, 1) → (B, 1),
2. (B, 1)(E, 2) → (A, 1)(F, 3),
3. (G, 2)(F, 3) → (H, 2)(E, 3),
4. (H, 2) → (G, 2).

Yet again, we have that:

• the application of the rules is sequential and freely-parallel;
• the maximally-parallelism is deterministic;
• irrespectively of the semantics, in each step, at least one rule is always appli-

cable;
• irrespectively of the semantics, the consumer can consume only after having

received an item from the buffer;
• irrespectively of the semantics, after having produced an item, the producer

has to deliver it into the buffer before returning to producer; the delivering can
take place only when the buffer has been emptied.

Also, the PT-net N (PC) is the same as the PTL-net of Figure 3 except for the
naming of places and transitions (i.e., they define two isomorphic graphs). In fact,
rule 1 corresponds to transition p in the PT-net of Figure 3, rule 2 corresponds
to transition d in the PT-net of Figure 3, rule 3 corresponds to transition r in
the PT-net of Figure 3, and rule 4 corresponds to transition c in the PT-net of
Figure 3. Moreover, for F : {1, 2, 3, 4} → N such that F (1) = F (2), F (3) = F (4)
and F (1) 6= F (3), we have that PC ≡lmax N (PC, F) and PC ≡min N (PC, F).
The vice versa is also true: for the PTL-net of Figure 3, if transitions p and
d are assigned to a certain locality (i.e., the producer) and transition r and c
to another one (i.e., the consumer), then, for m ∈ {free, seq, max, lmax, min},
PTL-net of Figure 3 is m-equivalent to PC. Therefore, for this version of the
producer/consumer system, there is a sort of direct transcription of the PTL-net
model into an NC model whose rules are able to represent exactly the same type
of interactions between a producer and a consumer.

Networks of Cells and Petri Nets 55

Remark 4. For the present version of producer/consumer, the fundamental prop-
erties are: there is always a transition enabled (liveness), the producer always
alternates between “ready to consume” and “ready to deliver”, and the consumer
always alternates between “ready to remove” and “ready to consume”. These prop-
erties are formally proved in [20] for the PTL-net of Figure 3 and these results
can be directly transferred to our NC model; at some extent, this gives a flavor
of the sort of properties which could be proved for NC’s (or any other membrane
systems) by using techniques developed in the area of Petri nets.

Next, we describe an evolution-communication model of the pro-
ducer/consumer systems that is not a direct translation of the PTL-net solution
from [20] but is inspired by the idea of P systems as systems where transforma-
tions involve only objects inside one specific cell and communication is responsible
for moving objects from one cell to the other. In other words, we consider an NC
with interaction rules of input radius 1 which does not rely on the simultaneous
synchronization of two different cells.

Similarly to what was done before, we consider an NC PC1 with 3 cells: cell 1,
the producer, cell 2, the consumer, and cell 3, the buffer. The initial configuration
of PC1 is the tuple (A, G,E).

Cell 1 always moves from state A (“ready to produce”) to B (“ready to
deliver”) by replacing in its inside object A with object B. In state B, after
having received an object E from cell 3 (i.e., after having been notified that the
buffer is empty), cell 3 produce in its inside an object A and object F ; object F is
then sent to cell 3 to fill the buffer. In state G (“ready to remove”), cell 2 always
waits to receive an object F from cell 3 in order produce in its inside an object H
(representing state “ready to consume”) and an object E; object E is then sent
to cell 3 to notify that the buffer is now empty. This behavior is implemented by
means of the following rules:

1. (A, 1) → (B, 1),
2. (E, 3) → (E, 1),
3. (BE, 2) → (AF, 1),
4. (F, 1) → (F, 3),
5. (F, 3) → (F, 2),
6. (GF, 2) → (HE, 2),
7. (H, 2) → (G, 2),
8. (E, 2) → (E, 3).

Thus, all these rule have input radius equal to 1 and interactions between cell
1 (cell 2) are achieved through an effective exchange of objects. However, irrespec-
tively of the semantics adopted, the aforementioned fundamental properties can
still be observed: at any time, at least one rule is applicable, the producer always
alternates between “ready to consume” and “ready to deliver”, and the consumer
always alternates between “ready to remove” and “ready to consume”. Moreover,
the producer can deliver only when the buffer is empty, and the consumer can

56 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

remove only when the buffer is filled. Also, notice that PC1 is somehow “more
concurrent” than PC: there is always some communication which can be executed
in parallel with the internal change of state. Nevertheless, maximal parallelism still
leads to a deterministic behavior for PC1 and the movement of objects E and F
does not affect the behavior of producer and consumer.

PTL-net N (PC1) is given in Figure 4.

Fig. 4. PTL-net N (PC1) with its initial marking.

Remark 5. The solution based on the NC PC uses rules of input radius at most
2 and cooperation degree at most 1, whereas the solution based on the PC1 uses
rules of input radius at most 1 and cooperation degree at most 2. In some sense,
this shows a trade-off between the cooperation at level of cells and the cooperation
at the level of objects.

Remark 6. If we do not consider the names of places and transitions, the PTL-net
of Figure 4 is the same as the PTL-net of Figure 3 excepts for the presence of
some “unary” transitions which correspond to the movement of objects E and F
between cell 1, cell 2 and cell 3. Indeed, by using standard structural methods of
Petri nets (e.g., see [11]), the aforementioned transitions could be removed so to
have a PTL-net which is the same as the one of Figure 3 and inherits the same
structural properties proved in [20]. Thus, the translation into PTL-net allows us
to relate two different models of NC’s in terms of structural properties which are
somehow hidden in the two different types of rules used.

7 Dining Philosophers

We consider a distributed system where each resource is shared by two components,
and each subsystem simultaneously requires two resources in order to start its

Networks of Cells and Petri Nets 57

activities. The problem of modeling such a resource sharing scenario is classically
formulated as the problem of the dining philosophers: five philosophers are sitting
around a table, each philosopher has his own plate and can be eating or thinking
(i.e., not eating). In order to eat, a philosopher needs two forks, but there are
only two forks next to each plate so that no two neighboring philosophers may be
eating simultaneously.

PTL-net representation

The five philosophers are denoted by A, B, C, D and E; the five forks are denoted
by f0, f1, f2, f3 and f4. For each X ∈ {A,B, C,D, E}, we denote by l(X) its
left fork and by r(X) its right fork. Specifically, we set: l(A) = f0, r(A) = f1,
l(B) = f1, r(B) = f2, l(C) = f2, r(C) = f3, l(D) = f3, r(D) = f4, l(E) = f4 and
r(E) = f0 (i.e. A sits between E and B, B sits between A and C, C sits between
B and D, D sits between C and E, and E sits between D and A).

Thus, a PTL-net FDP is constructed that contains: for each X ∈
{A,B, C,D, E}, a place Xt (“Xt is thinking”) and a place Xe (“Xe is eat-
ing”), for each 0 ≤ i ≤ 4, a place fi (“fi is available”), for each X ∈
{A,B, C,D, E}, a transition Xp (“X picks up forks”) with preFDP (Xp) =
l(X)Xtr(X) and postFDP (Xp) = Xe, and a transition Xr (“X returns forks”)
with preFDP (Xr) = Xe and postFDP (Xr) = l(X)Xtr(X). The initial marking of
FDP is AtBtCtDtEtf0f1f2f3f4 (i.e., all philosophers are thinking and all forks
are available).

Figure 5 depicts the sub-net of an FDP modeling a philosopher. This classical
PTL-net model of the dining philosophers is taken from [20].

At the initial marking AtBtCtDtEtf0f1f2f3f4, for X ∈ {A,B, C,D, E}, each
transition Xp (“X picks up forks”) is enabled by giving all philosophers a chance
to start eating. However, irrespectively of the execution mode adopted, no two
neighboring philosophers can start eating at the same time because they share one
fork and, for all 0 ≤ i ≤ 4, fi contains only one token. Thus, in the first step,
depending on the execution mode, a certain number of philosophers which are
not neighbors start eating by firing at least one transition Xp, whereas the other
philosophers keep thinking. Then, depending on the execution mode, some other
philosophers may start eating, whereas the eating philosophers may release their
forks and return thinking, and so on.

The fundamental property of the PTL-net FDP is that it avoids the deadlocks:
FDP never produces a marking which no transition is enabled at. Moreover, from
time to time, FDP offers every philosopher the chance to start eating (i.e., it
avoids scenarios where no philosopher can ever start eating), although fairness
is not guaranteed (i.e., there may be some philosophers which always alternate
between thinking and eating with the other philosophers thinking indefinitely).
Yet again, this structural properties are formally proven in [20].

58 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

Fig. 5. PTL-net representation of a dining philosopher with its initial marking.

NC Representation

By starting from the PTL-net FDP , we construct an NC PH with 6 cells: cell 1
represents philosopher A, cell 2 represents philosopher B, cell 3 represents philoso-
pher C, cell 4 represents philosopher D, cell 5 represents philosopher E, and cell
6 representing the table. If we denote by ph(i) the philosopher represented by cell
i, for all 1 ≤ i ≤ 5, then cell i always contain either an object ph(i)t (“ph(i) is
thinking”) or an object ph(i)e (“ph(i) is eating”). Also, as in the previous PTL-net
representation, for each X ∈ {A,B, C,D, E}, we denote by l(X) its left fork and
by r(X) its right fork. Cell 6, the table, always contain the currently available
forks: the availability of a fork fi, for all 0 ≤ i ≤ 4, is represented as occur-
rence of an object fi inside cell 6. The initial configuration of PH is the tuple
(At, Bt, Ct, Dt, Et, f0f1f2f3f4).

The behavior of the five dining philosophers is then implemented by means of
a set of rules which, for all 1 ≤ i ≤ 5, contains the rules:

1. (ph(i)t, i)(l(ph(i)) r(ph(i)), 6) → (ph(i)e, i),
2. (ph(i)e, i) → (ph(i)t, i)(l(ph(i)) r(ph(i)), 6).

Specifically, for all 1 ≤ i ≤ 5, rule 1 models transition ph(i)p (“ph(i) picks up
forks”) of the PTL-net FDP , whereas rule 2 models transition ph(i)r (“ph(i) re-
turns forks) of the PTL-net FDP . In fact, the NC PH is the PTL-net N (FDP,C)
with C(At) = C(Ae) = 1, C(Bt) = C(Be) = 2, C(Ct) = C(Ce) = 3,

Networks of Cells and Petri Nets 59

C(Dt) = C(De) = 4, C(Et) = C(Ee) = 6, and C(fi) = 6 for all 0 ≤ i ≤ 4.
Therefore, even for the NC PH, we can say that deadlock is avoided.

Another NC representation of the five dining philosophers can be obtained by
distributing the forks to five different cells. Specifically this means considering an
NC PH1 obtained from PH by removing cell 6 and adding a cell 6+ i, for all 0 ≤
i ≤ 4; each cell 6+i contains an occurrence of object fi whenever fork fi is available.
The initial configuration of PH1 is the tuple (At, Bt, Ct, Dt, Et, f0, f1, f2, f3, f4,).

Then, for all 1 ≤ i ≤ n, the new set of rules contains the rules:

1. (ph(i)t, i)(l(ph(i)), c(l(ph(i))))(r(ph(i)), c(r(ph(i))) → (ph(i)e, i),
2. (ph(i)e, i) → (l(ph(i)), c(l(ph(i))))(r(ph(i)), c(r(ph(i)))).
where, for all 1 ≤ i ≤ 5, c(l(ph(i))) and c(r(ph(i))) denote the respective locations
of these two forks.

The NC PH1 contains rules of input radius at most 3 and cooperation degree at
most 1, and it corresponds to the PTL-net N (FDP, C) with C(At) = C(Ae) = 1,
C(Bt) = C(Be) = 2, C(Ct) = C(Ce) = 3, C(Dt) = C(De) = 4, C(Et) = C(Ee) =
6, and C(fi) = 6 + i for all 0 ≤ i ≤ 4. Therefore, with respect to their PTL-net
representation, the NC PH and NC PH1 cannot be distinguished.

8 Discussion

Networks of cell (NC’s, for short) are a general class of P systems which encompass
the essential features of evolution/communication of both P systems and tissue P
systems. Rules in NC’s allow different cells to synchronize in order to consume some
multisets from their inside and produce some new multisets inside some other cells.
As we have seen, this means that we can express within the framework of NC’s
both forms of coupled transports, like boundary rules and standard evolution rules
with communication controlled by targets here, in, out. However, the structure of
an NC does not necessarily corresponds to a graph or a tree; NC’s of cells abstract
from the underlying structure by focusing only on the interactions which can take
place between the cells present in the system. In fact, these cells can be equally
thought as being physically connected in some way which makes possible for the
interactions to take place, or as randomly bumping into each other and interacting
whenever it is possible. In a sense, such an approach is closer to the idea of a Petri
net as a collection of transitions which can fire when certain resources become
available, with some of these transitions competing for the same set of resources.
The difference is that in NC’s resources are objects which are specifically placed
inside certain cells. This has led us to two important observations:

• Despite being able to translate every NC into a PTL-net by using a construction
analogous to the one used in [7, 13, 12], in the case of locally-maximal paral-
lelism and minimal parallelism, it is not always possible for the corresponding
PTL-net to mimic the behavior of the original network of cells; locally-maximal

60 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

parallelism for PTL-nets is defined with respect to the localities which are as-
signed to the transitions; these localities then determine which transitions can
possibly fire in parallel at the same time irrespectively of the places involved;
rules of NC’s involving more than one cells are instead not assigned a priori to
any cell, and locally-maximally parallelism and minimal parallelism are defined
with respect to a cell that can get involved in some interactions from time to
time depending on a particular distribution of objects;

• For a given PTL-net, it is possible to find different corresponding NC’s de-
pending on the way places are assigned to the cells; the only restriction is that
multiple occurrences of the same place has to remain confined within the same
cell; for instance, for the five dining philosophers, it has been possible to pro-
duce two NC-based models: one with 6 cells and rules of input radius 2, and
another one with 10 cells and rules of input radius 3.

In other words, in P systems, one naturally reasons about components (e.g.,
producer, consumer, buffer) and these are usually seen as being separate cells (or
membranes). Also, one naturally distinguishes between operations affecting the
inner state of a membrane and the operations involving interactions between dif-
ferent membranes. Moreover, in membrane systems, the inner state of a membrane
can be given by an arbitrarily large multiset; this allows us to combine cooper-
ation at the level of objects with interaction between different cells. Petri nets,
with their graphical notation, are centered around the idea of resources which
have to be acquired (tokens inside places) before certain actions can be taken; this
facilitates the reasoning about properties like causality (the execution of certain
actions depends on the execution of some others), concurrency (certain group of
action can always be executed in parallel), and conflicts (certain actions compete
with some others for the usage of certain resources); in membrane systems, these
structural properties instead remains somehow hidden in the formalism used for
representing the rules.

The present research can be continued in several directions. For instance, from
a computational point of view, although we know that NC’s with a maximally-
parallel semantics are computationally complete, the computational power of NC’s
of cells with other semantics deserves further investigations especially for what
concerns the size and types of rules used. Moreover, as pointed out in [24], inter-
action rules of NC’s can express forms of cooperative communication other than
symport/antiport or conditional uniport, and the computational power of these
forms of communication is not yet fully understood. Then, for what concerns the
relationships between P systems and Petri nets, as observed in [12], other features
of P systems (without being limited to NC’s) may or may not be representable in
Petri nets. However, for some classes of P systems, their Petri-net representation
offers the possibility of analyzing their behavior with respect to certain structural
properties which can be formally proved for Petri nets and which are thoroughly
managed through a plethora of tools [2]. Finally, we remark that, although one
may see Petri nets as a low-level implementation of P systems, there are classes
of high-level Petri Nets (e.g., colored Petri nets [11], objects nets [11], system nets

Networks of Cells and Petri Nets 61

[20]) with features usually not considered for P systems, such as: types, variables,
and predicates. The need for these features in P systems may be checked for specific
modeling purposes against appropriate case-studies.

Acknowledgements

The research of Francesco Bernardini is supported by NWO, Organisation for
Scientific Research of The Netherlands, project 635.100.006 “VIEWS”.

References

1. The P systems web page. http://psystems.disco.unimib.it.
2. Petri nets world - Petri nets tools database.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html.
3. F. Bernardini and M. Gheorghe. Cell Communication in Tissue P Systems: Univer-

sality Results. Soft Computing, 9, 9 (2005), 640–649.
4. F. Bernardini and V. Manca. P Systems with Boundary Rules. In Gh. Păun,

G. Rozenberg, A. Salomaa, and C. Zandron, editors, Membrane Computing. Interna-
tional Workshop, WMC-CdeA 02, Curtea de Argeş, Romania, August 19-23, 2002.
Revised Papers. Volume 2597 of Lecture Notes in Computer Science, Springer, 2003,
107–118.

5. F. Bernardini, F.J. Romero-Campero, M. Gheorghe, and M.J. Pérez-Jiménez. A
Modelling Approach Based on P Systems with Bounded Parallelism. In H.J. Hooge-
boom, Gh. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Computing,
Seventh International Workshop, WMC7, Leiden, The Netherlands, July 2006. Vol-
ume 4361 of Lecture Notes in Computer Science, Springer, 2007, 49–65.

6. G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez. P systems with minimal paral-
lelism. Theoretical Computer Sci., to appear.

7. S. Dal Zilio and E. Formenti. On the Dynamics of PB Systems: A Petri Net View.
In C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, and A. Salomaa, editors,
Membrane Computing, International Workshop, WMC 2003, Tarragona, Spain, July,
17-22, 2003, Revised Papers. Volume 2933 of Lecture Notes in Computer Science,
Springer, 2004, 153–167.

8. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Petri Nets and Concur-
rency. Volume 3098 of Lecture Notes in Computer Science. Springer, 2004.

9. R. Freund. Asynchronous P Systems and P Systems Working in the Sequential
Mode. In G. Mauri, Gh. Păun, M. J. Pérez-Jiménez, G. Rozenberg, and A. Salomaa,
editors, Membrane Computing. International Workshop, WMC 2004, Milan, Italy,
June 2004. Revised and Invited Papers. Volume 3365 of Lecture Notes in Computer
Science, Springer, 2005, 36–62.

10. R. Freund, L. Kari, M. Oswald, and P. Sośık. Computationally Universal P Systems
without Priorities: Two Catalysts are Sufficient. Theoretical Computer Science, 330
2 (2005), 251–266.

11. C. Girault and R. Valk. Petri Nets for Systems Engineering. Springer, 2003.
12. J. Kleijn and M. Koutny. Synchrony and Asynchrony in Membrane Systems. In

H.J. Hoogeboom, Gh. Paun, G. Rozenberg, and A. Salomaa, editors, Membrane
Computing, Seventh International Workshop, WMC7, Leiden, The Netherlands, July
2006. Volume 4361 of Lecture Notes in Computer Science, Springer, 2007, 66–85.

62 F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

13. J. Kleijn, M. Koutny, and G. Rozenberg. Towards a Petri Net Semantics for Mem-
brane Systems. In R. Freund, Gh. Păun, G. Rozenberg, and A. Salomaa, editors,
Membrane Computing: 6th International Workshop, WMC 2005, Vienna, Austria,
July 18-21, 2005, Revised, Selected and Invited Papers. Volume 3850 of Lecture Notes
in Computer Science, Springer, 2006, 292–309.

14. S.N. Krishna and A. Păun. Results on Catalytic and Evolution-Communication P
Systems. New Generation Computing, 22, 4 (2004), 377–394.

15. C. Martin-Vide, Gh. Păun, J. Pazoz, and A. Rodriguez-Paton. Tissue P Systems.
Theoretical Computer Sci., 296, 2 (2003), 295–326

16. C. Mart́ın-Vide, Gh. Păun, and G. Rozenberg. Membrane Systems with Carriers.
Theoretical Computer Science, 270, 1-2 (2002), 779–796.

17. Gh. Păun. Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

18. Gh. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
19. Gh. Păun, Y. Sakakibara, and T. Yokomori. Membrane Systems on Graphs of Re-

stricted Forms. Publicationes Mathematicae Debrecen, 60 (2002), 635–660.
20. W. Reisig. Elements of Distributed Algorithms. Modelling and Analysis with Petri

Nets. Springer, 1998.
21. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models. Volume

1491 of Lecture Notes in Computer Science. Springer, 1998.
22. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications. Volume

1492 of Lecture Notes in Computer Science. Springer, 1998.
23. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 1–3.

Springer, 1997.
24. S. Verlan, F. Bernardini, M. Gheorghe, and M. Margenstern. Generalized Commu-

nicating P Systems. Submitted, 2007.
25. S. Verlan, F. Bernardini, M. Gheorghe, and M. Margenstern. Computational Com-

pleteness of Tissue P Systems with Conditional Uniport. In H.J. Hoogeboom,
Gh. Păun, G. Rozenberg, and A. Salomaa, editors. Membrane Computing, Seventh
International Workshop, WMC7, Leiden, The Netherlands, July 2006. Volume 4361
of Lecture Notes in Computer Science, Springer, 2007, 521–535.

Extended Spiking Neural P systems with
Excitatory and Inhibitory Astrocytes

Aneta Binder1, Rudolf Freund1, Marion Oswald1, Lorenz Vock2

1 Vienna University of Technology
Faculty of Informatics
Favoritenstr. 9, 1040 Vienna, Austria
{ani,rudi,marion}@emcc.at

2 Medical University of Vienna
Währinger Gürtel 18-20, 1090 Vienna, Austria
lorenz.vock@meduniwien.ac.at

Summary. We investigate an extended model of spiking neural P systems incorporat-
ing astrocytes and their excitatory or inhibitory influence on axons between neurons.
Using very restricted variants of extended spiking neural P systems with excitatory and
inhibitory astrocytes we can easily model Boolean gates like NAND-gates as well as dis-
crete amplifiers.

1 Introduction

In this paper we integrate several models describing the functioning of the human
brain based on the biological background. New models in the area of neural com-
putation were introduced based on the observation that neurons send electrical
impulses (also called spikes) along axons to other neurons, e.g., see [4], [11], [12].
P systems (membrane systems) were introduced as a formal model describing the
hierarchical structure of membranes in living organisms and the biological pro-
cesses in and between cells (an introduction to this field can be found in [17], for
the actual state of the art in this area we refer the reader to [23]).

Combining the ideas of P systems and spiking neurons, a new variant of so-
called tissue P systems (see [13]) called spiking neural P systems was investigated,
e.g., see [8], [18]. An extended version of spiking neural P systems allowing to send
different informations along the axons between two neurons was investigated in [1].
In spiking neural P systems (see [8]), the contents of a neuron consists of a number
of so-called spikes. The rules assigned to a cell allow us to send information to other
neurons in the form of electrical impulses – spikes – which are summed up at the
target cell; the application of the rules depends on the contents of the neuron. In
[1], an extended version of this original model of spiking neural P systems was

64 Extended SN P systems with Excitatory and Inhibitory Astrocytes

introduced based on some other observations from biology; for example, the spikes
coming along different axons may cause effects of different magnitude. In [3], the
role of inhibitory axons in extended spiking neural P systems was investigated
(the arrival of spikes in the neuron affected by spikes along an inhibitory axon is
inhibited).

Until recently, astrocytes, a sub-type of macroglia have been understood as
star-shaped glial cells spanning around neurons in the central nervous system
(CNS). Their main function was suspected to be the metabolic support of the
neurons with glucose and nutrients as well as metabolic support for endothelial
cells for keeping the blood barrier. They also were found to play a critical role in
the neuronal survival and differentiation or neurite outgrowth. For more details
see [19]. More recent biochemical literature, however, has put forward the idea
that astrocytes have an important role in the plasticity of the CNS namely the
synaptogenesis [7]. Astrocytes were also found to influence the concentration of
neuroactive substances [14] and may serve as intermediaries in neuronal regulation
of blood flow [16]. It also has become apparent that astrocytes themselves form
an information-transmitting network by passing elevations of Calcium (Ca2+)
[5][6]. It has been found that Ca2+ elevations in astrocytes modulate neuronal
excitability and synaptic transmission. On the other hand, astrocytes are shown to
be influenced by neurotransmitters [20] that might influence Ca2+ concentrations
indicating that astrocytes might discriminate between different levels of neuronal
activity [19]. It is also suggested that astrocytes may respond to synaptic activity
in local domains [15] only and that these local domains may also discriminate
between neurotransmitters (see [19]). Hence, a complex feedback loop of neuronal
modulation exerted by astrocytes can be postulated.

The influence of astrocytes in the functioning of the human brain has also been
investigated in [21], where to the interaction between the networks of neurons and
astrocytes in addition the influence of the capillary system in connection with the
networks of neurons and astrocytes was modelled. Based on the biological back-
ground, but without claiming to model it in a decent way, we develop a model of
membrane systems incorporating some specific features of complex systems con-
sisting of two interacting networks of neurons and astrocytes. For the signals sent
from one neuron to another one, we base our model of extended spiking neural P
systems with excitatory and inhibitory astrocytes on the ideas of (extended) spiking
neural P systems and add the concept of astrocytes influencing the signals along
the axons. For the astrocytes themselves, we assume their membrane potential
to be changed according to external inputs which may either come from neural
cells or the firing intensity and frequency along the axon. We shall assume two
thresholds; then in the excitatory case, the effect of the astrocyte on the axon it
controls is as follows:

If the membrane potential is below the first threshold, then there is no effect of
the membrane potential of the astrocyte on the controlled axon. If the membrane
potential is between the lower and the upper threshold, then the signals along the
controlled axon are affected in an excitatory (amplifying) way. Yet if the membrane

A. Binder et al. 65

potential goes beyond the upper threshold the effect turns to be an inhibitory
one, decreasing the weight of the signals coming along the axon. In this way, the
astrocyte network acts as a complex control mechanism on the network of the
neural cells and is itself regulated by this network of neural cells. Hence, these
networks of neurons and astrocytes form a complex system. We do not model
the influence of the capillary system which is described as a third part of such a
complex interacting system of networks as described in [21].

Our new model could be used for the representation of artificial neural net-
works, especially for self-organizing feature maps; yet in contrast to analytic mod-
els of such variants of neural networks, our model works in a discrete manner, but
on the other hand, is based on a graph-like structure and not on a (usually two-
dimensional) grid. An example of such a two-dimensional artificial neural network
based on biological observations of the complex networks of neurons and astrocytes
in the human neocortex can be found in [2]. Moreover, our model of neurons and
axons with the axons being influenced by astrocytes in an excitatory or inhibitory
way and the neurons influencing the astrocytes, is also related with the specific
model of Petri nets with range arcs as described in [9] where process arcs influence
transitions in an activating or inhibitory way and this influence depends on the
number of tokens in a place which makes enabling a given transition possible.

In this paper we do not focus on applications as the possibility for modelling
artificial neural networks as self-organizing feature maps (e.g., see [10]) for specific
application tasks. Instead we show the potentials of our model to formalize discrete
functions, e.g., networks of logical gates. Moreover, we exhibit the computational
completeness of our model.

2 Extended Spiking Neural P Systems with Excitatory and
Inhibitory Astrocytes

For the basic elements of formal language theory needed in the following, we refer
to any monograph in this area, in particular, to [22]. We just list a few notions and
notations: V ∗ is the free monoid generated by the alphabet V under the operation
of concatenation and the empty string, denoted by λ, as unit element. N+ denotes
the set of positive integers (natural numbers), N is the set of non-negative integers,
i.e., N = N+∪{0}. The interval of non-negative integers between k and m is
denoted by [k..m]. By REG (N) and RE (M) we denote the sets of subsets of N
that are regular and recursively enumerable, respectively.

The basic elements of membrane computing are taken from [17];
comprehensive information can be found on the P systems web page
http://psystems.disco.unimib.it. Moreover, for the motivation and the bi-
ological background of spiking neural P systems we refer the reader to [8].

An extended spiking neural P system with excitatory and inhibitory astrocytes
(of degree m ≥ 1) (in the following we shall simply speak of an ESNPA system)
is a construct

66 Extended SN P systems with Excitatory and Inhibitory Astrocytes

Π = (m,n, S, R,U)

where

• m is the number of neurons; the neurons are uniquely identified by a number
between 1 and m (obviously, we could instead use an alphabet with m symbols
to identify the neurons);

• n is the number of astrocytes; the astrocytes are uniquely identified by a number
between m + 1 and m + n;

• S describes the initial configuration by assigning an initial value (of spikes) to
each neuron as well as an initial value (membrane potential) to each astrocyte;

• R is a finite set of rules of the form
(
i, E/ak → P

)
such that i ∈ [1..m] (spec-

ifying that this rule is assigned to cell i), E ⊆ REG (N) is the checking set
(the current number of spikes in the neuron has to be from E if this rule shall
be executed), k ∈ N is the “number of spikes” (the energy) consumed by this
rule, and P is a (possibly empty) set of productions of the form (l, w) where
l ∈ [1..m + n] (thus specifying the target neuron or astrocyte), w ∈ N is the
weight of the energy sent along the axon from neuron i to neuron or astrocyte
l;

• U is a finite set of rules of the form (r, p, q, h, h′, f, f ′, f ′′) such that r ∈
[m + 1..n] and p, q ∈ [1..m] (specifying that this rule is assigned to astrocyte
r and influencing the axon between the neurons p and q), h, h′ ∈ N, h ≤ h′

are thresholds, and f, f ′, f ′′ are functions N → N changing the energy w, sent
along the axon from p to q, to w′ as follows: if w < h, then w′ = f (w), if
h ≤ w ≤ h′, then w′ = f ′ (w), if w > h′, then w′ = f ′′ (w).

A configuration of the ESNPA system is described as follows:

• for each neuron, the actual number of spikes in the neuron is specified;
• for each astrocyte, the actual membrane potential of the astrocyte is specified.

A transition from one configuration to another one now works as follows:

• for each neuron i, we first check whether we can “activate a rule”(
i, E/ak → P

)
, i.e., if the current value of spikes in neuron i is in E; wait-

ing to be executed; then neuron i “spikes”, i.e., for every production (l, w)
occurring in the set P we put the corresponding package (l, w) on the axon
from neuron i to neuron l or astrocyte l, respectively;

• if there is a rule (r, i, l, h, h′, f, f ′, f ′′) ∈ U , the energy w in a package (l, w) on
the axon from neuron i to neuron l is modified according to this rule to (l, w′)
as described above;

• for each neuron l, we now consider all eventually modified packages (l, w′) on
axons leading to neuron l; we then sum up all weights w′ in such packages and
add this sum to the corresponding number of spikes in neuron l;

• for each astrocyte l, we now consider all packages (l, w) on axons leading to
astrocyte l; we then sum up all weights w in such packages and take this sum

A. Binder et al. 67

as the new membrane potential for astrocyte l (i.e., we forget the previous
potential).

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence
of configurations starting with the initial configuration given by S.

An ESNPA system can be used to generate sets of numbers from RE (N) as
follows: A computation is called successful if it halts, i.e., if for no neuron, a rule
can be activated. We then consider the contents, i.e., the number of spikes, of a
specific neuron called output neuron in halting computations. According to [8],
we can also take the distance between the first two spikes in an output neuron
to define the number it computes. For generating k-dimensional vectors of non-
negative integers, we have to designate k neurons as output neurons.

In the following, we shall use ESNPA systems to compute discrete functions, es-
pecially we shall exhibit how Boolean functions can be computed by using NAND-
gates. When computing functions, we assume external input signals arriving in
some designated input neurons as well as several output neurons for sending out
the computed function with a spike indicating the signal 1 and with no spike being
sent out indicating the signal 0.

The rules
(
i, E/ak → P

)
in the examples given in the succeeding section will

be of a very special form, i.e., we always have E =
{
ak

}
, hence, we can omit E.

Moreover, the productions (l, w) in P have the same weights for all l occurring in
P , and even the sets P are the same for all rules

(
i, E/ak → P

)
for each i; hence,

we can indicate such rules as in Figure 1 where the rule ak → al in neuron p means
that k spikes are consumed in neuron p and l spikes are sent to every neuron q if
there exists an axon from p to q. Moreover, am in neuron p indicates the initial
value of m spikes in this neuron.

&%
'$

am

ak → al

p

-&%
'$

q

Fig. 1. Representation of simple rules in neurons.

The specific effect of very special astrocytes is depicted in Figures 2 and 3:
in Figure 2, the influence of an excitatory astrocyte r on an axon between two
neurons p and q is depicted: ≥ k|f in astrocyte r means that if x ≥ k spikes are
sent out from neuron p then f (x) spikes will reach neuron q, whereas for a number
of spikes x < k no spike will reach q. On the other hand, in Figure 2, the influence
of an inhibitory astrocyte r on an axon between two neurons p and q is depicted:
≤ k|f in astrocyte r means that if x ≤ k spikes are sent out from neuron p then

68 Extended SN P systems with Excitatory and Inhibitory Astrocytes

f (x) spikes will reach neuron q, whereas for a number of spikes x > k no spike
will reach q.

&%
'$

p

-&%
'$

q

�

�
	

?

�
��

@
@@

@
@@

�
��≥ k|f

r

Fig. 2. Excitatory astrocyte.

&%
'$

p

-&%
'$

q

�

�
	

?

�
��

@
@@

@
@@

�
��≤ k|f

r

Fig. 3. Inhibitory astrocyte.

3 Computing with ESNPA Systems

In this section we first exhibit that ESNPA systems working as generators are
computationally complete, i.e., able to generate any recursively enumerable set of
non-negative integers. Then we show how networks of logical gates can be sim-
ulated by using specific ESNPA systems; in fact we describe an ESNPA system
representing a NAND-gate. Finally we describe an ESNPA system representing a
discrete amplifier.

A. Binder et al. 69

3.1 Computational Completeness

As already the original model of spiking neural P systems was shown to be com-
putationally complete, i.e., able to generate any recursively enumerable set of
non-negative integers, with only those features also allowed in the sub-network of
neurons in ESNPA systems, we immediately obtain computational completeness
for ESNPA systems, too, because just omitting astrocytes gives a sufficiently pow-
erful submodel of spiking neural P system as defined in [8]. Moreover, the model of
ESNPA systems as defined above with just omitting the astrocytes is a submodel
of extended spiking neural P systems as defined in [1] that again is sufficiently
powerful to cover the proofs given there for computational completeness. The ad-
ditional use of astrocytes would allow for different constructions with the rules
for the neurons being even more restricted than in the case of spiking neural P
systems, yet we do not go into the technical details of such constructions in this
paper.

3.2 Networks of Logical Gates

&%
'$

a
a → a

��
?

p

-&%
'$
a → a

q

-C
�

�
	

?

�
��

@
@@

@
@@

�
��

r

≥ 2|1

?

A

?

B

Fig. 4. AND-gate.

As is well known, any Boolean function can be obtained by networks only con-
sisting of NAND-gates (and units representing the identity function). The identity
function obviously can be obtained by using the same inputs (i.e., A = B) in an
AND-gate as depicted in Figure 4.

The AND-gate is shown in Figure 4: A,B are the inputs, C is the output; the
neuron p is a source sending out one spike in each time step which only reaches
neuron q if the axon is excited by the astrocyte which reaches the excitatory
threshold 2 if and only if both inputs A and B are 1. The notion ≥ 2|1 in astrocyte
r means that only if the sum of input spikes (A and B) is ≥ 2, then one (1) spike

70 Extended SN P systems with Excitatory and Inhibitory Astrocytes

&%
'$

a
a → a

��
?

p

-&%
'$
a → a

q

-C
�

�
	

?

�
��

@
@@

@
@@

�
��

r

≤ 2|1

?

A

?

B

Fig. 5. NAND-gate.

is sent to neuron q, whereas if less than two input spikes arrive in astrocyte r, then
no spike will reach the output neuron q. If both inputs (A and B) represent the
same signal, i.e., if A = B, then neuron q will get a spike if and only if A = 1.

The NAND-gate is shown in Figure 5: again A,B are the inputs, C is the
output; the neuron p is a source sending out one spike in each time step which
only reaches neuron q if the axon is not inhibited by the astrocyte which reaches
the inhibitory threshold 2 if and only if both inputs A and B are 1.

Any network of NAND-gates and AND-gates (only needed as identities keeping
a signal as it is for one time step) of depth n yields the result of the computation
with a delay of n, i.e., given the input at time t, the corresponding output appears
at time t + n.

3.3 A Discrete Amplifier

The ESNPA system depicted in Figure 6 represents a discrete amplifier which, as
soon as the input from B goes beyond the given threshold k, from the input x
given at E computes the function f (x) = nx at C. We have to remark that the
rules al → al given in the neurons p and q represent the (theoretically infinite) set
of rules

{
{a}∗ /al → al | l ∈ N

}
(for practical applications, an upper bound can be

assumed).

4 Conclusion

The model we discussed in this paper is already very powerful from a theoretical
point of view as elaborated in the preceding section. On the other hand, for specific
applications, especially in the area of artificial neural networks and self-organizing
feature maps, an extended version where we allow the dynamic evolution of new

A. Binder et al. 71

-E

&%
'$
al → al

p

-&%
'$
al → al

q

-C
�

�
	

?

�
��

@
@@

@
@@

�
��≥ k| ∗ n

r

?

B

Fig. 6. An ESNPA amplifier.

connections between neurons, could be useful; the influence of the already existing
astrocytes on these new axons plays an important role.

Another variant to be considered in the future are networks where part of the
network may be destroyed which also has an interesting biological background. In
this case, the ability of such a complex network to reorganize itself is the most
challenging aspect of this variant.

Other variants may allow one astrocyte to influence more than one axon, even-
tually even in a different way and on the other hand, one axon may be influenced
by several astrocytes, again eventually in a different way (in an inhibitory or ex-
citatory way). For example, in this way more complex functions can be described
by a single “unit” (circuit).

References

1. A. Alhazov, R. Freund, M. Oswald and M. Slavkovik, Extended Spiking Neural P Sys-
tems Generating Strings and Vectors of Non-Negative Integers, in: H. J. Hoogeboom,
Gh. Paun, G. Rozenberg (eds), Pre-proceedings of the 7th Workshop on Membrane
Computing WMC7, 2006, pp. 88-101.

2. F. Buarque de Lima Neto and P. de Wilde, Venn-like models of neo-cortex patches,
International Joint Conference on Neural Networks, 2006, pp.89–96.

3. R. Freund and M. Oswald, Extended spiking neural P systems with inhibitory axons,
in: M. Sugisaka, H. Tanaka, Proc. International Symposium on Artificial Life and
Robotics, Beppu, Oita, Japan, 2007.

4. W. Gerstner, W. Kistler, Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge Univ. Press, 2002.

5. C. Giaume and K. Mc Carthy, Control of gap-junctional communication in astrocytic
networks., Trends Neuroscience 15, 1995, pp. 5535–5550.

6. P. Guthrie, J. Knappenberger, M. Segal, M. Bennet, A. Charles and S. Kater.,
ATP released from astrocyte mediates glial calcium waves.,J Neuroscience 19, 1999,
pp. 520–528.

72 Extended SN P systems with Excitatory and Inhibitory Astrocytes

7. F. He and Ye. Sun, Glial cells more than support cells?, Int J Biochem Cell Biol.
39(4), 2007, pp. 661–665.

8. M. Ionescu, Gh. Păun and T. Yokomori, Spiking neural P systems, Fundamenta
Informaticae 71, 2–3, 2006, pp. 279–308.

9. J. Kleijn and M. Koutny, Processes of nets with range arcs, CS-TR 985, School of
Computing Science, Newcastle University, Oct. 2006.

10. T. Kohonen, Self-Organizing Maps, 3rd ed., Springer-Verlag, Berlin, 2001.
11. W. Maass, Computing with spikes, Special Issue on Foundations of Information

Processing of TELEMATIK 8, 1, 2002, pp. 32–36.
12. W. Maass and C. Bishop (eds), Pulsed Neural Networks. MIT Press, Cambridge,

2003.
13. C. Mart́ın-Vide, J. Pazos, Gh. Păun and A. Rodŕıguez-Patón, A new class of symbolic

abstract neural nets: Tissue P systems, in: Proceedings of COCOON 2002, Singapore,
Lecture Notes in Computer Science 2387, Springer-Verlag, Berlin, 2002, pp. 290–299.

14. S. Mennerik and C. Zorumski, Glial contribution to excitatory neurotransmission in
cultural hippocampal cells., Nature 368, 1994, pp. 59–62.

15. W. Nett, S. Oloff and K. McCarthy, Hippocampal astrocytes in situ exhibit calcium
oscillations that occur independent of neuronal activity., J Neurophysiol. 87(1), 2002,
pp. 528–537.

16. R. Parri and V. Crunelli, An astrocyte bridge from synapse to blood flow., Nat
Neurosci 6(1), 2003, pp. 5-6.

17. Gh. Păun, Computing with Membranes: An Introduction. Springer, Berlin, 2002.
18. Gh. Păun, M.J. Pérez-Jiménez and G. Rozenberg, Spike trains in spiking neural P

systems, Intern J Found Computer Sci, to appear (also available at [23]).
19. G. Perea and A. Araque, Communication between astrocytes and neurons: a complex

language. Journal of Physiology Paris 96, 2002, 199–207.
20. J. Porter and Kd. Mc Carthy, Astrocytic neurotransmitter receptors in situ and in

vivo., Prog Neurobiol. (51), 1997, pp. 7817–7830.
21. X. Shen and P. de Wilde, Long-term neuronal behavior caused by two synaptic

modification mechanisms. Neurocomputing 70, 7-9, 2007, 1482–1488.
22. G. Rozenberg and A. Salomaa (eds), Handbook of Formal Languages (3 volumes).

Springer, Berlin, 1997.
23. The P Systems Web Page, http://psystems.disco.unimib.it

Information Theory over Multisets

Cosmin Bonchiş1, Cornel Izbaşa1, Gabriel Ciobanu2

1 Research Institute “e-Austria” Timişoara, Romania
{cosmin, cornel}@ieat.ro

2 “A.I. Cuza” University, Faculty of Computer Science and
Romanian Academy, Institute of Computer Science
gabriel@info.uaic.ro

“The words, the sad words,
Sometimes surround the time

As a pipe, the water which flows within.”
Nichita Stănescu

Summary. Starting from Shannon theory of information, we present the case of pro-
ducing information in the form of multisets, and encoding information using multisets.
We compute the entropy of a multiset information source by constructing an equientropic
string source (with interdependent symbols), and we compare this with a string informa-
tion source with independent symbols. We then study the encoder and channel part of
the system, obtaining some results about multiset encoding length and channel capacity.

1 Motivation

The attempt to study information sources which produce multisets instead of
strings, and ways to encode information on multisets rather than strings, originates
in observing new computational models like membrane systems which employ
multisets [5]. Membrane systems have been studied extensively and there are plenty
of results regarding their computing power, language hierarchies and complexity.
However, while any researcher working with membrane systems (called also P
systems) would agree that P systems process information, and that living cells
and organisms do this too, we are unaware of any attempt to precisely describe
natural ways to encode information on multisets or to study sources of information
which produce multisets instead of strings. One could argue that, while some of
the information in a living organism is encoded in a sequential manner, like in
DNA for example, there might be important molecular information sources which
involve multisets (of molecules) in a non-trivial way.

A simple question: given a P system with, say, 2 objects a and 3 objects b
from a known vocabulary V (suppose there are no evolution rules), how much

74 C. Bonchiş, C. Izbaşa, G. Ciobanu

information is present in that system? Also, many examples of P systems perform
various computational tasks. Authors of such systems encode the input (usually
numbers) in various ways, some by superimposing a string-like structure on the
membrane system [1], some by using the natural encoding or the unary numeral
system, that is, the natural number n is represented with n objects, for example,
an. However, just imagine a gland which uses the bloodstream to send molecules to
some tissue which, in turn, sends back some other molecules. There is for sure an
energy and information exchange. How to describe it? Another, more general way
to pose that question is: what are the natural ways to encode numbers, and more
generally, information on multisets, and how to measure the encoded information?

If membrane systems, living cells and any other (abstract or concrete) multiset
processing machines are understood as information processing machines, then we
believe that such questions should be investigated. According to our knowledge,
this is the first attempt of such an investigation. We start from the idea that a
study of multiset information theory might produce interesting, useful results at
least in systems biology; if we understand the natural ways to encode information
on multisets, there is a chance that Nature might be using similar mechanisms.

Another way in which this investigation seems interesting to us is that there
is more challenge in efficiently encoding information on multisets, because they
constitute a poorer encoding media compared to strings. Encoding information
on strings or even richer, more organized and complex structures are obviously
possible and have been studied. Removing the symbol order, or their position
in the representation as strings can lead to multisets carrying a certain penalty,
which deserves a precise description. Order or position do not represent essential
aspects for information encoding; symbol multiplicity, a native quality of multisets,
is enough for many valid purposes. We focus mainly on such “natural” approaches
to information encoding over multisets, and present some advantages they have
over approaches that superimpose a string structure on the multiset. Then we
encode information using multisets in a similar way as it is done using strings.

There is also a connection between this work and the theory of numeral systems.
The study of number encodings using multisets can be seen as a study of a class
of purely non-positional numeral systems.

2 Entropy of an Information Source

Shannon’s information theory represents one of the great intellectual achievements
of the twentieth century. Information theory has had an important and significant
influence on probability theory and ergodic theory, and Shannon’s mathematics is
a considerable and profound contribution to pure mathematics.

Shannon’s important contribution comes from the invention of the source-
encoder-channel-decoder-destination model, and from the elegant and general solu-
tion of the fundamental problems which he was able to pose in terms of this model.
Shannon has provided significant demonstration of the power of coding with delay

Information Theory over Multisets 75

in a communication system, the separation of the source and channel coding prob-
lems, and he has established the fundamental natural limits on communication. As
time goes on, the information theoretic concepts introduced by Shannon become
more relevant to day-to-day more complex process of communication.

2.1 Short Review of Shannon Information Theory

We use the notions defined in the classical paper [6] where Shannon has formulated
a general model of a communication system which is tractable to a mathematical
treatment.

Definition 1. The quantity H is a reasonable measure of choice or information.

Consider an information source modeled by a discrete Markov process. For each
possible state i of the source there is a set of probabilities pi(j) associated to the
transitions to state j. Each state transition produces a symbol corresponding to
the destination state, e.g., if there is a transition from state i to state j, the symbol
xj is produced. Each symbol xi has an initial probability pi∈1..n corresponding to
the transition probability from the initial state to each state i.

We can also view this as a random variable X with xi as events with probabil-

ities pi, X =

(
x1 x2 · · · xn
p1 p2 · · · pn

)
.

There is an entropy Hi for each state. The entropy of the source is defined as
the average of these Hi weighted in accordance with the probability of occurrence
of the states:

H(X) =
∑

i

PiHi = −
∑

i,j

Pipi(j) log pi(j) (1)

Suppose there are two symbols xi, xj and p(i, j) is the probability of the suc-
cessive occurrence of xi and then xj . The entropy of the joint event is

H(i, j) = −
∑

i,j

p(i, j) log p(i, j)

The probability of symbol xj to appear after the symbol xi is the conditional
probability pi(j).

String Entropy

Consider an information source which produces sequences of symbols selected from
a set of n independent symbols xi with probabilities pi. The entropy formula for
such a source is given in [6]:

H(X) =

n∑

i=1

pi logb
1

pi

76 C. Bonchiş, C. Izbaşa, G. Ciobanu

2.2 Multiset Entropy

We consider a discrete information source modeled by a discrete-time first-order
Markov process (or Markov chain) which produces multiset messages (as opposed
to string messages). A message is a multiset of symbols. To compute the entropy
of such a source, we construct an equientropic source which produces strings with
mutually dependent symbols. Each string produced by this equientropic source is
an exponent of a multiset produced by the multiset source, because a multiset is
a string equivalence class.

The entropy of such a source is computed by Shannon’s formula 1, where Pi
is the probability of state i, and pi(j) is the transition probability from state i to
state j. To compute the probability of the state i we must first observe what is
specific for the multisets. The corresponding state trees are presented in the next
figures.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��

��
��

��
��

��
��?

?

?

�
�
�
�
�

�
��=

Z
Z
Z
Z
Z
Z
ZZ~

�
�
���

�
�
�
�	

A
A
A
AU

�

J
J
J
Ĵ

A
A
AAU

�
�
���

@
@
@
@@R

S0

S1 S2 S3

S4 S5 S6 S7 S8 S9 S10 S11 S12

x1

x2

x3

x1
x2

x3 x1
x2

x3 x1
x2

x3

Fig. 1. String source states tree

We take the Pi for the first level of the tree, and because P0 = 1 we get:

Pi = P0p0(i) = pi (2)

To compute the transition probability pi(j) we know that for multisets p(i, j) =
0 for i > j.

Let N be the number of all symbols (with repetition allowed). Then the most
probable number of symbols xj is pjN . For i ≤ j, in order to obtain j after i, we
observe that the symbols xi>j cannot be produced. Therefore, the probability to
obtain j after i is given by the number of favorable cases over all possible cases

Information Theory over Multisets 77

��
��
��
��
��
��
��
��
��
��
��
��

��
��

��
��
��
��

��
��?

?

�
�
�
�
�
�
��=

S
S
S
S
SSw

?

A
A
AAU

�
�
�
�?

J
J
J
Ĵ

�

S0

S1 S2 S3

S4 S5 S6 S8 S9 S12

x1
x2

x3

x1
x2

x3 x2 x3 x3

Fig. 2. Multiset source states tree

pi(j) =
pjN

N −
i−1∑

j=1

pjN

=
pj
n∑

j=i

pj

namely

pi(j) =

0, i > j
pj∑n
j=i pj

, i ≤ j (3)

Theorem 1. The entropy formula of a multiset generating information source is:

H(X) = −
n∑

i=1

pi

n∑

j=i

pj∑n
k=i pk

log

(
pj∑n
k=i pk

)
. (4)

Proof. From 1, 2, and 3 we infer

H(X) = −
∑

i,j,i≤j
pi

pj∑n
k=i pk

log

(
pj∑n
k=i pk

)

= −
n∑

i=1

pi

n∑

j=i

pj∑n
k=i pk

log

(
pj∑n
k=i pk

)
.

Proposition 1. When the events are equiprobable, i.e., pi =
1

n
, then

78 C. Bonchiş, C. Izbaşa, G. Ciobanu

H(X) =
logn!

n
.

Proof. We substitute
1

n
for pi in equation (4), and get

H(X) = −
n∑

i=1

1

n

n∑

j=i

(
1
n∑n
j=i

1
n

log

(
1
n∑n
j=i

1
n

))

= − 1

n

n∑

i=1

n∑

j=i

1

n− i+ 1
log

1

n− i+ 1

= − 1

n

n∑

i=1

(
1

n− i+ 1
log

1

n− i+ 1

) n∑

j=i

1

=
1

n

n∑

i=1

log(n− i+ 1)

=
1

n

n∑

i=1

log i =
logn!

n
.

String Source Entropy vs. Multiset Source Entropy

Theorem 2. The entropy of a multiset-producing source is lower than or equal to
the entropy of an equiprobable string-producing source:

Hmultiset ≤ Hstring(xi−equiprobable)

Proof. We know that
∑n
i=1 pi = 1⇒∑n

k=i pk ≤ 1⇒
pj∑n
k=i pk

≥ pj (5)

Gibbs inequality suppose that P = {p1, p2, . . . , pn} is a probability distribu-
tion. Then for any other probability distribution Q = {q1, q2, . . . , qn} the following
inequality holds

−
n∑

i=1

pi log pi ≤ −
n∑

i=1

pi log qi (6)

Then

Information Theory over Multisets 79

Hm(X) = −
n∑

i=1

pi

n∑

j=i

pj∑n
k=i pk

log

(
pj∑n
k=i pk

) (5)
≤

≤ −
n∑

i=1

pi

n∑

j=i

pj∑n
k=i pk

log pj = −
n∑

i=1

pi∑n
k=i pk

n∑

j=i

pj log pj

(6)
≤

(6)
≤ −

n∑

i=1

pi∑n
k=i pk

n∑

j=i

pj log qj

with Qi = {qj |where, j = i, n and
∑n
j=i qj = 1}, and qj =

1

n− i+ 1
:

−
n∑

i=1

pi∑n
k=i pk

n∑

j=i

pj log qj = −
n∑

i=1

pi∑n
k=i pk

n∑

j=i

pj log
1

n− i+ 1

= −
n∑

i=1

pi∑n
k=i pk

(
log

1

n− i+ 1

) n∑

j=i

pj =

n∑

i=1

pi log(n− i+ 1) ≤

≤
n∑

i=1

pi logn = log n = Hstring(X)xi−equiprobable

Corollary 1. When X is equiprobable, Hm ≤ Hs.

Proof. For pi =
1

n
we have

Hmultiset =
1

n

n∑

i=1

log i =
logn!

n
≤ logn = Hstring

Maximum Entropy for a Multiset Source

For a multiset source, equiprobable events do not generate the maximum entropy.
This is obtained by maximizing expression 4, which seems difficult in the general
case, but we give an example for the simplest case - with two events (a binary
multiset source):

X =

(
x1 x2

p1 p2

)

The multiset entropy for these events is: Hmultiset(X) = −p1(p1 log p1 +
p2 log p2). Let p = p1 ⇒ Hmultiset(X) = −p[p log p + (1 − p) log(1 − p)]. Since
this function has only one maximum in [0, 1], we need to solve:

H
′
multiset(X) = 2p[log(1− p)− log p]− log(1− p) = 0.

A numerical solution is p ≈ 0.703506. The maximizing probability distribution is

X ≈
(

x1 x2

0.703506 0.296494

)
and the maximum entropy is

Hmultiset(X) ≈ 0.427636< Hstring(Xequiprobable) = log 2 ≈ 0.6931472.

80 C. Bonchiş, C. Izbaşa, G. Ciobanu

3 Multiset Encoding and Channel Capacity

After exploring the characteristics of a multiset generating information source, we
move to the channel part of the communication system. Properties of previously
developed multiset encodings are analyzed in [2, 3]. A formula for the capacity
of multiset communication channel is derived based on the Shannon’s general
formula. Please note that one can have a multiset information source and a usual
sequence-based encoder and channel. All the following combinations are possible:

Source/Encoder Sequential Multiset

Sequential [6] this paper

Multiset this paper this paper

Table 1. Source/Encoder types

3.1 String Encoding

We shortly review the results concerning the string encoding.

Encoding Length

We have a set of symbols X to be encoded, and an alphabet A. We consider the
uniform encoding. Considering the length l of the encoding, then X = {xi =
a1a2 . . . al | aj ∈ A}.

If pi = P (xi) = 1
n , then we have

H(X) =

n∑

i=1

1

n
logb(n) = logb(n) ≤ l

It follows that n ≤ bl. For n ∈ N, n − bx = 0 implies x0 = logb n and so
l = dx0e = dlogb ne.

Channel Capacity

Definition 2. [6] The capacity C of a discrete channel is given by

C = lim
T→∞

logN(T)

T

where N(T) is the number of allowed signals of duration T .

Information Theory over Multisets 81

Theorem 3. [6] Let b
(s)
ij be the duration of the sthsymbol which is allowable in

state i and leads to state j. Then the channel capacity C is equal to logW where
W is the largest real root of the determinant equation:

∣∣∣∣∣
∑

s

W−b
(s)
ij − δij

∣∣∣∣∣ = 0

where δij = 1 if i = j, and zero otherwise.

3.2 Multiset Encoding

We present some results related to the multiset encoding.

Encoding Length

We consider a set X of N symbols, an alphabet A, and the length of encoding l,
therefore:

X = {xi = an1
1 an2

2 . . . anbb |
∑b

j=1 nj = l, aj ∈ A}.
Proposition 2. Non-uniform encodings over multisets are shorter than uniform
encodings over multisets.

Proof. Over multisets we have

1. for an uniform encoding: N ≤ N(b, l) =

〈
b
l

〉
=

(
b+ l − 1

l

)
=

(b+ l − 1)!

l!(b− 1)!
=

∏b−1
i=1 (l + i)

(b− 1)!
. If x0 is the real root of n−

∏b−1
i=1 (x + i)

(b− 1)!
= 0 then l = dx0e.

2. for non-uniform encoding: N ≤ N(b+ 1, l− 1) =

〈
b+ 1
l − 1

〉
=

(
b+ l − 1
l − 1

)

=
(b+ l − 1)!

(l − 1)!b!
=

∏b−1
i=0 (l + i)

b!
=
l

b

∏b−1
i=1 (l + i)

(b− 1)!
=
l

b
N(b, l). Let x

′
0 be the real

root of n−
∏b−1
i=0 (x+ i)

b!
= 0. Then l′ =

⌈
x
′
0

⌉
.

From n − N(b, x0) = 0 and n − x
′
0

b
N(b, x

′
0) = 0 we get N(b, x0) =

x
′
0

b
N(b, x

′
0).

In order to prove l > l′ ⇐⇒ x0 > x′0, let suppose that x0 ≤ x
′
0. We have x

′
0 >

b (for sufficiently large numbers), and this implies that N(b, x0) ≤ N(b, x
′
0) <

x
′
0

b
N(b, x

′
0). Since this is false, it follows that x0 > x′0 implies l ≥ l′.

Channel Capacity

We consider that a sequence of multisets is transmitted along the channel. The
capacity of such a channel is computed for base 4, then some properties of it for
any base are presented.

82 C. Bonchiş, C. Izbaşa, G. Ciobanu

Multiset channel capacity in base 4

Fig. 3. Multiset channel capacity

In Figure 3 we have a graph G(V,E) with 4 vertices V = {S1, S2, S3, S4} and
E = {(i, j) | i, j = 1..4, i ≤ j} ∪ {(i, j) | i = 4, j = 1..3}

In Theorem 3 we get b
(ak)
ij = tk because we consider that the duration to

produce ak is the same for each (i, j) ∈ E. The determinant equation is

∣∣∣∣∣∣∣∣

W−t1 − 1 W−t2 W−t3 W−t4

W−tΓ W−t2 − 1 W−t3 W−t4

W−tΓ 0 W−t3 − 1 W−t4

W−tΓ 0 0 W−t4 − 1

∣∣∣∣∣∣∣∣
= 0

If we consider tΓ = tk = t, then the equation becomes

1− 4

W t
+

3

W 2t
− 1

W 3t
= 0, andWreal =

t

√√√√√4 +
3

√
47−3

√
93

2 +
3

√
47+3

√
93

2

3
≈ t
√

3.147899.

Therefore C = log4
t
√

3.147899 for t = 1, and so C ≈ 0.827194.

Multiset channel capacity in base b

The determinant equation is

Information Theory over Multisets 83

∣∣∣∣∣∣∣∣∣∣∣∣∣

W−t1 − 1 W−t2 W−t3 · · · W−tb

W−tΓ W−t2 − 1 W−t3 · · · W−tb

W−tΓ 0 W−t3 − 1 · · · W−tb
...

...
...

...
W−tΓ · · · 0 W−tb−1 − 1 W−tb

W−tΓ 0 0 · · · W−tb − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Proposition 3. If tΓ = tk = t, then the determinant equation becomes

(1− 1

W t
)b−1 − 1

W t
= 0. (7)

The capacity C is given by C = logbW , where W is the largest real root of the
equation (7). Considering x = W−t, then we have

W =
1
t
√
x
⇒ C = −1

t
logb x. (8)

Since we need the largest real root W then we should find the smallest positive
root x of the equation

(1− x)b−1 − x = 0 (9)

Let fb(x) = (1− x)b−1 − x.

Lemma 1. For all b there is a unique xb ∈ (0, 1) such that fb(xb) = 0.

Proof. We have f ′b(x) = −(b− 1)(1− x)b−2 − 1.

• b is odd ⇒ f ′b(x) = 0 has the real root x = 1 +
1

k−1
√
k
> 1 and so f ′b(x) < 0 for

all x ∈ (−∞, 1];
• b is even ⇒ f ′b(x) ≤ 0 for all x ∈ R.

Therefore fb(x) is decreasing for x ∈ (0, 1), fb(0) = 1 and fb(1) = −1. Then there
exists a unique xb ∈ (0, 1) such that fb(xb) = 0.

Lemma 2. The smallest positive root of Equation (9) is decreasing with respect to
b. More exactly, for all b we have xb ≥ xb+1, where xb is the smallest positive root
of fb(x) = 0.

Proof. fb+1(x) − fb(x) = (1 − x)b − x − ((1 − x)b−1 − x) = −x(1 − x)b−1. Then
fb+1(x)− fb(x) ≤ 0 for all x ∈ (0, 1). Since fb+1(xb) ≤ 0 and fb+1(0) = 1, then we
have xb+1 ∈ (0, xb) according to Lemma 1.

Theorem 4. Channel capacity is an increasing function with respect to b.

Proof. This follows by Lemma 2 and Equation (8).

Remark 1. When n = 2, the capacity is C =
1

t
.

Proof. From 1− 2

W t
= 0 we get C = log2

t
√

2 =
1

t
.

84 C. Bonchiş, C. Izbaşa, G. Ciobanu

4 Conclusion

Based on Shannon’s classical work, we present a multiset entropy formula of an
information source. We also present some relationships between this entropy and
the string entropy. For a binary multiset source, we compute an approximate max-
imal value for the entropy. Using the determinant capacity formula, we compute
the multiset channel capacity in base 4, and we describe some properties of the
multiset channel capacity in base b. As future work we plan to further explore the
properties of multiset based communication systems, and to develop some methods
for computing the maximal multiset entropy in the general case.

A poetic vision of communication

Nichita Stănescu (1933-1983) was a Romanian poet proposed for Nobel Prize for
literature. Here is his view of words and communication, first in Romanian and
then in English (translation is ours).

“Cuvintele / nu au loc decât ı̂n centrul lucrurilor, / numai ı̂nconjurate de
lucruri. // Numele lucrurilor / nu e niciodata afară.

Şi totuşi / cuvintele, tristele, / ı̂nconjoară câteodata timpul / ca o ţeavă,
apa care curge prin ea. // ... ca şi cum ar fi lucruri..., / oho, ca şi cum
ar fi lucruri...”

“Words / do not belong but are in the center of things, / only surrounded
by things. // The names of the things are never outside.

But still / the words, the sad words, / sometimes surround the time / as
a pipe, the water which flows within.// ... as they would be things...,
/ oh, as they would be things.”

Nichita Stănescu

“For Nichita Stănescu, the pipe of words is for time what the communica-
tion channel is for a message; time flows through the pipe made of words
as a message passes as a fluid through that which we call a communication
channel.”

Solomon Marcus [4]

References

1. A. Atanasiu: Arithmetic with Membranes. Pre-Proceedings of the Workshop on Mul-
tiset Processing, Curtea de Argeş, 2000, 1–17.

2. C. Bonchiş, G. Ciobanu, C. Izbaşa: Encodings and Arithmetic Operations in Mem-
brane Computing. Theory and Applications of Models of Computation, Lecture Notes
in Computer Science vol. 3959, Springer, Berlin, 2006, 618–627.

3. C. Bonchiş, G. Ciobanu, C. Izbaşa: Number Encodings and Arithmetics over Multisets.
SYNASC’06: 8th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing. Timişoara, IEEE Computer Society, 2006, 354–361.

Information Theory over Multisets 85

4. S. Marcus: Intâlnirea Extremelor. Paralela 45, Bucharest, 2005, 166.
5. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
6. C.E. Shannon: A Mathematical Theory of Communication. Bell System Technical

Journal, 27 (1948), 379–423, and 623–656.

VisualTissue: A Friendly Tool to Study
Tissue P Systems Solutions for Graph Problems

Rafael Borrego-Ropero, Daniel Dı́az-Pernil, Juan A. Nepomuceno

Escuela Técnica Superior de Ingeneŕıa Informática
Universidad de Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
{rborrego,sbdani,janepo}@us.es

Summary. P systems can be classified in two main groups: P systems with the
membrane structure described by a tree, and tissue P systems with the membranes
placed in the nodes of an arbitrary graph. NP-complete problems have been solved in
linear time by trading space for time in the framework of recognizing tissue P systems
with cell division. The design of this kind of systems is not an easy task to understand.
In this paper we present a software application to help the design of solutions to
NP-complete problems in the framework of recognizing tissue P systems with cell
division.

VisualTissue application can be downloaded from the web:
www.visualtissue.es.kz.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing introduced
by Gh. Păun in [9], which, considering as computations the processes that take
place into living cells, constructs a new non-deterministic model of computation.
In membrane computing there are two types of frameworks: P systems with the
membrane structure described by a tree, inspired from the cell, and tissue P sys-
tems with the membranes placed in the nodes of an arbitrary graph. The second
type corresponds to the idea of forming a network of membranes linked in a spe-
cific manner and working together, [10]. In both types, the main idea is having
multisets of objects placed in compartments and evolving according to given rules
in a synchronous non-deterministic maximally parallel manner.

In the last years, this new field has been addressed in different ways: the study
of computational properties such as computational power or complexity classes,
definition of new variants of membrane systems closer to biological reality, using
Membrane Computing as a new framework for performing biological simulations,
etc. In the P systems web page [18] several softwares can be found. Most of them are

88 R. Borrego-Ropero, D. D́ıaz-Pernil, J.A. Nepomuceno

thought in order to run an experiment which is built using some kind of membrane
system as a simulation framework, for example, for simulating biological systems,
as in [14]. On the other hand, another group of software applications are thought
as an easy way of visualizing the computations of a P system, [8], that is to say,
as a learning tool.

In this paper we present a new visual tool called VisualTissue which have been
developed in order to help users to understand the computations of tissue P sys-
tems with cell division. We have considered the reference [4], which solves 3-col
problem in the framework of tissue P systems with cell division. Polynomial solu-
tions to NP-complete problems in Membrane Computing are done by trading time
for space, in a theoretical way. Although real implementations of such systems are
no possible, because it should be necessary to implement the maximal parallelism
in some way, there are very interesting problems to threat in this framework, for
example, the P 6= NP conjecture [13]. Our tool helps the user to understand the
performance of one class of such systems.

This paper is organized as follows: in Section 2 tissue P systems with cell divi-
sion and the 3-col problem are explained, in Section 3 the VisualTissue application
software is presented and some of the most important implementation aspects are
commented. Finally, ideas for future work are formulated.

2 Tissue P Systems with Cell Division

We will give a definition of this model, but first we briefly recall some of the
concepts used later.

2.1 Preliminaries

An alphabet, Σ, is a non empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length
of the string, and it is denoted by |u|. As usual, the empty string (with length 0)
will be denoted by λ. The set of strings of length n built with symbols from the
alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset
from Σ∗.

A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset, then its support is defined as supp(m) = {x ∈ A | f(x) >
0} and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its

support is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A, then it will be denoted by m =

{{a1, . . . , ak}}, where each element ai occurs f(ai) times, or by a string containing
the symbols a1, . . . , ak.

A graph G is a pair G = (V,E) where V is the set of vertices and E is the set of
edges, each one of which is a (unordered) pair of (different) vertices. If {u, v} ∈ E,
we say that u is adjacent to v (and also v is adjacent to u). The degree of v ∈ V
is the number of adjacent vertices to v.

VisualTissue: A Graphical Simulator of Tissue P Systems 89

In what follows, we assume that the reader is already familiar with the basic
notions and terminology underlying P systems. For details, see [10].

2.2 Tissue P Systems with Cell Division

In the first definition of the model of tissue P systems [6, 7] the membrane structure
does not change along the computation. Based on the cell-like model of P systems
with active membranes, Gh. Păun et al. presented in [12] a new model of tissue P
systems with cell division. The biological inspiration is clear: alive tissues are not
static network of cells, since cells are duplicated via mitosis in a natural way.

The main features of this model, from the computational point of view, are that
cells are not polarized (the opposite holds in the cell-like model of P systems with
active membranes, see [10]); the cells obtained by division have the same labels as
the original cell and if a cell is divided, its interaction with other cells or with the
environment is blocked during the mitosis process. In some sense, this means that
while a cell is dividing it closes the communication channels with other cells and
with the environment.

Formally, a tissue P system with cell division of degree q ≥ 1 is a tuple of the
form

Π = (Γ,w1, . . . , wq , E ,R, i0),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. w1, . . . , wq are strings over Γ .
3. E ⊆ Γ .
4. R is a finite set of rules of the following forms:

(a) Communication rules : (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗.
(b) Division rules : [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

5. i0 ∈ {0, 1, 2, . . . , q}.
A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q

cells (each one consisting of an elementary membrane) labeled by 1, 2, . . . , q. We
shall use 0 to refer to the environment, and i0 denotes the output region (which
can be the region inside a cell or the environment).

The communication rules determine a virtual graph, where the nodes are the
cells and the edges indicate if it is possible for pairs of cells to communicate directly.
This is a dynamical graph, as new nodes can appear produced by the application
of division rules.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of
the system. We interpret that E ⊆ Γ is the set of objects placed in the environment,
each one of them in an arbitrarily large amount of copies.

A communication rule (i, u/v, j) can be applied over two cells i and j such that
u is contained in cell i and v is contained in cell j. The application of this rule
means that the objects of the multisets represented by u and v are interchanged
between the two cells.

90 R. Borrego-Ropero, D. D́ıaz-Pernil, J.A. Nepomuceno

The division rule [a]i → [b]i[c]i can be applied to a cell i containing object a.
The application of this rule divides this cell into two new cells with the same label.
All the objects in the original cell are replicated and copied in each of the new
cells, with the exception of the object a, which is replaced by the object b in the
first new cell and by c in the second one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way. In one step, each object in a cell can only be used for one
rule (non-deterministically chosen when there are several possibilities), but any
object which can participate in a rule of any form must do it, i.e., in each step we
apply a maximal set of rules. This way of applying rules has only one restriction:
when a cell is divided, the division rule is the only one which is applied for that
cell in that step; the objects inside that cell do not evolve in that step.

2.3 Recognizing Tissue P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computing efficiency for solving NP-complete decision
problems, a special class of tissue P systems with cell division is introduced in [12]:
recognizing tissue P systems. The key idea of such recognizing system is the same
one as from recognizing P systems with a cell-like structure.

Recognizing cell-like P systems were introduced in [15] and they are the natu-
ral framework to study and solve decision problems within Membrane Computing,
since deciding whether an instance has an affirmative or negative answer is equiv-
alent to deciding if a string belongs or not to the language associated with the
problem.

In the literature, recognizing cell-like P systems are associated in a natural way
with P systems with input. The data related to an instance of the decision problem
has to be provided to the P system in order to compute the appropriate answer.
This is done by codifying each instance as a multiset placed in an input cell. The
output of the computation (yes or no) is sent to the environment. In this way,
cell-like P systems with input and external output are devices which can be seen
as black boxes, in the sense that the user provides the data before the computation
starts, and then waits outside the P system until it sends to the environment the
output in the last step of the computation.

A recognizing tissue P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ,w1, . . . , wq , E ,R, iin, i0),

where:

• (Γ,w1, . . . , wq , E ,R, i0) is a tissue P system with cell division of degree q ≥ 1
(as defined in the previous section).

VisualTissue: A Graphical Simulator of Tissue P Systems 91

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets w1, . . . , wq , but not present in E .

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π , then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Γ ∗ start from a configura-
tion of the form (w1, w2, . . . , wiinw, . . . , wq ; E), that is, after adding the multiset w
to the contents of the input cell iin. The multiset w is recognized by Π if and only
if the object yes is sent to the environment, in the last step of the corresponding
computation. C is an accepting computation (respectively, rejecting computation)
if the object yes (respectively, no) appears in the environment associated to the
corresponding halting configuration of C.

2.4 A Solution to the 3–coloring Problem

A k–coloring (k ≥ 1) of an undirected graph G = (V,E) is a function f : V →
{1, . . . , k}, where the numbers are interpreted as colors. We say that G is k–
colorable if there exists a k–coloring, f , such that f(u) 6= f(v) for every edge
{u, v} ∈ E (such a k–coloring f is said to be valid).

The 3–coloring problem is the following: given an undirected graph G, decide
whether or not G is 3-colorable; that is, if there exists a valid 3–coloring of G.

This problem is related to the famous Four Color Conjecture (solved by Appel
and Haken [2, 3]). It is a particular case of the colorability problem: Given an
undirected graph G and a number k, decide whether G is k-coloreable. The NP-
completeness of the 3–coloring problem was proved by Stockmeyer [16] (see [5]).

First of all we define a polynomial encoding of the 3–coloring problem in a
family Π of P systems constructed as in [4]. Let u = (V,E) be an instance of the
problem, with n vertices and m edges. Then we consider a size mapping on the
set of instances defined as s(u) = 〈n,m〉. The codification of the instance will be
the multiset cod(u) = {{Aij : {Ai, Aj} ∈ E ∧ 1 ≤ i < j ≤ n}} ∪ {{wq}}.

The recognizing tissue P system with cell division that was used to solve the
3–coloring problem in [4] is defined as follows.

For each n,m ∈ N, we consider the system

Π(〈n,m〉) = (Γ (〈n,m〉), Σ(n), w1, w2(n),R(〈n,m〉), E(〈n,m〉), iin, i0)

where:

• Γ (〈n,m〉) is the set

92 R. Borrego-Ropero, D. D́ıaz-Pernil, J.A. Nepomuceno

{Ai, Ri, Ti, Bi, Gi, Ri, Bi, Gi : 1 ≤ i ≤ n} ∪
{ai : 1 ≤ i ≤ 2n+m+ dlog me+ 11} ∪ {ci : 1 ≤ i ≤ 2n+ 1} ∪
{di : 1 ≤ i ≤ dlog me+ 1} ∪ {fi : 2 ≤ i ≤ m+ dlog me+ 6} ∪
{Aij , Pij , P ij , Rij , Bij , Gij : 1 ≤ i < j ≤ n} ∪ {b,D,D, e, T, S,N, [, yes, no}

• Σ(n) = {Aij : 1 ≤ i < j ≤ n}
• w1 = {{a1, b, c1, yes, no}}
• w2(n) = {{D,A1, . . . , An}}
• R(〈n,m〉) is the set of rules:

1. Division rules:
r1,i ≡ [Ai]2 → [Ri]2[Ti]2 for i = 1, . . . , n
r2,i ≡ [Ti]2 → [Bi]2[Gi]2 for i = 1, . . . , n

2. Communication rules:
r3,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , 2n+m+ dlog me+ 10
r4,i ≡ (1, ci/c

2
i+1, 0) for i = 1, . . . , 2n

r5 ≡ (1, c2n+1/D, 2)
r6 ≡ (2, c2n+1/d1D, 0)
r7,i ≡ (2, di/d

2
i+1, 0) for i = 1, . . . , dlog me

r8 ≡ (2, D/e f2, 0)
r9,i ≡ (2, fi/fi+1, 0) for i = 2, . . . ,m+ dlog me+ 5
r10,ij ≡ (2, ddlog me+1Aij/Pij , 0) for 1 ≤ i < j ≤ n
r11,ij ≡ (2, Pij/RijP ij , 0) for 1 ≤ i < j ≤ n
r12,ij ≡ (2, P ij/BijGij , 0) for 1 ≤ i < j ≤ n
r13,ij ≡ (2, RiRij/RiRj , 0) for 1 ≤ i < j ≤ n
r14,ij ≡ (2, BiBij/BiBj , 0) for 1 ≤ i < j ≤ n
r15,ij ≡ (2, GiGij/GiGj , 0) for 1 ≤ i < j ≤ n
r16,j ≡ (2, RjRj/[, 0) for 1 ≤ j ≤ n
r17,j ≡ (2, BjBj/[, 0) for 1 ≤ j ≤ n
r18,j ≡ (2, GjGj/[, 0) for 1 ≤ j ≤ n
r19 ≡ (2, e [/λ, 0)
r20 ≡ (2, e fm+dlog me+6/T, 0)
r21 ≡ (2, T/λ, 1)
r22 ≡ (1, b T/S, 0)
r23 ≡ (1, S yes/λ, 0)
r24 ≡ (1, b a2n+m+dlog me+11/N, 0)
r25 ≡ (1, N no/λ, 0)

• E(〈n,m〉) = Γ (〈n,m〉)− {yes, no}
• iin = 2 is the input cell.
• i0 = 0 is the output region.

VisualTissue: A Graphical Simulator of Tissue P Systems 93

3 A Look Inside VisualTissue

VisualTissue is a visual software application to understand the design of solutions
for NP-complete problems, in the framework of recognizing tissue P system with
cell division.

Some programming decisions have been taken in order to develop the applica-
tion. We have chosen C# as programming language because it is a portable and
a powerful object-oriented programming language. A great graphical package is
available with the language so that C# is a good language for developing a vi-
sual tool. The software follows the Model-View-Controller (MVC), an architecture
model of software development used in interactive systems. Three different parts
or layers can be distinguished: data handling layer, algorithmic or business logic
layer, and user interface or graphical layer. With this, it is easier to do maintenance
of the code.

Rules
system

Data
handling

User
interface

Fig. 1. Model-View-Controller architecture software

The application can handle data stored in XML and normal text files, which
are compatible with Algraf Project, [19]. XML files can be easily generated and it
is the best way to interact with data generated by other programs. Rules of the
systems are fixed for the solution of each problem. In a future version, the user
will be able to introduce his own tissue P system rules in order to study other
possible solutions.

The algorithmic layer implements a recognizing tissue P system with cell divi-
sion. All rules are applied in a non deterministic and maximal parallel way. The
design of the tissue P system machine for solving the problem is non-deterministic
until the 2n step. Every computation path reaches the same configuration in 2n
steps, and after that the machine is deterministic and confluent. Consequently,
we have chosen only a computation path in order to implement the tissue P sys-
tem in the software, namely the one determined by the lexicographical election of
the rules in non-deterministic steps. Other graph problems solutions can be easily
added.

The graphical layer allows the user a visual and friendly interaction with the
application. At the end of the simulation one can see the colored graph result of
the problem if the answer is yes.

94 R. Borrego-Ropero, D. D́ıaz-Pernil, J.A. Nepomuceno

Fig. 2. Firstly, the graph to be studied must be drawn. A small screen show us wether
it is 3-colorable or not.

3.1 An User Overview of the Application

This software tool allows us to follow step by step the execution of tissue P system
with membrane division when solving the 3-col problem, [4]. The answers for a
specific problem will be yes or no, and the colored graph is provided if it is possible.
The user basically can do three different operations to run the system:

• Load or draw with the mouse the graph which is going to be studied. Several
graphical options are available in the main window. Graphs can be handled in
a easy way and images can be saved as image files or pdf files.

• Choose tissue 3-col algorithm in order to carry out the simulation. A second
screen is showed in which each computation step can be observed. For each
step, a graphical situation can be viewed and the different rules applied in
each step are written in the bottom of the screen. The picture can be easily
handled and each moment of the performance of the algorithm, and can be
saved in different images format, or press the buttons with arrows to move
between steps.

• Choose GO TO option to go directly to a specific step of the system.

VisualTissue software is available on the web, at: www.visualtissue.es.kz

VisualTissue: A Graphical Simulator of Tissue P Systems 95

Fig. 3. The performance of the tissue P system can be observed step by step.

4 Future Works

Future works will be focused on different improvements as, for example: to handle
input files of rules, work with other graph problems, consider other kinds of tissue P
systems rules such as membrane creation, etc. One of the most interesting future
tasks will be to build a software which simulates a Spiking Neural P system,
extending this graphical tool. This future software task will be not only a way of
visualizing the performance of the system, but also a framework to do simulations
with Spiking Neural P systems too.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: The Molecular
Biology of the Cell. Fourth Edition, Garland Publ. Inc., London, 2002.

2. K. Appel, W. Haken: Every planar map is 4-colorable - 1: Discharging. Illinois Jour-
nal of Mathematics, 21 (1977), 429–490.

3. K. Appel, W. Haken: Every planar map is 4-colorable - 2: Reducibility. Illinois Jour-
nal of Mathematics, 21 (1977), 491–567.

4. D. D́ıaz-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A
linear–time tissue P system based solution for the 3–coloring problem. Theoretical
Computer Science, to appear.

96 R. Borrego-Ropero, D. D́ıaz-Pernil, J.A. Nepomuceno

5. M.R. Garey, D.S. Johnson: Computers and Intractability A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

6. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón: A new class of symbolic
abstract neural nets: Tissue P systems. Lecture Notes in Computer Science 2387
(2002), 290–299.

7. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón: Tissue P systems. Theo-
retical Computer Science, 296 (2003), 295–326.

8. I.A. Nepomuceno-Chamorro: A Java simulator for membrane computing. Journal of
Universal Computer Science, 10 (2001), 620–629.

9. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

10. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
11. Gh. Păun, M.J. Pérez-Jiménez: Recent computing models inspired from biology:

DNA and membrane computing. Theoria, 18 (2003), 72–84.
12. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez: Tissue P system with cell divi-

sion. In Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez and F. Sancho-Caparrini
(eds.), Second Brainstorming Week on Membrane Computing, Sevilla, Report RGNC
01/2004, 2004, 380–386.

13. M.J. Pérez-Jiménez: An approach to computational complexity in membrane com-
puting. In G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (eds.)
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 3365 (2005), 85–109.

14. M.J. Pérez-Jiménez, F.J. Romero-Campero: P systems, a new computational mod-
elling tool for systems biology. Transactions on Computational Systems Biology VI.
Lecture Notes in Bioinformatics, Springer-Verlag, Berlin, 4220 (2006), 176-197

15. M.J. Pérez-Jiménez, A., Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. In E. Csuhaj-Varjú, C. Kintala,
D. Wotschke and Gy. Vaszil (eds.), Proceedings of the 5th Workshop on Descriptional
Complexity of Formal Systems, DCFS 2003, 2003, 284–294.

16. L.J. Stockmeyer: Planar 3-colorability is NP-complete. SIGACT News, 5, 3 (1973),
19–25.

17. ISI web page http://esi-topics.com/erf/october2003.html

18. P systems web page http://psystems.disco.unimib.it/

19. Algraf Project web page http://www.algraf.es.kz/

Towards a Causal Semantics for Brane Calculi

Nadia Busi

Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura A. Zamboni 7, I-40127 Bologna, Italy.
busi@cs.unibo.it

Summary. Brane Calculi are a family of biologically inspired process calculi, proposed
in [6] to model the interactions of dynamically nested membranes. We propose a seman-
tics that describes the causal dependencies occurring between the reactions of a system
described in Brane Calculi. We investigate the basic properties that are satisfied by such
a semantics. The notion of causality turns out to be quite relevant for biological systems,
as it permits to point out which events occurring in a biological pathway are necessary
for another event to happen.

1 Introduction

Brane calculi [6] are a family of process calculi proposed for modeling the behavior
of biological membranes.

The formal investigation of biological membranes has been initiated by G.
Păun [20], in the field of automata and formal language theory, with the defini-
tion of P systems. In a process algebraic setting, the notions of membranes and
compartments are explicitly represented in BioAmbients [23], a variant of Mobile
Ambients [8] based on a set of biologically inspired primitives of interaction.

Brane calculi represent an evolution of BioAmbients: the main difference w.r.t.
previous approaches consists in the fact that the active entities reside on mem-
branes, and not inside membranes. In [6] two basic instances of brane calculi have
been proposed: the Phago/Exo/Pino (PEP) and the Mate/Bud/Drip (MBD) cal-
culi.

In this paper we concentrate on the MBD calculus. The primitives of MBD are
inspired by membrane fusion (mate) and fission (mito). Because membrane fission
is an uncontrollable process that can split a membrane at an arbitrary place, it
is replaced by two simpler operations: budding, that is splitting off one internal
membrane, and dripping, that consists in splitting off zero internal membranes.

The aim of this work is to start an investigation of the causal dependencies
arising in Brane Calculi, and more precisely in the MBD calculus. The main moti-
vation for this work comes from system biology, as the understanding of the causal

98 N. Busi

relations occurring between the events of a complex biological pathway could be
of precious help, e.g., for limiting the search space in the case some unpredicted
event occurs.

The study of a causal semantics for process algebras dates back to the early
nineties for CCS [17] (see, e.g., [10, 9, 15]), and to the mid nineties for the π-
calculus [18] (see, e.g., [1, 3, 11, 12]).

To the best of our knowledge, the only other work that deals with causality
in bio-inspired calculi is [14], where a causal semantics for Beta Binders [21, 22]
– based on the π-calculus semantics and on the enhanced operational semantics
approach of [12] – is defined. One of the main differences between Beta Binders
and Brane Calculi is that the membrane structure in Beta Binders is flat, whereas
in Brane Calculi the membranes are nested to form a hierarchical structure. As we
will see, this difference has a deep impact on the complexity of the causal relation.
The other differences between the two approaches will be discussed throughout
the paper.

The paper is organized as follows. Section 2 introduces the syntax and the
interleaving semantics for the MBD fragment of the Brane Calculus. Sections 3
and 4 are devoted to the definition of the causal semantics. Section 3 provides
an informal description of the features of the causal semantics we are defining,
and illustrates the problems that have arised through a list of examples. The
formal definition of the causal semantics is in Section 4, followed by a discussion
concerning the properties that are (not) satisfied by such a semantics. Finally,
Section 5 reports some conclusive remarks.

2 MBD Calculus: Syntax and Semantics

In this section we recall the syntax and the standard, interleaving semantics of
Brane Calculi, and specialize it to MBD [6].

2.1 Syntax and structural congruence of Brane Calculi

A system consists of nested membranes, and a process is associated to each mem-
brane.

Definition 1. The set of systems is defined by the following grammar:

P,Q ::= � | P ◦Q | !P | σ(|P |)

The set of membrane processes is defined by the following grammar:

σ, τ ::= 0 | σ|τ | !σ | a.σ

Variables a, b range over actions, that will be detailed later.

Towards a Causal Semantics for Brane Calculi 99

The term � represents the empty system; the parallel composition operator on
systems is ◦. The replication operator ! denotes the parallel composition of an un-
bounded number of instances of a system. The term σ(|P |) denotes the membrane
that performs process σ and contains system P .

The term 0 denotes the empty process, whereas | is the parallel composition of
processes; with !σ we denote the parallel composition of an unbounded number of
instances of process σ. Term a.σ is a guarded process: after performing the action
a, the process behaves as σ.

We adopt the following abbreviations: with a we denote a.0, with (|P |) we
denote 0(|P |), and with σ(| |) we denote σ(| � |).

The structural congruence relations on systems and processes is defined as
follows:1

Definition 2. The structural congruence ≡ is the least congruence relation satis-
fying the following axioms:

P ◦Q ≡ Q ◦ P σ | τ ≡ τ | σ
P ◦ (Q ◦R) ≡ (P ◦Q) ◦R σ | (τ | ρ) ≡ (σ | τ) | ρ
P ◦ � ≡ P σ | 0 ≡ σ

!� ≡ � !0 ≡ 0
!(P ◦Q) ≡!P◦!Q !(σ | τ) ≡!σ | !τ
!!P ≡!P !!σ ≡!σ
P◦!P ≡!P σ | !σ ≡!σ

0(| � |) ≡ �

2.2 Interleaving semantics of Brane Calculi

We recall the standard, interleaving semantics. At each computational step, a
single reaction is chosen and executed. The next definition provides the set of
generic reaction rules that are valid for all brane calculi, while the reaction axioms
are specific for each brane calculus; the reaction axioms for MBD will be provided
in Definition 5.

Definition 3. The basic reaction rules are the following:

(par)
P → Q

P ◦R → Q ◦R
(brane)

P → Q

σ(|P |) → σ(|Q |)

(strucong)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

1 With abuse of notation we use ≡ to denote both structural congruence on systems
and structural congruence on processes.

100 N. Busi

Rules (par) and (brane) are the contextual rules that respectively permit to a
system to execute also if it is in parallel with another process or if it is inside a
membrane, respectively. Rule (strucong) ensures that two structurally congruent
systems have the same reactions.

With →∗ we denote the reflexive and transitive closure of a relation →. Given
a reduction relation →, we say that the system P ′ is a derivative of the system P
if P →∗ P ′; the set of derivatives of a system P is denoted by Deriv(P).

We say that a system P has a divergent computation (or infinite computation)
if there exist an infinite sequence of systems P0, P1, . . . , Pi, . . . such that P = P0

and ∀i ≥ 0 : Pi → Pi+1. We say that a system P has a terminating computation
if there exists Q ∈ Deriv(P) such that Q 6→. We say that all computations of a
system P terminate if P has no divergent computations.

We use
∏

(resp. ©) to denote the parallel composition of a set of processes
(resp. systems), i.e.,

∏
i∈{1,...,n} σi = σ1 | . . . | σn and ©i∈{1,...,n}Pi = P1 ◦ . . . ◦

Pn. Moreover,
∏

i∈∅ σi = 0 and ©i∈∅Pi = �. Finally,
∏

n σ (resp. ©nP) denotes
the parallel composition of n copies of process σ (resp. system P).

2.3 Syntax and interleaving semantics of MBD

The actions of the MBD calculus, proposed in [6], are inspired by membrane fusion
and splitting. To make membrane splitting more controllable, in [6] two more basic
operations are used: budding, consisting in splitting off one internal membrane, and
dripping, consisting in splitting off zero internal membranes. Membrane fusion, or
merging, is called mating.

Definition 4. Let Name be a denumerable set of names, ranged over by n, m,
The set of actions of MBD is defined by the following grammar:

a ::= maten | mate⊥n | budn | bud⊥n(σ) | drip(σ)

Actions maten and mate⊥n will synchronize to obtain membrane fusion. Action
budn permits to split one internal membrane, and synchronizes with the co-action
bud⊥n . Action drip permits to split off zero internal membranes. Actions bud⊥ and
drip are equipped with a process σ, that will be associated to the new membrane
created by the membrane performing the action.

Definition 5. The reaction relation for MBD is the least relation containing the
following axioms, and satisfying the rules in Definition 3:

(mate) maten.σ|σ0(|P |) ◦ mate⊥n .τ |τ0(|Q |) → σ|σ0|τ |τ0(|P ◦Q |)

(bud) bud⊥n(ρ).τ |τ0(| budn.σ|σ0(|P |) ◦Q |) → ρ(|σ|σ0(|P |) |) ◦ τ |τ0(|Q |)

(drip) drip(ρ).σ|σ0(|P |) → ρ(| |) ◦ σ|σ0(|P |)

Towards a Causal Semantics for Brane Calculi 101

3 A Causal Semantics for MBD: an informal explanation

In this section we provide a causal semantics for MBD.
To define a causal semantics for process calculi, we follow the approach used

in [15] for CCS, and in [1] for the π-calculus. The idea consists in decorating the
reaction relation with two pieces of information:

• a fresh name k, that is associated to the reaction and it is taken from the set
of causes K;

• a set H ⊆ K, containing all the names associated to the already occurred
reactions, that represent a cause for the current reaction.

To keep track of the names of the already occurred reactions that may represent a
cause for the reactions that may happen in the future, the syntax of the terms of
the calculus is enriched with such an information on causal dependencies. As in [1],
for the sake of clarity we only keep track of the so called immediate causes, as the
set of general causes can be reconstructed by transitive closure of the immediate
causal relation. We will provide more explanation on this point with an example
in the following part of the paper.

Now we start with an informal introduction of causality in MBD. First we
discuss how the standard kinds of causality arising in most process calculi – i.e.,
those due to the prefix structure of processes and to the synchronization of two
complementary actions – scale to Brane Calculi. Then we perform a design choice
concerned with the semantics of calculi for membranes, and finally we discuss other
features peculiar of the MBD operations.

3.1 Classical causal dependencies: structural and synchronization
causality

We start the kind of causal dependencies that arises in all process calculi, namely,
structural causality and synchronization causality.

Structural causality arises from the prefix structure of terms. Consider for
example the following system:

drip(σ).drip(ρ)(| |)

Such a system can first create a new membrane with process σ, followed by the
creation of a second new membrane with process ρ; i.e., it can perform the sequence
of reactions

drip(σ).drip(ρ)(| |) → drip(ρ)(| |) ◦ σ(| |) → 0(| |) ◦ σ(| |) ◦ ρ(| |)

The creation of the first membrane is a necessary condition for the creation of
the second membrane, hence we say that the execution of the drip(ρ) operation is
caused by the execution of the drip(σ) operation.

To remember the fact that the action drip(σ) will be a cause for the actions
performed by the continuation of the prefix, we replace the drip(σ) prefix with a

102 N. Busi

causal operator containing the cause name associated to the drip(σ) action. Thus,
we obtain the following causal reactions:

drip(σ).drip(ρ)(| |) h;∅−−→ {h} :: drip(ρ)(| |) ◦ σ(| |) k;{h}−−−→ {k} :: 0(| |) ◦ σ(| |) ◦ ρ(| |)

The decoration h; ∅ of the first reaction means that the first reaction is labeled
with the causal name h and that its set of causes is empty. The decoration k; {h}
of the second reaction means that the second reaction has associated the causal
name k, and it is caused by the reaction named h (i.e., the first reaction). The
process {h} :: drip(ρ) means that the first action performed by process drip(ρ)
is caused by the reaction named h. Note that – for the sake of brevity – process
{k} :: 0 is decorated only with the immediate cause {k}, as the whole set of causes,
i.e., {h, k} can be easily constructed.

To lighten the notation, in the following we will drop the parentheses surround-
ing the set of causes, if this creates no confusion.

The other kind of causality, i.e., synchronization causality, arises when two
processes synchronize on complementary actions. Consider the system

drip(σ1).maten.drip(τ1)(| |) ◦ drip(σ2).mate⊥n .drip(τ2)(| |)

The mate reaction can be performed when both the actions drip(σ1) and drip(σ2)
have been performed; hence, it is caused by both actions. We obtain the following:

drip(σ1).maten.drip(τ1)(| |) ◦ drip(σ2).mate⊥n .drip(τ2)(| |) h1;∅−−−→
h1 :: maten.drip(τ1)(| |) ◦ drip(σ2).mate⊥n .drip(τ2)(| |) ◦ σ1(| |) h2;∅−−−→
h1 :: maten.drip(τ1)(| |) ◦ h2 :: mate⊥n .drip(τ2)(| |) ◦ σ1(| |) ◦ σ2(| |) k;h1,h2−−−−−→
k :: (drip(τ1) | drip(τ2)(| |) ◦ σ1(| |) ◦ σ2(| |)

Hence, the (label k of the) mate reaction will be an immediate cause for both
drip(τ1) and drip(τ2), and the global set of causes of these two drip actions will be
{h1, h2, k}.

3.2 How does the causes distribute over the parallel components of a
membrane process?

When moving to consider the features of the causal relation peculiar of membrane
calculi, a first question arises: if a process on a membrane performs an action, this
action will be a cause only for its continuation (and eventually for the continuation
of its synchronizing action), or for the whole process on the membrane? In other
words, consider the system

maten | drip(σ)(| |) ◦mate⊥n(| |)

If the system performs the mate synchronization, then the drip action will be
caused or not by the mate action? The assumption that the drip will be caused

Towards a Causal Semantics for Brane Calculi 103

by the mate may have the following biological interpretation: when a membrane
interaction operation is performed, all the membrane is involved, and at the end of
the operation the structure of all the membrane has been affected. This assumption
is considered in [14] in the definition of a causal semantics for Beta-binders [21,
22] , a bio-inspired process calculus roughly consisting of unnested compartments
enclosing π-calculus processes. It is also used in [2] for the definition of a maximal
parallelism semantics (i.e., step semantics with maximal progress: if an action can
be performed in the current step, then it must be performed) for MBD. It is also
the common approach used in the definition of the maximal parallelism semantics
for Membrane Systems with evolving membranes (see, e.g., [19, 20]). In the present
paper, we consider the opposite approach: in the above system, we consider the
drip operation independent from the mate operation, as the drip operation can be
executed regardless of the fact that the mate synchronization has been performed
or not. The biological interpretation may be the following: the membrane proteins
and the part of the lipid bilayer involved in the mate synchronization are different
from the membrane proteins and the part of the bilayer that is performing the
drip operation, and they lie in different parts of the membrane surface.

Thus, we consider the following causal reactions:

maten | drip(σ)(| |) ◦mate⊥n(| |) h;∅−−→
h :: 0 | drip(σ) | h :: 0(| |) k;∅−−→
h :: 0 | k :: 0 | h :: 0(| |)

Note that the information on the causes of the empty process 0 is completely
irrelevant, hence in the following we will replace H :: 0 with 0.

3.3 Causal dependencies generated by the mate operation

Now we analyze the features peculiar of the MBD operations. According to the
informal explanation above, a mate action turns out to be a cause for the con-
tinuations of the mate and the co-mate prefixes that synchronize to perform the
operation. However, when considering the mate operation, a more subtle kind of
causality, we call environment causality, is originated, e.g., between the mate ac-
tion and the processes on the child membranes of the two membranes performing
the mate and co-mate actions. This causality is due to the fact that the environ-
ment of such child membranes, i.e., the set of membranes with which they can
interact, is increased by the execution of the mate action.

Mate followed by mate

Consider the following process:

maten(| (matem | mateo)(| |) ◦ mate⊥o (| |) |) ◦
mate⊥n(| mate⊥m(| |) |)

104 N. Busi

Now the mate synchronization on m cannot be performed, as the two mem-
branes whose processes can synchronize on such an operation belong to different
membranes. On the other hand, the mate synchronization on o can take place, as
both membranes whose processes can synchronize on such an operation belong to
the same membrane.

However, if the mate synchronization on n takes place, the two external mem-
branes are fused; this results in a change of the environment of the child membrane;
now the mate on m can take place, as the two child membranes now belong to
the same father membrane and can get in contact. Hence, the mate on m causally
depends on the mate on n.

To this aim, we decorate the processes of the child membranes of the external
membrane performing a mate with label k in the following way: the child mem-
branes on the left are decorated with the enriched label k+

i , whereas the child
membrane on the right with the enriched complementary label k−i . 2 Note that we
cannot simply decorate both groups of child membranes with label k, otherwise
we are no longer able to distinguish between the synchronization on m, that is
caused by k, and the synchronization on o which has no causes.

The enriched labels are used in the following way: when two processes preceded
by enriched labels synchronize on a mate operation, the label k will be a cause for
such a synchronization if one process in decorated with an enriched label and the
synchronizing process is decorated with the complementary label.

We obtain the following causal reductions:

maten(| (matem | mateo)(| |) ◦ mate⊥o (| |) |) ◦
mate⊥n(| mate⊥m(| |) |)
h;∅−−→
(0 | 0)(| (h+

i :: matem | h+
i :: mateo)(| |) ◦ h+

i :: mate⊥o (| |) ◦
h−i :: mate⊥m(| |) |)

Now, if the mate on m is executed, then it will be caused by h, as the mate
and comate processes are labeled with h+

i and h−i , respectively:

(0 | 0)(| (h+
i :: matem | h+

i :: mateo)(| |) ◦ h+
i :: mate⊥o (| |) ◦

h−i :: mate⊥m(| |) |)
k;h−−→
(0 | 0)(| (0 | h+

i :: mateo)(| |) ◦ h+
i :: mate⊥o (| |) ◦

0(| |) |)

On the other hand, if the mate on o is executed, then it is not caused by hn,
because the mate and comate processes are labeled with the same label h+

i .

2 The i in the labels k+
i and k−i stands for “internal”, and means that the action with

label k has been performed by the father membrane. The need for such a label will be
made clear in the following.

Towards a Causal Semantics for Brane Calculi 105

Mate followed by bud

A similar problem arises between the father and the child membrane when a bud
operation is performed. Consider the following process:

(maten | bud⊥m(ρ1))(| budm(| |) ◦ budo(| |) |)◦
(mate⊥n | bud⊥o (ρ2))(| |)

Now only the bud on m can be performed, as the membrane performing the bud
on o is not a child of the membrane performing the corresponding cobud. However,
the bud on o can be performed after the mate on n is performed, hence the bud
causally depends on the mate. Thus, besides decorating the children of a membrane
performing a mate (resp comate) with complementary labels k+

i (resp. k−i), we also
decorate the subprocesses in parallel with the subprocess performing the mate
(resp. the comate) with k+

e (resp. k−e)3. When a bud is performed, it is caused by
k if the process performing the cobud on the father membrane is decorated, e.g.,
with k+

e and the process performing the bud on the child membrane is decorated
with k−e .

Note that, in case of a mate followed by a drip, the decorated causes will give
rise to no causal dependency: the drip is caused by the mate only if the mate (or
the comate) is a prefix of the drip.

3.4 Causal dependencies generated by the bud and the drip operations

The bud (resp. drip) operation create a new membrane – whose membrane process
is specified in the cobud (resp. drip) action – surrounding the child membrane
that performs the synchronizing bud action (resp. with no children). As the new
membrane does not exist before the bud (resp. drip) operation is performed, all
the actions that such a membrane will perform are caused by the bud (resp. drip)
operation.

Consider the following system:

bud⊥n(drip(σ))(| budn(| |) |)

This system can perform the following causal reactions:

bud⊥n(drip(σ))(| budn(| |) |) h;∅−−→
0(| |) ◦ h :: drip(σ)(| 0(| |) |) k;h−−→
0(| |) ◦ 0(| 0(| |) |) ◦ k :: σ(| |)

We note that the bud operation generates no environmental cause. Regarding
the child membranes, they are essentially divided into two sets, thus possibly
preventing some mate (or bud) operation that was possible before to happen. On
the other hand, the other processes in the father membrane are left unchanged.
3 Here the e means “external”

106 N. Busi

4 A causal semantics for MBD: the formal definition

In this section we provide a formal definition of the notions introduced in the
previous section.

Definition 6. Let K be a denumerable set of cause names, disjoint from the set
Names. Let Deco(K) be the set

Deco(K) = K ∪ {ky
x | k ∈ K ∧ x ∈ {i, e} ∧ y ∈ {+,−}}

The set of membrane processes with causes are defined by the following gram-
mar:

σ̃, τ̃ ::= 0 | σ̃|τ̃ | !σ̃ | K :: a.σ

Variables a, b range over MBD actions specified in Definition 4, K ⊆ Deco(K),
and a.σ is a sequential process as defined in Definition 1.

The set of systems with causes is defined as in Definition 1, but using processes
with causes instead of processes to decorate membranes.

The set of causes preceding the process 0 is useless, hence it has been omitted.
We omit the˜over processes if it is clear from the context that they are processes
with causes.

To define the causal semantics, we need an auxiliary operator on processes (and
on systems) permitting to add a set of causes in front of each sequential subprocess
of the process (resp. of the processes associated to the most external membranes
of the system.

Definition 7. Given K ⊆ Deco(K), the operator K Z⇒ is inductively defined on
processes with causes as follows:

K Z⇒ 0 = 0
K Z⇒ (σ | τ) = K Z⇒ σ | K Z⇒ τ

K Z⇒ !σ = !K Z⇒ σ
K Z⇒ H :: a.σ = H ∪K :: a.σ

The operator K Z⇒ is inductively defined on systems as follows:

K Z⇒ � = �
K Z⇒ (P ◦Q) = K Z⇒ P ◦ K Z⇒ Q

K Z⇒ (!P) = !K Z⇒ P
K Z⇒ (σ(| P |)) = (K Z⇒ σ)(| P |)

If the set K is a singleton, often we omit the surrounding parenthesis in the
operator K Z⇒; thus we write, e.g., k Z⇒ P instead of {k}Z⇒ P .

Now we are ready to define the causal semantics for MBD. We write P
k;H−−→ P ′

to denote the fact that system P performs an action – to which we associate the
cause name k – that is caused by the (previously occurred) actions whose action

Towards a Causal Semantics for Brane Calculi 107

names form the set H. The cause name k is a fresh name: this means that it does
not occur in P and that it has not used yet in the current computation.

The structural congruence relation is the that in Definition 2. The causal rules
are obtained by decorating the rules in Definition 3 with the causal information.

Definition 8. The causal reaction rules are the following:

(par)
P

k;H−−→ Q

P ◦R
k;H−−→ Q ◦R

(brane)
P

k;H−−→ Q

σ(|P |) k;H−−→ σ(|Q |)

(strucong)
P ′ ≡ P P

k;H−−→ Q Q ≡ Q′

P ′ k;H−−→ Q′

Now we are ready to define the causal reaction relation for MBD.

Definition 9. The causal reaction relation for MBD is the least relation contain-
ing the following axioms, and satisfying the rules in Definition 8:

(kmate) (H1 :: maten.σ)|σ0(|P |) ◦ (H2 :: mate⊥n .τ)|τ0(|Q |) k;H1⊕mH2−−−−−−−→
((k ∪H1 	m H2)Z⇒ σ | k+

e Z⇒ σ0 |
(k ∪H2 	m H1)Z⇒ τ | k−e Z⇒ τ0) (| k+

i Z⇒ (P) ◦ k−i Z⇒ (Q) |)

(kbud) (H1 :: bud⊥n(ρ).τ)|τ0(| (H2 :: budn.σ)|σ0(|P |) ◦Q |) k;H1⊕bH2−−−−−−−→
(k ∪H1 �b H2) :: ρ(| ((k ∪H2 	b H1)Z⇒ σ)|σ0(|P |) |) ◦
((k ∪H1 	m H2)Z⇒ τ) | τ0(|Q |)

(kdrip) (H :: drip(ρ).σ|σ0)(|P |) k;fd(H)−−−−−→
k ∪ f ′d(H)Z⇒ ρ(| |) ◦ (k′ ∪ f ′′d (H)Z⇒ σ) | σ0(|P |)

The auxiliary functions are defined as follows:

H1 ⊕m H2 = {k | k ∈ (H1 ∪H2) ∩ K}∪
{k | {k+

i , k−i } ⊆ (H1 ∪H2)}
H1 	m H2 = {ky

x ∈ H1 | k 6∈ (H1 ⊕m H2)}

H1 ⊕b H2 = {k | k ∈ (H1 ∪H2) ∩ K}∪
{k | kx

e ∈ H1 ∧ ky
e ∈ H2 ∧ x 6= y}

H1 �b H2 = {ky
i ∈ H1 | k 6∈ (H1 ⊕b H2)}

H1 	b H2 = {ky
x ∈ H1 | k 6∈ (H1 ⊕b H2)}

fd(H) = {k | k ∈ H ∩ K}
f ′d(H) = {kx

i | kx
i ∈ H ∧ x ∈ {+,−}}

f ′′d (H) = {kx
y | kx

y ∈ H ∧ x ∈ {+,−} ∧ y ∈ {i, e}}

108 N. Busi

The auxiliary functions describe the way in which the (decorated) causes propagate
when a reduction is performed.

In the merge operation, the set of causes of the merge action, denoted by
H1 ⊕m H2, contains both the causes of the mate and the comate operation, as
well as those causes h such that h+

i decorates one of the merging membranes and
h−i decorates the other (this means that the two membranes have become sibling
membranes by the execution of a mate operation with label h). The external
decorated causes are not taken into account because they are concerned with
bud operations between a father and a child membrane, and not with sibling
membranes. To avoid redundancy, the set of causes H1	H2 of the continuation of
the mate action is obtained by removing the decorated causes whose name appears
as a cause of the current mate synchronization (and analogously for comate, bud
and cobud actions).

In the bud operation, the set of causes of the bud actions, denoted by H1⊕bH2,
contains both the causes of the bud and the cobud operation, as well as those
causes h such that, e.g., h+

e decorates the father membrane and h−i decorates the
child membrane. The set of causes of the newly created membrane is denoted by
H1�H2, and contains only internal causes; they are needed because in the system

maten(| bud⊥o (matem)(| budo(| |) |) |) ◦mate⊥n(| mate⊥m |)

the mate synchronization on m can happen only if the mate synchronization on n
has been performed.

Regarding the drip operation, here there is no synchronization; hence, the set
of causes labeling the reduction relation, represented by fd(H) is exactly the set
of nondecorated causes. The newly created membrane is decorated with function
f ′d(H) containing only internal causes; they are needed because in the system

maten(| drip(matem)(| |) |) ◦mate⊥n(| mate⊥m |)

the mate synchronization on m can happen only if the mate synchronization on n
has been performed. The external causes are not needed because they are used for
bud synchronization between father and child, and the newly created membrane
has no child taken from the old membrane.

4.1 Properties of the causal semantics

The only interesting property enjoyed by the causal semantics is the retrievability
of the interleaving semantics. We start defining the function DropCause which
removes the causes from processes and systems.

Definition 10. The function DropCause is defined inductively on processes with
causes in the following way:

DropCause(0) = 0
DropCause(σ̃|τ̃) = DropCause(σ̃) | DropCause(τ̃)
DropCause(!σ̃) = !DropCause(σ̃)

DropCause(K :: a.σ) = a.σ

Towards a Causal Semantics for Brane Calculi 109

The function DropCause is defined inductively on systems with causes in the
following way:

DropCause(�) = �
DropCause(P ◦Q) = DropCause(P) ◦ DropCause(Q)

DropCause(!P) = !DropCause(P)
DropCause(σ̃(|P |)) = DropCause(σ̃)(|DropCause(P)|)

Theorem 1. Let P be a system with causes. The following properties hold:

• if P
k;H−−→ P ′ then DropCause(P) → DropCause(P ′);

• if DropCause(P) → Q then there exist a system with causes P ′, a cause name

k and a set of cause names H such that P
k;H−−→ P ′ and Q = DropCause(P ′).

The so-called diamond property, stating that if two non-causally related actions
can happen one after the other, then they can happen also in the other order, and
at the end they reach the same system, does not hold. In our setting, the diamond
property can be formally defined as follows: given a system P , if P

h;H−−→ P ′ k;K−−→ P ′′

and h 6∈ K, then there exists a system q such that P
k;K−−→ Q

h;H−−→ P ′′.
Consider e.g. the following system:

bud⊥m(0)(| maten(| |) ◦ (budm | mate⊥n)(| |) |)

This system can perform the mate action, followed by the bud action. Moreover,
the two actions are independent, i.e., causally unrelated. However, if we first per-
form the bud action, then the submembrane mate⊥n)(| |) is isolated from the other
submembrane, and the merge can no longer take place. However, there is no rea-
son to consider the bud action as causally dependent on the mate action, as the
bud action can actually independently occur at the beginning of the computation.
Nevertheless, there is a form of asymmetric conflict between the two actions: the
occurrence of the bud action prevents the mate action to happen, but the vice
versa does not hold. A similar phenomenon takes place, e.g., in Petri nets with
read and inhibitor arcs (see [4] for a discussion on this topic). A possible way to
capture this kind of asymmetric conflict is based on the following idea: if a mate
synchronization with causal label k is performed, we decorate the process of the
father membrane of the two membrane that are fusing with a label, say kf (where
the f stands for “father”). When the bud operation is performed, the cobud prefix
is decorated with kf , whereas the bud prefix is decorate with k−e . As a but syn-
chronization is performed in this situation, we get the information that – even if
the bud does not causally depend from the mate – the bud synchronization cannot
be swapped with the mate.

Even if there is no asymmetric conflict, there are situations where the diamond
property does not hold. Even if the two actions can be performed in either order,
the final states that are reached are different. Take the system

bud⊥n(0).σ(| (budn.τ | drip(ρ))(| |) |)

110 N. Busi

If the bud action is performed first, then the membrane with process ρ will be
dripped inside the newly created membrane, labeled with process 0. On the other
hand, if the drip is performed first then the membrane with process ρ remains
inside the older membrane (with process bud⊥n(0).σ or with the continuation σ.

5 Conclusion

In this paper we tackled the problem of defining a causal semantics for an instance
of Brane Calculi, namely, the MBD calculus.

As already pointed out in [14], we think that the study of the causal dependen-
cies that arise between the actions performed by a process is of primary importance
for biologically inspired calculi, because of its possible application to the analysis
of complex biological pathways.

This paper represents a first step in this direction, but a lot of work remains to
be done. The next step is the study of the causal semantics for the PEP calculus,
and its integration with the causal semantics for MBD. Then, we will move to the
full Brane Calculus, that, besides the membrane-membrane interaction primitives
of PEP and MBD, also contains objects representing free-floating molecules, and
primitives for molecule-molecule and membrane-molecule interactions. When the
definition of a causal semantics has been completed, we will start investigating the
causal dependencies arising in biological pathways involving membranes, such as,
e.g., the LDL Cholesterol Degradation Pathway [16], that has been modeled in the
full Brane Calculus in [5].

We also plan to perform a thorough investigation of the properties that are
enjoyed by the causal semantics, and possibly to refine the definition of the causal
semantics in order to fulfill some of the properties. For example, a possible solution
in order to obtain a causal semantics that partially enjoys the diamond property
has been sketched in the previous section, and deserves further investigation.

We also plan to extend our investigation to other calculi/systems whose mem-
branes are organized in a dynamically evolving hierarchical structure, such as,
e.g., the Projective Brane Calculus [13] or Membrane Systems with active, evolv-
ing membranes.

References

1. M. Boreale, D. Sangiorgi: A fully abstract semantics for causality in the π-Cclculus.
Acta Informatica, 35, 5 (1998), 353–400. An extended abstract appeared in Proc.
STACS 1995, 243–254.

2. N. Busi: On the computational power of the Mate/Bud/Drip Brane Calculus: inter-
leaving vs. maximal parallelism. In Proc 6th International Workshop on Membrane
Computing (WMC6), LNCS 3850, Springer, 2006.

3. N. Busi, R. Gorrieri: A Petri net semantics for π-calculus. In Proc. Concur’95, LNCS
962, Springer, 1995, 145–159.

Towards a Causal Semantics for Brane Calculi 111

4. N. Busi, G.M. Pinna: Comparing truly concurrent semantics for contextual
place/transition nets with inhibitor and read arcs. Fundam. Inform., 44, 3 (2000),
209–244.

5. N. Busi, C. Zandron: Modeling and analysis of biological processes by mem(brane)
calculi and systems. In Proceedings of the Winter Simulation Conference (WSC 2006),
ACM, 2006.

6. L. Cardelli: Brane Calculi - Interactions of biological membranes. In Proc. Compu-
tational Methods in System Biology 2004 (CMSB 2004), LNCS 3082, Springer, 2005.

7. L. Cardelli: Abstract Machines for System Biology. Draft, 2005.
8. L. Cardelli, A.D. Gordon: Mobile ambients. Theoretical Computer Science, 240, 1

(2000), 177–213.
9. Ph. Darondeau, P. Degano: Causal trees. In Proc. ICALP’89, LNCS 372, Springer,

1989, 234–248.
10. P. Degano, R. De Nicola, U. Montanari: Partial ordering descriptions and observa-

tions of nondeterministic concurrent processes. In Proc. REX School/Workshop on
Linear Time, Branching Time and Partial Order in Logic and Models of Concur-
rency, LNCS 354, Springer, 1989, 438–466.

11. P. Degano, C. Priami: Causality for mobile processes. In Proc. ICALP’95, LNCS 944,
Springer, 1995, 660–671.

12. P. Degano, C. Priami: Non interleaving semantics for mobile processes. Theoretical
Computer Science, 216, 1-2 (1999), 237–270.

13. V. Danos, S. Pradalier: Projective brane calculus. In Proc. Computational Methods
in System Biology 2004 (CMSB 2004), LNCS 3082, Springer, 2005.

14. M.L. Guerriero, C. Priami: Causality and Concurrency in Beta-binders. TR-01-2006
The Microsoft Research - University of Trento Centre for Computational and Systems
Biology, 2006.

15. A. Kiehn: Proof systems for cause based equivalences. In Proc. MFCS’93, LNCS 711,
Springer, 1993.

16. H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L.
Zipursky, J. Darnell: Molecular Cell Biology. W.H. Freeman and Company, 4th
edition, 1999.

17. R. Milner: Communication and Concurrency. Prentice-Hall, 1989.
18. R. Milner, J. Parrow, D. Walker: A calculus of mobile processes. Information and

Computation, 100 (1992), 1–77.
19. G. Păun: Computing with membranes. Journal of Computer and System Sciences,

61, 1 (2000), 108–143.
20. G. Păun: Membrane Computing. An Introduction. Springer, 2002.
21. C. Priami, P. Quaglia: Beta binders for biological interactions. In Proc. of Compu-

tational Methods in Systems Biology, LNCS 3082, Springer, 2005, 20–33.
22. C. Priami, P. Quaglia: Operational patterns in beta-binders. T. Comp. Sys. Biology,

1 (2005), 50–65.
23. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro: BioAmbients: An ab-

straction for biological compartments. Theoretical Computer Science, 325, 1 (2004),
141–167.

A Linear Solution for Subset Sum Problem with
Tissue P Systems with Cell Division

Daniel Dı́az-Pernil, Miguel A. Gutiérrez-Naranjo,
Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez

Research Group on Natural Computing
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
{sbdani,magutier,marper,ariscosn}@us.es

Summary. Tissue P systems are a computing model in the framework of Membrane
Computing where the tree-like membrane structure is replaced by a general graph. Re-
cently, it has been shown that endowing these P systems with cell division, NP-complete
problems can be solved in polynomial time. In this paper we present a solution to the
Subset Sum problem via a family of such devices, and we also include the formal verifi-
cation of such solution. This is the first solution to a numerical NP-complete problem
by using tissue P systems with cell division.

1 Introduction

Membrane Computing is a bio-inspired computing model based on the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations. The devices of this model are generically called P
Systems.

In the initial definition of the cell-like model of P systems [6], membranes are hi-
erarchically arranged in a tree-like structure. Its biological inspiration comes from
the morphology of cells, where small vesicles are surrounded by larger ones. This
biological structure can be abstracted into a tree-like graph, where the root repre-
sents the skin of the cell (i.e. the outermost membrane) and the leaves represent
membranes that do not contain any other membrane (elementary membranes).
Besides, two nodes in the graph are connected if they represent two membranes
such that one of them contains the other one.

Recently, new models of P systems have been explored. One of them is the
model of tissue P systems where the tree-like membrane structure is replaced by
a general graph. This model has two biological inspirations (see [3, 4]): intercellu-
lar communication and cooperation between neurons. The common mathematical
model of these two mechanisms is a net of processors dealing with symbols and

114 D. Dı́az-Pernil et al.

communicating these symbols along channels specified in advance. The communi-
cation among cells is based on symport/antiport rules, which were introduced as
communication rules for P systems in [5]. In symport rules, objects cooperate to
traverse a membrane together in the same direction, whereas in the case of an-
tiport rules, objects residing at both sides of the membrane cross it simultaneously
but in opposite directions.

This paper is devoted to the study of the computational efficiency of tissue
P systems with cell division. In literature, different models of cell-like P systems
have been successfully used in order to design efficient solutions to NP-complete
problems (see, for example, [2] and the references therein). These solutions are
obtained by generating an exponential amount of workspace in polynomial time
and using parallelism to check simultaneously all the candidate solutions.

From the seminal definition of tissue P systems [3, 4], several research lines have
been developed and other variants have arisen (see [1] and references therein). One
of the most interesting variants of tissue P systems was presented in [8], where the
definition of tissue P systems is combined with the one of P systems with active
membranes, yielding tissue P systems with cell division. The biological inspiration
is clear: alive tissues are not static networks of cells, since cells are duplicated
via mitosis in a natural way. One of the main features of such tissue P systems
with cell division is related to their computational efficiency. In [8], a polynomial-
time solution to the NP-complete problem SAT is shown, and in [1] a linear-time
solution for the 3-COL problem was presented. In this paper we go on with the
research in this model and present a linear-time solution to another well-known
numerical NP-complete problem: the Subset Sum problem.

The paper is organized as follows: first we recall some preliminary concepts
and the definition of tissue P systems with cell division. Next, recognizing tissue P
systems are briefly described. A linear–time solution to the Subset Sum problem is
presented in the following section, including a short overview of the computation
and the formal verification of the solution. Finally, some conclusions and lines for
future research are presented.

2 Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string u is
the length of the string, and it is denoted by |u|. As usual, the empty string (with
length 0) will be denoted by λ. The set of strings of length n built with symbols
from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is
a subset from Σ∗.

A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) > 0}
and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its support

is the empty set (resp. finite).

Subset Sum with Tissue P Systems with Cell Division 115

A finite multiset m = (A, f) will be denoted as m = {{xf(x1)
1 , . . . , x

f(xk)
k }},

where supp(m) = {x1, . . . , xk}, or alternatively as the string x
f(x1)
1 · · ·xf(xk)

k . The
union of multisets will be denoted as concatenation when using the string notation.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see the handbook [7].

3 Tissue P Systems with Cell Division

In the first definition of the model of tissue P systems [3, 4] the membrane structure
did not change along the computation. The main features of tissue P systems with
cell division, from the computational point of view, are that cells obtained by
division have the same labels as the original cell, and if a cell is divided, then
its interaction with other cells or with the environment is blocked during the
mitosis process. In some sense, this means that while a cell is dividing it closes
all its communication channels. This features imply that the underlying graph is
dynamic, as nodes can be added during the computation by division and the edges
can be deleted/re-established for dividing cells.

Actually, the underlying graph of connections between cells will not be handled
explicitly: the initial structure is implicitly given by the number of initial cells
(nodes) and the communication rules (marking edges that connect nodes); the
opening/closing edges will be controlled by the semantics.

Formally, a tissue P system with cell division of initial degree q ≥ 1 is a tuple
of the form Π = (Γ,w1, . . . , wq, E ,R, i0), where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. w1, . . . , wq are strings over Γ .
3. E ⊆ Γ .
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i 6= j, u, v ∈ Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

5. i0 ∈ {0, 1, 2, . . . , q}.
A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q
cells labelled by 1, 2, . . . , q. We shall use 0 as the label of the environment, and i0
for the output region (which can be the region inside a cell or the environment).
As we said before, the underlying graph expressing connections between cells is
implicit, being determined by the communication rules: the nodes are the cells and
the edges indicate if it is possible for pairs of cells to communicate directly. The
communication rule (i, u/v, j) can be applied over two cells i and j such that u is
contained in cell i and v is contained in cell j, and neither i nor j are being divided.
The application of this rule means that the objects of the multisets represented
by u and v are interchanged between the two cells.

The strings w1, . . . , wq describe the multisets of objects placed initially in the
q cells of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them in an arbitrarily large amount of copies.

116 D. Dı́az-Pernil et al.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object a.
The application of this rule divides this cell into two new cells with the same label.
All the objects in the original cell are replicated and copied in each of the new
cells, with the exception of the object a, which is replaced by the object b in the
first new cell and by c in the second one. Since both new cells keep the same label
as their father cell, they keep the same connections too. There is no connection
between both new cells.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a cell can only be used for one rule (non-deterministically chosen when there are
several possibilities), but any object which can participate in a rule of any form
must do it, i.e, in each step we apply a maximal set of rules. This way of applying
rules has only one restriction: when a cell is divided, the division rule is the only
one which is applied for that cell in that step; the objects inside that cell do not
move in that step.

4 Recognizing Tissue P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computational efficiency, a special class of tissue P systems
is introduced in [8]: recognizing1 tissue P systems.

A recognizing tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ,Σ,w1, . . . , wq, E ,R, iin, i0), where

• (Γ,w1, . . . , wq, E ,R, i0) is a tissue P system with cell division of degree q ≥ 1
(as defined in the previous section).

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in an initial multiset w1, . . . , wq, but not present in E .

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Γ ∗ start from a configura-
tion of the form (w1, w2, . . . , wiin

w, . . . , wq; E), that is, after adding the multiset
w to the contents of the input cell iin. We say that the multiset w is recognized
by Π if and only if the object yes is sent to the environment, in the last step
1 In [8] they were called recognizer tissue P systems.

Subset Sum with Tissue P Systems with Cell Division 117

of all its associated computations. We say that C is an accepting (resp. rejecting)
computation if the object yes (resp. no) appears in the environment associated
with the corresponding halting configuration of C.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizing tissue P systems with
cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

In the above definition we have imposed to every tissue P system Π(n) a confluent
condition, in the following sense: every computation of a system with the same
input multiset must always give the same answer. The pair of functions (cod, s)
are called a polynomial encoding of the problem in the family of P systems.

We denote by PMCTD the set of all decision problems which can be solved
by means of recognizing tissue P systems with cell division in polynomial time.

5 A Solution for the Subset Sum Problem

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there exists
a subset B ⊆ A such that w(B) = k.

Next, we shall prove that the Subset Sum problem can be solved in a linear
time by a family of recognizing tissue P systems with cell division. We shall address
the resolution via a brute force algorithm.

We shall use a tuple (n, (w1, . . . , wn), k) to represent an instance of the problem,
where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and k is the constant
given as input for the problem.

118 D. Dı́az-Pernil et al.

Theorem 1. Subset Sum∈ PMCTD.

Proof. Let A = {a1, . . . , an} be a finite set, w : A → N a weight function, and
k ∈ N. Let g : N× N → N be a function defined by

g(n, k) =
(n + k)(n + k + 1)

2
+ n

This function is primitive recursive and bijective between N× N and N and com-
putable in polynomial time. Let us denote by u = (n, (w1, . . . , wn), k), where
wi = w(ai), 1 ≤ i ≤ n, the given instance of the problem. We define the polyno-
mially computable function s(u) = g(n, k).

We shall provide a family of tissue P systems where each P system solves all
the instances of the Subset Sum problem with the same size. The weight function
w of the concrete instance will be provided via an input multiset determined via
the function cod(u) = {{vwi

i : 1 ≤ i ≤ n}} ∪ {{qk}}.
Next, we shall provide a family Π = {Π(g(n, k)) : n, k ∈ N} of rec-

ognizing tissue P systems with cell division which solve the Subset Sum prob-
lem in a linear time. For each (n, k) ∈ N × N we shall consider the system
Π(g(n, k)) = (Γ,Σ, ω1, ω2,R, E , iin, i0), where

• Γ = Σ(n) ∪ {Ai, Bi : 1 ≤ i ≤ n}
∪ {zi : 1 ≤ i ≤ n + dlog ne+ dlog(k + 1)e+ 11}
∪ {ci : 1 ≤ i ≤ n + 1}
∪ {di : 1 ≤ i ≤ dlog ne+ dlog(k + 1)e+ 4}
∪ {ei : 1 ≤ i ≤ dlog ne+ 1}
∪ {Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ dlog(k + 1)e+ 1}
∪ {b, f1, g1, g2, p,D, T, S, N, yes, no}

• Σ = {q} ∪ {vi : 1 ≤ i ≤ n}
• ω1 = z1 b c1 yes no
• ω2 = DA1 · · ·An

• R is the following set of rules:
1. Division rules:

r1,i ≡ [Ai]2 → [Bi]2[λ]2 for i = 1, . . . , n
2. Communication rules:

r2,i ≡ (1, zi/zi+1, 0) for i = 1, . . . , n + dlog ne+ dlog(k + 1)e+ 10
r3,i ≡ (1, ci/c2

i+1, 0) for i = 1, . . . , n
r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/d1e1, 0)
r6,i ≡ (2, ei/e2

i+1, 0) for i = 1, . . . , dlog ne
r7,i ≡ (2, di/di+1, 0) for i = 1, . . . , dlog ne+ dlog(k + 1)e+ 3
r8,i ≡ (2, edlog ne+1Bi/Bi1, 0) for i = 1, . . . , n
r9,i,j ≡ (2, Bij/B2

ij+1, 0) for i = 1, . . . , n, j = 1, . . . , dlog(k + 1)e
r10,i ≡ (2, Bidlog(k+1)e+1vi/p, 0) for i = 1, . . . , n
r11 ≡ (2, pq/λ, 0)
r12 ≡ (2, ddlog ne+dlog(k+1)e+4/g1f1, 0)

Subset Sum with Tissue P Systems with Cell Division 119

r13 ≡ (2, f1p/λ, 0)
r14 ≡ (2, f1q/λ, 0)
r15 ≡ (2, g1/g2, 0)
r16 ≡ (2, g2f1/T, 0)
r17 ≡ (2, T/λ, 1)
r18 ≡ (1, bT/S, 0)
r19 ≡ (1, Syes/λ, 0)
r20 ≡ (1, zn+dlog ne+dlog(k+1)e+11b/N, 0)
r21 ≡ (1, Nno/λ, 0)

• E = Γ − {yes, no}
• iin = 2, is the input cell
• i0 = env, is the output cell

The design is structured in the following stages:

• Generation Stage: The initial cell labelled by 2 is divided into two new cells;
and the divisions are iterated n times until a cell has been produced for each
possible candidate solution. Simultaneously to this process, two counters (ci

and zi) evolve in the cell labelled by 1: the first one controls the step in which
the communication between cells 2 and cell 1 starts and the second one will be
useful in the output stage.

• Pre–checking Stage: When this stage starts, we have 2n cells labelled by 2, each
of them encoding a subset of the set A. In each such a cell, as many objects p as
the weight of the corresponding subset will be produced. Recall that there are
k copies of the object q in every cell labelled by 2 (since they were introduced
as part of the input multiset).

• Checking Stage: In each cell labelled by 2, the number of copies of objects p
and q are compared. The way to do that is removing from the cell in one step
all possible pairs (p, q). After doing so, if some objects p or q remain in the
cell, then the cell was not encoding a solution of the problem; otherwise, the
weight of the subset of A encoded on the cell equals to k and hence it encodes
a solution to the problem.

• Output Stage: The system sends to the environment the right answer according
to the results of the previous stage:
– Answer yes: After the checking stage, there is a cell labelled by 2 without

objects p nor q. In this case, such a cell sends an object T to the cell 1.
This object T causes the cell 1 to expel an object yes to the environment
(see rules r17 – r19).

– Answer no: Every cell labelled by 2 contains some objects p or q. In this
case, no object T arrives to the cell labelled by 1 and an object no is sent
to the environment.

The proof will be concluded in Subsection 5.2. Before going on, let us informally
present an overview of the computation.

120 D. Dı́az-Pernil et al.

5.1 An overview of the computation

First of all, we recall the polynomial encoding of the Subset Sum problem in the
family Π constructed above. Let u = (n, (w1, . . . , wn), k) be an instance of the
problem, s(u) = g(n, k) and cod(u) = {{vwi

i : 1 ≤ i ≤ n}} ∪ {{qk}}.
Next, we describe informally how the recognizing tissue P system with cell

division Π(s(u)) with input cod(u) works. Let us start with the generation stage.
Recall that if a division rule is triggered in a cell, then communication rules cannot
be simultaneously applied to the contents of such cell. In this stage we have two
parallel processes:

• On the one hand, in the cell labelled by 1 we have two counters: zi, which will
be used in the answer stage, and ci, which will be multiplied until getting 2n

copies in exactly n steps.
• On the other hand, in the cells labelled by 2, the division rules are applied.

For each object Ai (which codifies a member of the set A) we obtain two cells
labelled by 2: one of them has an element Bi and the other does not.

When all divisions have been done, after n steps, we shall have 2n cells with label
2 and each of them will contain the encoding of a subset of A. At this moment,
the generation stage ends and the pre-checking stage begins.

For each cell 2, an object D is changed by a copy of the counter ci. In this way,
2n copies of D will appear in the cell 1, and in each cell labelled by 2 there will be
an object cn+1. The occurrence of such object cn+1 in the cells 2 will produce the
apparition of two counters:

(a) The counter di lets the checking stage start, since it produces the apparition
of the objects g1 and f1 after dlog ne+ dlog(k + 1)e+ 4 steps.

(b) The counter ei will be multiplied until obtaining 2dlog ne copies, ensuring that
at least n copies of edlog ne+1 will be available in the step n+ dlog ne+2. Then,
we trade objects edlog ne+1 and Bi against Bi1 for each element Ai in the subset
associated with the cell.
After that, for each 1 ≤ i ≤ n we get 2dlog(k+1)e copies of Bidlog(k+1)e+1,
ensuring that at least k + 1 copies will be available. Then for each element Ai

in the subset associated with the cell we get min{2dlog(k+1)e, w(ai)} copies of
object p, in the step n + dlog ne+ dlog(k + 1)e+ 5.

The checking takes place in the step n+dlog ne+dlog(k+1)e+6, when all pairs
of objects p and q present in any cell labelled by 2 are sent to the environment.
In this way, if the weight of the subset associated with a cell is equal to k, then
no object p or q remains in this cell in the next step. Otherwise, if the encoding is
not exactly of weight k, then at least one object p or q will remain in the cell. In
the next step the answer stage starts. Two cases must be considered for each cell:

• If no object p or q remain in the cell, the object f1 does not evolve, g1 evolves
to g2, and in the step n + dlog ne+ dlog(k + 1)e+ 8 the objects f1 and g2 are
traded against T from the environment. In the next step T is sent to the cell 1,

Subset Sum with Tissue P Systems with Cell Division 121

and in the step n + dlog ne+ dlog(k + 1)e+ 10, the objects T and b are sent to
the environment traded by S. Finally, in the step n+dlog ne+dlog(k+1)e+11
the objects S and yes are sent to the environment.

• If any object p or q remains in the cell, such object is sent to the environment
together with the object f1. This causes that the object b still remains in the
cell 2 after the step n + dlog ne+ dlog(k + 1)e+ 10. In this way, the objects b
and zn+dlog ne+dlog(k+1)e+11 are traded by the object N with the environment,
and in the step n + dlog ne+ dlog(k + 1)e+ 12 the objects N and no are sent
to the environment.

5.2 Verification

Next, we prove that the family of recognizing tissue P systems with cell division
described above solves the Subset Sum problem in a linear time, according to
Definition 1.

Before going on, let us remark that the defined family is consistent, i.e., all
systems of the family are recognizing tissue P systems with cell division. By con-
struction (type of rules and working alphabet) we can check that it is a family of
tissue P systems with cell division. Moreover, we shall prove next that all compu-
tations of all systems in the family always halt and in the last step of computations
either an object yes or no is sent to the environment.

Polynomial uniformity of the family

Next, we show that the family Π = {Π(g(n, k)) : n, k ∈ N} defined in Theorem 1
is polynomially uniform by Turing machines. To this aim we are going to show
that it is possible to build Π(g(n, k)) in polynomial time with respect to the size
of u.

It is easy to check that the rules of a system Π(g(n, k)), with n, k ∈ N of
the family are defined recursively from the values n and k. Besides, the necessary
resources to build an element of the family are of polynomial order with respect
to the same:

• Size of the alphabet: (n + 2) · dlog(k + 1)e+ 6n + 3dlog ne+ 28 ∈ O(n · log k)
• Initial number of cells: 2 ∈ θ(1).
• Initial number of objects: n + 6 ∈ θ(n).
• Number of rules: (n + 2) · dlog(k + 1)e+ 5n + 3dlog ne+ 26 ∈ O(n · log k)
• Maximal length of a rule: 3 ∈ θ(1).

Therefore, a deterministic Turing machine can build Π(g(n, k)) in a polynomial
time with respect to n and k.

Notice that every instance u = (n, (w1, . . . , wn), k) is introduced in the initial
configuration of its associated cellular system via an input multiset (i.e. an 1-ary
representation) and hence, |u| ∈ O(n + k) holds.

122 D. Dı́az-Pernil et al.

We would like to recall that the functions cod and s have been defined above
for an instance u = (n, (w1, . . . , wn), k) of the Subset Sum problem as follows:
cod(u) = {{vwi

i : 1 ≤ i ≤ n}} ∪ {{qk}}, and s(u) = g(n, k), respectively. Both
functions are computable in polynomial time and the pair (cod, s) is a polynomial
encoding of ISubsetSum in Π, since for each instance u of the Subset Sum problem
we have that cod(u) is an input multiset of the system Π(s(u)).

In order to settle the formal verification of the family of tissue P systems we
shall prove that all the systems of the family are polynomially bounded, and also
that they are sound and complete with respect to (SubsetSum, cod, s).

Polynomial boundness of the family

In order to ensure that the system Π(s(u)) with input cod(u) is polynomially
(indeed, linearly) bounded, it suffices to find the moment in which the computation
halts, or at least, an upper bound for it. As we shall show, the number of steps of
the computations of any system of the family can always be bounded by a linear
function. Nonetheless, we would like to stress that the amount of pre-computed
resources for each instance u is polynomial in the size of the instance, since cod(u)
needs to be computed and Π(s(u)) needs to be built.

Proposition 1. The family Π = {Π(g(n, k)) : n, k ∈ N} is polynomially bounded
with respect to (SubsetSum, cod, s).

Proof. (Sketch). We shall informally go through the stages of the computation
in order to estimate a bound for the number of steps. The computation will be
studied in more detail when addressing the soundness and completeness proof.

Let u = (n, (w1, . . . , wn), k) be an instance of the Subset Sum problem. We
shall study what happens during the computation of the system Π(s(u)) with
input cod(u) which processes such instance in order to find the halting step, or at
least, an upper bound for it.

First, the generation stage lasts exactly n steps, where all the divisions of the
cells of the system are performed.

After that, the pre-checking stage starts with the rule r4. In the following
step the object d1 arrives to all cells 2 and the counter di starts. At the step
n+ dlog ne+ dlog(k +1)e+5, the last element of the counter di is reached and the
checking stage ends. In this way, in the (n + dlog ne+ dlog(k + 1)e+ 6)-th step of
the computation the checking takes place. Recall that only one step is needed for
the checking, as rule r11 takes out in parallel all pairs (p, q) from all cells 2.

The last one is the answer stage. The longest case is obtained when the answer
is negative. In this case there is one step where only the counter zi is working since
no element T has reached the cell 1. In the next step an object N is brought from
the environment and, finally, in the (n + dlog ne+ dlog(k + 1)e+ 12)-th step, the
object no is sent to the environment.

Therefore, there exists a linear bound with respect to (n+log k) on the number
of steps of the computation.

Subset Sum with Tissue P Systems with Cell Division 123

Soundness and Completeness of the family

In order to prove the soundness and completeness of the family Π with respect
to (SubsetSum, cod, s), we shall prove that given an instance u of the Subset Sum
problem, the system Π(s(u)) with input cod(u) sends out an object yes if and
only if the answer to the problem for the considered instance u is affirmative, and
the object no is sent out otherwise.

Proposition 2. The family Π = {Π(g(n, k)) : n, k ∈ N} is sound and complete
with respect to (SubsetSum, cod, s).

Proof. In order to complete the proof we shall proceed through a number of aux-
iliary results.

Remark 1. Given a computation C we denote the configuration at the i-th step as
Ci. Moreover, Ci(1) will denote the multiset associated to cell 1 in such configura-
tion.

We start with the generation stage (i.e., the n first steps of the computation).
It consists of two parallel processes, each of them in one cell.

Lemma 1. If C is an arbitrary computation of the system, then for all j such that
0 ≤ j ≤ n, Cj(1) = {{zj+1, c

2j

j+1, b, yes, no}} holds.

Proof. We shall reason by induction on j.
Base Case. We have C0(1) = {z1, c1, b, yes, no}, and thus the lemma holds for

j = 0.
Case j < n → j + 1. Let j be such that 1 ≤ j < n and we have,

by inductive hypothesis, Cj(1) = {{zj+1, c
2j

j+1, b, yes, no}}. In this configura-
tion, only the rules r3,j+1 and r4,j+1 can be applied to cell 1, and therefore
Cj+1(1) = {{zj+2, c

2(j+1)

j+2 , b, yes, no}}.

Lemma 2. If C is an arbitrary computation of the system, then:

1. For each subset V ⊆ {1, . . . , n} there exists only one cell 2 in Cn whose multiset
is cod(u) ∪ {{D}} ∪ {{Bi : i ∈ V }}

2. There exist exactly 2n cells labelled by 2 in configuration Cn

Proof. It is clear that division rules cannot be applied in parallel over the same
cell. At this point there is an intrinsic non-determinism of the system. We have to
apply all the division rules, but the order is non-deterministically chosen.

At time 0, there are n division rules that can be applied. When we apply one
of them to the cell labelled by 2, for example, r1,i (1 ≤ i ≤ n) we eliminate the
object Ai and will obtain two new cells, in the first one an object Bi will appear,
but not in the second one. The remaining contents of the original cell will be in
the two new cells as well.

In the following step, another division rule can be applied to the two cells
labelled by 2. As described above, the object Aj that triggers the rule disappears,

124 D. Dı́az-Pernil et al.

and a new object Bj appear in one of the new cells (note that the two cells may
chose different objects Aj). This process is repeated in all cells 2 for each division
rule.

It is clear that by triggering a division rule r1,j we get two different cells. Only
one of them containing Bj . On the other hand, each object Ai appears exactly
once in their initial configuration. Therefore, after applying n division rules we
obtain 2n cells labelled by 2.

Moreover, let V be a subset of {1, . . . , n}, if for each division rule [Ai]2 →
[Bi]2[λ]2 we focus on the cell containing Bi only for i ∈ V (we select the other cell
otherwise), then after n division steps we will have a cell labelled by 2 such that
Bj belongs to the cell if and only if j ∈ V , irrespectively of the order in which the
division rules are applied.

Lemma 3. If C is an arbitrary computation of the system, then for all i such that
1 ≤ i ≤ dlog ne+ dlog(k + 1)e+ 7, Cn+i(1) = {{zn+i+1, D

2n

, b, yes, no}} holds

Proof. In order to prove the lemma it suffices to observe the following:

• Cn(1) = {{zn+1, c
2n

n+1, b, yes, no}} holds from Lemma 1.
• There exist exactly 2n cells labelled by 2 in configuration Cn, each of them

containing an object D (this follows from Lemma 2).
• In the next step of the computation, only rules r4 and r2,n+1 are applicable on

cell 1, yielding Cn+1(1) = {{zn+1+1, D
2n

, b, yes, no}}
• During the rest of the checking stage, only rules of type r2,i are applicable on

cell 1, and the result follows.

Lemma 4. Let C be an arbitrary computation of the system. Then:

• For each subset V ⊆ {1, . . . , n} there exists only one cell 2 in Cn+1 whose
associated multiset is

cod(u) ∪ {{cn+1}} ∪ {{Bi : i ∈ V }}

• There exist exactly 2n cells labelled by 2 in configurations Cn+i, for 1 ≤ i ≤
dlog ne+ dlog(k + 1)e+ 12

Proof. Cn+1 is obtained from Cn by the application of the rules r4 and r2,n+1

and hence, 2n objects cn+1 in the cell 1 are traded against 2n objects D from
the cells 2 (one from each cell). Then Cn+1(1) = {{zn+2, D

2n

, b, yes, no}} and for
every V ⊆ {1, . . . , n} there exists only one cell 2 whose associated multiset is
cod(u) ∪ {{cn+1}} ∪ {{Bi : i ∈ V }}

Since no division rule has been applied in this step (actually, they will not be
applied anymore along the computation), the number of cells 2 remains the same
as in the previous configuration.

Lemma 5. Let C be an arbitrary computation of the system. For each i (1 ≤ i ≤
dlog ne + 1) and for each V ⊆ {1, . . . , n} there exists only one cell 2 in Cn+i+1

whose associated multiset is

cod(u) ∪ {{di, e
2(i−1)

i }} ∪ {{Bj : j ∈ V }}

Subset Sum with Tissue P Systems with Cell Division 125

Proof. We shall reason by induction on i.
Case i = 1. It suffices to note that r5 is the only rule that can be applied on

cells 2 in configuration Cn+1, and the result follows from the previous Lemma.
Case 1 ≤ i < dlog ne+ 1 → i + 1.
Let i be such that 1 ≤ i < dlog ne+1 and let us suppose that the result holds for

i. Let V be an arbitrary subset of {1, . . . , n}, then let us consider its associated cell
whose contents are indicated by inductive hypothesis. The only rules applicable to
this cell are r6,i and r7,i, and therefore the multiset of such cell 2 in Cn+i+2 will be

cod(u) ∪ {{di+1, e
2i

i+1}} ∪ {{Bj : j ∈ V }},

as we wanted to prove.

Lemma 6. Let C be an arbitrary computation of the system. For each l (1 ≤ l ≤
dlog(k + 1)e + 2) and for each V ⊆ {1, . . . , n} there exists only one cell 2 in
Cn+dlog ne+l+2 whose associated multiset is

cod(u) ∪ {{ddlog ne+l+1, e
(2dlog ne−|V |)
dlog ne+1 }} ∪ {{B2(l−1)

jl : j ∈ V }}

Proof. We shall reason by induction on l.
Case l = 1. Let V be an arbitrary subset of {1, . . . , n}, then from the previous

Lemma it follows that there exists a cell whose associated multiset in Cn+dlog ne+2

is cod(u) ∪ {{ddlog ne+1, e
2dlog ne

dlog ne+1}} ∪ {{Bj : j ∈ V }}. The next configuration for
this cell is obtained by applying rules r7,dlog ne+1 and r8,j for every j ∈ V :

• r7,dlog ne+1 allows the evolution of the counter d to ddlog ne+2 in each cell 2.
• Each r8,j allows the replacement of the objects Bj (together with a copy of

edlog ne+1) by Bj1.

and thus the result holds for l = 1.
Case 1 ≤ l < dlog(k + 1)e → l + 1.
Let l be such that 1 ≤ l < dlog ne+ 1 and let us suppose that the result holds

for l. That is, there exists only one cell 2 in Cn+dlog ne+l+3 with the multiset

cod(u) ∪ {{ddlog ne+l+1, e
2dlog ne−|V |
dlog ne+1 }} ∪ {{B2(l−1)

jl : j ∈ V }}

In the next step, rules r7,n+dlog ne+l+3 and r9,j,l, for every j ∈ V , will be applied
on this cell, and thus the multiset of such cell 2 in Cn+dlog ne+l+1+3 will be

cod(u) ∪ {{ddlog ne+l+2, e
2dlog ne−|V |
dlog ne+1 }} ∪ {{B2l

j(l+1) : j ∈ V }}

Lemma 7. Let C be an arbitrary computation of the system. For each V ⊆
{1, . . . , n} there exists only one cell 2 in Cn+dlog ne+dlog(k+1)e+5 whose associated
multiset is

{{p
P

j∈V wj , qk}}∪{{ddlog ne+dlog(k+1)e+4, e
2dlog ne−|V |
dlog ne+1 }}∪{{B2dlog(k+1)e−wj

j(dlog(k+1)e+1) : j ∈ V }}

126 D. Dı́az-Pernil et al.

Proof. Let V be an arbitrary subset of {1, . . . , n}. From the previous Lemma
(taking l = dlog(k+1)e+2), it follows that in Cn+dlog ne+dlog(k+1)e+4 there is a cell
2 associated with this subset whose content is indicated above. In the next step,
the following rules are applied:

• r7,dlog ne+dlog(k+1)e+3 allows the evolution of the counter ddlog ne+dlog(k+1)e+4.
• r10,j , for every j ∈ V , allow the replacement of all the existing objects vj

(recall that there are w(aj) copies of vj in cod(u)), together with objects
Bj(dlog(k+1)e+1) against

∑
j∈V wj objects p.

Remark 2. From this moment on, for the sake of simplicity, given V ⊆ {1, . . . , n}
we shall note by wV =

∑
j∈V wj , and we shall also note by trashV the following

multiset:
{{e2dlog ne−|V |

dlog ne+1 }} ∪ {{B2dlog(k+1)e−wj

j(dlog(k+1)e+1) : j ∈ V }}

Lemma 8. Let C be an arbitrary computation of the system and let V ⊆
{1, . . . , n}. We have the following:

• If k = wV then there exists only one cell 2 in Cn+dlog ne+dlog(k+1)e+6 whose
associated multiset is

{{f1, g1}} ∪ trashV

• If k < wV then there exists only one cell 2 in Cn+dlog ne+dlog(k+1)e+6 whose
associated multiset is

{{pwV −k, f1, g1}} ∪ trashV

• If k > wV then there exists only one cell 2 in Cn+dlog ne+dlog(k+1)e+6 whose
associated multiset is

{{qk−wV , f1, g1}} ∪ trashV

Proof. Let V be an arbitrary subset of {1, . . . , n}. From the previous Lemma, it
follows that in Cn+dlog ne+dlog(k+1)e+5 there is a cell 2 associated with this subset
whose content is indicated above. In the next step, the following rules are applied:

• r11 sends all existing pairs (p, q) to the environment. So, if k = wV then all
objects p and q will disappear of the cell. However, if k < wV then wV − k
objects p will remain in the cell, and conversely if k > wV then k−wV objects
q will remain in the cell.

• r12 trades the object ddlog ne+dlog(k+1)e+4 against the objects f1, g1.

Lemma 9. Let C be an arbitrary computation of the system, and let V be a subset
of {1, . . . , n}.

1. For each V such that wV = k, there exists one cell 2 such that:
a) its associated multiset in Cn+dlog ne+dlog(k+1)e+7 is {{f1, g2}} ∪ trashV

b) its associated multiset in Cn+dlog ne+dlog(k+1)e+8 is {{T}} ∪ trashV

Subset Sum with Tissue P Systems with Cell Division 127

c) For each i (1 ≤ i ≤ 4), its associated multiset in Cn+dlog ne+dlog(k+1)e+i+8

is trashV

2. For each V such that wV 6= k, there exists one cell 2 such that for each i (1 ≤
i ≤ 6) its associated multiset in Cn+dlog ne+dlog(k+1)e+i+6 is {{g2, p

wV −k−1}} ∪
trashV or {{g2, q

k−wV −1}} ∪ trashV

Proof. 1. From the previous Lemma, if k = wV then there exists only one cell 2
in Cn+dlog ne+dlog(k+1)e+6 whose associated multiset is

{{f1, g1}} ∪ trashV

Then, by applying the rule r15 (no other rule can be applied in this cell) we
obtain in the next step {{f1, g2}} ∪ trashV . After that, by applying the rule
r16 we obtain {{T}} ∪ trashV . Finally, by applying the rule r17 the element
T is sent to the cell labelled by 1. No more rules can be applied after this
moment in the cells labelled by 2. Therefore, for 1 ≤ i ≤ 4, the contents of the
cell in Cn+dlog ne+dlog(k+1)e+i+8 is the multiset trashV .

2. From the previous Lemma, if k < wV then there exists only one cell 2 in
Cn+dlog ne+dlog(k+1)e+6 whose associated multiset is

{{pwV −k, f1, g1}} ∪ trashV

Then, by applying the rule r13 an object p is sent to the environment together
with object f1. In parallel, rule r15 trades g1 against g2. No more rules can be
applied in the cell after this moment. Therefore, for 1 ≤ i ≤ 5, the contents of
the cell in Cn+dlog ne+dlog(k+1)e+i+7 is the multiset {{g2, p

wV −k−1}}∪ trashV).
Analogously for the case when k > wV (applying the rule r14 instead of r13).

Lemma 10. Let C be an arbitrary computation of the system. Let us suppose that
there exists V ⊆ {1, . . . , n} such that wV = k. Then

(a) Cn+dlog ne+dlog(k+1)e+9(1) = {{zn+dlog ne+dlog(k+1)e+10, D
2n

, b, yes, no, T}}
(b) Cn+dlog ne+dlog(k+1)e+10(1) = {{zn+dlog ne+dlog(k+1)e+11, D

2n

, S, yes, no}}
(c) Cn+dlog ne+dlog(k+1)e+11(1) = {{zn+dlog ne+dlog(k+1)e+11, D

2n

, no}}

Proof. The configuration of item (a) is obtained by the application of rules r17

and r2,n+dlog ne+dlog(k+1)e+9 to the previous configuration. Analogously, the con-
figurations of items (b) and (c) are obtained by the application of rules r18 and
r19 respectively.

Lemma 11. Let C be an arbitrary computation of the system. Let us suppose that
there does not exist any subset V ⊆ {1, . . . , n} such that wV = k. Then

(a) Cn+dlog ne+dlog(k+1)e+9(1) = {{zn+dlog ne+dlog(k+1)e+10, D
2n

, b, yes, no}}
(b) Cn+dlog ne+dlog(k+1)e+10(1) = {{zn+dlog ne+dlog(k+1)e+11, D

2n

, b, yes, no}}
(c) Cn+dlog ne+dlog(k+1)e+11(1) = {{D2n

, N, yes, no}}
(d) Cn+dlog ne+dlog(k+1)e+12(1) = {{D2n

, yes}}

128 D. Dı́az-Pernil et al.

Proof. The configuration of item (a) and (b) are obtained by the application of
rules r2,n+dlog ne+dlog(k+1)e+9 and r2,n+dlog ne+dlog(k+1)e+10 to the previous config-
uration. Analogously, the configurations of items (c) and (d) are obtained by the
application of rules r20 and r21 respectively.

5.3 Main Results

From the discussion in the previous sections and according to the definition of
solvability given in Definition 1, we deduce the following result:

Theorem 1. Subset Sum ∈ PMCTD.

As a consequence of this result we have:

Theorem 2. NP ∪ co−NP ⊆ PMCTD.

Proof It suffices to make the following observations: the Subset Sum problem
is NP-complete, SubsetSum ∈ PMCTD and the class PMCTD is stable under
polynomial-time reduction, and also closed under complement.

6 Conclusions and Future Work

The physical limitations of current silicon-based hardware have been one of the
triggers for the development of alternative models of computation (also known
as unconventional). In particular, the scientific community is getting increasingly
interested on computing models inspired by Nature. These new models abstract
features of living entities and use them as inspiration for designing algorithms
within new computing paradigms.

Membrane Computing is a new cross-disciplinary field of Natural Computing
which has reached an important success in its short life. In these years many results
have been presented related to the computational power of membrane devices, but
up to now no implementation in vivo or in vitro has been carried out.

As the classical complexity classes P and NP are very likely to be different,
the design of efficient solutions (in time) to NP-complete problems consequently
needs to handle an exponential amount of resources. Cellular Computing with
Membranes provides a framework where this trade-off between time and space is
formalized in a natural way, getting inspiration from the way new cells are created
(are born) from existing ones. Indeed, the mitosis process (cell division) is the
motivation for the model of tissue P systems with cell division used in this paper.
As the model allows all existing cells to be divided in parallel at every step, it
follows directly that one can produce 2n membranes in n steps. Using this ability,
we have presented in this paper a solution to a numerical NP-complete problem
using a family of recognizing tissue P systems with cell division.

More precisely, this paper deals with the design and formal verification of an
algorithm to solve a well-known problem in an efficient and uniform way, and in

Subset Sum with Tissue P Systems with Cell Division 129

this sense it is a theoretical result, mainly related to computational complexity
classes. We would like to stress that the result presented in this paper improves
previous designs (for other problems) in two senses. On the one hand, the size of
the rules is bounded by 3 and, on the other hand, the number of steps and the
initial resources are of O(log k) order instead of being linearly dependent on k.

This is the first design of a solution to a numerical problem in this frame-
work (up to our knowledge), and thus it may be useful as a template or guidance
when addressing other numerical problems. Besides, the strategies that have been
applied in the design presented in this paper can be also used when working on
similar models. For instance, there is a promising new paradigm within Membrane
Computing, namely Spiking Neural P systems, that is based on communication
between neurons (recall that the inspiration of tissue P systems comes from com-
munication and cooperation between cells in a tissue). Efficient resolution of hard
problems has not yet been addressed in this new model, but it may in a near future.
We would also like to mention as future work the development of software tools to
simulate such computational processes, as the existing simulators for other mem-
brane computing models have proved to be very useful as assistants for designing
P systems and for understanding the way they work.

Acknowledgment

The authors acknowledge the support of the project TIN2006-13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the project of excellence TIC-581 of the Junta de Andalućıa.

References

1. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A
linear–time tissue P system based solution for the 3–coloring problem. Theoretical
Computer Science, to appear.

2. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A linear so-
lution for QSAT with Membrane Creation. In Membrane Computing. International
Workshop WMC6, Vienna, Austria, 2005, LNCS 3850, Springer, 2006, 241–252.

3. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón: A New Class of Sym-
bolic Abstract Neural Nets: Tissue P Systems. In Computing and Combinatorics:
8th Annual International Conference, COCOON 2002, Singapore, 2002, LNCS 2387,
Springer, 2002, 290–299.

4. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón: Tissue P systems. Theo-
retical Computer Science, 296 (2003), 295–326.

5. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 3 (2002), 295–305.

6. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

7. Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.

130 D. Dı́az-Pernil et al.

8. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez: Tissue P System with cell division.
In Second Brainstorming Week on Membrane Computing, Sevilla, Report RGNC
01/2004, (2004), 380–386.

9. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. In Proceedings of the 5th Work-
shop on Descriptional Complexity of Formal Systems, DCFS 2003, (2003), 284–294.

Polarizationless P Systems
with Active Membranes
Working in the Minimally Parallel Mode

Rudolf Freund1, Gheorghe Păun2,3, Mario J. Pérez-Jiménez3

1 Institute of Computer Languages
Vienna University of Technology
Favoritenstr. 9, Wien, Austria
rudi@emcc.at

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania, and
george.paun@imar.ro, gpaun@us.es

3 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

Summary. We investigate the computing power and the efficiency of P systems with
active membranes without polarizations, working in the minimally parallel mode. We
prove that such systems are computationally complete and able to solve NP-complete
problems even when the rules are of a restricted form, e.g., for establishing computational
completeness we only need rules handling single objects and no division of non-elementary
membranes is used.

1 Introduction

P systems with active membranes basically use five types of rules: (a) evolution
rules, by which a single object evolves to a multiset of objects, (b) send-in, and (c)
send-out rules, by which an object is introduced in or expelled from a membrane,
maybe modified during this operation into another object, (d) dissolution rules,
by which a membrane is dissolved, under the influence of an object, which may
be modified into another object by this operation, and (e) membrane division
rules; this last type of rules can be used both for elementary and non-elementary
membranes, or only for elementary membranes. As introduced in [10], all these
types of rules also use polarizations for membranes, “electrical charges” +,−, 0,
controlling the application of the rules.

Systems with rules of types (a), (b), (c) were shown to be equivalent in compu-
tational power with Turing machines [11], even when using only two polarizations

132 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

[4], while P systems using all types of rules were shown to be universal even without
using polarizations [1]. Another important class of results concerns the possibil-
ity of using P systems with active membranes to provide polynomial solutions to
computationally hard problems. Several papers have shown that both decision and
numerical NP-complete problems can be solved in a polynomial time (often, even
linear time) by means of P systems with three polarizations [11], [13], then the
number of polarizations was decreased to two [3], [4]. The systems constructed in
these solutions use only division of elementary membranes. At the price of using
division also for non-elementary membranes, the polarizations can be completely
removed, [2].

All papers mentioned above apply the rules in the maximally parallel mode: in
each step, the assignment of objects to the rules in the chosen multiset of rules to
be applied in parallel is maximal, i.e., no further rule could be added to this chosen
multiset of rules in such a way that the rules in the resulting extended multiset still
could be applied in parallel. Recently, [5] a more relaxed strategy of using the rules
was introduced, the so-called minimal parallelism: in each step, the assignment of
objects to the rules in the chosen multiset of rules to be applied in parallel does
not allow for extending it by any rule out of a set of rules from which no rule has
been chosen so far for this multiset of rules. This introduces an additional degree
of non-determinism in the system evolution, but still computational completeness
and polynomial solutions to SAT were obtained in the new framework by using
P systems with active membranes, with three polarizations and division of only
elementary membranes.

In this paper we continue the study of P systems working in the minimally
parallel way, and we prove that the polarizations can be avoided, at the price of
using all five types of rules for computational completeness and the division of
non-elementary membranes for computational efficiency. Moreover, in the proof
for establishing computational completeness we restrict the form of the rules to
handling only single objects in all types of rules (we call this the one-normal form
for P systems with active membranes).

2 Prerequisites

We suppose that the reader is familiar with the basic elements of Turing com-
putability [6], and of membrane computing [11]. We here, in a rather informal
way, introduce only the necessary notions and notation.

For an alphabet A, by A∗ we denote the set of all strings of symbols from A
including the empty string λ. A multiset over an alphabet A is a mapping from
A to the set of natural numbers; we represent a multiset by a string from A∗,
where the number of occurrences of a symbol a ∈ A in a string w represents the
multiplicity of a in the multiset represented by w (hence, all strings obtained by
permuting symbols in the string w represent the same multiset). The family of
Turing-computable sets of natural numbers is denoted by NRE (with RE coming
from “recursively enumerable”).

Polarizationless P Systems with Active Membranes 133

In our proofs showing computational completeness we use the characterization
of NRE by means of register machines. Such a device consists of a given number
of registers, each of which can hold an arbitrarily large natural number, and a
set of labeled instructions which specify how the numbers stored in registers can
change, and which instruction should follow after the instruction just carried out.
There are three types of instructions:

• li : (ADD(r), lj , lk) add 1 to register r, and then go to one of the instructions
labeled by lj and lk, non-deterministically chosen;

• li : (SUB(r), lj , lk) if register r is non-empty (non-zero), then subtract 1
from it and go to the instruction labeled by lj , otherwise go to the instruction
labeled by lk;

• lh : HALT the halt instruction.

A register machine is a construct M = (n, B, l0, lh, I), where n is the number of
registers, B is the set of instruction labels, l0 is the start label, lh is the halt label
(assigned to HALT only), and I is the set of instructions. Each label of B labels
only one instruction from I, thus precisely identifying it. A register machine M
generates a set N(M) of numbers in the following way: having initially all registers
empty (i.e., storing the number zero), start with the instruction labeled by l0, and
proceed to apply instructions as indicated by the labels and by the contents of
registers. If we reach the halt instruction, then the number stored at that time in
register 1 is said to be computed by M , and therefore it is introduced in N(M).
Since we have a non-deterministic choice in the continuation of the computation in
the case of ADD instructions, N(M) can be an infinite set. It is known (see [8]) that
in this way we can compute all the sets of numbers which are Turing-computable,
even using register machines with only three registers as well as registers two and
three being empty whenever the register machine halts.

A register machine can also work in the accepting mode. The number to be
accepted is introduced in register 1, with all other registers being empty. We start
computing with the instruction labeled by l0; if the computation halts, then the
number is accepted (the contents of the registers in the halting configuration do
not matter). We still denote by N(M) the set of numbers accepted by a register
machine M . In the accepting case, we can request the register machines to be
deterministic, namely with all instructions li : (ADD, lj , lk) having lj = lk. It is
known that deterministic accepting register machines characterize NRE even with
only three registers and all registers being empty whenever the register machine
halts.

3 P Systems with Active Membranes

We first introduce the P systems with active membranes in the general form, and
then we describe the restricted version we investigate in this paper.

134 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

A P system with active membranes, of the initial degree n ≥ 1, is a construct
of the form

Π = (O,H, µ,w1, . . . , wn, R, ho),

where:

1. O is the alphabet of objects;
2. H is a finite set of labels for membranes;
3. µ is a membrane structure, consisting of n membranes having initially neutral

polarizations, labeled (not necessarily in a one-to-one manner) with elements
of H;

4. w1, . . . , wn are strings over O, describing the multisets of objects placed in the
n initial regions of µ;

5. R is a finite set of developmental rules, of the following forms:
(a) [ha → v]e

h,
for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the
label and the charge of the membranes, but not directly involving the
membranes, in the sense that the membranes are neither taking part in
the application of these rules nor are they modified by them);

(b) a[h]e1
h → [hb]e2

h ,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(in communication rules; a possibly modified object is introduced in a
membrane; the polarization of the membrane can also be modified, but
not its label);

(c) [ha]e1
h → b[h]e2

h ,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(out communication rules; a possibly modified object is sent out of the
membrane; the polarization of the membrane can also be modified, but
not its label);

(d) [ha]e
h → b,

for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(e) [ha]e1
h → [hb]e2

h [hc]e3
h ,

for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary or non-elementary membranes; in reaction
with an object, the membrane with label h is divided into two membranes
with the same label, possibly of different polarizations; the object specified
in the rule is replaced in the two new membranes by possibly new objects;
the remaining objects may evolve in the same step by rules of type (a)
and the result of this evolution is duplicated in the two new membranes; if
membrane h contains other membranes, then they may evolve at the same
time by rules of any type and the result of their evolution is duplicated in
the two new membranes);

Polarizationless P Systems with Active Membranes 135

6. ho ∈ H or ho = env indicates the output region.

In the maximally parallel mode, in each step (a global clock is assumed) we
apply multisets of rules in such a way that no further rule can be applied to the
remaining objects or membranes. In each step, each object and each membrane
can be involved in only one rule. Because this way of using the rules is standard
in membrane computing, we do not give further details, and we present only the
minimally parallel mode, which here means the following:

All the rules of any type involving a membrane h constitute the set Rh (this
means all the rules of type (a) of the form [ha → v]e

h, all the rules of type (b) of the
form a[h]e1

h → [ha]e2
h , and all the rules of types (c) – (e) of the form [ha]e

h → z,
with the same h, constitute the set Rh). Moreover, if a membrane h appears
several times in a given configuration of the system, then for each occurrence of
the membrane we consider a different set Rh; this means that we identify the ith
copy of membrane h with the pair (h, i), and we consider the set of rules Rh,i = Rh.
Then, in each step, we choose a multiset of rules taken from the sets Rh,i, h ∈ H,
in such a way that after having assigned objects to all the rules in this multiset,
no rule from any of the sets Rh,i from which no rule has been taken so far, could
be used in addition.

Whenever relevant, in order to make visible the sets of rules, we write explicitly
the sets Rh, h ∈ H, instead of the global set R.

Of course, as usual for P systems with active membranes, each membrane and
each object can be involved in only one rule, and the choice of rules to be used and
of objects and membranes to evolve is done in a non-deterministic way. We should
note that for rules of type (a) the membrane is not considered to be involved:
when applying [ha → v]h, the object a cannot be used by other rules, but the
membrane h can be used by any number of rules of type (a) as well as by one rule
of types (b) – (e). In each step, the use of rules is done in the bottom-up manner
(first the inner objects and membranes evolve, and the result is duplicated if any
surrounding membrane is divided).

A halting computation provides a result given by the number of objects present
in region ho at the end of the computation; this is a region of the system if ho ∈ H
(and in this case, for a computation to be successful, exactly one membrane with
label ho should be present in the halting configuration), or it is the environment
if ho = env.

We shall also consider the following normal form for P systems with active
membranes: A system Π is said to be in the one-normal form if the membranes
have no polarization (it is the same as saying that always all membranes have the
same polarization, say 0, which therefore is irrelevant and thus omitted) and the
rules are of the forms [ha → b]h, a[h]h → [hb]h, [ha]h → b[h]h, [ha]h → b, and
[ha]h → [hb]h[hc]h, for a, b, c ∈ O, such that a 6= b, a 6= c, b 6= c. Note that the
labels of membranes are never changed.

The set of numbers generated in the minimally parallel way by a system Π
is denoted by Nmin(Π). The family of sets Nmin(Π), generated by systems with

136 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

rules of the non-restricted form, having initially at most n1 membranes and using
configurations with at most n2 membranes during any computation is denoted
by NminOPn1,n2((a), (b), (c), (d), (e)); when a type of rules is not used, it is not
mentioned in the notation. If any of the parameters n1, n2 is not bounded, then it
is replaced by ∗. If the systems do not use polarizations for membranes, then we
write (a0), (b0), (c0), (d0), (e0) instead of (a), (b), (c), (d), (e). When the system Π
is in the one-normal form, then we write NminOPn1,n2((a1), (b1), (c1), (d1), (e1)).

When considering families of numbers generated by P systems with active
membrane working in the maximally parallel mode, the subscript min is replaced
by max in the previous notations. For precise definitions, we refer to [11] and to
the papers mentioned below.

4 Computational Completeness

The following results are well known:

Theorem 1. (i) NmaxOP3,3((a), (b), (c)) = NRE, [11].
(ii) NmaxOP∗,∗((a0), (b0), (c0), (d0), (e0)) = NRE, [1].
(iii) NminOP3,3((a), (b), (c)) = NRE, [5].

In turn, the following inclusions follow directly from the definitions:

Lemma 1. NmodeOPn1,n2((a1), (b1), (c1), (d1), (e1)) ⊆
NmodeOPn1,n2((a0), (b0), (c0), (d0), (e0)) ⊆
NmodeOPn1,n2((a), (b), (c), (d), (e)),

for all n1, n2 ≥ 1, mode ∈ {max, min}.

We now improve the equalities from Theorem 1 in certain respects, starting
with proving the computational completeness of P systems with active membranes
in the one-normal form when working in the maximally parallel mode, and then
we extend this result to the minimal parallelism.

Theorem 2. NmaxOPn1,∗((a1), (b1), (c1), (d1), (e1)) = NRE, for all n1 ≥ 5.

Proof. We only prove the inclusion

NRE ⊆ NmaxOP5,∗((a1), (b1), (c1), (d1), (e1)).

Let us consider a register machine M = (3, B, l0, lh, I) generating an arbitrary
set N(M) ∈ NRE. We then construct the P system

Π = (O, H, µ,ws, wh, w1, w2, w3, R, env),

of the initial degree 5, with

Polarizationless P Systems with Active Membranes 137

O = {di | 0 ≤ i ≤ 5} ∪ {g,#,#′, p, p′, p′′, c, c′, c′′} ∪B ∪ {l′ | l ∈ B}
∪ {liu | li is the label of an ADD instruction in I, 1 ≤ u ≤ 4}
∪ {liu0 | li is the label of a SUB instruction in I, 1 ≤ u ≤ 4}
∪ {liu+ | li is the label of a SUB instruction in I, 1 ≤ u ≤ 6},

H = {s, h, 1, 2, 3},
µ = [s[1]1 [2]2 [3]3[h]h]s,

ws = l0d0, wα = λ, for all α ∈ H − {s},

and with the rules constructed as described below.
The value stored in a register r = 1, 2, 3 of M , in Π is represented by the

number of copies of membranes with label r plus one (if the value of the register
r is k, then we have k + 1 membranes with label r). The membrane with label h
is auxiliary, it is used for controlling the correct simulation of instructions of M
by computations in Π. Each step of a computation in M , i.e., using an ADD or
a SUB instruction, corresponds to six steps of a computation in Π. We start with
all membranes being empty, except for the skin region, which contains the initial
label l0 of M and the auxiliary object d0. If the computation in M halts, that is,
the object lh appears in the skin region of Π, then we pass to producing one object
c for each membrane with label 1 present in the system, except one; in this way,
the number of copies of c sent to the environment represents the correct result of
the computation in M .

We first indicate the rules used in each of the six steps of simulating instructions
ADD and SUB, and then we present the rules for producing the result of the
computation; in each configuration, only the membranes and the objects relevant
for the simulation of the respective instruction are specified. In particular, we
ignore the “garbage” object g, because once introduced it remains idle for the
whole computation.

The simulation of an instruction li : (ADD(r), lj , lk) uses the rules from
Table 1.

Table 1. The simulation of an ADD instruction

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i]r

[
s
d0 → d1]s

[
s
d1 [

r
l′i]r

. . . [
h

]
h
]
s

2 [
r
l′i]r

→ [
r
li1]r

[
r
g]

r
[
s
d1 → d2]s

[
s
d2 [

r
li1]r

[
r
g]

r
. . . [

h
]
h
]
s

3 [
r
li1]r

→ li2[r
]
r

d2[h
]
h
→ [

h
d3]h

[
s
li2 [

r
]
r
[
r

]
r
. . . [

h
d3]h

]
s

4 [
s
li2 → li3]s

[
h
d3]h

→ d4[h
]
h

[
s
li3d4[r

]
r
[
r

]
r
. . . [

h
]
h
]
s

5 [
s
li3 → li4]s

[
s
d4 → d5]s

[
s
li4d5[r

]
r
[
r

]
r
. . . [

h
]
h
]
s

6 [
s
li4 → lt]s

, t ∈ {j, k} [
s
d5 → d0]s

[
s
ltd0[r

]
r
[
r

]
r
. . . [

h
]
h
]
s

138 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

The label object li enters into the correct membrane r (even if the register r is
empty, there is at least one membrane with label r) and in the next step divides it.
The object li2 exits the newly produced membrane, but g remains inside; li2 will
evolve three further steps, just to synchronize with the evolution of the auxiliary
objects du, u ≥ 0, and the auxiliary membrane h, so that in the sixth step we end
with the label lj or lk of the next instruction to be simulated present in the skin
membrane, together with d0; note that the number of copies of membrane r was
increased by one.

'

&

$

%

d3

d3 → #

→ #′

#′ → #

d2d1d0 d4 d5 d0- - - - - -1 2 3 4 5 6

h

Fig. 1. The evolution of auxiliary objects

The auxiliary objects du, u ≥ 0, and the auxiliary membrane h are used in the
simulation of SUB instructions, as we will see immediately; in step 4, there also are
other rules to be used in membrane h, introducing the trap-object #, but using
such rules will make the computation never halt, hence, they will not produce an
unwanted result.

The evolution of objects du, u ≥ 0, is represented graphically in Figure 1;
membrane h is only used in step 3, to send an object inside, and in the next step,
for sending an object out of it. On each arrow we indicate the step, according to
Table 1; the steps made by using rules of types (b), (c) are pointed out by drawing
the respective arrows crossing the membranes, thus suggesting the in/out actions.

The way the “ADD module” works is suggested in Figure 2; the division oper-
ation from step 2 is indicated by a branching arrow.

The simulation of an instruction li : (SUB(r), lj , lk) is done with the help of
the auxiliary membrane h. The object li enters a membrane r (there is at least one
copy of it) and divides it, and on this occasion makes a non-deterministic choice
between trying to continue as having register r non-empty or as having it empty.
If the guess has been correct, then the correct action is done (decrementing the
register in the first case, doing nothing in the second case) and the correct next
label is introduced, i.e., lj or lk, respectively. If the guess has not been correct, then
the trap object # is introduced. For all membranes x of the system we consider
the rules [x# → #′]x, [x#′ → #]x, hence, the appearance of # will make the
computation last forever.

Polarizationless P Systems with Active Membranes 139

li

�
�

�
�

�
�

�
�

�
�

�
�

r

l′i

li1 g

li2

6

@@I ���

6

- li3 - li4

lj/lk

?

r r

1

2

3

4 5

6

Fig. 2. The work of the ADD module

In Table 2 we present the rules used in the case of guessing that the register
r is not empty. Like in the case of simulating an ADD instruction, the auxiliary
objects and membranes do not play any role in this case.

Table 2. The simulation of a SUB instruction, guessing that register r is not empty

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i]r

[
s
d0 → d1]s

[
s
d1 [

r
l′i]r

. . . [
h

]
h
]
s

2 [
r
l′i]r

→ [
r
li1+]

r
[
r
li2+]

r
[
s
d1 → d2]s

[
s
d2[r

li1+]
r
[
r
li2+]

r
. . . [

h
]
h
]
s

3 [
r
li1+]

r
→ li3+ d2[h

]
h
→ [

h
d3]h

[
r
li2+]

r
→ li4+[

r
]
r

[
s
li3+li4+[

r
]
r
. . . [

h
d3]h

]
s

4 li3+[
r

]
r
→ [

r
g]

r
[
h
d3]h

→ d4[h
]
h

li4+[
r

]
r
→ [

r
li5+]

r
[
s
d4[r

li5+]
r
[
r
g]

r
. . . [

h
]
h
]
s

or [
s
li3+ → #]

s
, [

s
li4+ → #]

s
[
s
d4#[

r
]
r
. . . [

h
]
h
]
s

5 [
r
li5+]

r
→ li6+ [

s
d4 → d5]s

[
s
d5li6+[

r
]
r
. . . [

h
]
h
]
s

7 [
s
li6+ → lj]s

[
s
d5 → d0]s

[
s
ljd0[r

]
r
. . . [

h
]
h
]
s

In step 2 we divide the membrane r containing the object l′i and the objects
li1+, li2+ are introduced in the two new membranes. One of them is immediately
dissolved, thus the number of copies of membrane r remains unchanged; the ob-
jects li3+, li4+ are introduced in this step. In the next step (the fourth one of the
simulation), objects li3+, li4+ look for membranes r in the skin region. If both of
them find such membranes – and this is the correct/desired continuation – then
both of them enter such membranes; li3+ becomes g and li4+ becomes li5+. If only

140 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

one of them finds a membrane r, then the other one has to evolve to object # in
the skin membrane and the computation never halts.

li

�
�

�
�

�
�

�
�

�
�

�
�

6

@
@I

�
��

li3+

�
�

�
�g

6

� li4+ li5+

li6+

lj

6

�
�

�
�-

?

?

r

r r

r r

1

2

3 3δ

4

li3+ → #

4

li4+ → #

5 δ

6

l′i

li1+ li2+

Fig. 3. The simulation of a SUB instruction when guessing that the register is non-empty

If we had enough membranes r and li3+, li4+ went there, then in the next step
li5+ exits and is changed to li6+. In the sixth step, li6+ becomes lj (simultaneously
with introducing d0), and this completes the simulation. Thus, the computation
continues without having # present in the system if and only if the guess made
in step 2 has been correct, i.e., if register r has been non-empty. Because in step
5 a membrane r was dissolved, the number of these membranes was decreased by
one, and this corresponds to subtracting one from register r.

Figure 3 indicates the evolution of objects liu+ in the six steps mentioned in
Table 2; when a dissolving operation is used, this is indicated by writing δ near
the respective arrow.

However, in step 2, instead of the rule [
r
l′i]r → [rli1+]r[rli2+]r we can use the

rule [rl
′
i]r → [rli10]r[rli20]r, with the intention to simulate the subtract instruction

in the case when the register r is empty – that is, only one membrane with label
r is present in the system. The rules used in the six steps of the simulation are
given in Table 3.

In this case, the auxiliary objects du, u ≥ 0, and the auxiliary membrane h
play an essential role.

Polarizationless P Systems with Active Membranes 141

Table 3. The simulation of a SUB instruction, guessing that register r is empty

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i]r

[
s
d0 → d1]s

[
s
d1 [

r
l′i]r

. . . [
h

]
h
]
s

2 [
r
l′i]r

→ [
r
li10]r

[
r
li20]r

[
s
d1 → d2]s

[
s
d2 [

r
li10]r

[
r
li20]r

. . . [
h

]
h
]
s

3 [
r
li10]r

→ li30 d2[h
]
h
→ [

h
d3]h

[
r
li20]r

→ li40[r
]
r

[
s
li30li40 [

r
]
r
. . . [

h
d3]h

]
s

4 [
r
li30]r

→ [
r
g]

r
, li40 waits [

h
d3]h

→ d4[h
]
h

[
s
li40d4[r

g]
r
. . . [

h
]
h
]
s

or li40[r
]
r
→ [

r
#]

r
[
s
d4[r

#]
r
. . . [

h
]
h
]
s

or li40[h
]
h
→ [

h
l′k]

h
[
h
d3 → #]

h
[
s
[
r
g]

r
. . . [

h
l′k#]

h
]
s

5 li40[h
]
h
→ [

h
l′k]

h
[
s
d4 → d5]s

[
s
d5[r

]
r
. . . [

h
l′k]

h
]
s

6 [
h
l′k]

h
→ lk[

h
]
h

[
s
d5 → d0]s

[
s
lkd0[r

]
r
. . . [

h
]
h
]
s

li

�
�

�
�

�
�

�
�

�
�

�
�

li30

li10

l′i

li20

li40

6

@
@I

�
��

6 6

�
�

�
�g �

�
�

�
�#-

�
�

�
�

�
�

�
��

l′k lk-

�
�

�
�d3

6

d4 d5 d0d2d1d0
- - - - - -1 2 3 4 5 6

h

d3 → #

#

4 5 h

r

4

#

33
r

4

2

r r

δ

r

1

Fig. 4. The simulation of a SUB instruction when guessing that the register is empty

Until step 3 we proceed exactly as above, but now we introduce the objects
li30, li40. The first one can enter the available membrane r, there evolving to g. If

142 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

there is a second membrane r, i.e., if the guess has been incorrect, then the rule
li40[r]r → [r#]r should be used simultaneously (step 4), and the computation
never ends. If there is no second membrane r, then in step 4 li40, can also enter
membrane h, but then the trap object is produced here by the rule [hd3 → #]h.
The only way not to introduce the object # is (i) not to have a second membrane r,
(ii) to use the rule [hd3]h → d4[h]h, thus preventing the use of the rule li40[h]h →
[hl′k]h, and (ii) not sending li40 to the unique membrane r. This means that during
step 4 the object li40 should wait unchanged in the skin region.

�
�

�
�

�
�

�
�

�
�

�
�p -

��	 @@RA
A

A
AAK

- c′′c′p′′

p′

δ

1

1 1

δ
c-

out

�
�

�
�l′hlh

- -

1

δ

�
�

�
�

L
L

L
�
���

L
L
L
�

�
��

h

p′

δ

Fig. 5. The end of computations

In the next step, li40 can enter membrane h (or the unique membrane r, but
it becomes # there). In the next step, lk is released from membrane h, at the
same time with producing d0, hence, the simulation is completed correctly and
the system can pass to simulating another instruction.

The six steps of the computation are shown in Figure 4, this time with the
evolution of the auxiliary objects being indicated, too. The arrows marked with #
correspond to moves which are not desired.

For both guesses, the simulation of the SUB instruction works correctly, and
the process can be iterated.

If the computation in M halts, i.e., if lh is reached, i.e., if the object lh is
introduced in the skin region, we can start to use the following rules:

lh[1]1 → [1l
′
h]1,

[1l
′
h]1 → p,

p[
1

]
1
→ [

1
p′]

1
,

[1p
′]1 → [1p

′′]1[1c
′]1,

Polarizationless P Systems with Active Membranes 143

[1p
′′]1 → p,

[1c
′]1 → c′′,

[sc
′′]s → c[s]s,

p[h]h → [hp′]h,

[hp′]h → p.

The object lh dissolves one membrane with label 1 (thus, the remaining mem-
branes with this label are now as many as the value of register 1 of M), and
gets transformed into p. This object enters each membrane with label 1, divides
it, reproduces itself (after passing through p′ and p′′) and also produces a copy
of the object c′′; this happens when dissolving the two membranes with label 1
obtained by division (rule [1p

′]1 → [1p
′′]1[1c

′]1), hence, the number of copies of
the membrane with label 1 has decreased by one. The object c′′ immediately exits
the system, thereby being changed into c.

At any time, the object p can also enter membrane h and then dissolves it.
The computation can stop only after having dissolved all membranes with label 1
(i.e., a corresponding number of copies of c has been sent out) and after having
dissolved the membrane h, hence, the evolution of objects du, u ≥ 0, also stops.

The function of this final module is described in Figure 5.
Consequently, N(M) = Nmax(Π), and this concludes the proof. ut

Theorem 3 gives the same result as Theorem 3 from [1], with the additional
constraint to have evolution rules with exactly one object on the right-hand side
(neither producing more objects, nor erasing objects, as it is the case in [1]).

The previous proof can easily be changed in order to obtain the computational
completeness of P systems in the one-normal form also in the case of minimal
parallelism. Specifically, we can introduce additional membranes in order to avoid
having two or more evolution rules to be applied in the same region or one or more
evolution rules and one rule of types (b) – (e) which involve the same membrane
(these are the only situations where the minimal parallelism does not correspond
to the maximal parallelism; note that all rules of types (b) – (e) are associated
with membranes which are involved in the use of rules, hence, no two rules of these
types can be applied for the same membrane).

In the previous construction, situations as above which must be avoided are
the following ones:

– Rules [
s
li3+ → #]

s
and [

s
li4+ → #]

s
, in step 4 of the simulation of SUB for the

guess of a non-empty register. However, no other rule is applicable in the skin
region at that time. Applying at least one rule of this type means introducing
the trap object, hence, applying one of these rules is the same for the fate of
the computation as applying all possible rules of that kind.

– Steps 5 and 6 of the auxiliary module (see again Figure 1) are performed in
the skin region, in parallel with steps of modules from Figures 2 and 3. This
can be avoided by introducing one further auxiliary membrane, h′, in the skin

144 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

li

�
�

�
�

�
�

�
�

�
�

�
�

6

@@I ���

6

1

r

2
r r

li

li1 g

3

li1 li2

�
�

�
�- -

�
�

�
�

A
AAU

?

4 5

6

7

lj/k

li2

lj/k

h′′′

h′′′

Fig. 6. The work of module ADD, with equal objects in the rules

region, and replacing the rules [sd4 → d5]s, [sd5 → d0]s (both of them from
Rs) by the rules d4[h′]h′ → [h′d5]h′ and [h′d5]h′ → d0[h′]h′ . These rules are
associated with membrane h′, hence, they should be used in parallel with the
rules from the skin region.

– A further case when the maximal parallelism is important in the previous
construction is in step 4 of simulating a SUB instruction for the guess that the
register is empty (Figure 4): if rule li40[h]h → [hl′k]h is used in step 4, then also
the rule [hd3 → #]h must be used. In the minimally parallel mode this can be
ensured if we replace this latter rule by d3[h′′]h′′ → [h′′#]h′′ , where h′′ is one
further membrane, provided in the initial configuration inside membrane h. In
this way, the rule d3[h′′]h′′ → [h′′#]h′′ involves the new membrane h′′, hence,
it should be used in parallel with the rule li40[h]h → [hl′k]h. Of course, we also
need the rules [h′′# → #′]h′′ , [h′′#′ → #]h′′ , instead of the corresponding
rules from membrane h.

In this way, we obtain the following counterpart of Theorem 2 (note that we
use two further membranes, h′ and h′′):

Theorem 3. NminOPn1,∗((a1), (b1), (c1), (d1), (e1)) = NRE, for all n1 ≥ 7.

In the one-normal form we require that objects appearing on the left-hand
side of a rule are different from those appearing on the right-hand side. This
restriction can be reversed for rules of types (b) – (d): these rules can be of the
forms a[h]h → [hb]h, [ha]h → b[h]h, [ha]h → b, with a = b. The changes to be
made in the previous proofs are as suggested in Figures 6, 7, 8, 9, which present the
modules for simulating ADD and SUB instructions, in the two possible guesses,

Polarizationless P Systems with Active Membranes 145

li

�
�

�
�

�
�

�
�

�
�

�
�

li

li1+ li2+

6

@@I ���

6 6

li1+ li2+li3+

�
�

�
�

�

�
�

�	

1

r

2

r r

3δ 3

4

5

r

li3+

li3+ → #
li4+

�
�

�
�

-

@
@@R

�
�

�
�

?

?

lj

4

5

li4+ → #

r

r

6

7

li4+

lj

Fig. 7. The work of module SUB, when guessing that the register is non-empty, with
equal objects in the rules

as well as the final module, directly for the case of the minimally parallel way of
using the rules. This time we need seven steps for simulating an instruction of the
register machine and additional membranes h, h′, h′′, h′′′, with several evolution
steps done inside new membranes in order to change the objects (for instance, this
is the case for step 6 from Figure 6, which is done by using the rule [h′′′ li2 → lα]h′′′

for α ∈ {j, k}. The technical details are left to the reader.
One further observation is that the previous systems can easily be modified

in order to work in the accepting mode: we introduce the number to be analyzed
in the form of the multiplicity of membranes with label 1 initially present in the
skin membrane (for number n we start with n+1 membranes [1]1 in the system)
and we work exactly as above, with the final module now having only the task
of dissolving the auxiliary membrane with label h, thus halting the computation
(the module can be changed, because it is no longer necessary to send out of the
system objects c corresponding to the copies of membrane with label 1 present in
the end of the computation, but this is not essential).

Consequently, all the previous results, for both minimally and maximally par-
allel use of rules, are valid also for accepting P systems in the one-normal form.

5 Efficiency Results

We now pass to proving the efficiency result mentioned in the Introduction – this
time, the system is not in the one-normal form, and it remains as an interesting
research topic to check whether this is possible or not.

146 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

li

�
�

�
�li

�
�

�
�

�
�

�
�

6

@@I ���

li10 li20

li10 l120

6 6

li30

�
�

�
�

�

�
��/

1

r

r
2

r

3 δ 3

4

5

r

li30

li40

�
�

�
�

�
�

�
�

-

@
@
@R

?

4

5

r

r

6

li40

#

�
�

�
��

�
�
�

�
�

�
�

A
A

A
A

A
A

AAK

6

-

J
J
Ĵ

lk

7h h

6

5

li40 lk

5

#

d3

h

�
�

�
�--d2 d3

-
3 4 5

h

d4 d0- -
6 7

d1

d0

6

-

1

2
d2

d3[h′′]
h′′ → [

h′′d3]h′′

[
h′′d3 → #]

h′′

Fig. 8. The work of module SUB, when guessing that the register is empty, with equal
objects in the rules

5.1 Solving SAT by Polarizationless P Systems

Below we give an efficient semi–uniform solution to the satisfiability problem by
using P systems with polarizationless active membranes working in the minimally
parallel mode.

Theorem 4. The satisfiability of any propositional formula in the conjunctive nor-
mal form, using n variables and m clauses, can be decided in a linear time with
respect to n by a polarizationless P system with active membranes, constructed in
a semi-uniform way in linear time with respect to n and m, and working in the
minimally parallel mode.

Proof. Let us consider a propositional formula ϕ = C1 ∧ . . . ∧ Cm such that each
clause Cj , 1 ≤ j ≤ m, is of the form Cj = yj,1 ∨ . . . ∨ yj,kj

, kj ≥ 1, for yj,r ∈
{xi,¬xi | 1 ≤ i ≤ n}. For each i = 1, 2, . . . , n, let us denote

Polarizationless P Systems with Active Membranes 147

�
�

�
�

�
�

�
�

�
�

�
�

p′

p′′
p′

p′′ c c c

?

- -
S

S
So

��	 @@R δ out
δ

1

1 1

p

6

-

�
�

�
�

�
�

�
�

lh

lh p

6

- -

1 1

δ

�
�

�
�p′

h

����XXXXz

����PPPPi

δ

Fig. 9. The work of the final module, with equal objects in the rules

t(xi) = {cj | there is r, 1 ≤ r ≤ kj , such that yj,r = xi},
f(xi) = {cj | there is r, 1 ≤ r ≤ kj , such that yj,r = ¬xi}.

These are the sets of clauses which assume the value true when xi is true, and
false when xi is false, respectively.

We construct the P system Π(ϕ) with the following components (the output
membrane is not necessary, because the result is obtained in the environment):

O = {ai, fi, ti | 1 ≤ i ≤ n}
∪ {cj , dj | 1 ≤ j ≤ m}
∪ {pi | 1 ≤ i ≤ 2n + 7}
∪ {qi | 1 ≤ i ≤ 2n + 1}
∪ {ri | 1 ≤ i ≤ 2n + 5}
∪ {b1, b2, y, yes, no},

H = {s, s′, p, q, r, 0, 1, 2, . . . ,m},
µ = [s[s′ [p]p[0[q]q[r]r[1]1[2]2 . . . [m]m]0]s′]s,

wp = p1, wq = q1, wr = r1, w0 = a1,

ws = ws′ = wj = λ, for all j = 1, 2, . . . ,m.

The set of evolution rules, R, consists of the following rules:

(1) [pi → pi+1]p, for all 1 ≤ i ≤ 2n + 6,
[qi → qi+1]q

, for all 1 ≤ i ≤ 2n,
[ri → ri+1]r, for all 1 ≤ i ≤ 2n + 4.
These rules are used for evolving counters pi, qi, and ri in membranes with
labels p, q, and r, respectively.

(2) [ai]0 → [fi]0[ti]0, for all 1 ≤ i ≤ n,
[fi → f(xi)ai+1]0 and [ti → t(xi)ai+1]0, for all 1 ≤ i ≤ n− 1,

148 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

[fn → f(xn)]0,
[tn → t(xn)]0.
The goal of these rules is to generate the truth assignments of the n variables
x1, . . . , xn, and to analyse the clauses satisfied by xi and ¬xi, respectively.

(3) cj [] j → [cj] j and [cj] j → dj , for all 1 ≤ j ≤ m.
In parallel with the division steps, if a clause Cj is satisfied by the previously
expanded variable, then the corresponding object cj enters membrane j in
order to dissolve it and to send objects dj to membrane 0.

(4) [q2n+1]q → q2n+1[]q,

[q2n+1 → b1]0.
By using these rules the counter q produces an object b1 in each membrane 0.

(5) b1[] j → [b1] j and [b1] j → b2, for all 1 ≤ j ≤ m,
[b2]0 → b2.
These rules allow to detect whether the truth assignment associated with a
membrane 0 assigns the value false to the formula (in that case, the membrane
0 will be dissolved).

(6) [p2n+7]p → p2n+7[]p,

[p2n+7]s′ → no[]s′ ,
[no]s → no[]s,
[r2n+5]r → r2n+5,
[r2n+5]0 → y[]0,
[y]s′ → yes,
[yes]s → yes[]s.
These rules produce the answer of the P system.

An overview of the computations in the P system

For the sake of readability, the initial configuration is given in Figure 10.
The membranes with labels p, q, and r, with the corresponding objects pi, qi,

and ri, respectively, are used as counters, which evolve simultaneously with the
main membrane 0, where the truth assignments of the n variables x1, . . . , xn are
generated; the use of separate membranes for counters makes possible the correct
synchronization even for the case of the minimal parallelism. The evolution of
counters is done by the rules of type (1).

In parallel with these rules, membrane 0 evolves by means of the rules of type
(2). In odd steps (from step 1 to step 2n), we divide the (non-elementary) mem-
brane 0 (with fi, ti corresponding to the truth values false, true, respectively, for
variable xi); in even steps we introduce the clauses satisfied by xi,¬xi, respectively.
When we divide membrane 0, all inner objects and membranes are replicated; in
particular, all membranes with labels 1, 2, . . . ,m, as well as membranes q and r,
are replicated, hence, they are present in all membranes with label 0.

This process lasts 2n steps. At the end of this phase, all 2n truth assignments
for the n variables have been generated and they are encoded in membranes labeled
by 0.

Polarizationless P Systems with Active Membranes 149

'

&

$

%

'

&

$

%

�
�

�
�

'

&

$

%

�
�

�
�

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�

s
s′

p

p1

0
q r

q1 a1 r1

1 2 m

. . .

Fig. 10. The initial configuration of the system from the proof of Theorem 4

In parallel with the division steps, if a clause Cj is satisfied by the previously
expanded variable, then the corresponding object cj enters membrane j, by means
of the first rule of type (3), permitting its dissolution by means of the second rule
of that type and sending objects dj to membrane 0.

This is done also in step 2n+1, in parallel with using the rules of type (1) and
(4) for evolving membranes p, q, and r.

In step 2n+2, the counters pi and ri keep evolving and the second rule of type
(4) produces an object b1 in each membrane 0.

Thus, after 2n + 2 steps, the configuration C2n+2 of the system consists of
2n copies of membrane 0, each of them containing the membrane p empty, the
membrane r with the object r2n+3, possible objects cj and dj , 1 ≤ j ≤ m, as
well as copies of those membranes with labels 1, 2, . . . ,m corresponding to clauses
which were not satisfied by the truth assignment generated in that copy of mem-
brane 0. The membranes associated with clauses satisfied by the truth assignments
generated have been dissolved by the corresponding object cj . Moreover, in that
configuration the membrane p contains the object p2n+3, and membranes s′ and
s are empty.

Therefore, formula ϕ is satisfied if and only if there is a membrane 0 where all
membranes 1, 2, . . . ,m have been dissolved. In order to check this last condition,
we proceed as follows.

In step 2n+3 we use the first rule of type (5) which introduces the object b1 in a
membrane j which has not been dissolved (this is made in a non–deterministically
manner). In parallel, the counters q and r follow with evolving. The object b1

in membrane j (step 2n + 4) dissolves that membrane producing an object b2 in
membrane 0.

In step 2n + 5 the counter r2n+5 exits from membrane r and, simultaneously,
each membrane 0 containing an object b2 is dissolved by the third rule of type (5).

150 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

Then, formula ϕ is satisfied if and only if in the configuration C2n+5 there exists a
membrane 0 that has not been dissolved (and thus containing the object r2n+5).

In the next step, the counter qi evolves to q2n+7 in membrane q, and if there
is a membrane 0 that has not been dissolved, the object r2n+5 sends an object y
to membrane s′. On the contrary, only the counter qi evolves.

In step 2n + 7 the counter p2n+7 exits from membrane p to membrane s′, by
applying the first rule of type (6). If the formula ϕ is satisfiable then an object
y dissolves the membrane s′ by applying the sixth rule of type (6) producing an
object yes in the skin. In the next step, this object is sent to the environment
and the P system halts. On the contrary, if membrane s′ has not been dissolved,
the object p2n+7 in membrane s′ produces an object no in the skin, by using the
second rule of type (6); in the next step an object no is sent to the environment
and the system halts.

Therefore, if the formula is satisfiable, then the object yes exits the system
in step 2n + 8, and, if the formula is not satisfiable, then the object no exits the
system in step 2n + 9. In both cases, this is the last step of the computation.

The system Π(ϕ) uses 9n+2m+18 objects, m+6 initial membranes, containing
in total 4 objects, and 8n + 4m + 21 rules. The length of any rule is bounded by
m + 3. Clearly, all computations stop (after at most 2n + 9 steps) and all give the
same answer, yes or no, to the question whether formula ϕ is satisfiable, hence,
the system is weakly confluent. These observations conclude the proof. ut

Remark 1. 1. The system used in the previous proof is not in the one-normal
form, because the rules of type (b) are of the form [ha → u]h with u being an
arbitrary multiset. Because the maximal length of such strings u is known (m+
1), we can replace each rule of this form by m rules, each of them introducing
two objects; using rules of the form [ha → b]h, we can also synchronize the
applications of rules, hence, at the price of getting a computation m times
longer, we can obtain a sort of two-normal form. Of course, the rules of types
(b), (c), (d) can be also arranged to have either different objects or identical
objects. We leave the details as a task for the reader, together with the more
interesting issue of finding a polynomial solution to SAT by a system in the
one-normal form.

2. Let us note that we can design a deterministic P system Π(ϕ) working in
minimally parallel mode which decides the satisfiability of ϕ. To this aim,
it is enough to have m copies of the object b1 in each membrane 0 of the
configuration C2n+2. For that, the rule [q2n+1 → b1]0 can be replaced by
[q2n+1 → bm

1]0.
3. As a consequence of Theorem 4 we obtain the inclusion of NP∪ co−NP in

the class of all decision problems solvable in polynomial time in a semi–uniform
way by a family of P systems with polarizationless active membranes working
in the minimally parallel mode (let us recall that due to the confluence of the
P systems solving a decision problem, every P system that decides an instance
working in minimally parallel mode, also decides it working in the maximally
parallel mode, but the reciprocal is not true).

Polarizationless P Systems with Active Membranes 151

5.2 A Formal Verification

In order to assure that the system Π(ϕ) decides the instance ϕ, two main properties
must to be proved: (a) if there exists an accepting computation of the P system
processing ϕ, answering yes, then the problem also answers yes for that instance
(soundness), and (b) if the problem answers yes, then any computation of the P
system processing that instance answers yes (completeness). Hence, the system
Π(ϕ) must satisfy a condition of confluence: every computation of the system has
the same output.

To prove that the system Π(ϕ) is sound and complete with respect to the SAT
problem, it is sufficient to show that a truth assignment makes true the formula ϕ
if and only if in the configuration C2n+5 there is at least a membrane labeled by 0
that has not been dissolved.

If σ is a truth assignment on a set of variables {x1, . . . , xn}, then we write
σ(xi) = f or σ(xi) = t.

Lemma 2. For each i (1 ≤ i ≤ n) the following conditions hold true:

1. C2i−1(p) = {p2i}, C2i−1(s) = C2i−1(s′) = ∅.
2. For each truth assignment σ on {x1, . . . , xi} there exists a unique membrane

0 such that its contents is

{(σ(xi))i} ∪ {dj | cj ∈
⋃

1≤l≤i−2

(σ(xl))(xl) ∧ i ≥ 3}

∪ {cj | cj ∈
⋂

1≤l≤i−1

(σ(xl))(xl) ∧ i ≥ 3}.

Moreover, it inside contains a membrane labeled by q which contains the object
q2i, a membrane labeled by r which contains the object r2i, and empty inner
membranes j, where 1 ≤ j ≤ m; moreover, if i ≥ 2, then:

(a) cj /∈
⋂

1≤l≤i−2

(σ(xl))(xl),

(b) if cj ∈ (σ(xi−1))(xi−1)−
⋂

1≤l≤i−2

(σ(xl))(xl), then C2i−1(j) = {cj}.

3. C2i(p) = {p2i+1}, C2i(s) = C2i(s′) = ∅.
4. For each truth assignment σ on {x1, . . . , xi} there exists a unique membrane

0 such that its contents is

{(σ(xi))(xi), ai+1} ∪ {dj | cj ∈
⋃

1≤l≤i−1

(σ(xl))(xl) ∧ i ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤i−1

(σ(xl))(xl) ∧ i ≥ 3},

where an+1 = λ.
Furthermore, it contains inside a membrane labeled by q which contains the
object q2i+1, a membrane labeled by r which contains the object r2i+1, and

152 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

empty inner membranes j, where 1 ≤ j ≤ m; moreover, if i ≥ 2, then cj /∈⋂
1≤l≤i−1

(σ(xl))(xl).

Proof. By induction on n. It is easy to prove the base case. Let us suppose that
the result holds for i (1 ≤ i < n).

From the induction hypothesis, we deduce that the configuration C2i+1 is
obtained from C2i by applying the rules [p2i+1 → p2i+2]p, [q2i+1 → q2i+2]q,
[r2i+1 → r2i+2]r, [ai+1]0 → [fi+1]0[ti+1]0, and cj [] j → [cj] j (1 ≤ j ≤ m).

Hence, we have C2i+1(p) = {p2i+2} and C2i+1(s) = C2i+1(s′) = ∅. Moreover,
for each truth assignment σ on {x1, . . . , xi, xi+1} there exists a unique membrane
0 which contains

{(σ(xi+1))i+1} ∪ {dj | cj ∈
⋃

1≤l≤i−1

(σ(xl))(xl) ∧ i ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤i

(σ(xl))(xl) ∧ i ≥ 3}.

This membrane 0 inside contains a membrane labeled by q which contains the
object q2i+2, a membrane labeled by r which contains the object r2i+2, and inner
membranes j such that:

• if i ≥ 2 and cj ∈
⋂

1≤l≤i−1

(σ(xl))(xl), then membrane j has been dissolved,

• if i ≥ 2 and cj ∈ (σ(xi))(xi)−
⋂

1≤l≤i−1

(σ(xl))(xl), then C2i+1(j) = {cj};

• the remaining membranes are empty.

The configuration C2i+2 is obtained from C2i+1 by applying the rules [p2i+2 →
p2i+3]p, [q2i+2 → q2i+3]q; [r2i+2 → r2i+3]r, [fi+1 → f(xi+1ai+1]0, [ti+1 →
t(xi+1)ai+1]0, where an+1 = λ, and cj [] j → [cj] j (1 ≤ j ≤ m).

Hence, we have C2i+2(p) = {p2i+3} and C2i+2(s) = C2i+2(s′) = ∅. Moreover,
for each truth assignment σ on {x1, . . . , xi, xi+1} there exists a unique membrane
0 which contains

{(σ(xi+1))(xi+1)} ∪ {dj | cj ∈
⋃

1≤l≤i

(σ(xl))(xl) ∧ i ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤i

(σ(xl))(xl) ∧ i ≥ 3}

That membrane 0 inside contains a membrane labeled by q which contains the
object q2i+3, a membrane labeled by r which contains the object r2i+3, and empty
inner membranes j, where 1 ≤ j ≤ m; if i ≥ 2, then cj /∈

⋂
1≤l≤i

(σ(xl))(xl). ut

Lemma 3. The configuration C2n+5 fulfills the following conditions:

Polarizationless P Systems with Active Membranes 153

1. C2n+5(p) = {p2n+6}, C2n+5(s) = ∅, and the content of C2n+5(s′) is

{bu
2 , ru

2n+5} ∪ {dj | cj ∈
⋃

1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 3},

where u is the number of truth assignment σ such that σ(ϕ) = 0.
2. For each assignment σ which satisfies the formula ϕ there exists a unique

membrane 0 whose contents is

{r2n+5} ∪ {dj | cj ∈
⋃

1≤l≤n

(σ(xl))(xl) ∧ n ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤n

(σ(xl))(xl) ∧ n ≥ 3}.

Corollary 1. The formula ϕ is satisfiable if and only if in the configuration C2n+5

there is at least a membrane labeled by 0 that has not been dissolved.

Proof. Indeed, a truth assignment σ is a satisfying assignment if and only if in
the configuration C2n+4 the object b1 from the membrane 0 associated with the
assignment σ has not entered any membrane j (1 ≤ j ≤ m), because all such
membranes have been dissolved in previous steps. But this condition is equivalent
to the existence of some membrane labeled by 0 in the configuration C2n+5. ut

Corollary 2. Let u be the number of truth assignments σ such that σ(ϕ) = 0, and
let C be a computation of Π(ϕ).

1. If the formula ϕ is satisfiable, then C2n+8(p) = ∅, the contents of C2n+8(s) is

{bu
2 , ru

2n+5, y
n−u−1, p2n+7} ∪ {dj | cj ∈

⋃
1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 3},

C2n+8(env) = yes, and the system halts giving an affirmative answer.
2. If the formula ϕ is not satisfiable, then C2n+8(p) = ∅, the contents of C2n+8(s′)

is

{bu
2 , ru

2n+5, y
n−u} ∪ {dj | cj ∈

⋃
1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 3},

C2n+8(s) = {no}, C2n+9(p) = ∅, C2n+9(s) = ∅, C2n+9(env) = no, and the
system halts giving a negative answer.

154 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

6 Final Remarks

We have shown that P systems with polarizationless active membranes are compu-
tationally complete, even when working in the minimally parallel mode with very
restricted forms of the rules, i.e., only evolving one object in or through a mem-
brane (one-normal form). Moreover, we have also shown that SAT can be solved
by P systems with polarizationless active membranes even when working in the
minimally parallel mode, but in this case the question whether we can restrict the
rules to the one-normal form remains as an open problem.

Acknowledgements

The work of Gh. Păun was partially supported by Project BioMAT 2-CEx06-
11-97/19.09.06. The work of M.J. Pérez-Jiménez was supported by the project
TIN2005-09345-C04-01 of the Ministerio de Educación y Ciencia of Spain, co–
financed by FEDER funds, and of the project of Excellence TIC 581 of the Junta
de Andalućıa.

References

1. A. Alhazov: P systems without multiplicities of symbol-objects. Information Pro-
cessing Letters, 100 (2006), 124–129.

2. A. Alhazov, M.J. Pérez-Jiménez: Uniform solution to QSAT using polarizationless
active membranes, Vol. I of Proc. of the Fourth Brainstorming Week on Membrane
Computing, Sevilla (Spain), Jan 30 - Feb 3, 2006, 29–40.

3. A. Alhazov, R. Freund, On efficiency of P systems with active membranes and two
polarizations. In [7], 81–94.

4. A. Alhazov, R. Freund, Gh. Păun: Computational completeness of P systems with
active membranes and two polarizations. In Machines, Computations, and Universal-
ity. 4th Intern. Conf. Sankt Petersburg, Russia, 2004, LNCS 3354 (M. Margenstern,
ed.), Springer, 2005, 82–92.

5. G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez: P systems with minimal paral-
lelism. Theoretical Computer Sci., to appear.

6. J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, 1979.

7. G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.: Membrane
Computing, International Workshop, WMC5, Milano, Italy, 2004, Selected Papers.
Lecture Notes in Computer Science 3365, Springer-Verlag, Berlin, 2005.

8. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

9. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61 (2000), 108–143.

10. Gh. Păun: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

11. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.

Polarizationless P Systems with Active Membranes 155

12. Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.: Proceed-
ings of the Second Brainstorming Week on Membrane Computing, Sevilla, February
2004. Technical Report 01/04 of Research Group on Natural Computing, Sevilla
University, Spain, 2004.

13. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: Teoria de la comple-
jidad en modelos de computacion celular con membranas. Kronos Editorial, Sevilla,
2002.

Spiking Neural P Systems:
Stronger Normal Forms

Marc Garćıa-Arnau1, David Peréz1, Alfonso Rodŕıguez-Patón1, Petr Sośık1,2

1 Universidad Politécnica de Madrid - UPM, Facultad de Informática
Campus de Montegancedo s/n, Boadilla del Monte
28660 Madrid, Spain mgarnau@dia.fi.upm.es

2 Institute of Computer Science, Silesian University
74601 Opava, Czech Republic petr.sosik@fpf.slu.cz

Summary. Spiking neural P systems are computing devices recently introduced as a
bridge between spiking neural nets and membrane computing. Thanks to the rapid re-
search in this field there exists already a series of both theoretical and application studies.
In this paper we focus on normal forms of these systems while preserving their compu-
tational power. We study combinations of existing normal forms, showing that certain
groups of them can be combined without loss of computational power, thus answering
partially open problems stated in [8, 9]. We also extend some of the already known nor-
mal forms for spiking neural P systems considering determinism and strong acceptance
condition. Normal forms can speed-up development and simplify future proofs in this
area.

1 Introduction

Spiking neural P systems (SN P systems) are a rather new bio-inspired computa-
tional model that incorporates to membrane computing [6] some ideas from spiking
neurons [3], [4].

Since they were first presented in [2], the number of publications dealing with
this model is constantly growing. An interesting review on the current research
topics in SN P systems can be found in [9].

Informally, an SN P system consists of a set of neurons placed in the nodes of
a graph that are linked by synapses. These neurons send signals (spikes) along the
arcs of the graph. To do so, the neurons contain firing or spiking rules which are
of the form E/ar → a; t with E being a regular expression, r being the number of
spikes consumed by the rule and t being the delay from firing the rule and emitting
the spike. A firing rule can be only used if the number n of spikes collected by the
neuron is such that an ∈ L(E), that is, an is covered by the regular expression E,
and n ≥ r. The neurons also have an interesting feature imitating the refractory
period of real neural cells. Thus, a neuron in an SN P system is closed/blocked

158 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

for exactly t time steps after firing. During this period it cannot fire again. The
second type of rules have the form as → λ and are called forgetting rules. They
are used to simply forget (remove) s spikes from a cell. SN P systems start from
an initial configuration of spikes and evolve in a synchronized manner (a global
clock is assumed for the whole system). One of the neurons is designated as the
output cell and the spikes it sends to the environment constitute the output of the
system.

The first work in SN P systems [2] presented them as devices generating or
accepting sets of natural numbers. Their universality was proven when no bound
is imposed on the number of spikes. Otherwise, only a characterization of semilinear
sets is obtained. Later, a new paper [8] dealing with normal forms of the model
attacked its universality trying to improve the previous proofs. In that article,
universality results were obtained even if some of the main features of the model
were weakened. For instance, universality was proven even without the use of
delays. Furthermore, the outdegree of neurons was reduced to the minimal bound
of two. Next, SN P systems were found to be also universal when forgetting rules
were removed and, finally, computational completeness was still achieved when
using the simplest possible regular expressions λ and a∗ over the alphabet {a} in
firing rules. Another work [10] has also shown that not only the outdegree but also
the indegree of neurons can be bound to two without loosing universality.

In the present paper, we deal with some of the open problems stated in [8].
Actually, we try to keep the universality of the model when eliminating two of
its key features simultaneously. Interesting results have been obtained. Surpris-
ingly, SN P systems are still universal when we use neither delays nor forgetting
rules. Moreover, one can also eliminate delays while simplifying regular expressions
and the model keeps its computational completeness. Finally, we have proven the
universality of the model in two more cases: 1) using simple regular expressions
with strong halting condition and 2) using simple regular expressions with SN P
systems working in the accepting mode.

In all these cases, the reader will observe that the simultaneous elimination of
two features of the model has a price in terms of other complexity parameters,
such as the maximal number of firing rules in a neuron, the complexity of regu-
lar expressions, the maximum number of spikes consumed in a firing rule or the
maximal number of spikes removed in a forgetting rule.

The remainder of the paper is organized as follows. Section 2 presents some
important definitions. In section 3 we present the universality result of the model
using neither delays nor forgetting rules. Section 4 describes the power of SN P
systems with simple regular expressions that do not use delays. Some more aspects
concerning regular expressions are revisited in section 5. The paper concludes with
some final remarks in section 6.

Spiking Neural P Systems: Stronger Normal Forms 159

2 Definitions

In this section, we recall some useful definitions. We consider the reader to be
familiar with elements of membrane computing. One can find in [11] the most
updated information on this area. The reader is considered to be familiar with
elements of language and automata theory, as well.

Nevertheless, we recall some basic notation. Let V denote an alphabet, while
V ∗ denotes the set of all finite strings of symbols from V . The set of nonempty
strings over V is denoted by V + and λ denotes the empty string. The length of a
string x ∈ V ∗ is denoted by |x|. In the domain of SN P systems, the alphabet V
contains only one symbol, i.e., the alphabet is a singleton V = {a}. Then a∗ and
a+ are normally used instead of {a}∗ and {a}+.

A spiking neural membrane system (abbreviated as SN P system), of a degree
m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1)E/ar → a; t, where E is a regular expression over a, r ≥ 1, and t ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →

a; d of type (1) from Ri, we have as /∈ L(E);
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
4. i0 ∈ {1, 2, . . . ,m} indicates the output neuron (i.e., σi0 is the output neuron).

The rules of type (1) are firing rules (also called spiking rules). The notation
E/ar → a, t means that when the number of spikes present in a neuron is covered
by the regular expression E, the neuron gets fired, r spikes are consumed and, after
t time steps, one spike is emitted by the neuron to all its neighbors (the system is
synchronized, a global clock is assumed for all its cells).

In a SN P system we have maximal parallelism at the level of the system as, in
one step, all neurons that can use a rule have to use it. However, at the neuronal
level, we work in a sequential mode with at most one rule used in each step by a
neuron. SN P systems also incorporate an interesting bio-inspired feature called
the refractory period. In the interval between using a spiking rule (getting fired)
and releasing the spike, the neuron is assumed to be closed (it omits any other
spike received during this interval and, of course, it cannot fire). Then, if t = 0

160 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

there is no restriction and the neuron can receive spikes in the same step it uses
the rule. Similarly, a neuron can receive spikes in moment t when t ≥ 1. When
a neuron spikes, its spike is replicated to all its neighboring neurons that are not
closed in that moment. These spikes are available in the receiving neuron already
in the next step, so the transmission of a spike takes no time.

The rules of type (2) are called forgetting rules. They are written as as → λ
and they can be applied only when the neuron contains exactly s spikes. After
applying one of these rules, s spikes are simply removed from the cell.

Firing rules can be used in a non-deterministic way, that is, a neuron may con-
tain two firing rules E1/a

r1 → a; t1 and E2/a
r2 → a; t2 such that L(E1)∩L(E2) 6=

∅. However, this non-determinism is not allowed between firing and forgetting rules,
that is, in a single step a neuron has either to fire or forget, without being possible
to freely choose between these two actions. This is called the minimal determinism-
like restriction or the coherence condition. Hence, we just allow branching in the
case of spiking rules.

We define a computation of an SN P system as a sequence of steps during which
rules are applied in the above described parallel manner. A computation starts in
the initial configuration when each neuron σi contains ni spikes, 1 ≤ i ≤ m. A
halting computation is that in which the system reaches a configuration where no
more rules can be applied. A computation is called strong halting if, in addition,
no spike is present in the system when it halts.

The usual way of interpreting outputs of SN P systems is considering inter-
vals in which the output neuron i0 spikes (not when it fires). For simplicity, one
considers as successful only computations with the output neuron spiking at least
twice. The set of numbers computed by an SN P system in this way is denoted
by N2(Π). If we take into consideration only the computations having exactly 2
spikes (strong case) then this set is written as N2(Π). Similarly, if only halting
(strong halting) computations are taken into the account, we denote the resulting

sets by Nh
2 (Π) (N

h
2 (Π), respectively). The reader will find in [7] and [8] several

other relevant definitions.
We denote by Spikβ2Pm(rulek, consp, forgq, dleyr, outds) the family of all sets

Nβ
2 (Π) (with β = {h, h}), for all systems Π with at most m neurons, each neuron

having at most k rules, each of the spiking rules consuming at most p spikes,
each of the forgetting rules removing no more than q spikes, with all spiking rules
having a delay small or equal to r and with all neurons having at most s outgoing
synapses. We also may write rule∗k if the firing rules are of the form E/ar → a; t
with the regular expression of one of the forms E = λ or E = a∗ (in the former
case the rule is written as ar → a; t to simplify).

Finally, we define a register machine, which is the computational model used
to prove the universality of SN P systems, as it is known (see [5]) that register
machines (even with a small number of registers, although this detail is not relevant
here) characterize NRE.

A register machine is a construct M = (m,H, l0, lh, I), where m is the number
of registers, H is the set of instruction labels, l0 is the start label (labeling an

Spiking Neural P Systems: Stronger Normal Forms 161

ADD instruction), lh is the halt label (assigned to the instruction HALT), and I is
the set of instructions. Each label from H labels only one instruction from I (but
the same instruction may be assigned to more labels). The instructions are of the
following forms:

• l1 : (ADD(r), l2, l3) (add 1 to register r and then go to one of the instructions
with labels l2, l3),

• l1 : (SUB(r), l2, l3) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label l2, otherwise go to the instruction with label l3),

• lh : HALT (the halt instruction).

A register machine M computes a number n in the following way: we start
with all registers empty (storing the number zero), we apply the instruction with
label l0 and we proceed to apply instructions as indicated by the labels (and made
possible by the contents of registers). If we reach the halt instruction, then the
number n stored at that time in the first register is said to be computed by M .
Therefore N(M) denotes the set of all numbers computed by the register machine
M .

Without loss of generality, we may assume in the next sections that in the
halting configuration, all registers different from the first one are empty, and that
the output register is never decremented during the computation, we only add to
its contents.

A register machine can also work in the accepting mode: a number n is intro-
duced in the first register (all other registers are empty) and we start computing
with the instruction with label l0; if the computation eventually halts, then the
number n is accepted. Register machines are universal also in the accepting mode;
moreover, this is true even for deterministic machines, having ADD rules of the
form l1 : (ADD(r), l2, l3) with l2 = l3 (in such a case, the instruction is written in
the form l1 : (ADD(r), l2)). Again, without loss of generality, we may assume that
in the halting configuration all registers are empty.

3 Removing Delays and Forgetting Rules Simultaneously

In this section we extend the original result of Theorem 3.1 of [2], paying special
attention to delays and forgetting rules. As it was shown in [8], computational
completeness is achieved when eliminating each one of these two parameters sep-
arately. Here, we extend these results demonstrating that SN P Systems are also
universal when eliminating both delays and forgetting rules at the same time. Si-
multaneously, we have also bounded the outdegree of neurons to two. However,
for the sake of clarity, we don’t show it graphically in our demonstration.

Nevertheless, this elimination has a price in terms of other parameters. Namely,
the maximal number of rules used in a neuron rises to three and we lose the strong
halting condition. As all rules we use have delay 0, we write them in the simpler
form E/ar → a, that is, omitting the delay.

162 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

Theorem 1. Spikβ2P∗(rule3, cons3, forg0, dley0, outd2) = NRE, where β = h or
β is omitted.

Proof. The inclusion Spikβ2P∗(rule∗, cons∗, forg∗, dley∗, outd∗) ⊆ NRE is
straightforward and therefore we omit it (Turing-Church thesis). To complete the

proof we must show NRE ⊆ Spikβ2P∗(rule3, cons3, forg0, dley0, outd2). As in other
demonstrations, we will construct an SN P system (Π) spiking only twice, at an
interval of time which corresponds to a number computed by a register machine
M . Our system consists of modules simulating the ADD and SUB instructions and
the output module FIN which takes care of the final spiking of the system Π .

Every register r of M will be associated to a neuron of Π . However, in contrast
with some other previous demonstrations, a register containing the value n will
hold 2n+ 2 spikes. Any register representing the value 0 will therefore contain a
couple of spikes. This slight modification in the way of representing numbers will
allow us to detect correctly whether a register contains the value 0 in the SUB
module without making use of delays or forgetting rules.

Simulating an ADD instruction li : (ADD(r), lj , lk) – module ADD (Fig-
ure 1).

This instruction adds one to the register r and branches non-deterministically
to label lj or lk. This module is initiated when a spike enters neuron li (we can
assume that the initial instruction of M , labeled with l0, is always an ADD in-
struction). The neuron li sends then one spike to neurons c1 and c2. In the next
step, one spike coming from each of these neurons reaches the neuron r, adding
one to the content of the register. At the same time, the spike emitted by c1 arrives
to c3 (which will in turn be send to c6 in the following step) and c4, while the spike
of c2 reaches c4 and c5. Neuron c4 will allow us to branch non-deterministically
to either lj or lk. If c4 uses the rule a2 → a, then two spikes will be blocked in
c8 (those coming from c4 and c5), while just one will arrive to neuron c7 waiting
for another one to come. In the next step, the spike from c6 reaches also c7 and it
gets fired, activating neuron lj one step later.

On the other hand, if c4 uses the rule a2/a→ a it consumes only one of its two
spikes. This means that, in the following step, c7 receives one spike and c8 receives
two (from c4 and c5). One step later, c4 uses its rule a → a and sends another
spike to c7 (which also receives the one from c6 and therefore cannot fire) and to
c8 that now contains three spikes and fires, activating lk in the following step.

The reader will appreciate that, after each ADD instruction, neurons c7 and
c8 will hold 3 or 2 spikes, respectively, depending on the rule selected in the non-
deterministic neuron c4. Thanks to the regular expressions used in the rules of c7

and c8, this does not disturb further computations using this instruction.
In this construction, neurons c1 and c2 have an outdegree of three. However, it

is trivial to see that it could be reduced to two by placing more neurons between
them and neurons c3, c4 and c5, as it is explained in Section 5 of [8].

Simulating a SUB instruction li : (SUB(r), lj , lk) – module SUB (Figure 2).

Spiking Neural P Systems: Stronger Normal Forms 163

Fig. 1. Module ADD (simulating li : (ADD(r), lj , lk))

The module is initiated when a spike is sent to neuron li. This neuron fires
and its spike reaches neurons d1, d2 and r. The three rules of neuron r allow
us to differentiate whether the register is empty or not. As we have previously
explained, storing the value n means to contain 2n+ 2 spikes. Thus, when r > 0,
(i.e., it contains at least 4 spikes) the spike coming from li makes the neuron fire
(rule aaa(aa)+/a3 → a) sending a spike to d4 and d5. At the same time, another
spike coming from d2 reaches d5, not allowing it to fire. In parallel, a spike is sent
from d1 to d3 and, in the following step, it arrives to d4. This neuron fires because
it already contains two spikes, allowing us to finally reach lj .

On the other hand, when r stores number zero (it contains 2 spikes), the spike
received from li fires the rule a3/a2 → a. Then neuron r spikes, consuming two of
the three spikes it contains. This spike is sent to neurons d4 and d5. Another spike
reaches d5 simultaneously (from d2), while d3 receives the spike coming from d1.
In the following step, r fires again (using the rule a→ a), consuming its last spike
and sending a new spike to d4 and d5 (the value 0 of r is now degraded and needs
to be reconstituted). This spike reaches neuron d4 at the same time that the one
coming from d3. Then d4 cannot fire as it contains now three spikes. Meanwhile,
d5 receives the new spike from r (d5 now contains three spikes). It gets fired and
spikes, allowing neurons d6 and d8 to fire in the following step. Each of these two

164 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

Fig. 2. Module SUB (simulating li : (SUB(r), lj , lk))

neurons emits then one spike to r which reconstitute the value 0 in the register
before reaching lk.

The reader can check that the remaining spikes in neurons d4 and d5 do not
disturb further computations. In this case, the outdegree can also be easily reduced
to two using a couple of intermediate neurons between li and d1, r and d2.

Ending a computation – module FIN (Figure 3).
When the computation in M halts, a spike reaches the neuron lh of Π . In

that moment, register 1 of M stores value n and neuron 1 of Π contains 2n + 2
spikes. The spike emitted by lh reaches neuron 1 (thus containing an odd number
of spikes). This leads neuron 1 to fire continuously, consuming two spikes at each
step. One step after receiving the spike from lh, neuron 1 fires and one spike reaches
neuron e1 and neuron out. Next, neuron out fires and spikes for the first time. From
that step on, neuron out simultaneously receives a couple of spikes from 1 and e1

that do not let it fire again until one step after neuron 1 fires for the last time.
When neuron 1 stops spiking, neuron out still receives one spike from e1 making
it fire and emitting its second and last spike (exactly n steps after the first one).

Spiking Neural P Systems: Stronger Normal Forms 165

Fig. 3. The FIN module

Once the computation has ended, neuron 1 holds three spikes and neuron out
contains 2(n − 1) spikes. As this construction needs to leave some spikes in the
system after halting, it cannot be extended to the case of the strong halting. ut

4 Removing Delays and Simplifying Regular Expressions

Theorem 7.1 of [8] stated that the regular expressions used in firing rules could
be simplified to the point of just using the simplest expressions over the alphabet
{a} : λ and a∗. In this section we consider the same problem, but removing delays
simultaneously. Surprisingly, the proof construction shows that SN P systems are
still universal even in that case. Moreover, we keep universality using, in each
neuron, one rule of the form a∗/a→ a or (ar → a), and at most two rules as → λ,
with r, s ≤ 3. (with the only exception of the non-deterministic neuron c3 in the
ADD module). Finally, we have also kept the limitation of outdegree ≤ 2 for each
neuron. Comparing this result with that of Theorem 7.1 of [8], one can notice that
removing delays has some computational cost in terms of other parameters, as
the maximum degree of forgetting rules, the number of rules per neuron and the
maximum number of spikes consumed in a rule.

Theorem 2. Spikβ2P∗(rule
∗
3, cons3, forg3, dley0, outd2) = NRE, where either β =

h or β is omitted.

Proof. This proof is based on that of Theorem 7.1 from [8], trying of imitate, as
long as possible, the structure and functioning of modules ADD, SUB and FIN as

166 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

well as of the dynamical register. In the proof of Theorem 7.1 [8], there exist two
kinds of neurons using delays. The first one uses the delay just to slow down the
emission of a spike, while the second one makes also use of the refractory period of
the neuron. Remember that a neuron omits all spikes received during its refractory
period. This property of neurons is then used to implement some desynchronizing
circuits allowing, for instance, to decrement the dynamical register without using
regular expressions that check the parity of spikes.

While eliminating delays in the first case is trivial (replacing the neuron by
a chain of basic neurons with delay zero), it becomes a challenge to simulate the
behavior of a neuron that makes use of its refractory period. If a neuron has delay
1 and it receives a spike in t, it fires in t+ 1, while remaining closed, and it finally
spikes in t+ 2 (so it remains closed for one step). In turn, if a neuron with delay
2 receives a spike in t, it fires in t + 1, remaining closed until t + 2, and it finally
emits a spike in t+ 3 (so it is closed during two steps).

Fig. 4. Subsystem Πd1 simulating a neuron with delay 1

Figure 4 shows a subsystem Πd1 simulating the exact behavior of neurons with
delay 1 which also use their refractory period. Let us consider X emits two spikes
consecutively to Πd1 in t and t+ 1. The spike received by c1 and c2 in t is emitted
to c3 in t+1 (meanwhile the second spike emitted by X reaches c1 and c2). Neuron
c3 fires, consuming just one of its two spikes, and spikes in t+ 2. In that moment
c1 and c2 also spike to c3 which now contains three spikes, which are forgotten in
t + 3 (using the rule a3 → λ). The reader can check that this system works also

Spiking Neural P Systems: Stronger Normal Forms 167

appropriately in the trivial case of X emitting just one spike in t (c3 then uses the
rule a→ λ).

Fig. 5. Subsystem Πd2 simulating a neuron with delay 2

Some more considerations have to be taken into account when simulating a
neuron with delay 2 that has to remain closed during two steps. Figure 5 shows a
subsystem that spikes at step t + 3 (when it receives a spike in t) and omits any
spike arriving at steps t+ 1 and/or t+ 2. Its function is analogous to that of Πd1 .

We now present the dynamic register and the rest of modules where all the
neurons having delays have been replaced, depending on the case, by either a
chain of basic neurons or by one of the subsystems of type Πd1 and Πd2 . In the
case of the dynamic register, neurons x, s and y do not use in any case their
refractory period, so they are substituted by a trivial circuit of chained neurons
with delay zero. On the other hand, neurons t and w have to be replaced by the
subsystem of type Πd1 . Finally, neuron r (which has delay two) is replaced by a
subsystem of type Πd2 as it needs to spike at every three steps whenever it contains
any spike inside.

In the proof of Theorem 7.1 of [8] it is said that the dynamic register stores
a number equal to the number of spikes that are continuously circulating in the
close circuit r− s− t− u (counting the pair of spikes simultaneously received and

168 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

later emitted by s and t as one spike). In our case, there is a slight modification
in the way of representing the number stored in the dynamic register. This is due
to the structural effects of replacing some neurons by subsystems Πd1 and Πd2 .
As the reader can see, these subsystems have two input neurons c1 and c2 (hence
the input synapses have to be doubled). Then, the need to maintain the outdegree
≤ 2 forces us to replicate some cells (with their respective synapses) in order to
keep the same functionality of the original dynamic register. Figure 6 shows the
aspect of the dynamic register after introducing all these changes.

The reader can appreciate that one spike circulates from subsystem U to sub-
system R (actually a group of 6 parallel spikes). It is easy to see that both r1 and
r2 need to receive three spikes in order to have R behaving as expected (spiking
every three steps as long as it holds some spike). Thus, to perform the ADD op-
eration three spikes have also to be sent to both neurons r1 and r2. Subsystem R
is connected to subsystems S and T , as well. Hence, when R spikes, one spike is
sent simultaneously to neurons s1, s2, t1 and t2. Finally, a synapse also connects
subsystems S and T with subsystem U . In this case, three spikes have to be sent
from each S and T to feed the three equal neurons in U .

Hence, the computation in our dynamic register is cyclic every six steps when
it stores the value n = 1 (all 6 spikes present at step t in R are consumed to make
it spike once to S and T at t+ 3). In turn, S and T send three spikes (one to each
neuron in U) at step t+ 5. Finally, U emits again six spikes to R at step t+ 6 and
the cycle is complete. Moreover, similarly as in the former dynamic register, the
six-step computation cycle actually consists of two identical halves of three steps,
when the value stored is n > 1. Thus, the functioning of our dynamic register is
identical to that of [8], if we consider as a single spike the group of spikes emitted
simultaneously from U to R, if we count as another spike every pack of six spikes
stored in R and, finally, if we also consider as one spike the two ones simultaneously
received and later emitted by S and T .

Simulating an ADD instruction li : (ADD(r), lj , lk) – module ADD (Fig-
ure 7).

To avoid the use of delays, we replace the former non-deterministic neuron c4

by a new one c3 containing three rules. At step one, neurons li, l
′
i, l
′′
i and l

′′′
i send

one spike to c1 and c2 and a group of 6 spikes to the subsystem R of the dynamic
register (incrementing by one the stored value). In the next step, two spikes reach
neurons c3 and c4. Then, if rule a2/a → a of c3 is chosen, one spike is sent to c6
and c7 while another one still remains in c3. In the following step, c3 uses its rule
a→ a and two more spikes arrive to c6 and c7 (one from c3 and another from c5).
This makes c7 fire (leading the computation to lk) while c6 forgets its three spikes.
On the other hand, if c3 first chooses rule a2 → a, then it just emits one spike to
c6 and c7 which will receive another one from c5 in the next step. This situation
makes c6 fire (leading now the computation to lj) while c7 forgets its two spikes.
Finally, it is easy to see that neurons c8 and c9 can be replaced by a chain of six
basic zero-delay neurons.

Simulating a SUB instruction li : (SUB(r), lj , lk) – module SUB (Figure 8).

Spiking Neural P Systems: Stronger Normal Forms 169

Fig. 6. A register with dynamical circulation of spikes without using delays

170 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

Fig. 7. Module ADD (simulating li : (ADD(r), lj , lk))

This module maintains the functioning of an analogous module of Theorem 7.1
with some structural changes. As neuron c5 is the only one using the refractory
period, it is replaced by a subsystem of type Πd1 . The rest of neurons that have
delays are replaced by a chain of basic neurons with delay 0 (except, for the sake
of clarity, in the case of c6). Some neurons are also replicated in order to maintain
outdegree ≤ 2. This module is initiated when a spike is sent to neuron l

′
i. Then,

two spikes are sent to subsystem V at step three and the de-synchronizing of the
dynamic register starts, decrementing its value by 1. This forces T to sent a spike
to c4 at step 6. After that, c

′′
4 spikes at step 8 and the computation continues by

instruction lj . If the register stored zero, then neuron c
′′
4 do not spike at step 8 (c

′
4

forgets the spike emitted by c1 at 6). Then, two spikes reach c7 at step 11 and the
computation continues by lk. It is important to note that if there exists more than

Spiking Neural P Systems: Stronger Normal Forms 171

one instruction SUB decrementing the same register, then we would need more
connections from T to the neurons c4 corresponding to these instructions.

Fig. 8. Module SUB (simulating li : (SUB(r), lj , lk))

172 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

Ending a Computation – module FIN (Figure 9).
The module FIN has also the same behavior as that of Theorem 7.1 in [8].

However, as in the case of module SUB, some structural changes have been made
to eliminate the delays of neurons lh, c9, c10, d9 and d10. On the one hand, both
neurons c9 and d9 are substituted by two basic cells with delay zero. On the other
hand, as neurons c10 and d10 make use of their refractory period, we replace each
of them by one of our subsystems of type Πd1 . Finally, neurons c2, c7, d7, c8 and
d8 are duplicated to keep outdegree ≤ 2. Again, for the sake of clarity, we do not
replace c3 with its corresponding four basic neurons. ut

5 Simplified Regular Expressions Revisited

Unlike some other results in [8], Theorem 7.1 mentioned above considered neither
the case of strong halting, nor the case of accepting SN P systems. This sections
extends this result and shows that it remains valid even if these additional restric-
tions are imposed. First we deal with the strong halting case.

Theorem 3. Spik
h
2P∗(rule

∗
2, cons2, forg2, dley2, outd2) = NRE.

Proof. Considering the strong halting case, the construction in the proof of Theo-
rem 7.1 in [8] has to be changed slightly. Recall the assumption that all the registers
except register 1 are empty at the end of computation. Under this assumption, one
can verify by inspection of the above mentioned proof that the only neurons con-
taining spikes at the moment of halting are in the module FIN. To remove these
spikes, we have to release the additional restriction we stated in [8]: the rules of
the form ar → a; t and as → λ in the same neuron satisfy s < t. Removing this re-
striction allows to simplify dramatically the construction, while keeping all other
properties of the normal form. The new module FIN which satisfies the strong
halting condition can be found in Figure 10.

Function of the module FIN is described in Table 1. Assume that the output
register 1 holds a value n ≥ 1. Accordingly, the cycle consisting of neurons 1 and
c1 contains n spikes (n− 1 in neuron 1 and one spike in neuron c1). Both neurons
fire at every step (except the case n = 1 which will be dealt with later.)

At step 1 neuron lh receives spike and fires. At step 2 both neurons c2 and
c3 receive spikes and start to fire at every step. Neuron c4 receives at every step
two spikes which are removed. From now on the number of spikes the cycle 1− c1

decreases by one at every step. The output neuron out fires first time at step five.
After n + 2 steps all the spikes in the cycle 1 − c1 are removed. At step n + 3
neuron c2 receives no spike and does not fire. Consequently, at step n+ 4 neuron
c4 receives only one spike and fires. Finally, at step n+ 5, exactly n steps after its
first firing, neuron out fires second time.

The case n = 1 needs a special attention. In this case neuron 1 fires at every
even step and c1 fires at every odd step. For a correct function of the module FIN,
neuron lh must receive spike at an odd step. However, this is already taken care

Spiking Neural P Systems: Stronger Normal Forms 173

Fig. 9. Module FIN (ending the computation)

174 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

Fig. 10. Module FIN with simplified regular expressions and strong halting state

of in the proof of Theorem 7.1 in [8], as each instruction of the register machine
is simulated in exactly 6 steps of the SN P system. Hence neuron lh would receive
spike at a step 6k+ 1, k ≥ 0, and the module FIN would function correctly again.

Finally, note that the module FIN of Figure 10 contains neurons with outdegree
three. This version of the module was presented for the sake of simplicity, but it
can be easily enhanced so that outdegree is reduced to two. The resulting diagram
is shown in Figure 11. ut

Another extension of the previous result in [8] mentioned above is the case
of accepting SN P systems. In the accepting mode [2], the SN P system obtains
an input in the form of an interval between two consecutive spikes sent from
outside to the input neuron i0. Therefore, we need a special module INPUT which
translates this input value into the number of spikes present in a neuron labeled
1. Furthermore, the SN P system must behave deterministically. Both conditions
can be satisfied and the resulting statement is given bellow.

Theorem 4. DSpikβ2accP∗(rule
∗
2, cons2, forgα, dley2, outd2) = NRE where (i)

β = h, α = 1, or (ii) β = h, α = 2, or (iii) β is omitted and α = 1.

Proof. Considering the proof Theorem 7.1 in [8], we can observe that the module
SUB is already deterministic. Then it remains only to “determinize” the module
ADD and add a module INPUT. For the former goal, it is enough to remove the

Spiking Neural P Systems: Stronger Normal Forms 175

Step 1 2 3 4 5 . . .
Neuron

lh a→ a ! — — — — . . .

1 a→ a ! a→ a ! a→ a ! a→ a ! a→ a ! . . .
(spikes) n− 1 n− 1 n− 1 n − 2 n− 3 . . .

c1 a→ a ! a→ a ! a2 → λ a2 → λ a2 → λ . . .

c2 — a2 → a ! a2 → a ! a2 → a ! a2 → a ! . . .

c3 — a→ a ! a→ a ! a→ a ! a→ a ! . . .

c4 — — a2 → λ a2 → λ a2 → λ . . .

c5 — a→ a; 2 — ! — . . .

out — — — — a→ a ! . . .

Step . . . n+ 1 n + 2 n + 3 n+ 4 n+ 5
Neuron

lh . . . — — — — —

1 . . . a→ a ! — — a→ a ! —
(spikes) . . . 1 0 0 1 0

c1 . . . a2 → λ a2 → λ a→ a ! — a2 → λ

c2 . . . a2 → a ! a2 → a ! a→ λ a→ λ a→ λ

c3 . . . a→ a ! a→ a ! a→ a ! — —

c4 . . . a2 → λ a2 → λ a2 → λ a→ a ! —

c5 . . . — — — — —

out . . . — — — — a→ a !

Table 1. Function of the module FIN with strong halting state. Firing is denoted by !

rule a → a; 1 from the neuron ci4 in the above mentioned module ADD, and the
whole module becomes deterministic.

For the latter goal, one must construct a module INPUT which would fill-in
register 1 with the number of spikes corresponding to the delay between two input
spikes. However, as the module ADD works in a synchronized cycle of the length
three, we have to send spikes to register 1 each three computational steps (or its
multiple). Otherwise the spikes might be lost (consumed) within the module ADD.
The module INPUT solving this task is presented in Figure 12.

One can observe that three steps after neuron i0 receives the first input spike,
neurons c3 − c6 start to fire at each step. Similarly, three steps after neuron i0
receives the second input spike, neurons c3 − c6 stop firing and remove all their
spikes. Therefore, neuron c7 will receive exactly 3n spikes, where n is the period
between the first and the second input spike. Neuron c7 emits one spike at each step
but neuron c8 lets pass only each third spike. Therefore, neuron 1 corresponding
to the input register receives spikes in steps 8, 11, 14. . . , and the number of spikes
is exactly n.

176 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

Fig. 11. Module FIN with simplified regular expressions and strong halting state, a
version with outdegree two.

Finally, observe that there are no spikes left in neurons after finishing the
computation. As this is also the case in the modules ADD and SUB described
in the proof of Theorem 7.1 in [8] (provided that all the registers are empty), the
system halts always in the strong halting state. If we do not require strong halting,
the rules a2 → λ in neurons c3− c6 can be omitted. Therefore, the parameter forg
is reduced to 1 in this case.

Therefore, the described SN P system correctly simulates a register machine
in the accepting mode and the inclusion NRE ⊆ DSpikβ2 accP∗(rule

∗
2, cons2,

forgα, dley2, outd2). The converse inclusion follows by the Church-Turing thesis.
ut

6 Final Remarks

In this paper we have proven the universality of SN P systems even in the sit-
uations when we have eliminated more than one of its features simultaneously.
Thus, this model has been found to be computationally complete 1) when using
neither delays nor forgetting rules, 2) when simplifying regular expressions and
eliminating delays, 3) when using simple regular expressions and the strong halt-
ing condition and 4) when using simple regular expressions in the accepting mode.

Spiking Neural P Systems: Stronger Normal Forms 177

Fig. 12. The Module INPUT with simplified regular expressions.

We conjecture that in the cases 3) and 4), also delays could be removed without
loss of computational universality. The case of simultaneously removing forgetting
rules and simplifying regular expressions remains open but we conjecture that the
universality would not be preserved in this case.

In all these results one can observe a trade-off between some other computa-
tional parameters, such as the number of neurons, the maximal number of firing
rules per neuron, the complexity of regular expressions, the maximum number of
spikes consumed in a firing rule or the maximal number of spikes removed in a for-
getting rule. In all the above mentioned cases, however, the outdegree of neurons
has been bounded by two.

It now remains an open problem whether these results concerning normal forms
of SN P systems can be further improved. Would it be possible, for instance, to
eliminate some more features of the model (three of them simultaneously) while
keeping universality? If not, which would be the computational power of such a
restricted model? Another open question would be, naturally, whether we can still
achieve lower bounds for some of the computational parameters in our current
proofs, as the number of rules in neurons, number of spikes consumed in one rule
etc.

178 M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sosik

References

1. M.A. Gutiérrez-Naranjo et al., eds.: Proceedings of Fourth Brainstorming Week on
Membrane Computing, Febr. 2006. Fenix Editora, Sevilla, 2006.

2. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

3. W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK, 8, 1 (2002), 32–36.

4. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.
5. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs, NJ, 1967.
6. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
7. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-

tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002
8. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth: Nor-

mal forms for spiking neural P systems. In [1], Vol. II, 105-136, and Theoretical
Computer Sci., 372, 2-3 (2007), 196–217.

9. Gh. Păun, Twenty Six Research Topics About Spiking Neural P Systems. In the
present volume

10. Gh. Păun, M.J. Pérez-Jiménez, A. Salomaa: Bounding the indegree of spiking neural
P systems. TUCS Technical Report 773, 2006.

11. The P Systems Web Page: http://psystems.disco.unimib.it.

A Membrane Computing Model for Ballistic

Depositions

Carmen Graciani-Díaz, Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez

Research Group on Natural Computing
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
{cgdiaz,magutier,marper}@us.es

Summary. Ballistic Deposition was proposed by Vold [9] and Sutherland [8] as a model
for colloidal aggregation. These early works were later extended to simulate the process
of vapor deposition. In general, Ballistic Deposition models involve (d + 1)-dimensional
particles which rain down sequentially at random onto a d-dimensional substrate; when a
particle arrives on the existing agglomeration of deposited particles, it sticks to the �rst
particle it contacts, which may result in lateral growth. In this paper we present a �rst
P system model for Ballistic Deposition with d = 1.

1 Introduction

Some recent discoveries on the dynamical process of surface growth have encour-
aged the scienti�c community to revisit the study of systems exhibiting rough
interfaces. In Nature, there exist many examples of rough interfaces, actually, all
surfaces in Nature can be seen as rough surfaces, since the concept of roughness
is associated to the scale of observation and surfaces on Nature are far from be
smooth if observed at appropriate scale.

The propagation of forest �res [5], the growth of a colony of bacteria [3] or the
propagation of reaction fronts in catalyzed reactions [1] are real-world examples
where the frontier between two media are far from being smooth. In this cases,
the interfaces can be hardly modeled with Euclidean geometry and it is necessary
to consider new tools in order to handle them. Moreover, in that cases, we are
interested not only in the morphology of the interfaces from a static point of view,
but in the dynamics of how the interface develops in time.

These dynamics can be studied from two complementary approaches:

• Discrete approaches where the position of each particle of the surface is well
de�ned. This approach is getting more consideration at the atomic level in
the last years due to the use of new technology as the scanning tunneling mi-
croscopy, capable of identifying not only the structure of the lattice of particles,
but the position of individual atoms as well.

180 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

A B

A′

B′

?

?

Fig. 1. Ballistic Deposition

• Continuum approaches view the surface on a coarse-grained scale, in which
every property is averaged over a small volume containing many atoms. Their
predictive power is limited to length scales larger than the typical inter-atom
distance.

This paper is devoted to the study of a process of formation of rough surfaces
called Ballistic Deposition (BD). To this aim, we will explore the capability of some
Membrane Computing devices as tools for modeling BD in a discrete approach.

The paper is organized as follows: �rst the Ballistic Deposition model is brie�y
described. In Section 3, deposition P systems are presented and following this
model, a P system simulating the dynamics of Ballistic Deposition is presented in
Section 4. Some conclusions are presented in Section 5. The paper ends with the
Bibliography and an Appendix with the proof of our main result.

2 Ballistic Deposition

In Nature, some interfaces are formed as result of a deposition process, other
shrink due to erosion. A typical example of deposition process is the random fall
of snow�akes on the ground �oor. The randomness in the deposition process leads
to a rough surface.

There exist many deposition models which try to represent di�erent natural
process. The simplest way to de�ne such models is on a lattice where particles are
deposited onto a surface oriented perpendicular to the particle trajectories, but
other versions have been also investigated1.

Ballistic Deposition (BD) was proposed by Vold [9] and Sutherland [8] as a
model for colloidal aggregation. These early works were later extended to simulate
the process of vapor deposition. In this model, a particle is released from a position
above the surface. The particle follows a straight vertical trajectory until it reaches
the surface, whereupon it sticks (see Figure 1).

1 A good starting point for the study of depositions is [2].

A Membrane Computing Model for Ballistic Depositions 181

In general, Ballistic Deposition models involve (d + 1)-dimensional particles
which rain down sequentially at random onto a d-dimensional substrate; when a
particle arrives on the existing agglomeration of deposited particles, it sticks to the
�rst particle it contacts, which may result in lateral growth. Many mathematical
models exist in order to describe Ballistic Depositions. Here we follow M.D. Penrose
in [6], where all particles are assumed identical is presented.

In Penrose's mathematical model, the substrate is Rd×{0}, identi�ed with Rd

or some subregion thereof. All particles are (d + 1)-dimensional solids. Particles
arrive sequentially at random positions in Rd. When a particle arrives at a position
x ∈ Rd, it slides down the ray {x}×[0,∞) until the particle hits a position adjacent
to either the substrate or a previously deposited particle where is permanently
�xed. The di�erence between lattice and continuum models is that in the lattice
model the positions at which particle arrive are restricted to be in the integer
lattice Zd.

Let 0 denote the origin in Zd. A displacement function is a mapping D : Zd →
[−∞,∞) verifying:

• D(0) = 1
• The set N = {x ∈ Zd : D(x) 6= −∞} is �nite but has at least two elements

(one of which is the origin)

For z ∈ Zd, let Nx = {x + y : y ∈ N} and N ∗
x = {x − y : y ∈ N}. The set

N is a neighborhood of the origin and Nx is a neighborhood of x. The idea of a
displacement function is that if a particle arrives at y ∈ Nx then it cannot slide
down the ray y × [0,+∞) below the position at height D(y − x). In this way, if
h(x, t) measures the height of the interface at site x at time t then

h(x, t + 1) = max{h(y, t) + D(x− y) : y ∈ Zd}

since −∞+ x = −∞ for all x ∈ R then

h(x, t + 1) = max{h(y, t) + D(x− y) : y ∈ N ∗
x }

In this paper we follow the version of ballistic deposition considered in [7], the
nearest neighbor model, where N = {z ∈ Zd : ‖z‖1 ≤ 1} and the displacement
function D is given by D(x) = 0 for x ∈ N − {0}. We are considering that the
dimension of the substrate is d = 1 and therefore

h(x, t + 1) = max{h(y, t) + D(x− y) : y ∈ N ∗
x }

= max{h(y, t) + D(x− y) : y ∈ {x− 1, x, x + 1}}
= max{h(x− 1, t) + D(1), h(x, t) + D(0), h(x + 1, t) + D(−1)}
= max{h(x− 1, t) + 0, h(x, t) + 1, h(x + 1, t) + 0}
= max{h(x− 1, t), h(x, t) + 1, h(x + 1, t)}

182 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

3 P systems

The chosen P systems model can be considered a subclass of tissue-like P system,
since we do not consider membranes surrounding other ones, but a sequence of cells
linked by communication channels. The intuition behind this structure is that each
cell represent a column of the aggregate and the pieces of information needed for
encoding the growth process are encoded on the multisets of objects in the cells.

In this model we use two very powerful membrane computing tools: the coop-
eration and the use of polarizations of the cells. Both features allow us an e�cient
design of P systems in order to perform the simulation. The study of minimal
resources, i.e., to know whether the deposition process can be simulated without
some of the used ingredients falls out of the scope of this paper.

Formally, a deposition P system of degree L is a construct of the form

Π = (O,µ, env, v1, . . . , vL, venv, P, R)

where:

1. O is the alphabet of objects;
2. µ is a cell structure consisting of L cells bijectively labelled with {1, . . . , L}.

For all i ∈ {1, . . . , L − 1} there exist an edge between the cell i and the cell
i + 1. We will also consider an edge between the cell L and the cell 1. For the
sake of simplicity, we will identify the indices L + 1 and 1; also, if a cell has
polarization 0, we will omit the symbol 0.

3. env is the environment. It represents the region surrounding the cell structure
µ. Some objects can be also placed in this region.

4. v1, . . . , vL, venv are strings over O, describing the multisets of objects placed in
the corresponding cells of µ or in the environment.

5. P = {0,+,−} is the set of polarizations.
6. R is a �nite set of rules, of the following forms:

a) [v1 → v2]ei where i ∈ {1, . . . , L}, e ∈ P and v1, v2 are strings over O
describing multisets of objects. These are object evolution rules associated
with cells and depending only on the label and the polarization of the cell.
The string v1 has at least one object.

b) a[]e1
i → [b]e2

i where i ∈ {1, . . . , L}, e1, e2 ∈ P and a, b ∈ O. These are
send-in rules. An object of the environment is introduced in the membrane
possibly modi�ed. The polarization of the cell can also change.

c) [a]e1
i → b[]e2

i where i ∈ {1, . . . , L}, e1, e2 ∈ P and a, b ∈ O. These are send-
out rules. An object is sent out to the environment possibly modi�ed. The
polarization of the cell can also change.

d) [a]e1
i , []i+1 → []i, [b]e2

i+1

[]i, [a]e1
i+1 → [b]e2

i , []i+1

where i ∈ {1, . . . , L}, e1, e2 ∈ P and a, b ∈ O. These are communication

rules. An object a is sent, possibly modi�ed, to a contiguous cell.

Rules are applied according to the following principles:

A Membrane Computing Model for Ballistic Depositions 183

• Rules are used as usual in the framework of membrane computing, that is, in
a maximal parallel way. In one step, each object in a cell can only be used for
one rule (non deterministically chosen when there are several possibilities), but
any object which can evolve by a rule of any form must do it. with a restriction,
only one change of polarization can a�ect to a membrane.

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Several rules can be applied to di�erent objects in the same cell simultaneously.
• If any rule of type (a) are used at the same time that one of type (b), (c) or

(d), all rules are applied, but we will consider that the object evolution rules
(a) are performed before the other one. This consideration is useful because the
rule that sends an object across a membrane can also changes its polarization.

4 Modeling BD

In this section we will consider a BD system with L columns and we will provide a
deposition P system which simulates its dynamics. Let us consider the deposition
P systems of degree L, Π = (O,µ, env, v1, . . . , vL, venv, P, R) where:

• O = {p, c0, c1, c2, c3, c4, c5, c6, cn3, cn4, α, x, y, z}
• vi = ∅, for all i ∈ {1, . . . , L}
• venv = p
Let us consider the following sets of rules, where the index i ∈ {1, . . . , L}. As

remarked before, we will identify the indices L + 1 and 1 and the indices 0 and L;
and, if a cell has polarization 0, we will omit the symbol 0.

Set (A) � Deposition rules:

Ri
∗ ≡ p []i → [c0]+i

In the BD model, a particle is deposited on the top of a column randomly
chosen. We simulate this process by these rules. A particle p in the environment
is sent to one of the cells. This particle activates the cell (the polarization of the
cells turns on positive) and goes into the cell as the object c0.

Set (B) � Rules for cells with positive polarization:

Ri
1 ≡ [c0 → c1]+i Ri

4 ≡ []i, [c2]+i+1 → [cn3]−i , []i+1

Ri
2 ≡ [c1 → c2]+i Ri

5 ≡ []i, [z]+i+1 → [y]i, []i+1

Ri
3 ≡ [y → z α]+i

The sets Ri
1, Ri

2 and Ri
3 are object evolution rules and Ri

4 and Ri
5 are communi-

cation rules. Note that the counter ck sent into a cell i, by the particle p gives two
waiting step before being sent to the cell i − 1 transformed into cn3 (by the rule
Ri−1

4). These waiting steps check the occurrence of objects y inside the cell. If any
y occur, each of then evolves to z α at the same time in which c0 evolves to c1 and

184 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

in the following step each z is sent to the cell i − 1 transformed into y and the
polarization of the cell i changes. If this happens, the rule Ri−1

4 is not triggered
because the cell containing c2 has not positive charge.

Set (C) � Rules for cells with negative polarization:

Ri
6 ≡ [c3 → c4]−i Ri

10 ≡ [cn3 → cn4]−i
Ri

7 ≡ [c4 → c5]−i Ri
11 ≡ [cn4 → x y c5]−i

Ri
8 ≡ [c5 → c6]−i Ri

12 ≡ [x]−i , []i+1 → []i, [z]i+1

Ri
9 ≡ [c6]−i → p []i

The sets Ri
6, Ri

7, Ri
8, Ri

10 and Ri
11 are object evolution rules, Ri

12 are communi-
cation rules and Ri

9 are send-out rules. The counter ck goes on with the objects
c3 and c4 or with cn3 and cn4. In both cases, the counter reaches c5 and c6. The
object c6 sends to the environment an object p which will go into a cell in the next
step according to the set of rules Ri

∗.

Set (D) � Rules for cells with polarization zero:

Ri
13 ≡ [cn4 → c5]i Ri

16 ≡ [z → xα]i
Ri

14 ≡ [c5 → c6]i Ri
17 ≡ [x y → λ]i

Ri
15 ≡ [c6]i → p []i Ri

18 ≡ []i, [c2]i+1 → [c3]−i , []i+1

The sets Ri
13, R

i
14, R

i
16, and Ri

17 are object evolution rules, Ri
18 are communication

rules and Ri
15 are send-out rules. As in the set of rule (B), the counter ck goes

on till it reaches c6. The object c6 sends to the environment an object p which
will go into a cell in the next step according to the set of rules Ri

∗. Notice that
rules of Ri

17 are cooperative rules. Each pair of objects 〈x, y〉 which occur in a cell
disappears in the next step.

4.1 Informal description of the computation

For a better understanding of the computation, let us remark that the con�gura-
tions at time 8t with t ∈ N represent the state of a BD system after the deposition
of the t-th particle. Below we will formalize this idea, but before giving a descrip-
tion of the computation, we provide the intuitive meaning of some of the symbols
of the alphabet at time 8t:

• p represents the particle that arrives to the substrate. When it is deposited,
it disappears from the environment, then the information encoded in the cells
change. When the computation inside the cells �nishes, a new particle is sent
to the environment and the process starts again. In this way only in the steps
8t, there exists a particle p in the environment.

• The multiplicity of α in the cell i represent the height of the column i in the
BD model.

A Membrane Computing Model for Ballistic Depositions 185

Time Rules Env. Con�guration

T0 p 1 2 3 4

T1 R3
∗ 1 2 c0

+
3 4

T2 R3
1 1 2 c1

+
3 4

T3 R3
2 1 2 c2

+
3 4

T4 R2
4 1 cn3

−
2 3 4

T5 R2
10 1 cn4

−
2 3 4

T6 R2
11 1 x y c5

−
2 3 4

T7 R2
8, R

2
12 1 y c6 2 z 3 4

T8 R2
15, R

3
16 p 1 y 2 x α 3 4

Fig. 2. Table with the �rst steps

Finally, the remaining objects inside the cells at time 8t are of type x and y.
The objects x or y inside the cell i represent the di�erence of height between the
cell i and the cell i + 1.

• The multiplicity of x in the cell i represent how many units is the column i
higher than column i + 1 in the BD model.

• The multiplicity of y in the cell i represent how many units is the column i
lower than column i + 1 in the BD model.

From the previous description we have that at time 8t, we can �nd inside a cell
objects x, y or none of them, but we will never �nd both simultaneously.

Tables 2 and 3 show an example of evolution of a simple BD system with four
columns where four particles have been deposited sequentially on the columns 3,
2, 2 and 1. Notice that the con�gurations at times 8t with t ∈ {0, . . . , 4} represent
the surface of the BD model after the fall of the t-th particle (Fig. 4).

We �nish this section by formally showing that this deposition P system of
degree L simulates the ballistic deposition on a substrate with L columns. In this
way we need the de�nition of representative con�guration. The idea behind the

186 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

Time Rules Env. Con�guration

T9 R2
∗ 1 y c0

+
2 x α 3 4

T10 R1
2, R

2
3 1 z α c1

+
2 x α 3 4

T11 R2
2, R

1
5 y 1 α c2 2 x α 3 4

T12 R1
18 y c3

−
1 α 2 x α 3 4

T13 R1
6 y c4

−
1 α 2 x α 3 4

T14 R1
7 y c5

−
1 α 2 x α 3 4

T15 R1
8 y c6

−
1 α 2 x α 3 4

T16 R1
9 p y 1 α 2 x α 3 4

. 1 . . . 2 . . . 3 . . . 4

T24 . . . p y2
1 x α2

2 α x 3 4

. 1 . . . 2 . . . 3 . . . 4

T32 . . . p α2
1 x α2

2 x α 3 y2
4

Fig. 3. Table with the �rst steps (Cont.)

de�nition is quite intuitive. Along the computation, some of the con�gurations
have no meaning with respect to the deposition process, there are merely auxiliary
steps of the computation. Only some of the con�guration represent states of the ag-
gregate in the deposition process. Such con�gurations will be called representative

con�gurations

We will denote by Ct the con�guration of the P systems at time t, by Ct(i) the
multiset of objects at the cell labelled by i at time t and by |Ct(i)|a the multiplicity
of the object a in Ct(i).

De�nition 1. Let Ct be a con�guration of a deposition P systems of degree L at

time t. We will say that Ct is representative if for all i ∈ {1, . . . , L},

• Only objects α, x and y occur inside the cells and they polarization 0

A Membrane Computing Model for Ballistic Depositions 187

Time 0 Time 8 Time 16 Time 24 Time 32

Fig. 4. Example

• Ct(env) = {p}
• If |Ct(i)|α ≥ |Ct(i + 1)|α then

� |Ct(i)|x = |Ct(i)|α − |Ct(i + 1)|α
� |Ct(i)|y = 0

• If |Ct(i)|α < |Ct(i + 1)|α then

� |Ct(i)|y = |Ct(i + 1)|α − |Ct(i)|α
� |Ct(i)|x = 0

Finally, the next theorem claims that the sequence of con�gurations at times
0, 8, 16, . . . , 8t, . . . represent the states of an aggregate with a ballistic deposition
process.

Theorem 1. For all t ∈ N, C8t is a representative con�guration and, if i ∈
{1, . . . , L} is the chosen cell for depositing a new particle, then

• |C8t+8(i)|α = max{|C8t(i− 1)|α, |C8t(i)|α + 1, |C8t(i + 1)|α}
• For all j ∈ {1, . . . , L}, i 6= j, |C8t+8(j)|α = |C8t(j)|α

Proof. See Appendix

5 Conclusions

Understanding how Nature works involves experimental observation and theo-
retical modeling. This paper is a contribution to the theoretical modeling of a
particular case of one of the most interesting process in Physics: the dynamical
evolution of the frontier between two di�erent media. In this paper, the chosen
model has been Ballistic Deposition, but many other deposition processes from
Physics, Chemistry and Biology can be also modeled by using similar techniques.

On the other hand, Membrane Computing techniques had been used for study-
ing problems from many di�erent areas, since Linguistics or Complexity Theory to
Computer Graphics or Cancer Modeling2, but this is the �rst time that P systems
are used to model deposition processes.

This paper can be extended in several ways. One of them is to extend the
study to more dimensions, i.e., to consider the particles as 3D solids falling down

2 See [4] for details.

188 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

onto a 2D surface. Other possible research line is to develop computer software
which simulates Ballistic Depositions according with the Membrane Computing
techniques presented in this paper and of course, a �nal research line is to follow
this study by modeling other deposition models.

Acknowledgment

The authors wish acknowledge the support of the project TIN2006-13425 of the
Ministerio de Educación y Ciencia of Spain, co�nanced by FEDER funds, and the
support of the project of excellence TIC-581 of the Junta de Andalucía.

References

1. E.V. Albano: Displacement of inactive phases by the reactive regime in a lattice
gas model for a dimer-monomer irreversible surface reaction. Physical Review E, 55
(1997), 7144�7152.

2. A.-L. Barabási, H.E. Stanley: Fractal Concepts in Surface Growth. Cambridge Uni-
versity Press, 1995.

3. E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok, T. Vicsek: Generic
modelling of cooperative growth patterns in bacterial colonies. Nature, 368 (1994),
46�49.

4. G. Ciobanu, Gh. P un, M.J. Pérez-Jiménez (Eds.) Applications of Membrane Com-
puting. Springer, 2006.

5. S. Clar, B. Drossel, F. Schwabl: Forest �res and other examples of self-organized
criticality. Journal of Physics: Condensed Matter, 8 (1996), 6803�6824.

6. M.D. Penrose: Growth and roughness of the interface forr ballistic deposition.
arXiv:math.PR/0608540 (2006).

7. T. Seppäläinen: Strong law of large numbers for the interface in ballistic deposition.
Annales de L'Institut Henri Poincaré (B) Probabilités et Statistiques, 36 (2000), 691-
735.

8. D.N. Sutherland: Comments on Vold's Simulation of Folc Formation. Journal of
Colloid and Interface Science, 22 (1966), 300-302.

9. M.J. Vold: A Numerical Approach to the Problem of Sediment Volume. Journal of
Colloid Science, 14 (1959), 168�174.

6 Appendix

Proof of the theorem 1.

Proof. The proof is by induction on t ∈ N. The key idea of the proof is to notice
that the P system is deterministic with the only exception of the set of rules R∗ ≡
p []i → [c0]+i for i ∈ {1, . . . , L}. This set of rules represent the non-deterministic
choice of a cell in order to deposit a new particle.

t=0

A Membrane Computing Model for Ballistic Depositions 189

In the initial con�guration C0 all cells are empty and have polarisation 0; also,
C0(env) = {p}, then it is a representative con�guration.
Let us suppose that i is the chosen cell in the non-deterministic step. The �rst
con�gurations are

C0(i) = { } Ri
∗−→ C1(i) = {c0}+ Ri

1−→ C2(i) = {c1}+ Ri
2−→ C3(i) = {c2}+

Ck(j) = ∅, for all j ∈ {1, . . . , i − 1, i + 1, . . . , L, env} and k ∈ {1, 2, 3} as no
rules a�ect to them.
As the cell i has positive electrical charge in C3, then we apply the rule
[]i−1, [c2]+i → [cn3]−i−1, []i obtaining

C4(i− 1) = {cn3}−
C4(j) = ∅ for all j ∈ {1, . . . , i− 2, i, . . . , L, env}

Hence

C4(i− 1) = {cn3}−
Ri−1

10−→ C5(i− 1) = {cn4}−
Ri−1

11−→ C6(i− 1) = {x y cn5}
Ck(j) = ∅ for all j ∈ {1, . . . , i − 2, i, . . . , L, env} and k ∈ {5, 6} as no rules

a�ect to them.
At this step rules [c5 → c6]−i−1 and [x]−i−1, [] → []i−1[z]i are applied simultaneously

C7(i− 1) = {c6 y}
C7(i) = {z}
C7(j) = ∅ for all j ∈ {1, . . . , i− 2, i + 1, . . . , L, env}

Finally, rules [c6]i−1 → p []i−1 and [z → xα]i are applied
C8(i− 1) = {y}
C8(i) = {xα}
C8(env) = {p}
C8(j) = ∅ for all j ∈ {1, . . . , i− 2, i + 1, . . . , L}

In con�guration C8, all the cells has polarisation 0 and only objects x, y and α
occur inside them, C8(env) = {p} and

|C8(i− 1)|α = 0 < |C8(i)|α = 1
|C8(i− 1)|y = 1 = |C8(i)|α − |C8(i− 1)|α
|C8(i− 1)|x = 0
|C8(i)|α = 1 ≥ |C8(i + 1)|α = 0
|C8(i)|x = 1 = |C8(i)|α − |C8(i + 1)|α
|C8(i)|y = 0
C8(j) = ∅ for all j ∈ {1, . . . , i− 2, i + 1, . . . , L}

Hence, C8 is a representative con�guration. We also have that
|C8(j)|α = |C0(j)|α for j ∈ {1, . . . , i− 1, i + 1, . . . , L}
|C8(i)|α = max{|C0(i− 1)|α, |C0(i)|α + 1, |C0(i + 1)|α} = 1

t → t+1
Let us suppose that C8t is a representative con�guration and i is the cell chosen
non-deterministically. We will prove that C8t+8 is also a representative con�gura-
tion and

|C8t+8(i)|α = max{|C8t(i− 1)|α, |C8t(i)|α + 1, |C8t(i + 1)|α}

190 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

For all j ∈ {1, . . . , L}, i 6= j, |C8t+8(j)|α = |C8t(j)|α
We will consider �ve possible cases depending on the relation among |C8t(i−1)|α,
|C8t(i)|α and |C8t(i + 1)|α.

Case 1: |C8t(i− 1)|α > |C8t(i)|α ≥ |C8t(i + 1)|α
Case 2: |C8t(i− 1)|α > |C8t(i + 1)|α > |C8t(i)|α
Case 3: |C8t(i + 1)|α ≥ |C8t(i− 1)|α > |C8t(i)|α
Case 4: |C8t(i)|α ≥ |C8t(i− 1)|α and |C8t(i)|α ≥ |C8t(i + 1)|α
Case 5: |C8t(i + 1)|α > |C8t(i)|α ≥ |C8t(i− 1)|α

The proof is made by inspection of these cases.

Case 1: Let us suppose that

|C8t(i− 1)|α > |C8t(i)|α ≥ |C8t(i + 1)|α

In this case |C8t(i − 1)|x = |C8t(i − 1)|α − |C8t(i)|α > 0, |C8t(i)|x = |C8t(i)|α −
|C8t(i + 1)|α ≥ 0 and |C8t(i− 1)|y = |C8t(i)|y = 0.
Also, max{|C8t(i − 1)|α, |C8t(i)|α + 1, |C8t(i + 1)|α} = |C8t(i − 1)|α. We will
prove that C8t+8 is a representative con�guration, |C8t+8(i)|α = |C8t(i − 1)|α
and |C8t+8(j)|α = |C8t(j)|α for j ∈ {1, . . . , i− 1, i + 1, . . . , L}
As no y are present in cell i,

C8t(i)
Ri
∗−→ C8t+1(i) = C8t(i) ∪ {c0}+ Ri

1−→ C8t+2(i) = C8t(i) ∪ {c1}+ Ri
2−→

C8t+3(i) = C8t(i) ∪ {c2}+

C8t+k(j) = C8t(j), for all j ∈ {1, . . . , i − 1, i + 1, . . . , L} as no rules a�ect to
them and C8t+k(env) = ∅ for k ∈ {1, 2, 3}.
As cell i has positive electrical charge in C8t+3, then we apply the rule
[]i−1, [c2]+i → [cn3]−i−1, []i obtaining

C8t+4(i− 1) = C8t(i− 1) ∪ {cn3}−
C8t+4(j) = C8t(j) for all j ∈ {1, . . . , i− 2, i, . . . , L} and C8t+4(env) = ∅

At this step rules [cn3 → cn4]−i−1 and [x]−i−1, [] → []i−1[z]i are applied simultane-
ously and therefore all the copies of x in cell i− 1 are sent into cell i transformed
into copies of z. Hence

C8t+5(i− 1) = {α|C8t(i−1)|α cn4}
C8t+5(i) = C8t(i) ∪ {z|C8t(i−1)|x}
C8t+5(j) = C8t(j) for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+5(env) = ∅

Now, rules [cn4 → c5]i−1 and [z → xα]i can be applied, then
C8t+6(i− 1) = {α|C8t(i−1)|α c5}
C8t+6(i) = C8t(i) ∪ {x|C8t(i−1)|x α|C8t(i−1)|x} =

= {x|C8t(i)|x+|C8t(i−1)|x α|C8t(i)|α+|C8t(i−1)|x} as |C8t(i− 1)|y = 0
C8t+6(j) = C8t(j) for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+6(env) = ∅

After that,

C8t+6(i− 1) = {α|C8t(i−1)|α c5}
Ri−1

8−→ C8t+7(i− 1) = {α|C8t(i−1)|α c6}

A Membrane Computing Model for Ballistic Depositions 191

C8t+7(i) = C8t+6(i)
C8t+7(j) = C8t(j) for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+7(env) = ∅

Next, the rule [c6]i−1 → p []i−1 is applied,
C8t+8(i− 1) = {α|C8t(i−1)|α}
C8t+8(i) = C8t+6(i) = {x|C8t(i)|x+|C8t(i−1)|x α|C8t(i)|α+|C8t(i−1)|x}
C8t+8(j) = C8t(j) for all j ∈ {1, . . . , i− 1, i + 1, . . . , L} and C8t+8(env) = {p}.

Note that |C8t+8(i)|α = |C8t(i)|α + |C8t(i− 1)|x and by hypothesis |C8t(i− 1)|x =
|C8t(i− 1)|α − |C8t(i)|α so |C8t+8(i)|α = |C8t(i− 1)|α = |C8t+8(i− 1)|α, and that
there is no x or y in C8t+8(i− 1).
Finally as in this case |C8t+8(i)|α = |C8t(i − 1)|α > |C8t(i)|α and |C8t(i)|α ≥
|C8t(i + 1)|α = |C8t+8(i + 1)|α, then

|C8t+8(i)|α > |C8t+8(i + 1)|α

and

|C8t+8(i)|x
(1)
= |C8t(i)|x + |C8t(i− 1)|x
(2)
= (|C8t(i)|α − |C8t(i + 1)|α) + |C8t(i− 1)|x
(3)
= (|C8t(i)|α + |C8t(i− 1)|x)− |C8t+8(i + 1)|α
(4)
= |C8t+8(i)|α − |C8t+8(i + 1)|α

The equality (1) holds by the explicit description obtained for C8t+8(i). The equal-
ity (2) holds by hypothesis of induction. The third equality holds because for all
j ∈ {1, . . . , L}, i 6= j, |C8t+8(j)|α = |C8t(j)|α, in particular for j = i + 1 and the
last equality holds by the explicit description obtained for C8t+8(i).
In order to �nish the proof that C8t+8 is a representative con�guration we need
to see that |C8t+8(i)|y = 0 but this holds by the explicit description obtained for
C8t+8(i).

Case 2: Let us suppose that

|C8t(i− 1)|α > |C8t(i + 1)|α > |C8t(i)|α

In this case |C8t(i−1)|x = |C8t(i−1)|α−|C8t(i)|α > 0, |C8t(i)|x = |C8t(i−1)|y = 0
and |C8t(i)|y = |C8t(i + 1)|α − |C8t(i)|α > 0.
Also, max{|C8t(i − 1)|α, |C8t(i)|α + 1, |C8t(i + 1)|α} = |C8t(i − 1)|α. We will
prove that C8t+8 is a representative con�guration, |C8t+8(i)|α = |C8t(i − 1)|α
and |C8t+8(j)|α = |C8t(j)|α for j ∈ {1, . . . , i− 1, i + 1, . . . , L}
As y is present in cell i,

C8t(i)
Ri
∗−→ C8t+1(i) = C8t(i) ∪ {c0}+ Ri

1,Ri
3−→ C8t+2(i) = {α|C8t(i)|α} ∪

{z|C8t(i)|y α|C8t(i)|y c1}+

C8t+k(j) = C8t(j), for all j ∈ {1, . . . , i − 1, i + 1, . . . , L} as no rules a�ect to
them and C8t+k(env) = ∅ for k ∈ {1, 2}.
As cell i has positive electrical charge in C8t+2, then we apply the rules
[]i−1, [z]+i → [y]i−1, []i and [c1 → c2]+i obtaining

C8t+3(i− 1) = C8t(i− 1) ∪ {y|C8t(i)|y}

192 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

C8t+3(i) = {α|C8t(i)|α+|C8t(i)|y c2}
C8t+3(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+3(env) = ∅.

In this situation |C8t+3(i−1)|x = |C8t(i−1)|x > 0 and |C8t+3(i−1)|y = |C8t(i)|y >
0 so the rule [x y → λ]i−1 can be applied. In order to compute the number of copies
of x and y that remain in cell i − 1 after the application of this rule we consider
that

|C8t(i− 1)|x
(1)
= |C8t(i− 1)|α − |C8t(i)|α
(2)
> |C8t(i + 1)|α − |C8t(i)|α
(3)
= |C8t(i)|y

The equality (1) holds because C8t is a representative con�guration and in this case
|C8t(i−1)|α > |C8t(i)|α. The inequality (2) holds because in this case |C8t(i−1)|α >
|C8t(i + 1)|α and �nally, the last equality holds by the de�nition of representative
con�guration and |C8t(i + 1)|α > |C8t(i)|α.
The rule []i−1, [c2]+i → [c3]−i−1, []i can also be applied. Therefore,

C8t+4(i− 1) = {x|C8t(i−1)|x−|C8t(i)|y α|C8t(i−1)|α c3}−
C8t+4(i) = {α|C8t(i)|α+|C8t(i)|y}
C8t+4(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+4(env) = ∅.

Since polarisation of cell i − 1 is now negative, rules [x]−i−1, []i → []i−1, [z]i and
[c3 → c4]−i−1 can be applied and all the copies of x from cell i− 1 are sent into the
cell i transformed into copies of z. Hence

C8t+5(i− 1) = {α|C8t(i−1)|α c4}
C8t+5(i) = {z|C8t(i−1)|x−|C8t(i)|y α|C8t(i)|α+|C8t(i)|y}
C8t+5(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+5(env) = ∅.

After that, rules [cn4 → c5]i and [z → xα]i can be applied, then
C8t+6(i− 1) = {α|C8t(i−1)|α c5}
C8t+6(i) = {x|C8t(i−1)|x−|C8t(i)|y α|C8t(i−1)|x−|C8t(i)|y+|C8t(i)|α+|C8t(i)|y} =

= {x|C8t(i−1)|x−|C8t(i)|y α|C8t(i−1)|x+|C8t(i)|α}
C8t+6(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+6(env) = ∅.

In next step only the rule [c5 → c6]i−1 can be applied and we obtain
C8t+7(i− 1) = {α|C8t(i−1)|α c6}
C8t+7(i) = C8t+6(i)
C8t+7(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+7(env) = ∅.

Next, the rule [c6]i−1 → p []i−1 is applied
C8t+8(i− 1) = {α|C8t(i−1)|α}
C8t+8(i) = C8t+6(i) = {x|C8t(i−1)|x−|C8t(i)|y α|C8t(i−1)|x+|C8t(i)|α}
C8t+8(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i+1, . . . , L} and C8t+8(env) = {p}.

Note that |C8t+8(i)|α = |C8t(i− 1)|x + |C8t(i)|α and by hypothesis |C8t(i− 1)|x =
|C8t(i− 1)|α − |C8t(i)|α so |C8t+8(i)|α = |C8t(i− 1)|α = |C8t+8(i− 1)|α, and that
there is no x or y in C8t+8(i− 1).
Finally as in this case |C8t(i− 1)|α > |C8t(i + 1)|α = |C8t+8(i + 1)|α then

|C8t+8(i)|α > |C8t+8(i + 1)|α

A Membrane Computing Model for Ballistic Depositions 193

and

|C8t+8(i)|x
(1)
= |C8t(i− 1)|x − |C8t(i)|y =
(2)
= (|C8t(i− 1)|α − |C8t(i)|α)− (|C8t(i + 1)|α − |C8t(i)|α) =
(3)
= |C8t(i− 1)|α − |C8t(i + 1)|α
(4)
= |C8t+8(i)|α − |C8t+8(i + 1)|α

The equality (1) holds by the explicit description obtained for C8t+8(i). The equal-
ity (2) holds by hypothesis of induction. The third equality by arithmetic and the
last equality holds by the above reasoning about |C8t+8(i)|α and because for all
j ∈ {1, . . . , L}, i 6= j, |C8t+8(j)|α = |C8t(j)|α, in particular for j = i + 1.
In order to �nish the proof that C8t+8 is a representative con�guration we need
to see that |C8t+8(i)|y = 0 but this holds by the explicit description obtained for
C8t+8(i).

Case 3: Let us suppose that

|C8t(i + 1)|α ≥ |C8t(i− 1)|α > |C8t(i)|α

In this case |C8t(i−1)|x = |C8t(i−1)|α−|C8t(i)|α > 0, |C8t(i)|x = |C8t(i−1)|y = 0
and |C8t(i)|y = |C8t(i + 1)|α − |C8t(i)|α > 0.
Also, max{|C8t(i − 1)|α, |C8t(i)|α + 1, |C8t(i + 1)|α} = |C8t(i + 1)|α. We will
prove that C8t+8 is a representative con�guration, |C8t+8(i)|α = |C8t(i + 1)|α
and |C8t+8(j)|α = |C8t(j)|α for j ∈ {1, . . . , i− 1, i + 1, . . . , L}
As y is present in cell i,

C8t(i)
Ri
∗−→ C8t+1(i) = C8t(i) ∪ {c0}+ Ri

1,Ri
3−→ C8t+2(i) = {α|C8t(i)|α} ∪

{z|C8t(i)|y α|C8t(i)|y c1}+

C8t+k(j) = C8t(j), for all j ∈ {1, . . . , i − 1, i + 1, . . . , L} as no rules a�ect to
them and C8t+k(env) = ∅ for k ∈ {1, 2}.
As cell i has positive electrical charge in C8t+2, then we apply the rules
[]i−1, [z]+i → [y]i−1, []i and [c1 → c2]+i obtaining

C8t+3(i− 1) = C8t(i− 1) ∪ {y|C8t(i)|y}
C8t+3(i) = {α|C8t(i)|α+|C8t(i)|y c2}
C8t+3(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+3(env) = ∅.

In this situation |C8t+3(i−1)|x = |C8t(i−1)|x > 0 and |C8t+3(i−1)|y = |C8t(i)|y >
0 so the rule [x y → λ]i−1 can be applied. In order to compute the number of copies
of x and y that remain in cell i − 1 after the application of this rule we consider
that

|C8t(i− 1)|x
(1)
= |C8t(i− 1)|α − |C8t(i)|α
(2)

≤ |C8t(i + 1)|α − |C8t(i)|α
(3)
= |C8t(i)|y

194 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

The equality (1) holds because C8t is a representative con�guration and in this case
|C8t(i−1)|α > |C8t(i)|α. The inequality (2) holds because in this case |C8t(i+1)|α ≥
|C8t(i− 1)|α and �nally, the last equality holds by the de�nition of representative
con�guration and |C8t(i + 1)|α > |C8t(i)|α.
The rule []i−1, [c2]+i → [c3]−i−1, []i can also be applied. Therefore,

C8t+4(i− 1) = {y|C8t(i)|y−|C8t(i−1)|x α|C8t(i−1)|α c3}−
C8t+4(i) = {α|C8t(i)|α+|C8t(i)|y}
C8t+4(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+4(env) = ∅.

As no x are present in cell i− 1,

C8t+4(i − 1)
Ri−1

6−→ C8t+5(i − 1) = {y|C8t(i)|y−|C8t(i−1)|x α|C8t(i−1)|α c4}−
Ri−1

7−→

C8t+6(i − 1) = {y|C8t(i)|y−|C8t(i−1)|x α|C8t(i−1)|α c5}−
Ri−1

8−→ C8t+7(i − 1) =
{y|C8t(i)|y−|C8t(i−1)|x α|C8t(i−1)|α c6}−

C8t+k(i) = C8t+4(i) and C8t+k(j) = C8t(j) for all j ∈ {1, . . . , i−2, i+1, . . . , L}
as no rules a�ect to them and C8t+k(env) = ∅ for k ∈ {5, 6, 7}.
Next, the rule [c6]−i−1 → p []i−1 is applied,

C8t+8(i− 1) = {y|C8t(i)|y−|C8t(i−1)|x α|C8t(i−1)|α}
C8t+8(i) = C8t+4(i) and C8t+8(j) = C8t(j) for all j ∈ {1, . . . , i−2, i+1, . . . , L}

and C8t+8(env) = {p}.
Note that |C8t+8(i)|α = |C8t(i)|y + |C8t(i)|α and by hypothesis |C8t(i)|y = |C8t(i+
1)|α − |C8t(i)|α so |C8t+8(i)|α = |C8t(i + 1)|α, and that there is no x or y in
C8t+8(i).
Finally as in this case |C8t+8(i)|α = |C8t(i + 1)|α ≥ |C8t(i− 1)|α = |C8t+8(i− 1)|α
then

|C8t+8(i)|α ≥ |C8t+8(i− 1)|α
and

|C8t+8(i− 1)|y
(1)
= |C8t(i)|y − |C8t(i− 1)|x =
(2)
= (|C8t(i + 1)|α − |C8t(i)|α)− (|C8t(i− 1)|α − |C8t(i)|α) =
(3)
= |C8t(i + 1)|α − |C8t(i− 1)|α =
(4)
= |C8t(i + 1)|α − |C8t+8(i)|α

The equality (1) holds by the explicit description obtained for |C8t+8(i−1)|y. The
equality (2) holds by hypothesis of induction. The third equality by arithmetic
and the last by the above reasoning about |C8t+8(i)|α.
In order to �nish the proof that C8t+8 is a representative con�guration we need
to see that |C8t+8(i− 1)|x = 0 but this holds by the explicit description obtained
for C8t+8(i− 1).

Case 4: Let us suppose that

|C8t(i)|α ≥ |C8t(i− 1)|α and |C8t(i)|α ≥ |C8t(i + 1)|α

In this case |C8t(i)|x = |C8t(i)|α − |C8t(i + 1)|α ≥ 0, |C8t(i− 1)|x = |C8t(i)|y = 0
and |C8t(i− 1)|y = |C8t(i)|α − |C8t(i− 1)|α ≥ 0.

A Membrane Computing Model for Ballistic Depositions 195

Also, max{|C8t(i− 1)|α, |C8t(i)|α + 1, |C8t(i + 1)|α} = |C8t(i)|α + 1. We will prove
that C8t+8 is a representative con�guration, |C8t+8(i)|α = |C8t(i + 1)|α + 1 and
|C8t+8(j)|α = |C8t(j)|α for j ∈ {1, . . . , i− 1, i + 1, . . . , L}

C8t(i)
Ri
∗−→ C8t+1(i) = C8t(i) ∪ {c0}+ Ri

1−→ C8t+2(i) = C8t(i) ∪ {c1}+ Ri
2−→

C8t+3(i) = C8t(i) ∪ {c2}+

C8t+k(j) = C8t(j), for all j ∈ {1, . . . , i − 1, i + 1, . . . , L} as no rules a�ect to
them and C8t+k(env) = ∅ for k ∈ {1, 2, 3}.
As cell i has positive electrical charge in C8t+3, then we apply the rule
[]i−1, [c2]+i → [cn3]−i−1, []i obtaining

C8t+4(i− 1) = C8t(i− 1) ∪ {cn3}−
C8t+4(j) = C8t(j) for all j ∈ {1, . . . , i− 2, i, . . . , L} and C8t+4(env) = ∅
After that,

C8t+4(i− 1) = C8t(i− 1)∪{cn3}−
Ri−1

10−→ C8t+5(i− 1) = C8t(i− 1)∪{cn4}−
Ri−1

11−→
C8t+6(i− 1) = C8t(i− 1) ∪ {x y c5}−

C8t+k(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i, . . . , L} as no rules a�ect to them
and C8t+k(env) = ∅ for k ∈ {5, 6}.
At this step rules [c5 → c6]−i−1 and [x]−i−1, [] → []i−1[z]i are applied simultaneously
and therefore the object x in cell i−1 is sent into cell i transformed into an object
z. Hence

C8t+7(i− 1) = C8t(i− 1) ∪ {y c6}
C8t+7(i) = C8t(i) ∪ {z}
C8t+7(j) = C8t(j), for all j ∈ {1, . . . , i − 2, i + 1, . . . , L} as no rules a�ect to

them and C8t+7(env) = ∅.
Now, rules [c6]i−1 → p []i−1 and [z → xα]i can be applied, then

C8t+8(i− 1) = C8t(i− 1) ∪ {y}
C8t+8(i) = C8t(i) ∪ {xα}
C8t+8(j) = C8t(j), for all j ∈ {1, . . . , i − 2, i + 1, . . . , L} as no rules a�ect to

them and C8t+8(env) = {p}.
Note that |C8t+8(i)|α = |C8t(i)|α +1 and that there is no x in C8t+8(i− 1) and no
yin C8t+8(i).
Finally, as in this case |C8t+8(i− 1)|α = |C8t(i− 1)|α < |C8t(i)|α +1 = |C8t+8(i)|α
and |C8t+8(i + 1)|α = |C8t(i + 1)|α < |C8t(i)|α + 1 = |C8t+8(i)|α, then

|C8t+8(i− 1)|α < |C8t+8(i)|α and |C8t+8(i + 1)|α < |C8t+8(i)|α
so

|C8t+8(i− 1)|y
(1)
= |C8t(i− 1)|y + 1
(2)
= |C8t(i)|α − |C8t(i− 1)|α + 1
(3)
= |C8t+8(i)|α − |C8t+8(i− 1)|α

and

|C8t+8(i)|x
(1)
= |C8t(i)|x + 1
(2)
= |C8t(i)|α − |C8t(i + 1)|α + 1
(3)
= |C8t+8(i)|α − |C8t+8(i + 1)|α

196 C. Graciani-Díaz, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

The equality (1) holds by the explicit description obtained for C8t+8(i). The
equality (2) holds by hypothesis of induction and the last equality holds by the
above reasoning about |C8t+8(i)|α and because for all j ∈ {1, . . . , L}, i 6= j,
|C8t+8(j)|α = |C8t(j)|α, in particular for j = i− 1 and j = i + 1.

Case 5: Let us suppose that

|C8t(i + 1)|α > |C8t(i)|α ≥ |C8t(i− 1)|α

In this case |C8t(i−1)|x = |C8t(i)|x = 0, |C8t(i−1)|y = |C8t(i)|α−|C8t(i−1)|α ≥ 0,
|C8t(i)|y = |C8t(i + 1)|α − |C8t(i)|α > 0.
Also, max{|C8t(i − 1)|α, |C8t(i)|α + 1, |C8t(i + 1)|α} = |C8t(i + 1)|α. We will
prove that C8t+8 is a representative con�guration, |C8t+8(i)|α = |C8t(i + 1)|α
and |C8t+8(j)|α = |C8t(j)|α for j ∈ {1, . . . , i− 1, i + 1, . . . , L}
As y is present in cell i,

C8t(i)
Ri
∗−→ C8t+1(i) = C8t(i) ∪ {c0}+ Ri

1,Ri
3−→ C8t+2(i) = {α|C8t(i)|α} ∪

{z|C8t(i)|y α|C8t(i)|y c1}+

C8t+k(j) = C8t(j), for all j ∈ {1, . . . , i − 1, i + 1, . . . , L} as no rules a�ect to
them and C8t+k(env) = ∅ for k ∈ {1, 2}.
As cell i has positive electrical charge in C8t+2, then we apply the rules
[]i−1, [z]+i → [y]i−1, []i and [c1 → c2]+i obtaining

C8t+3(i− 1) = C8t(i− 1) ∪ {y|C8t(i)|y}
C8t+3(i) = {α|C8t(i)|α+|C8t(i)|y c2}
C8t+3(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+3(env) = ∅.

Now, the rule []i−1, [c2]+i → [c3]−i−1, []i can be applied. Therefore,
C8t+4(i− 1) = C8t(i− 1) ∪ {y|C8t(i)|y c3}−
C8t+4(i) = {α|C8t(i)|α+|C8t(i)|y}
C8t+4(j) = C8t(j), for all j ∈ {1, . . . , i− 2, i + 1, . . . , L} and C8t+4(env) = ∅.
After that,

C8t+4(i − 1) = C8t(i − 1) ∪ {y|C8t(i)|y c3}−
Ri−1

6−→ C8t+5(i − 1) = C8t(i − 1) ∪

{y|C8t(i)|y c4}−
Ri−1

7−→ C8t+6(i− 1) = C8t(i− 1)∪ {y|C8t(i)|y c5}−
Ri−1

8−→ C8t+7(i− 1) =
C8t(i− 1) ∪ {y|C8t(i)|y c6}−

C8t+k(i) = {α|C8t(i)|α+|C8t(i)|y} and C8t+k(j) = C8t(j), for all j ∈ {1, . . . , i −
2, i + 1, . . . , L} and C8t+k(env) = ∅ for k ∈ {5, 6, 7}.
Next, the rule [c6]i−1 → p []i−1 is applied,

C8t+8(i− 1) = C8t(i− 1) ∪ {y|C8t(i)|y}−
C8t+8(i) = {α|C8t(i)|α+|C8t(i)|y} and C8t+8(j) = C8t(j), for all j ∈ {1, . . . , i −

2, i + 1, . . . , L} and C8t+8(env) = {p}.
Note that |C8t+8(i)|α = |C8t(i)|α + |C8t(i)|y and by hypothesis |C8t(i)|y = |C8t(i+
1)|α − |C8t(i)|α so |C8t+8(i)|α = |C8t(i + 1)|α = |C8t+8(i + 1)|α, and that there is
no x or y in C8t+8(i).
Finally, as |C8t+8(i − 1)|α = |C8t(i − 1)|α < |C8t(i)|α + |C8t(i)|y = |C8t+8(i)|α,
then

|C8t+8(i− 1)|α < |C8t(i)|α

A Membrane Computing Model for Ballistic Depositions 197

and

|C8t+8(i− 1)|y
(1)
= |C8t(i− 1)|y + |C8t(i)|y
(2)
= (|C8t(i)|α − |C8t(i− 1)|α) + (|C8t(i + 1)|α − |C8t(i)|α)
(3)
= |C8t(i + 1)|α − |C8t(i− 1)|α
(4)
= |C8t+8(i)|α − |C8t+8(i− 1)|α

The equality (1) holds by the explicit description obtained for C8t+8(i − 1). The
equality (2) holds by hypothesis of induction. The third equality by arithmetic
and the last equality holds by the above reasoning about |C8t+8(i)|α and because
for all j ∈ {1, . . . , L}, i 6= j, |C8t+8(j)|α = |C8t(j)|α, in particular for j = i− 1.
In order to �nish the proof that C8t+8 is a representative con�guration we need
to see that |C8t+8(i− 1)|x = 0 but this holds by the explicit description obtained
for C8t+8(i− 1).

P Systems with Adjoining Controlled
Communication Rules

Mihai Ionescu1, Dragoş Sburlan2

1 Rovira i Virgili University
Research Group on Mathematical Linguistics
Tarragona, Spain
armandmihai.ionescu@urv.net

2 Ovidius University
Faculty of Mathematics and Informatics
Constantza, Romania
dsburlan@univ-ovidius.ro

Summary. This paper proposes a new model of P systems where the rules are activated
by objects present in the neighboring regions. We obtain the computational completeness
considering only two membranes, external inhibitors and carriers. Leaving the carriers
apart we obtain equality with ET0L systems in terms of number sets.

1 Introduction

Having as inspiration the way living cells are divided by membranes into com-
partments where various biochemical processes take place, P systems (also known
as membrane systems) area grew rapidly since Gheorghe Păun, proposed the first
model in 1998 ([4]). A complete bibliography of P systems can be found on the P
system webpage ([8]).

Within the living cell there are several energy consuming activities. Among
them there is the transport activity which is of three types: diffusion, facilitated
diffusion, and active transport. Simple diffusion means that the molecules can pass
directly through the membrane, always down a concentration gradient, while in
the case of facilitated diffusion and active transport molecules can pass both down
an up the concentration gradient. In the facilitated diffusion membrane protein
channels are used to allow charged molecules (which otherwise could not diffuse
across the cell membrane) to freely diffuse the cell, while active transport requires
the expenditure of energy to transport the molecule from one side of the membrane
to the other.

Hence, living cells get/expel from/to their environment many substances and
for this aim they have developed specific transport systems across membranes,
even against a concentration gradient. Often enough this necessity of the living

200 P Systems with Adjoining Controlled Communication Rules

cell to expel or attract various molecules is triggered by the presence or the absence
of certain chemicals in the immediate neighboring (inner or outer) regions.

Here we deal with P systems where the rules from a given region are activated
precisely by the presence or the absence of certain symbols in the neighboring
regions. This model has a biological counterpart and it is inspired by the chemicals
that pass through the membranes of the cell, from one region to another, in the
sense of polarization gradient. In this case, the electrical charge plays the role of
the promoter.

Before going into the definition of the new model and its computational power
(Section 3) let us briefly remind the reader some basic notions and notations
(Section 2). Section 4 is dedicated to the conclusions and challenges for further
research.

2 Preliminaries and Definitions

We assume familiarity with the basics of formal language theory (see [6]), as well
as with the basics of membrane computing (see [5]).

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet Σ is a finite sequence of letters from Σ. We denote the empty word by
λ, the length of a word w by |w|, and the number of occurrences of a symbol a in
w by |w|a. The (con)catenation of two words x and y is denoted by xy.

A language over Σ is a (possibly infinite) set of words over Σ. The language
consisting of all words over Σ is denoted by Σ∗, and Σ+ = Σ∗ \{λ}. We denote by
REG, CF, ET0L, CS, RE the families of languages generated by regular, context-free,
table Lindemayer interactionless systems context-sensitive, and of arbitrary gram-
mars, respectively (RE stands for recursively enumerable languages). The following
strict inclusions hold: REG ⊂ CF ⊂ ET0L ⊂ CS ⊂ RE.

For a family FL of languages, NFL denotes the family of length sets of languages
in FL. The following relations hold: NREG = NCF ⊂ NET0L ⊂ NCS ⊂ NRE.

The multisets over a given finite support (alphabet) are represented by strings
of symbols. The order of symbols does not matter, because the number of copies of
an object in a multiset is given by the number of occurrences of the corresponding
symbol in the string (see [1] for other ways to specify multisets).

3 The Model

Based on the biological observations mentioned in the introductory section we
introduce the following new class of P systems.

3.1 Defining the Model

Definition 1. A P system with adjoining controlled communication rules (called
in short, a PACC system) is a construct

M. Ionescu, D. Sburlan 201

Π = (V,C, µ,w1, . . . , wm, R1, . . . , Rm, i0),

where:

• V is the alphabet of objects;
• C ⊆ V is the set of carriers;
• µ is a membrane structure with m membranes (labeled in a one-to-one manner

by 1, . . . ,m);
• w1, . . . , wm are the multisets of objects initially present in the regions of Π;
• R1, . . . , Rm are finite sets of communication rules associated to membranes,

that are of the following types:
� simple rules:[
A

]
i
−→

[]
i
α or A

[]
i
−→

[
α
]
i
, for A ∈ V \ C, α ∈ (V \ C)∗,

� promoted simple rules:[
A

]
i
B −→

[]
i
α or A

[
B

]
i
−→

[
α
]
i
, for A,B ∈ V \ C, α ∈ (V \ C)∗,

� inhibited simple rules:[
A

]
i
¬B −→

[]
i
α or A

[
¬B

]
i
−→

[
α
]
i
, for A,B ∈ V \ C, α ∈ (V \ C)∗,

� carrier rules:
pairs of rules

[
cA

]
i
−→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗, or
pairs of rules cA

[]
i
−→

[
cα

]
i

and
[
c
]
i
−→

[]
i
c for A ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗,
� promoted carrier rules:
pairs of rules

[
cA

]
i
B −→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A,B ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗, or
pairs of rules cA

[
B

]
i
−→

[
cα

]
i

and
[
c
]
i
−→

[]
i
c, for A,B ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗;
� inhibited carrier rules:
pairs of rules

[
cA

]
i
¬B −→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A,B ∈ V \C, c ∈ C,

α ∈ (V \ C)∗, or
pairs of rules cA

[
¬B

]
i
−→

[
cα

]
i
and

[
c
]
i
−→

[]
i
c, for A,B ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗;
• i0 ∈ {1, . . . ,m} is an elementary membrane of µ (the output membrane).

In a simple rule an object is rewritten in a string of objects, in the inner or
outer region with respect to the initial object. A promoted simple rule/inhibited
simple rule has the same action as a simple rule but it can be applied only in the
presence/absence of certain objects (chemicals) called promoters/inhibitors. To be
more precise we take as example the rule

[
A

]
i
B −→

[]
i
α, which implies that

object A is rewritten in α in the outer membrane only if promoter B is present
there. If we replace B with ¬B, the object plays the role of the inhibitor, and only
by its presence it blocks the execution of the rule.

In a carrier rule the objects can be rewritten only if they are guided by an
object, the carrier. Note that the carrier is not actively participating in the reac-
tion. Its role is to “accompany” the reaction and to inhibit the parallelism. As an

202 P Systems with Adjoining Controlled Communication Rules

example, by rule
[
cA

]
i
−→

[]
i
cα we mean that object A evolves to α (in the

outer region of object A) iff there is an object c that helps A to be rewritten.
Promoted/Inhibited carrier rules can be applied if besides the carrier there is

also a promoter/inhibitor which triggers/blocks the reaction.
As usual in membrane computing, the rules are used in a nondeterministic

maximally parallel manner starting from an initial configuration. In this way, we
obtain transitions between the configurations of the system. A configuration is
described by the m-tuple of the multisets of objects present in the m regions of
the system. The initial configuration is (w1, . . . , wm).

A sequence of transitions between configurations of the system constitutes a
computation; a computation is successful if it halts, i.e., it reaches a configuration
(the halting configuration) where no rule can be applied to any of the objects.

The result of a successful computation is the number of objects present within
the membrane with the label io in the halting configuration. A computation which
never halts yields no result.

We use the notation NPACCm(α, β), where α ∈ {smp} ∪ {catk | k ≥ 0},
β ∈ {proRi, inhRi} to denote the family of sets of natural numbers generated
by P systems with adjoining controlled communication rules having at most m
membranes, communication rules that can be simple α = smp, or carrier α = catk,
using at most k carriers, and external promoters β = proRi or external inhibitors
β = inhRi of weight i at the level of rules.

3.2 An Example

Let us now exemplify the functioning of the model defined above throughout an
example. Here it shown how such machines can be used to compute functions.

Consider the following system:

Π1 = ({A,B, D}, C = {c}, [[]2]1, w1 = {An}, w2 = {c}, R1, R2, 2),

where:

• R1=∅, R2={A
[]

2
−→

[
ABD

]
2
,
[
B

]
2
−→

[]
2
B,

[
cD

]
2
−→

[]
2
c,

B
[
D

]
2
−→

[
AB

]
2
, c

[]
2
−→

[
c
]
2
}.

The system Π is fed with n ≥ 1 copies of object A in region 1 and when it halts,
the contents of the output region contains n2 copies of A.

The functioning of the system is rather simple. The only rule we can apply in
the initial configuration is the one which rewrites object A in ABD in the inner
region, hence in the second step of the computation we will have all the objects
of the system (n copies of A, n copies of B, n copies of D and the object initially
present here, carrier c) in region 2. Then, we expel all objects B in region 1 and
we start consuming objects D by applying the rule

[
cD

]
2
−→

[]
2
c, hence object

D is sent outside membrane 2 and is rewritten to λ having carrier c accompanying
the reaction.

M. Ionescu, D. Sburlan 203

Note that object D plays the role of the counter and each time a copy of D is
deleted (for example in step i of the computation), n more copies of A are produced
(in step i+2 of the computation). One by one the n-th copies of D are consumed,
adding for each of them n copies to object A. In the rule B

[
D

]
2
−→

[
AB

]
2
, object

D plays also the role of promoter and object B can be rewritten into AB only
in its presence. The computation ends with n2 copies of A in region 2, hence the
system computes the number-theoretic function f(n) = n2, n ≥ 1.

3.3 The Results

In what follows we will prove that the class of sets of numbers generated by P
systems with external inhibitors equals the class of sets of numbers generated by
P systems with external inhibitors and only two membranes.

Lemma 1. NPACCm(smp, inhR1) = NPACC2(smp, inhR1),m ≥ 2.

Proof. Obviously, NPACCm(inh) ⊇ NPACC2(inh). For the opposite inclusion
we have to show that for any P system with external inhibitors Π = (V ,C, µ, R, i0)
generating a set of natural numbers, there exists an equivalent P system with
external inhibitors Π = (V,C, µ,R, i0) with only 2 membranes.

To this aim, we simulate the computation of Π, with the system Π defined as
follows.

Let us denote by L = {1, 2, . . . ,m} the set of labels of the regions in Πm. In
addition, assume that R = {R1, . . . , Rm}, and each Ri ∈ R, 1 ≤ i ≤ m, contains
all the rules that cross membrane i. Then, we define:
• V = {ai | a ∈ V , i ∈ L};
• C = C = ∅;
Let h : V

∗ × L → V ∗ be a mapping such that
1) h(a, i) = ai, a ∈ V , i ∈ L,
2) h(λ, j) = λ, j ∈ L,
3) h(x1x2, j) = h(x1, j)h(x2, j), x1, x2 ∈ V

∗
, j ∈ L,

• denote w = h(w1)h(w2) . . . h(wm), where wi is the multiset present in region
i ∈ L of Πm at the beginning of the computation.
• R is defined as follows.

For each rule A
[]

i
−→

[
α
]
i
∈ Ri, A ∈ V , α ∈ V

∗
, i ∈ L, we add to R the

rule h(A, j)
[]

1
−→

[
h(α′, i)

]
1
, providing that j is the label of the outer

membrane of membrane i.

For each rule A
[
¬B

]
i
−→

[
α
]
i
∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add to

R the rule h(A, j)
[
¬h(B, i)

]
1
−→

[
h(α′, 2)

]
1
, providing that j is the label

of the outer membrane of membrane i.

For each rule
[
A

]
i
−→

[]
i
α ∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add

to R the rule
[
h(A, i)

]
1
−→

[]
1
h(α′, j) providing that j is the outer

membrane of membrane i.

204 P Systems with Adjoining Controlled Communication Rules

For each rule
[
A

]
i
¬B −→

[]
i
α ∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add

to R the rule
[
h(A, i)

]
1
¬h(B, j) −→

[]
1
h(α′, j) providing that j is the

outer membrane of membrane i.

Generally speaking, the purpose of membranes is to keep private the interior
rules and objects from the neighboring ones and vice-versa. However, in our case
we can express the passage of certain symbol through the membranes by using new
symbols that we add to vocabulary and that encode both the crossed membrane
label and the symbols from where they derive. In this way we can rewrite the
rules, using the new symbols that perfectly describe the passage of objects in
the membrane structure; consequently, in our case, we can shrink an arbitrarily
membrane structure to only two membranes. The morphism used by the above
construction accomplishes the encoding procedure.

The system Π simulates all the moves of Π and it stops whenever Π stops.
However, in the halting configuration, in the designated output region of Π, there
could be some objects representing the encoded version of the objects present in
the regions of Π. Therefore, we have to modify the above set of rules such that
Π eliminates all these objects in order to generate the same set of numbers as
Π. This can be accomplish by producing an object D whenever a rule of Π is
simulated (by adding the object D at the right hand side of each above rule),
deleting it at each step (we add to R rules of type D

[]
1
−→

[
λ
]
1

and
[
D

]
1
−→[]

1
λ). Finally, if Π stops, then Π will not produce the object D anymore,

hence the absence of this object can trigger an inhibited rule that deletes all
the unnecessary objects. Consequently, we have that NPACCm(smp, inhR1) =
NPACC2(smp, inhR1),m ≥ 2.

Here we will prove that the family of sets of vectors of numbers generated by
P systems with external inhibitors equals the family of sets of numbers generated
by ET0L systems.

Theorem 1. NPACC2(smp, inhR1) = NET0L.

Proof. We will prove the result by showing that communicative P systems with
external inhibitors are equivalent with P systems with inhibitors, which at their
turn, generates the same class of sets of numbers as the Parikh image of ET0L as
shown in [7]. Let NP1(smp, inhR1) be the family of sets of numbers generated by
P systems with inhibitors.

The proof of the inclusion NP1(smp, inhR1) ⊇ NPACC2(smp, inhR1) is
rather simple and is based on a similar encoding of regions into new objects as
was presented above.

For the inclusion NP1(smp, inhR1) ⊆ NPACC2(smp, inhR1) we will simulate
the computation of a P system with one region Πinh = (V,C, µ,w, R, i0). We
assume that the set of rules R contains rules of type A → α or A → α|¬B ,
A,B ∈ V , α ∈ V ∗.

Let us consider the sets Ṽ = {Ã | A ∈ V } and V̇ = {Ȧ | A ∈ V }. In addition,
let us define the morphisms:

M. Ionescu, D. Sburlan 205

h1 : V ∗ → Ṽ ∗, such that h1(A) = Ã for all A ∈ V ;
h2 : V ∗ → V̇ ∗, such that h3(A) = Ȧ for all A ∈ V .

We construct a P system Πcc = (V , C, µ,R, i0), simulating Πinh, defined as
follows:

V = V ∪ Ṽ ∪ V̇ ∪ {F}; w1 = w;
C = ∅; w2 = w;
µ =

[[]
2

]
1
; i0 = 1.

The set of rules R is defined as follows3:

step i A
[
¬B

]
−→

[
h1(α)h2(α)

]
, for all rules A → α|¬B ∈ Rinh,

step i A
[]

−→
[
h1(α)h2(α)

]
, for all rules A → α ∈ Rinh,

step i
[
A

]
−→

[]
F, if exists A → α ∈ Rinh,

step i
[
A

]
¬B −→

[]
F, if exists A → α|¬B ∈ Rinh,

step i + 1 F
[]

−→
[]

,

step i + 1
[
h1(A)

]
−→

[]
h1(A), for all objects A ∈ V,

step i + 2 h1(A)
[]

−→
[
A

]
, for all objects A ∈ V,

step i + 2
[
h2(A)

]
¬R −→

[]
A, for all A ∈ V.

Here is how the system Πcc simulates the computation of Πinh. First, remark
that in order to correctly simulate the moves of Πinh, we will maintain during the
computation in both regions of Πcc a copy of the multiset w – the multiset that
represent the current configuration of Πinh. This is especially useful when trying
to simulate rules of type A → α|¬B ∈ Rinh because we have to know whether or
not the external inhibitor is present.

We assume that the system is in a configuration given by the strings w1 =
w2 = w. The system attempts to execute simultaneously the rules of type

step i A
[
¬B

]
−→

[
h1(α)h2(α)

]
, for all rules A → α|¬B ∈ Rinh,

step i A
[]

−→
[
h1(α)h2(α)

]
, for all rules A → α ∈ Rinh,

step i
[
A

]
−→

[]
F, if exists A → α ∈ Rinh,

step i
[
A

]
¬B −→

[]
F, if exists A → α|¬B ∈ Rinh.

Remark that the rules of first two types are used to generate inside the inner
region, two copies of multiset α (represented by h1(α) and h2(α)). In the same
3 For the present proof, we will simplify the notation by not including the membrane

labels into the syntax of the rules; this is possible here since we have only two mem-
branes and we do not allow the interaction with the environment. In addition, we have
specified on their left hand side the moment of their executions during the simulation
of one computational step in Πinh.

206 P Systems with Adjoining Controlled Communication Rules

time, the rules of second type delete from region 2 the objects that were within
the scope of rules of first type. In addition, remark that there are no other rules
that can be applied in this step. Moreover, they produce in region 1 objects R;
these objects will be used later for synchronizing the moments when multiset α
appears in both regions.

Next, are executed the rules of type:

step i + 1 F
[]

−→
[]

,

step i + 1
[
h1(A)

]
−→

[]
h1(A), for all objects A ∈ V.

Observe that the presence of object(s) R in this computational step inhibits the
executions of rules of type

[
h2(A)

]
¬F −→

[]
A, for all A ∈ V . Hence, in the

third step, the rules of type

h1(A)
[]

−→
[
A

]
, for all objects A ∈ V,[

h2(A)
]
¬F −→

[]
A, for all A ∈ V,

will be executed. The new objects appear at the same time in both regions of the
system Πcc and the simulation of the next computational step of Πinh can start.
Finally, if the system Πinh stops because there are no rules to be applied, then
also Πcc halts.

Before we conclude, remark that the maximal parallelism as well as the uni-
versal clock is fundamental for the construction.

Consequently we have proved that the computation of an arbitrary P sys-
tem with inhibitors can be simulated by a P system with external inhibitors,
hence we have NP1(smp, inhR1) ⊆ NPACC2(smp, inhR1). Therefore we have
that NP1(smp, inhR1) = NPACC2(smp, inhR1) = PsET0L.

The following theorem shows that P systems with external inhibitors and car-
riers are computationally complete.

Theorem 2. NPACC2(cat, inhR1) = NRE.

Proof. The inclusion NPACC2(cat, inhR1) ⊆ NRE is assumed true by invoking
the Turing-Church thesis.

For the inclusion NPACC2(cat, inhR1) ⊇ NRE we will simulate the compu-
tation of an arbitrary non-deterministic register machine M = (n,P, l0, lh). Such
register machines are computational universal if n ≥ 3.

We construct Π = (V,C, µ,w1, w2, R1, i0) as follows.

V = {ai, Ai, Si | 1 ≤ i ≤ n} ∪ {l, l, l, l̃,˜̃l, L | l ∈ Lab(P)} ∪ {c}

∪ {K, K,K,K, T0, T1, X,X};
C = {c};
µ =

[[]
2

]
1
;

M. Ionescu, D. Sburlan 207

w1 = l0L0a
k1
1 . . . akn

n c;
w2 = A1 . . . AnS1 . . . Sn;
i0 = 1.

The set of rules R is defined as follows:
• for each instruction (l1 : ADD(j), l2, l3) ∈ P, the set R contains the rules:
l1

[]
−→

[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2

]
, l1 6= lh,

l1
[]

−→
[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l3

]
, l1 6= lh,

L1

[
¬Aj

]
−→

[
A1 . . . AnS1 . . . Sn

]
,[

l2
]
−→

[]
l2,[

l3
]
−→

[]
l3,[

aj

]
−→

[]
aj ,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si

]
−→

[]
λ, 1 ≤ i ≤ n;

• for each instruction (l1 : SUB(r), l2, l3) ∈ P, the set R contains the rules:
l1

[]
−→

[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
, l1 6= lh,

caj

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
,

L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
,[

l1
]
−→

[]
l1,[

X
]
−→

[]
X,

l1
[]

−→
[
l1T0A1 . . . AnS1 . . . Sn

]
,[

K
]
−→

[]
K,[

l1
]
¬X −→

[]
l̃3,

X
[
¬T0

]
−→

[
l2

]
,

K
[]

−→
[
A1 . . . AnS1 . . . SnK

]
,[

T0

]
−→

[]
T1,[

l1
]
¬K −→

[]
λ,[

l2
]
−→

[]
l2L2,

T1

[]
−→

[
A1 . . . AnS1 . . . Sn

]
,

l̃3
[]

−→
[˜̃
l3

]
,[˜̃

l3
]
−→

[]
l3L3,[

K
]
−→

[]
K,

208 P Systems with Adjoining Controlled Communication Rules

K
[]

−→
[
A1 . . . AnS1 . . . Sn

]
,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si

]
−→

[]
λ, 1 ≤ i ≤ n.

Here is how the P system Π simulates the computation of the register machine
M . Observe for the beginning that in the P system Π we will represent the number
stored into register j of M as the multiplicity of the object aj . In addition, remark
that objects Aj , Sj , 1 ≤ j ≤ n, stand for the addition/subtraction command over
register j – both in the simulation of an ADD or SUB instruction, the absence
of symbol Aj or Sj allows the addition or deletion of one occurrence of object
aj . Objects Aj , Sj , 1 ≤ j ≤ n, are produced all the time during the computation
except the moment when we actually want to increment or subtract one occurrence
of object aj from the multiset; at that moment we generate all objects Ai, Si,
1 ≤ i ≤ n, such that i 6= j.

Let us see in more details how the simulation of the addition instruction (l1 :
ADD(j), l2) ∈ P works. Assume that at a certain moment during the computation,
the current multisets in regions 1 and 2 are represented by the strings w1 =
l1L1a

k1
1 . . . akn

n c and w2 = A1 . . . AnS1 . . . Sn respectively. Then, the rules that can
be executed are:

l1
[]

−→
[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2

]
or the rule involving l3,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si

]
−→

[]
λ, 1 ≤ i ≤ n.

As a consequence of executing the above rules the next configuration will be
represented by w1 = L1a

k1
1 . . . akn

n c and w2 = A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2.
Now, since in region 2 the object Aj is missing, then the rule

L1

[
¬Aj

]
−→

[
A1 . . . AnS1 . . . Sn

]
can be executed; its role is to reestablish the initial configuration in region 2.
Simultaneously, the system runs the rules[

l2
]
−→

[]
l2,[

aj

]
−→

[]
aj ,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si

]
−→

[]
λ, 1 ≤ i ≤ n.

The rule
[
l2

]
−→

[]
l2 produces in region 1 the object l2 that corresponds to

register machine label l2. In addition, by the execution of the rule
[
aj

]
−→

[]
aj ,

the number of objects aj in region 1 (that corresponds to the number stored in
register j of M) is incremented.

Concerning the simulation of the subtract instruction (l1 : SUB(j), l2, l3) ∈ P,
the system Π, being in a configuration represented by w1 = l1L1a

k1
1 . . . akn

n c and
w2 = A1 . . . AnS1 . . . Sn, executes first the rules:

l1
[]

−→
[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,

M. Ionescu, D. Sburlan 209[
Si

]
−→

[]
λ, 1 ≤ i ≤ n.

In a similar manner as presented in the addition simulation, the rule l1
[]

−→[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
creates the context required for starting the

simulation. The absence of object Sj in region 2 allows, in the second step, the
(possible) execution of the rules

caj

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
,

L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
.

Observe that in case there exists an object aj in region 1, both rules are exe-
cuted, while if there is not, only the rule L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
will

be executed.
In the same step, the rule

[
l1

]
−→

[]
l1 performs. As we will see, the ob-

jects derived from object l1 will be used later to check whether or not the rule
caj

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
was executed. Moreover, they will be also

used to introduce in region 2 objects A1 . . . AnS1 . . . Sn that forbids a new addi-
tion or subtraction of objects aj .

Let us consider the first case, i.e. the region 1 contains at least one object aj .
Then, as a consequence of executing the above rules we will have the multisets
w1 = ak1

1 . . . a
kj−1
j . . . akn

n c and w2 = A2
1 . . . A2

nS2
1 . . . S2

nXK. The following rules
will be further applied:

l1
[]

−→
[
l1T0A1 . . . AnS1 . . . Sn

]
,[

K
]
−→

[]
K,

and possibly the rule:[
X

]
−→

[]
X.

Remark that the objects derived from l1 are within the scope of rules that intro-
duce at each odd step objects A1 · · ·AnS1 . . . Sn (or A1 . . . Aj−1Aj+1 . . . AnS1 · · ·Sn

in the first step). In a similar manner the objects derived from K are within the
scope of rules that introduce at each even step objects A1 · · ·AnS1 . . . Sn. Anyway,
at each step we delete by rules Ai → λ and Si → λ, 1 ≤ i ≤ n all objects Ai and
Si.

Now, since in the third step an object X was introduced in region 1 then, in

the fourth step, the rule
[
l1

]
¬X −→

[]
l̃3 cannot be executed. Moreover, because

in region 2 exists an object T0 also the rule X
[
¬T0

]
−→

[
l2

]
cannot be executed.

However, in the fourth step the rule
[
T0

]
−→

[]
T1 runs and it will allow, in

the fifth step, the execution of the rule X
[
¬T0

]
−→

[
l2

]
. In the same time, rule[

l1
]
¬K −→

[]
λ is executed and so there will be no way to rewrite l1 into l̃3 and

furthermore into l3. Finally, by rule
[
l2

]
−→

[]
l2L2 the label of the new register

machine instruction to be simulated is generated.
Now let us see what how the simulation is done when the system Π attempts

to simulate the instruction (l1 : SUB(j), l2, l3) ∈ P in the case when the register j
is empty. Then, the simulation works in a similar manner as in the above presented

210 P Systems with Adjoining Controlled Communication Rules

case with the main difference being that in the fourth step the rule
[
l1

]
¬X −→[]

l̃3 is executed because the object X was not produced (the rules caj

[
¬Sj

]
−→[

A1 . . . AnS1 . . . SnX
]

and
[
X

]
−→

[]
X were not ran since the object aj was

missing from the initial multiset). So, the following rules are executed in sequence

l̃3
[]

−→
[˜̃
l3

]
,
[˜̃
l3

]
−→

[]
l3L3. As a consequence, the symbol that corresponds

to the next instruction to be simulated is generated.
If lh is generated then the computation stops, having in the output region a

number of objects ai, 1 ≤ i ≤ n, equals with the contents of register i of M . In
this way the execution of the entire register machine program is simulated.

Since one can easily construct a register machine, equivalent with M , that in
a successful computation clears its registers except a special designated one (the
output register) we have that NPACC2(cat, inhR1) ⊇ NRE.

Therefore, we have proved the equality NPACC2(cat, inhR1) = NRE.

4 Conclusions and Further Research

The model we introduced is based on the observation that various chemical re-
actions within a compartment of a living cell are activated from the neighboring
compartments of the cell. We have proved that the family of sets of vectors of
numbers generated by P systems with adjoining controlled communication rules
when only simple inhibited rules are used equals the family of sets of numbers
generated by ET0L systems. We have also proved the computational completeness
if, in addition, carriers are used. As a plus, we want to emphasize that similar
results can be obtained if, instead of inhibited simple rules, promoted ones are
considered.

Trying to get more “realistic”, we believe that it is worthwhile to investigate
the power of the above systems to whom we add execution times for the rules and
to study their properties (for more details we refer to [2]). Another possible line
for further research is to investigate the power of the systems not considering the
family of sets of vectors of numbers generated as we have done here, but considering
the family of Parikh images generated by such systems.

References

1. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): Multiset Processing, LNCS
2235, Springer-Verlag, Berlin, 2001.

2. M. Cavaliere, D. Sburlan: Time and Synchronization in Membrane Systems, Funda-
menta Informaticae 64(1–4), 65–77, 2005.

3. M. Ionescu, D. Sburlan: On P Systems with Promoters/Inhibitors, Journal of Uni-
versal Computer Science, 10(5), 581–599, 2004.

4. Gh. Păun: Computing with Membranes, Journal of Computer and System Sciences,
618(1), 108–143, 2000.

M. Ionescu, D. Sburlan 211

5. Gh. Păun: Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
6. A. Salomaa, G. Rozenberg (Eds.): Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.
7. D. Sburlan: Further Results on P Systems with Promoters/Inhibitors. International

Journal of Foundations of Computer Science, 17, 1 (2006), 205–221;
8. http://psystems.disco.unimib.it/

Several Applications of Spiking Neural P Systems

Mihai Ionescu1, Dragoş Sburalan2

1 Research Group on Mathematical Linguistics
Universitat Rovira i Virgili
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
armandmihai.ionescu@urv.cat

2 Ovidius University
Faculty of Mathematics and Informatics
Constantza, Romania
dsburlan@univ-ovidius.ro

Summary. In this paper we investigate some applications of Spiking Neural P Sys-
tems regarding their capability to solve some classical computer science problems. In
this respect it is studied the versatility of such systems to simulate a well known par-
allel computational model, namely the Boolean circuits. In addition, another notorious
application - the sorting - is considered within this framework.

1 Introduction

Spiking neural P systems (shortly called SN P systems) are a class of computing
models introduced in [9]. They are using ideas from neural computing, area cur-
rently under high investigation, with a focus on spiking neurons (see, e.g., [4], [12],
[13]).

The new models are based on the tissue-like and neural-like P systems structure
to which various features were added, and can be found on the website of the
Membrane Computing community ([21]). For an introduction in the area we refer
to [16], while for an up-to-date information regarding P systems one can consult
the above mentioned website.

In short, an SN P system consists of a set of neurons placed in the nodes of
a graph and sending signals (spikes) along synapses (edges of the graph), under
the control of firing rules. One also uses forgetting rules, which remove spikes from
neurons. Hence, the spikes are moved and created, destroyed, but never modified
(there is only one type of objects in the system).

A generalization of the original model was considered in [15], [3] where rules
of the form: E/ac → ap; d where introduced. The meaning is that when using
the rule, c spikes are consumed and p spikes are produced. Because p can be 0
or greater than 0, we obtain at the same time a generalization of both spiking
and forgetting rules. Different from the original model of SN P systems, in [10],

214 M. Ionescu, D. Sburlan

parallelism inside a neuron was introduced. By that we mean that when a rule
E/ac → a; d can be applied (the contents of a neuron is described by the regular
expression E), then we apply it as many times as possible in that neuron.

Based on the above features, we investigate their power to simulate boolean
gates and circuits. We also introduce here a modality to sort natural numbers
(given as number of spikes) with SN P systems in the initial version.

2 Prerequisites

In this section we first introduce the definition of SN P system which we will use
during our endeavor, altogether with some explanations on the exhaustive use of
the rules. Then, we recall (some) basic notions on boolean functions and circuits.

2.1 SN P systems

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is a
construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over O, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that as ∈ L(E) for no rule

E/ac → a; d of type (1) from Ri;
3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with (i, i) /∈ syn, for 1 ≤ i ≤ m (synapses);
4. out ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are firing (also called spiking) rules, and the rules of type
(2) are called forgetting rules. The first ones are applied as follows: if the neuron
contains k spikes, ak ∈ L(E) and k ≥ c, then the rule E/ac → a; d can be applied,
and this means that c spikes are consumed, only k − c remain in the neuron, the
neuron is fired, and it produces one spike after d time units (a global clock is
assumed, marking the time for the whole system, hence the functioning of the
system is synchronized). If d = 0, then the spike is emitted immediately, if d = 1,
then the spike is emitted in the next step, and so on. In the case d ≥ 1, if the rule
is used in step t, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed,
and it cannot receive new spikes (if a neuron has a synapse to a closed neuron and
sends a spike along it, then the spike is lost). In step t + d, the neuron spikes and
becomes again open, hence can receive spikes (which can be used in step t+d+1).

Several Applications of Spiking Neural P Systems 215

A spike emitted by a neuron σi is replicated and goes to all neurons σj such that
(i, j) ∈ syn.

The forgetting rules, are applied as follows: if the neuron contains exactly s
spikes, then the rule as → λ can be used, and this means that all s spikes are
removed from the neuron.

In each time unit, in each neuron which can use a rule we have to use a rule,
either a firing or a forgetting one. Because two firing rules E1/ac1 → a; d1 and
E2/ac2 → a; d2 can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules
can be applied in a neuron, and then one of them is chosen non-deterministically.
Note however that we cannot interchange a firing rule with a forgetting rule, as
all pairs of rules E/ac → a; d and as → λ have disjoint domains, in the sense that
as /∈ L(E).

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm of spikes present in each neuron. Starting from the initial config-
uration and applying the rules, we can define transitions among configurations.
A transition between two configurations C1, C2 is denoted by C1 =⇒ C2. Any
sequence of transitions starting in the initial configuration is called a computation.
A computation halts if it reaches a configuration where all neurons are open and
no rule can be used.

With any computation, halting or not, we associate a spike train, a sequence
of digits 0 and 1, with 1 appearing in positions 1 ≤ t1 < t2 < . . . , indicating
the steps when the output neuron sends a spike out of the system (we also say
that the system itself spikes at that time). With any spike train containing at
least two spikes we associate a result, in the form of the number t2 − t1; we say
that this number is computed by Π. By definition, if the spike train contains
only one occurrence of 1, then we say that we have computed the number zero.
The set of all numbers computed in this way by Π is denoted by N2(Π) (the
subscript indicates that we only consider the distance between the first two spikes
of any computation). Then, by Spik2Pm(rulek, consq, forgr) we denote the family
of all sets N2(Π) computed as above by spiking neural P systems with at most
m ≥ 1 neurons, using at most k ≥ 1 rules in each neuron, with all spiking rules
E/ac → a; t having c ≤ q, and all forgetting rules as → λ having s ≤ r. When one
of the parameters m, k, q, r is not bounded, it is replaced with ∗.

In this paper, we use SN P systems of the form introduced above, but using
the rules in the exhaustive way. Namely if a rule E/ac → ap; d is associated with
a neuron σi which contains k spikes, then the rule is enabled (we also say fired) if
and only if ak ∈ L(E). Using the rule means the following. Assume that k = sc+r,
for some s ≥ 1 (this means that we must have k ≥ c) and 0 ≤ r < c (the remainder
of dividing k by c). Then sc spikes are consumed, r spikes remain in the neuron
σi, and sp spikes are produced and sent to the neurons σj such that (i, j) ∈ syn
(as usual, this means that the sp spikes are replicated and exactly sp spikes are
sent to each of the neurons σj). In the case of the output neuron, sp spikes are
also sent to the environment. Of course, if neuron σi has no synapse leaving from
it, then the produced spikes are lost.

216 M. Ionescu, D. Sburlan

We stress two important features of this models. First, it is important to note
that only one rule is chosen and applied, the remaining spikes cannot evolve by
another rule. For instance, even if a rule a(aa)∗/a → a; 0 exists, it cannot be used
for the spike remaining unused after applying the rule a(aa)∗/a2 → a; 0. Second,
is that the covering of the neuron is checked only for enabling the rule, not step by
step during its application. For instance, the rule a5/a2 → a; 0 has the same effect
as a(aa)∗/a2 → a; 0 in the case of a neuron containing exactly 5 spikes: the rule is
enabled, 4 spikes are consumed, 2 are produced; both applications of the rule are
concomitant, not one after the other, hence all of them have the same enabling
circumstances.

If several rules of a neuron are enabled at the same time, one of them is non-
deterministically chosen and applied. The computations proceed as in the SN P
systems with usual rules, and a spike train is associated with each computation
by writing 0 for a step when no spike exits the system and 1 within a step when
one or more spikes exit the system. Then, a number is associated – and said to be
generated/computed by the respective computation – with a spike train containing
at least two occurrences of the digit 1, in the form of the steps elapsed between the
first two occurrences of 1 in the spike train. Number 0 is computed by computations
whose spike trains contain only one occurrence of 1.

2.2 Boolean Functions and Circuits

An n-ary Boolean function is a function f{true, false}n 7→ {true, false}. ¬ (nega-
tion) is a unary Boolean function (the other unary functions are: constant func-
tions and identity function). We say that Boolean expression ϕ with variables
x1, . . . , xn expresses the n-ary Boolean function f if, for any n-tuple of truth val-
ues t = (t1, · · · , tn), f(t) is true if T � ϕ, and f(t) is false if T 2 ϕ, where T (x) = ti
for i = 1, . . . , n.

There are three primary boolean functions that are widely used: The NOT
function - this is a just a negation; the output is the opposite of the input. The
NOT function takes only one input, so it is called a unary function or operator.
The output is true when the input is false, and vice-versa. The AND function - the
output of an AND function is true only if its first input and its second input and
its third input (etc.) are all true. The OR function - the output of an OR function
is true if the first input is true or the second input is true or the third input is true
(again, etc.). Both AND and OR can have any number of inputs, with a minimum
of two.

Any n-ary Boolean function f can be expressed as a Boolean expression ϕf

involving variables x1, . . . , xn.
There is a potentially more economical way that expressions for representing

Boolean functions–namely Boolean circuits. A Boolean circuit is a graph C =
(V,E), where the nodes in V = {1, . . . , n} are called the gates of C. Graph C has
a rather special structure. First, there are no cycles in the graph, so we can assume
that all edges are of the form (i, j), where i < j. All nodes in the graph have the

Several Applications of Spiking Neural P Systems 217

“in-degree” (number of incoming edges) equal to 0, 1, or 2. Also, each gate i ∈ V
has a sort s(i) associated with it, where s(i) ∈ {true, false,∨,∧,¬}∪{x1, x2, . . . }.
If s(i) ∈ {true, false} ∪ {x1, x2, . . . }, then the in degree of i is 0, that is, i must
have no incoming edges. Gates with no incoming edges are called the inputs of
C. If s(i) = ¬, then i has “in-degree” one. If s(i) ∈ {∨,∧}, then the in degree of
i must be two. Finally, node n (the largest numbered gate in the circuit, which
necessarily has no outgoing edges) is called the output gate of the circuit.

This concludes our definition of the syntax of circuits. The semantics of circuits
specifies a truth value for each appropriate truth assignment. We let X(C) be the
set of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X |
s(i) = x for some gate i of C}). We say that a truth assignment T is appropriate
for C if it is defined for all variables in X(C). Given such a T , the truth value
of gate i ∈ V , T (i), is defined, by induction on i, as follows: If s(i) = true then
T (i) = true, and similarly if s(i) = false. If s(i) ∈ X, then T (i) = T (s(i)). If now
s(i) = ¬, there is a unique gate j < i such that (j, i) ∈ E. By induction, we know
T (j), and then T (i) is true if T (j) = false, and vice-versa. If s(i) = ∨, then there
are two edges (j, i) and (j′, i) entering i. T (i) is then true if only if at least one
of T (j), T (j′) is true. If s(i) = ∧, then T (i) is true if only if both T (j) and T (j′)
are true, where (j, i) and (j′, i) are the incoming edges. Finally, the value of the
circuit, T (C), is T (n), where n is the output gate.

3 Simulating Logical Gates and Circuits

In this section we show how SNP systems can simulate logical gates. We consider
that input is given in one neuron while the output will be collected from the output
neuron of the system. Boolean value 1 is encoded in the spiking system by two
spikes, hence a2, while 0 is encoded as one spike.

We collect the result as follows. If the output neuron fires two neurons in the
second step of the computation, then the boolean calculus computed by the system
is 1. If it fires only one spike, then the result is 0.

3.1 Simulating Logical Gates

Lemma 1. Boolean AND gate can be simulated by SN P systems using two neu-
rons and no delay on the rules, in two steps.

Proof. We construct the SNP system

ΠAND = ({a}, σ1, σ2, {(1, 2)}, 2),

where:

• σ1 = (0, {a → a; 0}),
• σ2 = (0, {a2 → a; 0, a3 → a; 0, a4/a2 → a; 0}),

218 M. Ionescu, D. Sburlan

The system is given in its initial configuration in Figure 1 (a.). This gives us
the opportunity to introduce the way we graphically represent a SN P system:
as a directed graph, with the neurons as nodes and the synapses indicated by
arrows. Each neuron has inside its specific rules and the spikes present in the
initial configuration.

The functioning of the system is rather simple. Suppose in neuron 1 we intro-
duce three spikes. This means we compute the logical AND between 1 and 0 (or
0 and 1). Neuron 1 fires and, in the same time, all three spikes are sent to the
output neuron. In the second step of the computation, the output neuron uses rule
a3 → a; 0 and the correct result (in this case 0) is sent to the environment.

If 4 spikes are introduced in neuron 1 (the case 11), in the second step of the
computation the output neuron will fire using the rule a4/a2 → a; 0, and will send
two spikes in the environment. The system with the input 00 behaves similarly to
the 01 or 10 cases. We have shown how the system we have constructed gives the
right answer in two computational steps and gets back to its initial configuration
for a further use, if necessary.'

&
$
%1

2

1

2

'
&
$
%

'
&
$
%

'
&
$
%

?

?

?

?

a2 → a; 0
a3 → a; 0

a4/a2 → a; 0

a2 → a; 0
a3 → a2; 0

a4/a2 → a; 0

a → a; 0 a → a; 0

a. b.

Figure 1. SN P systems simulating AND (a.) and OR (b.) gates

We want to emphasize here that no “extended” rule was used. Of course, a rule
a4 → a2 can substitute, with the same effect, the rule we have preferred above
(namely a4/a2 → a; 0) but, in simulating boolean gates, we have tried to minimize
the use of such rules. An extended rule is used only once in simulating Boolean
gates, more precisely in the simulation of OR gate.

If in the system above, in the output neuron, we change only the rule a3 → a; 0
(with the rule a3 → a2; 0) we obtain the OR gate.

Lemma 2. Boolean OR gate can be simulated by SN P systems using two neurons
and no delay on the rules, in two steps.

Proof. In order to simulate OR gate we construct a similar system to the one
above. Hence,

Several Applications of Spiking Neural P Systems 219

ΠOR = ({a}, σ1, σ2, {(1, 2)}, 2),

with:

• σ1 = (0, {a → a; 0}),
• σ2 = (0, {a2 → a; 0, a3 → a2; 0, a4/a2 → a; 0}).

The system works in the same manner as described above. The difference is when
the output neuron receives three spikes in the first step of the computation. In the
second step it does not fire only one, but two (hence the output 1), thus giving
the right answer for the input 01 (or 10).

We now pass to the simulation of logical gate NOT.

Lemma 3. Boolean NOT gate can be simulated by SNP systems using eight neu-
rons, no delay on the rules, in two steps.

Proof. We first want to stress that in simulating this gate we did not use any
extended rules. The case when such rules are used is left to the reader.

Let us construct the following SN P system:

ΠNOT = ({a}, σ1, σ2, · · · , σ8, syn, 2),

and:

• σ1 = (0, {a → a; 0}),
• σ2 = (a3, {a4/a2 → a; 0, a5 → a; 0}),
• σ3 = σ4 = σ5 = (0, {a/a → a; 0, a2/a2 → λ}),
• σ6 = σ7 = σ8 = (0, {a2/a2 → a; 0, a/a → λ}),
• syn = {(1, 2), (2, 3), (3, 2), (2, 4), (4, 2), (2, 5), (5, 2), (2, 6), (6, 2),

(2, 7), (7, 2), (2, 8), (8, 2)}.

Let us emphasize that in order to simulate boolean gate NOT, in the initial con-
figuration, neuron 2 contains 3 spikes, which, once used to correctly simulate the
gate, have to be present again in the neuron such that the system returns to its
initial configuration. This is done with the help of 3 neurons (3, 4, and 5 if the re-
sult of the gate is 1, and 6, 7, and 8 otherwise) which in step 3 of the computation
refill neuron 2 with 3 spikes.

If the input in the boolean gate is 1, then 2 spikes are placed in neuron 1
which will be sent to neuron 2 in one computational step (applying the rule a →
a; 0). There, the rule a5 → a; 0 is used and the system expels one spike to the
environment, corresponding to 0. In the same time one spike is also sent to the
neurons 3, 4, 5, 6, 7, and 8. Neurons 3, 4, and 5 will send it to neuron 2 (which
regains its initial 3 spikes) while neurons 6, 7, and 8 are deleting it.

If only one spike is given in neuron one (hence the input 0), it is sent imme-
diately to neuron 2. Here, at the end of the first computational step there will
be 4 spikes which will be consumed (and sent to the environment) in the second
step of the computation when the rule a4/a2 → a; 0 is used twice. The two spikes

220 M. Ionescu, D. Sburlan

(representing the result 1 for the input 0) are also sent to neurons 3, 4, 5, 6, 7,
and 8. This time the spikes are used by neurons 6, 7, and 8 which are sending one
spike to neuron 2, while neurons 3, 4 and 5 are forgetting them.

�
�
�
��

�
�
��

�
�
�

�
�
�
��

�
�
��

�
�
�

'
&

$
%

'
&

$
%

?

?

]

^Y
q

9

7

/
*

�

zy:

a → a; 0

a3

a4/a2 → a; 0
a5 → a; 0

a/a → a; 0
a2/a2 → λ

a/a → a; 0
a2/a2 → λ

a/a → a; 0
a2/a2 → λ

a2/a2 → a; 0
a/a → λ

a2/a2 → a; 0
a/a → λ

a2/a2 → a; 0
a/a → λ

3

4

5

6

7

8

1

2

Figure 2. SN P systems simulating NOT gate

After showing how SN P systems can simulate logical gates, we pass to the
simulation of circuits.

3.2 Simulating Circuits

Next, we are presenting an example of how to construct a SN P system to simulate
a Boolean circuit designed to evaluate a Boolean function. Of course, in our goal
we are using the systems ΠAND, ΠOR, and ΠNOT constructed before, to which
we add extra neurons to synchronize the system for a correct output.

We start with the same example considered in [1] and [11] and we have the
function f : {0, 1}4 → {0, 1} given by the formula

f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ ¬(x3 ∧ x4).

The circuit corresponding to the above formula is depicted in Figure 3, and in
Figure 4 we have depicted the spiking system assigned to it.

In order for the system that simulates the circuit to output the correct result
it is necessary for each sub-system (that simulates the gates AND, OR, and NOT)
to receive the input from the above gate(s) at the same time. To this aim, we have
to add (pairs of) synchronization neurons, initially empty with a single rule inside
(a → a; 0). Note that in Figure 4. we have added such a pair of neurons in order
for the output of the first AND gate to enter gate OR at the same time with the
output of NOT gate (at the end of the fourth step of the computation).

Having the overall image of the functioning of the system, let us give some
more details on the simulation of the above formula. For that we construct the SN
P system

Several Applications of Spiking Neural P Systems 221

ΠC = (Π(1)
AND,Π

(2)
AND,Π

(3)
NOT ,Π

(4)
OR)

formed by the sub-SN P systems for each gate, and we obtain the unique result as
follows:

1. for every gate of the circuit with inputs from the input gates we have a SN P
system to simulate it. The input is given in neuron labeled 1 of each gate;

2. for each gate which has at least one input coming as an output of a previous
gate we construct a SN P system to simulate it by ”constructing“ a synapse
between the output neuron of the gate from which the signal (spike) comes and
the input neuron of the system that simulates the new gate.
Note that if synchronization is needed the new synapse is constructed from the
output neuron of the output gate to the first neuron in the (pair of) neurons
used for synchronization and from here another synapse is constructed to the
input of the new gate in the circuit.

�
�

A
A

x1 x2 x3 x4

c1 c2

c4

c3

�� ��� ��� � �� ��� ��� �
�� ���� �� �� ���� ���� ��

�� ���� ���� ���� ��� �

?

?

?

j

?

?

?

�

?

?

qy-�
3+

*+-�ji

AND AND

SYNC
NOT

OR

Figure 3. Boolean Circuit

For the above formula and the circuit depicted in Figure 3 we will have:

– Π
(1)
AND computes the first AND1 gate (x1 ∧ x2) with inputs x1 and x2.

– Π
(2)
AND computes the second AND2 gate (x3 ∧x4) with inputs x3 and x4; these

two P systems, Π
(1)
AND and Π

(2)
AND, act in parallel.

– Π
(3)
NOT computes NOT gate ¬(x3 ∧ x4) with input (x3 ∧ x4). While Π

(3)
NOT

is working, the output value of the first AND1 gate passes through the two
synchronization neurons.

– The input enters in the first neuron of OR gate, and SN P system Π
(4)
OR com-

pletes its task. The result of the computation for OR gate (which is the result
of the global P system), is sent into the environment of the whole system.

222 M. Ionescu, D. Sburlan

Based on the previous explanations the following result holds:

Theorem 1. Every Boolean circuit α, whose underlying graph structure is a rooted
tree, can be simulated by a SN P system, Πα, in linear time. Πα is constructed from
SN P systems of type ΠAND, ΠOR and ΠNOT , by reproducing in the architecture
of the neural structure, the structure of the tree associated to the circuit.

4 A Sorting Algorithm

We pass now to a different problem SN P systems can solve, namely to sort n
natural numbers, this time not using the rules in the exhaustive way, but as in the
original definition of such systems.

We first exemplify our sorting procedure through an example. Let us presume
we want to sort the natural numbers 1, 3, and 2, given in this order. For that we
construct the following system given only in its pictorial format below:'
&

$
%
'
&

$
%
'
&

$
%

'
&

$
%
'
&

$
%
'
&

$
%

'
&

$
%
'
&

$
%
'
&

$
%

?9 9 q z? z ?
�

? z z? q ?

i1 i2 i3

s1 s2 s3

o1 o2 o3

a∗/a → a; 0 a∗/a → a; 0 a∗/a → a; 0

a3 → a; 0
a2 → λ
a → λ

a2 → a; 0
a3 → λ
a → λ

a → a; 0
a2 → λ
a3 → λ

Figure 4. Sorting three natural numbers

We encode natural numbers in the number of spikes (1 – one spike, 3 – three
spikes, 2 – two spikes) which we input in the first line of the system (hence in
the neurons labeled i1, i2, an i3). It can be noticed that the neurons in the first
layer of the structure are having the same rule inside (a∗/a → a; 0) and outgoing
synapses to all the neurons in the second layer of the structure (the ones denoted
s1, s2, and s3). Neuron labeled s1 has outgoing synapses with all neurons in the
third layer of the system, only one spiking rule inside (a3 → a; 0, where 3 is the

Several Applications of Spiking Neural P Systems 223

number of numbers that have to be sorted), and two deletion rules (a2 → λ, and
a → λ). For the other neurons in the second layer, the exponent of the firing rule
decreases one by one as well as the synapses with the neurons from the third layer
of the system.

In the initial configuration of the system we have one spike in neuron i1, three
spikes in neuron i2 and 2 spikes in neuron i3. In the first step of the computation,
one spike from each neuron is consumed and sent to neurons from the second layer
of the system. Each of them receives the same number of spikes, namely 3.

In the second step of the computation, neuron labeled s1 consumes all three
spikes previously received and fires to neurons o1, o2 and o3. Hence, each neuron
from the output layer has one spike inside. The other neurons from the second
layer delete the three spikes they have received. In the same time neurons i2 and
i3 fire again sending 2 spikes (one each) to all neurons from the second layer.

In the third step of the computation, neuron s2 fires only to neurons o2 and
o3 (so, they will have one more spike inside, hence 2, while o1 remains with only
one spike), the other spikes from neurons s1 and s3 being deleted. In the same
time neuron i2 refills the neurons in the second layer of the system with one spike,
which will be consumed in the forth step of the computation by neuron s3 and
sent to the output neuron o3.

So, in the last step of the computation there are: 1 spike in the neuron o1, 2
spikes in the neuron o2, and 3 spikes in the neuron o3.

We pass now to the general case, constructing only the system in the pictorial
form:

#
"

!
#
"

!

#
"

!
#
"

!

#
"

!
#
"

!

? ?

? z?

i1 i2

s1 s2

o1 o2

a∗/a→ a; 0 a∗/a→ a; 0

an → a; 0
ai → λ,

where 1 ≤ i ≤ n − 1

an−1 → a; 0
aj → λ

with 1 ≤ j ≤ n
and j 6= n − 1

#
"

!

#
"

!

#
"

!

?

?

in

sn

on

a∗/a→ a; 0

a→ a; 0
ak → λ,

where 2 ≤ k ≤ n

...

...

...

q zz)9 9

q -z

Figure 5. Sorting n natural numbers

The functioning of the system is similar with the one described in the above
example, and consequently we have the following result.

224 M. Ionescu, D. Sburlan

Theorem 2. SN P systems can sort a vector of natural numbers where each num-
ber is given as number of spikes introduced in the neural structure.

Based on the above construction, the time complexity (measured as usually as
the number of configurations reached during the computation) is O(n). Although
the time complexity is better than the ”classical”, sequential algorithm, in this
case one can notice that the construction presented depends on the magnitude of
the numbers to be sorted.

5 Final Remarks

Spiking neural P systems are a versatile formal model of computation that can be
used for designing efficient parallel algorithms for solving known computer science
problems. Here we firstly studied the ability of SN P systems to efficiently simulate
Boolean circuits since, apart for being a well known computational model, there
exists many ”fast” algorithms solving various problems. In addition, this simu-
lation, enriched with some ”memory modules” (given in the form of some SN P
sub-systems), may constitute an alternative proof of the computational complete-
ness of the model.

Another issue studied here regards the sorting of a vector of natural numbers
using SN P systems. In this case, due to its parallel features, the obtained time
complexity for the proposed algorithm overcome the classical sequential ones.

Several open problems arose during our research. For instance, in case of
Boolean circuits the simulation is done for such circuits whose underlying graphs
have rooted tree structures, therefore a constraint that need further investigations.

In what regards the sorting algorithm, the presented construction depends on
the magnitude of the numbers to be sorted. We conjecture that this inconvenient
might be eliminated. Also, we conjecture that further improvements concerning
time complexity can be made.

Acknowledgements

The work of the authors was supported as follows. M. Ionescu: fellowship “For-
mación de Profesorado Universitario” from the Spanish Ministry of Education,
Culture and Sport.

References

1. R. Ceterchi, D. Sburlan: Simulating Boolean Circuits with P Systems, LNCS, 2933,
104–122, 2004.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. In [5], Vol. I, 169–194.

Several Applications of Spiking Neural P Systems 225

3. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In [5], Vol. I, 241–265.

4. W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge Univ. Press, 2002.

5. M.A. Gutiérrez-Naranjo et al., eds.: Proceedings of Fourth Brainstorming Week on
Membrane Computing, Febr. 2006, Fenix Editora, Sevilla, 2006.

6. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sosik, S. Woodworth: Nor-
mal forms for spiking neural P systems. In [5], Vol. II, 105–136, and Theoretical
Computer Sci., to appear.

7. O.H. Ibarra, S. Woodworth: Characterizations of some restricted spiking neural P
systems. In Pre-proceedings of Seventh Workshop on Membrane Computing, WMC7,
Leiden, The Netherlands, July 2006, 387–396.

8. O.H. Ibarra, S. Woodworth, F. Yu, A. Păun: On spiking neural P systems and par-
tially blind counter machines. In Proceedings of Fifth Unconventional Computation
Conference, UC2006, York, UK, September 2006, 123–135.

9. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

10. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with an exhaustive
use of rules, International Journal of Unconventional Computing, accepted.

11. M. Ionescu, T.-O. Ishdorj: Boolean Circuits and a DNA Algorithm in Membrane
Computing. LNCS, 3850, 272–291.

12. W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK, 8, 1 (2002), 32–36.

13. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.
14. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs, NJ, 1967.
15. A. Păun, Gh. Păun: Small universal spiking neural P systems. In [5], Vol. II, 213–234,

and BioSystems, in press.
16. Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.
17. Gh. Păun: Languages in membrane computing. Some details for spiking neural P

systems. LNCS 4036, 2006, 20–35.
18. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-

tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.
19. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural

P systems. Submitted 2005.
20. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes. Springer-

Verlag, Berlin, 1997.
21. The P Systems Web Page: http://psystems.disco.unimib.it.

On the Computational Power
of Spiking Neural P Systems

Alberto Leporati, Claudio Zandron,
Claudio Ferretti, Giancarlo Mauri

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

{leporati,zandron,ferretti,mauri}@disco.unimib.it

Summary. In this paper we study some computational properties of spiking neural P
systems. In particular, we show that by using nondeterminism in a slightly extended
version of spiking neural P systems it is possible to solve in constant time both the
numerical NP–complete problem Subset Sum and the strongly NP–complete problem
3-SAT. Then, we show how to simulate a universal deterministic spiking neural P system
with a deterministic Turing machine, in a time which is polynomial with respect to the
execution time of the simulated system. Surprisingly, it turns out that the simulation
can be performed in polynomial time with respect to the size of the description of the
simulated system only if the regular expressions used in such a system are of a very
restricted type.

1 Introduction

Membrane systems (also called P systems) were introduced in [16] as a new class of
distributed and parallel computing devices, inspired by the structure and function-
ing of living cells. The basic model consists of a hierarchical structure composed by
several membranes, embedded into a main membrane called the skin. Membranes
divide the Euclidean space into regions, that contain some objects (represented
by symbols of an alphabet) and evolution rules. Using these rules, the objects
may evolve and/or move from a region to a neighboring one. Usually, the rules
are applied in a nondeterministic and maximally parallel way; moreover, all the
objects that may evolve are forced to evolve. A computation starts from an initial
configuration of the system and terminates when no evolution rule can be applied.
The result of a computation is the multiset of objects contained into an output
membrane, or emitted from the skin of the system. For a systematic introduction
to P systems we refer the reader to [18], whereas the latest information can be
found in [23].

228 A. Leporati et al.

In an attempt to pass from cell-like to tissue-like architectures, in [13] tissue
P systems were defined, in which cells are placed in the nodes of a (directed)
graph. Since then, this model has been further elaborated, for example, in [4]
and [19], with recent results about both theoretical properties [1] and applications
[14]. This evolution has led to explore also neural-like architectures, yielding to
the introduction of spiking neural P systems (SN P systems, for short) [8], based
on the neurophysiological behavior of neurons sending electrical impulses (spikes)
along axons to other neurons. We recall that this biological background has already
led to several models in the area of neural computation, e.g., see [11, 12, 6].

Similarly to tissue P systems, in SN P systems the cells (neurons) are placed
in the nodes of a directed graph, called the synapse graph. The contents of each
neuron consist of a number of copies of a single object type, called the spike. The
firing rules assigned to a cell allow a neuron to send information to other neurons
in the form of electrical impulses (also called spikes) which are accumulated at the
target cell. The application of the rules depends on the contents of the neuron;
in the general case, applicability is determined by checking the contents of the
neuron against a regular set associated with the rule. As inspired from biology,
after a cell sends out spikes it becomes “closed” (inactive) for a specified period of
time, that reflects the refractory period of biological neurons. During this period,
the neuron does not accept new inputs and cannot “fire” (that is, emit spikes).
Another important feature of biological neurons is that the length of the axon
may cause a time delay before a spike arrives at the target. In SN P systems this
delay is modeled by associating a delay parameter to each rule which occurs in the
system. If no firing rule can be applied in a neuron, there may be the possibility
to apply a forgetting rule, that removes from the neuron a predefined number of
spikes.

In the original model of SN P systems defined in [8], computations occur as
follows. A configuration specifies, for each neuron of the system, the number of
spikes it contains and the number of computation steps after which the neuron
will become “open” (that is, not closed). Starting from an initial configuration, a
positive integer number is given in input to a specified input neuron. The number
is encoded as the interval of time steps elapsed between the insertion of two spikes
into the neuron. To pass from a configuration to another one, for each neuron a
rule is chosen among the set of applicable rules, and is executed. The computation
proceeds in a sequential way into each neuron, and in parallel among different
neurons. Generally, a computation may not halt. However, in any case the output
of the system is considered to be the time elapsed between the arrival of two
spikes in a designated output cell. Defined in this way, SN P systems compute
functions of the kind f : N → N (they can also indirectly compute functions of
the kind f : Nk → N by using a bijection from Nk to N). By ignoring the output
neuron we can define accepting SN P systems, in which the natural number given
in input is accepted if the computation halts, and rejected otherwise. On the other
hand, by ignoring the input neuron (and thus starting from a predefined input
configuration) we can define generative SN P systems.

On the Computational Power of SN P Systems 229

In [8] it was shown that generative SN P systems are universal, that is, can
generate any recursively enumerable set of natural numbers. Moreover, a char-
acterization of semilinear sets was obtained by spiking neural P systems with a
bounded number of spikes in the neurons. These results can also be obtained with
even more restricted forms of spiking P systems; for example, [7] shows that at
least one of these features can be avoided while keeping universality: time delay
(refractory period) greater than 0, forgetting rules, outdegree of the synapse graph
greater than 2, and regular expressions of complex form. Finally, in [20] the be-
havior of spiking neural P systems on infinite strings and the generation of infinite
sequences of 0 and 1 was investigated, whereas in [2] spiking neural P systems
were studied as language generators (over the binary alphabet {0, 1}).

The rest of this paper is organized as follows. In section 2 we give some math-
ematical preliminaries, and we define the standard version of SN P systems (as
found in [9]) as well as a slightly extended version. In section 3 we show how the
NP–complete problems Subset Sum and 3-SAT can be solved in constant time
by exploiting nondeterminism in our extended SN P systems. In section 4 we turn
our attention to deterministic systems, and we show how to simulate them by us-
ing deterministic Turing machines. Section 5 concludes the paper and gives some
directions for future research.

2 Preliminaries

Let us start by recalling the standard definition of a spiking neural P system, taken
from [9]. A spiking neural membrane system (SN P system, for short), of degree
m ≥ 1, is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), with 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0
are integer numbers; if E = ac, then it is usually written in the following
simplified form: ac → a; d;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d of
type (1) from Ri, we have as 6∈ L(E) (where L(E) denotes the regular
language defined by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . ,m} indicate the input and the output neurons of Π .

230 A. Leporati et al.

The rules of type (1) are called firing (also spiking) rules, and they are applied
as follows. If the neuron σi contains k ≥ c spikes, and ak ∈ L(E), then the rule
E/ac → a; d ∈ Ri can be applied. The execution of this rule removes c spikes from
σi (thus leaving k − c spikes), and prepares one spike to be delivered to all the
neurons σj such that (i, j) ∈ syn. If d = 0, then the spike is immediately emitted,
otherwhise it is emitted afted d computation steps of the system. (Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.)
If the rule is used in step t and d ≥ 1, then in steps t, t+ 1, t+ 2, . . . , t+ d− 1 the
neuron is closed, so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send a spike along it, then that particular spike is
lost), and cannot fire new rules. In the step t+ d, the neuron spikes and becomes
again open, so that it can receive spikes (which can be used starting with the step
t+ d+ 1) and select rules to be fired.

Rules of type (2) are called forgetting rules, and are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi. Note that, by definition, if a firing
rule is applicable, then no forgetting rule is applicable, and vice versa.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri
must be used. Since two firing rules, E1 : ac1 → a; d1 and E2 : ac1 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron. In such a case, only one of them is chosen nondeterministically. Thus, the
rules are used in the sequential manner in each neuron, but neurons function in
parallel with each other.

The initial configuration of the system is described by the numbers n1, n2, . . .,
nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the state of each neuron, which can be expressed as the
number of steps to count down until it becomes open (this number is zero if
the neuron is already open). A computation in a system as above starts in the
initial configuration. In order to compute a function f : Nk → N, we introduce k
natural numbers n1, n2, . . . , nk in the system by “reading” from the environment
a binary sequence z = 0b10n110n21 . . . 10nk10g, for some b, g ≥ 0; this means that
the input neuron of Π receives a spike in each step corresponding to a digit 1
from the string z. Note that we input exactly k + 1 spikes. The result of the
computation is also encoded in the distance between two spikes: we impose to the
system to output exactly two spikes and halt (sometimes after the second spike)
hence producing a train spike of the form 0b

′
10r10g

′
, for some b′, g′ ≥ 0 and with

r = f(n1, n2, . . . , nk).
If we use an SN P system in the generative mode, then no input neuron is

considered, hence no input is taken from the environment; we start from the initial
configuration, and the distance between the first two spikes of the output neuron
(or other numbers, see the discussion in [9]) is the result of the computation.

On the Computational Power of SN P Systems 231

Dually, we can ignore the output neuron, and if the computation halts, then the
number is accepted.

We define the description size of an SN P system Π as the number of bits which
are necessary to describe it. Since the alphabet O is fixed, no bits are necessary
to define it. In order to represent syn we need at most m2 bits, whereas we can
represent the values of in and out by using logm bits each. Every neuron σi requires
to specify a natural number ni, and a set Ri of rules. Each rule requires to specify
its type (firing or forgetting), which can be done with 1 bit, and in the worst case
it requires to specify a regular expression and two natural numbers. If we denote
by N the maximum natural number that appears in the definition of Π , R the
maximum number of rules which occur in its neurons, and S the maximum size
required by the regular expressions that occur in Π (more on this later), then we
need a maximum of logN +R(1 +S+ 2 logN) bits to describe every neuron of Π .
Hence, to describeΠ we need a total of m2+2 logm+m

(
logN+R(1+S+2 logN)

)

bits. Note that this quantity is polynomial with respect to m, R, S and logN .
Since the regular languages determined by the regular expressions that occur in
the system are unary languages, the strings of such languages can be bijectively
identified by their lengths. Hence, when writing the regular expression E, instead
of writing unions, concatenations and Kleene closures among strings we can do the
same by using the lengths of such strings. In this way we obtain a representation
of E which is exponentially more compact than the usual representation of regular
expressions. As we will see in section 4, this compact representation will yield
some difficulties when we will simulate a deterministic accepting SN P system by
a deterministic Turing machine.

In what follows it will be convenient to consider also a slightly extended version
of SN P systems. Precisely, we will allow rules of the type E/ac → ap; d, where
c ≥ 1, p ≥ 0 and d ≥ 0 are integer numbers. The semantics of this kind of rules
is as follows: if the contents of the neuron matches the regular expression E, then
the rule can be applied. When the rule is applied, c spikes are removed from the
contents of the neuron and p spikes are prepared to be delivered to all the neurons
which are directly connected (through an arc of syn) with the current neuron. If
d = 0, then these p spikes are immediately sent, otherwise the neuron becomes
closed for the next d computation steps, after which the p spikes will be sent. As
before, a closed neuron does not receive spikes from other neurons, and does not
apply any rule. If p = 0, then we obtain a forgetting rule as a particular case of
our general rules.

Also in the extended SN P systems it may happen that, given two rules
E1/a

c1 → ap1 ; d1 and E2/a
c2 → ap2 ; d2, if L(E1) ∩ L(E2) 6= ∅ then for some con-

tents of the neuron both the rules can be applied. In such a case, we nondetermin-
istically choose one of them. Note that we do not require that forgetting rules are
applied only when no firing rule can be applied. We say that the system is determin-
istic if, for every neuron that occurs in the system, any two rules E1/a

c1 → ap1 ; d1

and E2/a
c2 → ap2 ; d2 in the neuron are such that L(E1)∩L(E2) = ∅. This means

232 A. Leporati et al.

that, for any possible contents of the neuron, at most one of the rules that occur
in the neuron may be applied.

By using an input neuron and an output neuron, we have SN P systems that
compute functions of the kind f : N→ N, and hence we cover both the generative
and the accepting cases. If out = 0, then it is understood that the output is sent
to the environment (as the number of spikes produced by the system, as the dis-
tance between the first two spikes, etc.). As usual, to use an SN P system in the
generative mode we do not consider the input neuron, and thus no input is taken
from the environment; we start from the initial configuration, and the distance
between the first two spikes of the output neuron (or the number of spikes con-
tained into the output neuron at the end of the computation, as discussed above)
is the result of the computation. Note that generative SN P systems are inherently
nondeterministic, otherwise they would always reproduce the same sequence of
computation steps, and hence the same output. Dually, we can ignore the output
neuron to obtain an accepting SN P system. We input a number in the system as
the distance between two spikes entering the input neuron (or the number of spikes
that occur in the input neuron in the initial configuration) and, if the computation
halts, then the number is accepted.

The description size of an extended SN P system is defined exactly as we did
for standard systems, the only difference being that now we require (at most) three
natural numbers to describe a rule.

3 Solving NP–complete Problems with Extended Spiking
Neural P Systems

In this section we show that nondeterministic SN P systems are very powerful
computing devices, at least in the extended version defined in the previous section:
in fact, they are able to solve NP–complete problems in a constant number of
computation steps.

3.1 Solving the Subset Sum problem

Let us first consider the Subset Sum problem, which can be stated as follows.

Problem 1. Name: Subset Sum.

• Instance: a (multi)set V = {v1, v2, . . . , vn} of positive integer numbers, and
a positive integer number S

• Question: is there a subset B ⊆ V such that
∑
b∈B

b = S?

If we allow to nondeterministically choose among the rules which occur in the
neurons, then the extended SN P system depicted in Figure 1 solves any given
instance of Subset Sum in a constant number of steps. We emphasize the fact

On the Computational Power of SN P Systems 233

Fig. 1. A nondeterministic extended SN P system that solves the Subset Sum problem
in constant time

that such a solution occurs in the semi-uniform setting, that is, for every instance
of Subset Sum we build an SN P system that specifically solves that instance.

Let (V = {v1, v2, . . . , vn}, S) be the instance of Subset Sum to be solved, and
let B ⊆ V . In the initial configuration of the system, the leftmost neurons contain
(from top to bottom) v1, v2, . . . , vn spikes, respectively, whereas the rightmost
neurons contain zero spikes each. In the first step of computation, in each of the
leftmost neurons of the SN P system depicted in Figure 1 it is nondeterministically
chosen whether to include or not the element vi in B; this is accomplished by
nondeterministically choosing among one rule that forgets vi spikes (in such a
case, vi 6∈ B) and one rule that propagates vi spikes to the rightmost neurons. At
the beginning of the second step of computation a certain number N of spikes, that
corresponds to the sum of the vi which have been chosen, occurs in the rightmost
neurons. We have three possible cases:

• N < S: in this case neither the rule aS → a; 0 nor the rule aS+1 → a; 1
(which occur in the neuron at the top and at the bottom of the second layer,
respectively) fire, and thus no spike is emitted to the environment;

• N = S: only the rule aS → a; 0 fires, and emits a single spike to the environ-
mnent. No further spikes are emitted;

• N > S: both the rules aS → a; 0 and aS+1 → a; 1 fire. The first rule im-
mediately sends one spike to the environment, whereas the second rule sends
another spike at the next computation step (due to the delay associated with
the rule).

234 A. Leporati et al.

Hence, by counting the number of spikes emitted to the environment at the second
and third computation steps we are able to read the solution of the given instance
of Subset Sum: the instance is positive if and only if a single spike is emitted.

The formal definition of the extended (generating) SN P system depicted in
Figure 1 is as follows:

Π = ({a}, σ1, . . . , σn+2, syn, out) ,

where:

• σi = (vi, {avi → λ, avi → avi ; 0}) for all i ∈ {1, 2, . . . , n};
• σn+1 = (0, {aS → a; 0});
• σn+2 = (0, {aS+1 → a; 1);
• syn =

⋃n
i=1{(i, n+ 1), (i, n+ 2)};

• out = 0 indicates that the output is sent to the environment.

However, here we are faced with a problem that we have already encountered
in [10], and that we will encounter again in the rest of the paper. In order to clearly
expose the problem, let us consider the following algorithm that solves Subset
Sum using the well-known Dynamic Programming technique [3]. In particular, the
algorithm returns 1 on positive instances, and 0 on negative instances.

Subset Sum({v1, v2, . . . , vn}, S)

for j ← 0 to S
do M [1, j]← 0

M [1, 0]←M [1, v1]← 1
for i← 2 to n

do for j ← 0 to S
do M [i, j]←M [i− 1, j]

if j ≥ vi and M [i− 1, j − vi] > M [i, j]
then M [i, j]←M [i− 1, j − vi]

return M [n, S]

In order to look for a subset B ⊆ V such that
∑

b∈B b = S, the algorithm uses an
n × (S + 1) matrix M whose entries are from {0, 1}. It fills the matrix by rows,
starting from the first row. Each row is filled from left to right. The entry M [i, j]
is filled with 1 if and only if there exists a subset of {v1, v2, . . . , vi} whose elements
sum up to j. The given instance of Subset Sum is thus a positive instance if and
only if M [n, S] = 1 at the end of the execution.

Since each entry is considered exactly once to determine its value, the time
complexity of the algorithm is proportional to n(S+1) = Θ(nS). This means that
the difficulty of the problem depends on the value of S, as well as on the magnitude
of the values in V . In fact, let K = max{v1, v2, . . . , vn, S}. If K is polynomially
bounded with respect to n, then the above algorithm works in polynomial time.
On the other hand, if K is exponential with respect to n, say K = 2n, then the
above algorithm works in exponential time and space. This behavior is usually

On the Computational Power of SN P Systems 235

referred to in the literature by telling that Subset Sum is a pseudo–polynomial
NP–complete problem.

The fact that in general the running time of the above algorithm is not poly-
nomial can be immediately understood by comparing its time complexity with the
instance size. The usual size for the instances of Subset Sum is Θ(n logK), since
for conciseness every “reasonable” encoding is assumed to represent each element
of V (as well as S) using a string whose length is O(logK). Here all logarithms are
taken with base 2. Stated differently, the size of the instance is usually considered
to be the number of bits which must be used to represent in binary S and all the
integer numbers which occur in V . If we would represent such numbers using the
unary notation, then the size of the instance would be Θ(nK). But in this case we
could write a program which first converts the instance in binary form and then
uses the above algorithm to solve the problem in polynomial time with respect
to the new instance size. We can thus conclude that the difficulty of a numerical
NP–complete problem depends also on the measure of the instance size we adopt.

The problem we mentioned above about the SN P system depicted in Figure
1 is that the rules avi → λ and avi → avi ; 0 which occur in the leftmost neurons,
as well as those that occur in the rightmost neurons, check for the existence of a
number of spikes which is exponential with respect to the usually agreed instance
size of Subset Sum. Moreover, to initialize the system the user has to place a
number of objects which is also exponential. This is not fair, because it means
that the SN P system that solves the NP–complete problem has an exponential
size with respect to the binary string which is used to describe it; an exponential
effort is thus needed to build the system, that easily solves the problem by working
in unary notation (hence in polynomial time with respect to the size of the system,
but not with respect to its description size). This problem is in some aspects similar
to what has been described in [10], concerning traditional P systems that solve
NP–complete problems.

3.2 The 3-SAT problem

In this section we show that SN P systems are also able to solve non-numerical
NP–complete problems. Such problems are inherently strongly NP–complete, that
is, they remain NP–complete even if the numbers eventually contained into the
instance are expressed in unary form. Specifically, we first propose a simple ex-
tended SN P system that solves 3-SAT, and then we show that also standard SN
P systems are able to solve this problem.

We start by recalling some well known definitions, in order to settle the nota-
tion. A boolean variable is a variable which can assume one of two possible truth
values: true and false. As usually done in the literature, we will denote true
by 1 and false by 0. A literal is either a directed or a negated boolean variable.
A clause is a disjunction of literals, whereas a 3-clause is a disjunction of exactly
three literals. Given a set X = {x1, x2, . . . , xn} of boolean variables, an assignment
is a mapping a : X → {0, 1} that associates to each variable a truth value. The

236 A. Leporati et al.

number of all possible assignments to the variables of X is 2n. We say that an
assignment satisfies the clause C if, assigned the truth values to all the variables
which occur in C, the evaluation of C (considered as a boolean formula) gives 1
as a result.

The 3-SAT decision problem is defined as follows.

Problem 2. Name: 3-SAT.

• Instance: a set C = {C1, C2, . . . , Cm} of 3-clauses, built on a finite set {x1, x2,
. . . , xn} of boolean variables;

• Question: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

It is well known [5] that 3-SAT is an NP–complete problem. In what follows
we will equivalently say that an instance of 3-SAT is a boolean formula φn, built
on n free variables and expressed in conjunctive normal form, with each clause
containing exactly three literals. The formula φn is thus the conjunction of the
above clauses. Notice that the number m of possible 3-clauses is polynomially
bounded with respect to n: in fact, since each clause contains exactly three literals,
we can have at most (2n)3 = 8n3 clauses.

Fig. 2. A nondeterministic extended SN P system that solves the 3-SAT problem in
constant time: the module used to build the first two layers (one for each boolean variable)

The extended SN P system that solves 3-SAT is depicted in Figures 2 (the
module used to build the first and the second layer) and 3 (third and fourth layers).
It is composed by four layers of neurons, the first three of which correspond to
the variables, the literals and the clauses of φn, respectively; the fourth layer is
composed by a single neuron, that gathers the spikes produced by the neurons of
the third layer. Every neuron in the first layer is connected with its corresponding
one or two neurons in the second layer, depending upon whether the literal appears
only directed/negated in φn, or both. Similarly, the neurons of the second layer
are connected with those of the third layer according to what literals appear in
each clause. Since we are dealing with 3-SAT, every neuron in the third layer will

On the Computational Power of SN P Systems 237

Fig. 3. A nondeterministic extended SN P system that solves the 3-SAT problem in
constant time: third and fourth layer (clauses and output neuron)

have exactly three input lines coming from the second layer. Finally, every neuron
of the third layer is connected with the output neuron.

During the computation, spikes move from the first to the fourth layer, and
then (eventually) are expelled to the environment. In the initial configuration,
every neuron in the first layer (which is bijectively associated with one of the n
variables of φn) contains two spikes, whereas all the other neurons are empty. In
the first step of the computation, in each neuron of the first layer it is nondeter-
ministically chosen whether to assign 1 or 0 to the corresponding variable, that is,
whether to assign 1 to the directed or to the negated literal. This choice is made
by nondeterministically choosing between two rules: one that sends two spikes to
the next layer, and one that sends a single spike. In the former case, only the neu-
ron that corresponds to the negated literal will fire during the next computation
step; in the latter case, only the neuron that corresponds to the directed literal
will fire. Since literals are directly connected to the clauses in which they appear,
every neuron associated to a clause will receive one spike if and only if at least
one of its literals is satisfied. In such a case, one spike is sent to the neuron of the
fourth layer, that in this way will contain as many spikes as the number of satisfied
clauses. The rule contained in this neuron will fire if and only if there are m spikes,
that is, if and only if all the clauses are verified. We can thus conclude that the
instance φn of 3-SAT is positive if and only if (at least) one spike is emitted to the
environment.

As mentioned above, it is not necessary to use extended SN P systems to solve
3-SAT. In Figure 4 we can see a module which contains only standard rules, whose
behavior is almost equivalent to that of the extended module depicted in Figure 2.
Neuron number 1 initially contains one spike, which is delivered to all the neurons
of the second layer during the first step of computation; note that this neuron is

238 A. Leporati et al.

Fig. 4. A nondeterministic standard SN P system that solves the 3-SAT problem in con-
stant time: the module used to build the first two layers (one for each boolean variable).
Neuron 1 occurs only one time in the system, and is connected with every neuron of the
second layer

not repeated for all modules, but appears only once in the system. All the other
neurons of the system are connected exactly in the same way as the corresponding
neurons of the extended SN P system described above.

During the first step of computation, every neuron labelled with Xi (in the
first layer) nondeterministically chooses whether to immediately emit one spike,
or to emit it after a delay of one time step. In the former case, at the end of
the first computation step both the neurons of the second layer connected with
Xi (corresponding to the directed and to the negated variable, respectively) will
contain two spikes. However, these spikes will be removed in the second neuron by
applying the rule a2 → λ, whereas in the first neuron they will produce a single
spike that will propagate to the third layer after a delay of one time step. Hence,
the nondeterministic choice of immediately emitting a spike from the first to the
second layer corresponds to assigning 1 to variable xi. On the other hand, if the
spike is emitted from neuron Xi only after a delay of one time step, then at the
end of the first computation step both the neurons corresponding to the directed
and to the negated variable will contain one spike. This time, the application of
the rule a→ λ will remove such a spike from the first neuron, whereas the second
neuron will emit one spike towards the third layer. Hence, the choice to emit a
spike from the first to the second layer after one time step corresponds to assigning
0 to the variable xi.

Note that the spikes are emitted from the neurons of the second layer with a
delay of one computation step; this is done in order to keep such neurons closed
during the second computation step, so that the spike (eventually) emitted from
the first layer will get lost. However, if desired, we can avoid using delays in the
second layer by looking at the answer produced by the system during the fourth
computation step, and ignoring what happens afterwards.

On the Computational Power of SN P Systems 239

4 Simulating Deterministic SN P Systems with
Deterministic Turing Machines

Now that we have seen how powerful can be nondeterministic SN P systems, let us
turn to deterministic SN P systems. In this section we consider a slight extension
of the universal SN P system Π defined in [2], and we show that any t steps of
computation of Π can be simulated by a deterministic Turing machine in a time
which is polynomial both with respect to t and with respect to the description
size of Π . With respect to the universal SN P system defined in [2], our extension
allows to send a predefined number q of spikes to adjacent neurons, instead of
sending just one spike. Clearly this modification does not affect universality, and
thus also our extended SN P systems are universal.

As we will see, it is possible to simulate these systems in polynomial time
mainly because the regular expressions used in the simulated SN P system are of a
very restricted form. On the other hand, we will show that if the use of unrestricted
regular expressions is allowed, then it is possible to solve the Subset Sum NP–
complete problem by exploting the implicit mechanism used by SN P systems to
decide whether a rule can be applied or not.

Theorem 1. Consider a deterministic accepting SN P system Π, of degree m ≥ 1,
in which:

• P and Q are the maximum numbers of spikes that appear in the left and in the
right side of the rules, respectively;

• D is the maximum delay that appears in the rules;
• all the regular expressions are of the following forms: ai, with i ≤ 3, or a(aa)+.

Then, t steps of computation of Π can be simulated by a deterministic Turing
machine in a polynomial time with respect to t and to the description size of Π.

Proof. Consider a deterministic accepting SN P system

Π = ({a}, σ1, . . . , σm, syn, in)

having the characteristics mentioned in the statement of the theorem. We build a
deterministic Turing machine M with multiple tapes, such that t steps of compu-
tation of Π can be simulated by M in a number of steps which is polynomial with
respect to t and to the description size of Π .

To simulate Π with M , we basically need to keep track of the state (number
of spikes and number of steps after which the neuron will become open) of each
neuron. In general, the simulation of a single open neuron proceeds by first looking
for the (unique) rule that can fire, among all the rules of the neuron. Once such rule
has been found, we remove all the spikes consumed by the rule and we communicate
(after a specified number of steps) the produced spikes to all adjacent neurons,
provided that they are open.

In order to formalize this simulation we consider a deterministic Turing machine
M with m + 1 tapes: m tapes are used to simulate the activity of each neuron,

240 A. Leporati et al.

while the remaining tape is used to store the description of Π . In the i-th tape,
used to simulate neuron σi, we write the triplet Ni = (ni, oi, ti), where:

• ni indicates the number of spikes contained into neuron σi;
• oi stores the number of spikes produced by the last rule that fired, and that

are ready to be sent to adjacent neurons (zero if the neuron is open, but no
rule can be applied);

• ti denotes the number of steps during which the neuron will remain closed (zero
if the neuron is open).

With a little abuse of notation, in what follows we will refer to neuron σi by
the triplet Ni (that contains the dynamical information about the state of σi) and
by its set of rules Ri.

We simulate each step of computation of Π in two macro substeps: in the first
substep we simulate the firing phase (i.e., the consumption of spikes) of each open
neuron; then, in the second substep we simulate the spiking phase (i.e., the receipt
of spikes) from adjacent neurons.

The simulation of a step of Π can be illustrated using the following algorithm,
given in pseudocode:

Simulate-Computation-Step(N,R)

// Remark: N = (N1, N2, . . . , Nm), where Ni = (ni, oi, ti) ∀ i ∈ {1, . . . ,m}
// R = (R1, R2, . . . , Rm), where Ri is the set or rules of neuron σi

// Firing phase
for each neuron Ni

do if ti = 0 // if the neuron is open then fire
then (p; q; t) = Select-Rule-to-Apply(Ni, Ri)

ni ← ni − p // remove the spikes used to fire
oi ← q // prepare the buffer for emitting spikes
ti ← d // set closing time

else ti ← ti − 1 // else decrease closing time

// Spiking phase
for each neuron Ni

do if ti = 0 // if the neuron is open then spike
then for each neuron Nj

if (i, j) ∈ syn and tj = 0 // if σj is connected to
// σi and is open

then nj ← nj + oi // send the spikes
oi ← 0 // once spiked, clear the buffer

Select-Rule-to-Apply(Ni, Ri)

// Remark: Ni = (ni, oi, ti)
// Ri = {ri,1, ri,2, . . . , ri,k}, where ri,h = Ei,h/a

pi,h → aqi,h ; di,h

On the Computational Power of SN P Systems 241

// for all h ∈ {1, 2, . . . , k}
// Select the rule to be applied in neuron Ni
for each rule ri,h ∈ Ri

if ni ∈ L(Ei,h) and ni ≥ pi,h // if the rule is applicable
then return (pi,h; qi,h; di,h) // set the parameters to be used

// in the simulation
return (0; 0; 0) // if no rule can be applied, set to 0 all parameters

The time complexity of this algorithm can be determined as follows.
The first (firing) phase requires to check for each neuron if it is open and, in

such a case, to select a rule and simulate it. Let Zi denote the time required to
select the rule to be applied in neuron σi, and let Z be the maximum of all Zi.
We will return later to this value, due to its importance in the time complexity
of the overall simulation. Once the rule to be applied has been selected, we need
to update the number of spikes in the neuron. Thus, we first subtract a certain
number p of spikes (at most P) from ni. The time required by this operation
depends on the number of binary digits which are needed to represent p and ni.
In general, the largest among the two numbers will be the latter. In fact assume
that, at the first step of computation, ni is initialized with a certain number w of
spikes; moreover, assume that the neuron does not consume any spike until the
current step, and that all the other neurons send to σi the maximum possible
amount of spikes (P) per computation step in all the previous steps. Then, after
t steps of computation, the neuron σi will contain w + tQm spikes. This means
that the above subtraction requires a time which is O(log(w+ tQm)), where w, m
and Q are polynomial with respect to the description size. The time required to
prepare the buffer for the emission of spikes is O(logQ), while the time required
to set the closure time is O(logD). Thus, the time required to simulate the firing
of a single neuron is O(Z + log(w + tQm) + logQ+ logD), and for m neurons is
O(m (Z + log(w + tQm) + logQ+ logD)).

The second phase, the spiking, requires to check for each neuron σi if it is open
and, in such a case, to check for any other neuron σj if it is connected to σi. If
it is connected, then we need to add to nj the number of spikes emitted by σi.
In the worst case, each neuron is connected to all other neurons, and all neurons
deliver Q spikes to every other neuron. This means that for each neuron σi (that
is, m times) we have to check whether it is open; this operation requires O(logD)
steps. If σi is open, then for every other neuron σj we have to:

• check if neurons σi and σj are connected: the time needed to execute this
operation is proportional to m2 (here we assume that the Turing machine is
able to move only to the next or to the previous cell during a computation
step);

• check if neuron σj is open: the time needed is O(logD);
• if both the previous conditions hold, then add the spikes emitted by σi to nj .

This sum involves numbers of at most O(log(w + tQm)) bits.

242 A. Leporati et al.

Thus, a step of the spiking phase requires O
(
(m logD) ·m · (m2 + logD+ log(w+

tQm))
)

= O
(
(m2 logD)(m2 + logD + log(w + tQm))

)
steps.

The total time required to simulate t steps of Π is thus t times the time needed
to perform the two phases, that is, t ·

(
O(m (Z + log(w+ tQm) + logQ+ logD)) +

O
(
(m2 logD)(m2 + logD + log(w + tQm))

))
.

To show that this time is polynomial with respect to the description size of the
system Π , we need to explicit the time Z required to select which rule has to be
applied in neuron σi. We stress the fact that, since the system Π is deterministic,
at each computation step there is at most one rule in σi which can fire. In order
to select such a rule, we need to check whether there are enough spikes in the
neuron (and clearly this can be done in polynomial time), as well as to check if
ni ∈ L(Ei). In general, this last operation cannot be done in polynomial time,
as it will be proved in the next proposition. Nonetheless, in [9] it is shown that
universality can be obtained by using SN P systems where the regular expressions
associated with each rule are of very simple forms: ai, with i ≤ 3, or a(aa)+.
Considering such systems, it is easy to see that the time required to check if the
contents of σi is in the regular set defined by the regular expression can be done
in polynomial time, since in the former case it suffices to check if the number is
equal to i (time proportional to logni), whereas in the latter case it suffices to
check the last bit of ni.

Thus, the time required to select the rule to apply depends on the number of
rules in each neuron. That is, Zi = O(|Ri|) = O(r), where r = max1≤i≤m |Ri| is
the maximum number of rules which can be contained in a neuron.

As a consequence, the total time required to simulate t steps of Π is t·
(
O(m (r+

log(w+ tQm) + logQ+ logD)) +O
(
(m2 logD)(m2 + logD+O(log(w+ tQm))

))
.

We conclude this section by stressing that the above simulation could be per-
formed in polynomial time because the regular expressions used in the rules are of
a very restricted form. Indeed, there is a large amount of computational power hid-
den into the implicit mechanism that SN P systems use to decide whether a given
rule can be applied or not, as proved in the following proposition. The difficulty
of checking whether the contents of a neuron is into the regular set determined by
the regular expression E of the rule is induced by the fact that we are dealing with
unary languages. As told above, in these languages a string is uniquely determined
by its length. Hence, a compact representation of the string is obtained by writing
(in binary) its length, rather than by writing the string itself. This is an expo-
nentially smaller representation, and consequently all the problems defined upon
this representation become harder, as it happens for all “succint” representations
(see [15], chapter 20). Concerning the succint version of the membership problem
(is a given string into the language generated by E?) we can prove the following
proposition.

Proposition 1. Let Π be an SN P system having a single neuron, that contains
the rule E : ac → a; d, where c ≥ 1 and d ≥ 0 are natural numbers, and E is
any regular expression (for a unary language defined on the alphabet {a}). If E

On the Computational Power of SN P Systems 243

is described in a succint form, then deciding whether this rule can be applied is at
least NP–complete.

Proof. Let us show a polynomial time reduction from Subset Sum to this problem.
Let (V = {v1, v2, . . . , vn}, S) be an instance of Subset Sum. If we put K =
max{v1, v2, . . . , vn, S}, then the instance size is Θ(nK), as discussed in section
3.1. Consider the regular expression E = E1 ◦E2 ◦ . . .◦En, where Ei = (λ∪{avi}),
with λ the symbol that represents the empty word. Since we are dealing with unary
languages in succint form, every string of L(E) can be uniquely determined by its
length, and thus we can write L(Ei) = {0, vi}. L(E) is just obtained by performing
a language theoretic concatenation among the languages L(Ei): L(E) = L(E1) ◦
L(E2) ◦ . . . ◦ L(En). Clearly, the regular expression E can be represented using a
string whose length is polynomial with respect to the size of the given instance of
Subset Sum. It is immediately verified that L(E) contains 2n elements, bijectively
associated with the subsets of V . Moreover, aS ∈ L(E) if and only if there exists
a set B ⊆ V such that

∑
b∈B b = S. Hence, checking whether aS is in L(E) or not

is equivalent to solve the Subset Sum problem on the given instance (V, S).

5 Conclusions and Directions for Future Research

In this paper we have started to study the computational power of spiking neural
P systems. In particular, by slightly extending the original definition given in [8]
and [9] we have shown that by exploiting nondeterminism it is possible to solve
NP–complete problems such as Subset Sum and 3-SAT.

Concerning deterministic systems, we have shown that the universal deter-
ministic SN P systems defined in [8, 9] can be simulated by deterministic Turing
machines with a polynomial slowdown. Surprisingly, this was possible only be-
cause the universal P systems described in [8, 9] use regular expressions of a very
restricted form. In fact, it was shown that if we allow the use of general regular
expressions then we can exploit the mechanism used by SN P systems to decide
whether the contents of a neuron matches a regular expression to solve the NP–
complete problem Subset Sum.

Further research is needed to fully understand the power of accepting SN P
systems. In particular, by encoding their inputs as the distance between subsequent
spikes we are limiting ourselves to use numbers expressed in unary notation. A
more compact way to encode a k-bit natural number n would be to send a sequence
of spikes during a prefixed sequence of k computation steps: the presence of a spike
indicates a 1, its absence indicates a 0. It is not currently known whether in this
way SN P systems can still solve numerical NP–complete problems such as Subset
Sum, or whether a subsystem that converts integer numbers from binary to unary
notation can be designed, as it was made in [10] for traditional P systems.

244 A. Leporati et al.

Acknowledgments

We gratefully thank Gheorghe Păun for introducing the authors to the stimulating
subject of spiking neural P systems, and for asking us a “Milano theorem” (in the
spirit of [22]) about their computational power, during the Fifth Brainstorming
Week on Membrane Computing, held in Seville from January 29th to February 2nd,
2007. Moreover, we are really indebted with him for suggesting us the standard
nondeterministic SN P system that solves 3-SAT, exposed in section 3.

References

1. A. Alhazov, R. Freund, M. Oswald: Cell/symbol complexity of tissue P systems with
symport/antiport rules. Intern. J. Found. Computer Sci., 17, 1 (2006), 3–26.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string lan-
guages generated by spiking neural P systems. In: M.A. Gutiérrez-Naranjo, Gh. Păun,
A. Riscos-Núñez, F.J. Romero-Campero, eds., Fourth Brainstorming Week on Mem-
brane Computing, Vol. I RGCN Report 02/2006, Research Group on Natural Com-
puting, Sevilla University, Fénix Editora, 169–194.

3. T.H. Cormen, C.H. Leiserson, R.L. Rivest: Introduction to Algorithms. MIT Press,
Boston, 1990.

4. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel states.
Theoretical Computer Science, 330 (2004), 101–116.

5. M.R. Garey, D.S. Johnson: Computers and Intractability. A Guide to the Theory on
NP–Completeness. W. H. Freeman and Company, 1979.

6. W. Gerstner, W. Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge University Press, 2002.

7. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth:
Normal forms for spiking neural P systems. Theoretical Computer Science, 372, 2-3
(2007), 196–217.

8. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

9. M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Computing with spiking neural
P systems: traces and small universal systems. In C. Mao, T. Yokomori, eds., DNA
Computing, 12th International Meeting on DNA Computing, DNA12, Seoul, Korea,
June 5-9, 2006, Revised Selected Papers. LNCS 4287, Springer, 2006, 1–16.

10. A. Leporati, C. Zandron, M.A. Gutiérrez-Naranjo: P systems with input in binary
form. International Journal of Foundations of Computer Science, 17, 1 (2006), 127–
146.

11. W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK, 8, 1 (2002), 32–36.

12. W. Maass, C. Bishop (eds.). Pulsed Neural Networks, MIT Press, Cambridge (MA),
1999.

13. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodŕıguez-Patón: A new class of symbolic
abstract neural nets: Tissue P systems. In Proceedings of COCOON 2002, Singapore,
LNCS 2387, Springer-Verlag, Berlin, 290–299.

14. M. Oswald: Independent agents in a globalized world modelled by tissue P systems.
Conf. Artificial Life and Robotics, 2006.

On the Computational Power of SN P Systems 245

15. C.H. Papadimitriou: Computational Complexity, Addison-Wesley, 1994.
16. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,

61 (2000), 108–143. See also Turku Centre for Computer Science — TUCS Report
No. 208, 1998. Available at: http://www.tucs.fi/Publications/techreports/TR208.php

17. Gh. Păun: Computing with membranes. An Introduction. Bulletin of the EATCS,
67 (2/1999), 139–152.

18. Gh. Păun: Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
19. Gh. Păun, Y. Sakakibara, T. Yokomori: P systems on graphs of restricted forms.

Publicationes Mathematicae Debrecen, 60 (2002), 635–660.
20. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural

P systems. Submitted for publication.
21. G. Păun, G. Rozenberg: A guide to membrane computing. Theoretical Computer

Science, 287, 1 (2002), 73–100.
22. C. Zandron, C. Ferretti, G. Mauri: Solving NP–complete problems using P systems

with active membranes. In I. Antoniou, C.S. Calude, M.J. Dinneen, eds., Unconven-
tional Models of Computation, Springer-Verlag, London, 2000, 289–301.

23. The P systems Web page: http://psystems.disco.unimib.it/

Some Mathematical Methods and Tools
for an Analysis

of Harmony-Seeking Computations

Adam Obtu lowicz

Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, P.O.B. 21, 00-956 Warsaw, Poland
A.Obtulowicz@impan.gov.pl

Summary. A general review of some topic concepts and methods of membrane comput-
ing [15], [19] which can be useful in an analysis of harmony-seeking computations [1] is
presented. Then an application of a certain particular method of membrane computing
in a discussion of mobility of some systems considered in city planning [2] is described in
some details. A conclusion of the discussion states that systems of hierarchical organiza-
tion in a form of a tree are mobile by means of massively parallel (local) moves of the
parts of the systems, where the moves are related to the process capabilities of moves of
ambients in [7].

1 Introduction

An idea of a harmony-seeking computation was introduced and discussed in [1]
aiming, among others, to improve design and planning in architecture in order to
achieve that internal coherence (harmony) between the designed and planned ob-
jects of various scales (from the rooms in buildings, through buildings themselves,
the districts of cities, and to cities themselves) which natural living system pos-
sesses. Therefore the discussion of harmony-seeking computations in [1] expands
far beyond the methods of design and planning in architecture and concerns also
better understanding of the phenomena of life with a regard to a geometric adap-
tation.

The paper [1] contains general postulates for mathematical modeling of har-
mony-seeking computations.

The aim of the present paper is to propose and review some known mathemat-
ical methods and tools which may serve for modeling harmony-seeking computa-
tions according to those postulates.

The methods focus on modeling those evolution processes of natural (living)
systems which may realize massively parallel computations themselves or inspire
a planning of devices realizing these computations, where an aspect of geometric

248 A. Obtu lowicz

adaptation is respected (on topological level) by considering certain possible trans-
formations of hierarchical organization of systems during their evolution processes.
A hierarchical organization is meant here as determined by a nesting relation of
the less complex parts of a system in the more complex parts of a system.

The proposed and reviewed in the paper (Section 2) mathematical methods and
tools are mainly those already applied in membrane computing, a branch of natural
computing initiated by Gh. Păun and described in [19] (see also the P systems
page [15]), where the underlying structure of a system (called a membrane system)
with respect to nesting of subsystems or its parts is a tree and this underlying
structure may be transformed during an evolution process.

In Section 3 and Appendix we present in some details a concrete application
of membrane computing methods for an analysis of mobility (with respect to mas-
sively parallel moves) of certain systems considered in city planning and discussed
in [2]. Section 3 together with Appendix are self-contained.

The author thanks Krzysztof Wodiczko for long discussions about architecture
and mathematics.

2 Membrane Systems and Their Evolution Rules;
A General Review

In [1] a harmony-seeking computation is identified with its underlying process
whose steps are wholeness-extending-transformations (briefly W-E-transforma-
tions), where each W-E-transformation operates on one wholeness to produce
another wholeness which is illustrated as follows:

W1 −WE1→W2 −WE2→ W3 −WE3→W4 −WE4→

The character of W-E-transformations is established in [1] by five postulates
A1–A5 about the structure of wholeness and three postulates B1–B3 about the
definition of W-E-transformations themselves.

In Postulate A5 each wholeness is identified (defined as) with a system of
configurations, where according to Postulate A2 the subconfigurations may be
spatially nested, or overlapping, or disjoint.

One can see that membrane systems, the basic tools of membrane computing,
meant as finite trees with nodes labeled by multisets are appropriate candidates
to model (the structure of configurations identified with) a wholeness because
the trees (and their Venn diagram presentation, cf. [19]) well describe the spatial
nesting. Moreover, the description of evolution processes of membrane systems
by using evolution rules in membrane computing also well suits to model the har-
mony-seeking computations. Namely, the evolution rules of membrane systems are
similar to production rules generating languages and they can be simultaneously
applied to membrane systems in a similar way like production rules for L-systems
can be simultaneously applied to the processed expressions. We point out here

Methods and Tools for an Analysis of Harmony-Seeking Computations 249

that a simulation of harmony-seeking process of tree growth by using a context-
free L-system is discussed in [1].

The known applications of membrane systems and their evolution rules for
modeling processes in system biology presented among others in the recent papers
contained in (Pre-)Proceedings of Workshops and Brainstorming Weeks on Mem-
brane Computing (cf. [13], [14], [11], see the papers by D. Bezzossi, N. Busi and
C. Zandron, L. Cardelli and Gh. Păun, V. Manca) show that it is worth to apply
membrane computing methods and tools to model harmony-seeking computations.

The most remarkable are those applications which concern fractals generation
by P systems presented in [12], because fractals represent geometry of dynamic
systems with a regard to similarities in various scales which is an important aspect
of fractals applications in architecture, see [20].

3 Semilattices of Subsets, Trees of Subsets, hereditarily
finite sets, and Their Mobility

The paper [2] contains a discussion of a thesis that a city structure of a form of a
semilattice of subsets is better (topologically) adapted or more fit to live in than
a structure of a form of a tree of subsets.

In this section we introduce a representation of those semilattices and trees by
certain hereditarily finite sets and then we show that this representation makes
possible to transfer from [18] some results concerning mobile ambients and mobile
membranes into the area of trees and semilattices of subsets and then into the
realm of city planning.

We quote from [2] the definitions of semilattices and trees of subsets.
The semilattice axiom goes like this: A collection of sets forms a semilattice if

and only if, when two overlapping sets belong to the collection, the set of elements
common to both also belongs to the collection.

The tree axiom states: A collection of sets forms a tree if and only if, for any
two sets that belong to the collection, either one is wholly contained in the other,
or else they are wholly disjoint .

We use the following notion which is a generalization of the above defined
concepts.

We define a [finite] nesting structure to be an ordered pair N = (UN,NN) such
that UN is a [finite] set, called the underlying set of N, and NN is a collection of
nonempty subsets of UN with UN belonging to NN. The elements of NN are called
the parts in N.

For two parts n,n′ in a nesting structure N we define that n is an immediate
part of n′ in N (and write n ≺ n′) if n (n′ and for every part m in N if
n ⊆m ⊆ n′, then m = n or m = n′.

We recall now the notion of a hereditarily finite set used in [18].
For a potentially infinite set L of labels or names which are urelements, i.e.,

they are not (treated as) sets themselves, we define inductively a family of sets

250 A. Obtu lowicz

HFi for natural numbers i ≥ 0 such that

HF0 = ∅,
HFi+1 = the set of nonempty finite subsets of L ∪ HFi.

The elements of the union HF =
⋃{HFi | i ≥ 0}∪{∅} are called hereditarily finite

sets over L or hereditarily finite sets with urelements in L, or simply hereditarily
finite sets if there is no risk of confusion.

For x ∈ HF we define its weak transitive closure WTC(x) and support supp(x)
by

WTC(x) =
⋃{

WTC(y) |y ∈ x and y ∈ HF
}
∪ {x}

supp(x) = (x ∩ L) ∪
⋃
{supp(y) |y ∈ x and y ∈ HF},

and the depth of x is defined to be the smallest natural number i for which x ∈ HFi.
The notion of a hereditarily finite set is applied in [10] to give a general char-

acterization of physical computing devices. The characterization is improved in
[4], [21], [22], and examples are given in [9]. Membrane computing applications of
hereditarily finite sets are discussed in [16], [17], [18].

For a finite nesting structure N = (UN,NN) we define its hereditarily finite set
hfs(N) by

hfs(N) =
(
UN −

⋃
{n ∈ NN |n ≺ UN}

)
∪ {hfs(N(n)) |n ∈ NN and n ≺ UN},

where for a part n ∈ NN we write N(n) to denote a nesting structure whose
underlying set UN(n) is n itself and the set NN(n) of parts in N(n) is the set
{n′ ∈ NN |n′ ⊆ n}.

For a hereditarily finite set x we define its nesting structure Nx by

UNx = supp(x), NNx = {supp(y) |y ∈WTC(x)}.

A characterization of hereditarily finite sets of finite nesting structures is for-
mulated in the following theorem which one can treat as a representation theorem
of nesting structures by hereditarily finite sets.

Theorem 1. For every finite nesting structure N, if x is the hereditarily finite set
of N, i.e. x = hfs(N), then the following conditions hold :

0) Nx = N,
1) supp(y) = supp(y′) implies y = y′ for all y, y′ with {y, y′} ⊆WTC(x),
2) y ∈ y′ if and only if supp(y) ≺ supp(y′) for all y, y′ with {y, y′} ⊆WTC(x),
3) y ∩⋃{supp(y′) |y′ ∈ y} = ∅ for every y ∈WTC(x).

For every hereditarily finite set x, if it satisfies the conditions 1)–3), then
hfs(Nx) = x.

Methods and Tools for an Analysis of Harmony-Seeking Computations 251

Proof. One proves by induction on the number of elements of NN that x = hfs(N)
implies that the conditions 0)–3) hold for x. One proves by induction on the depth
of x that if the conditions 1)–3) hold for x, then hfs(Nx) = x.

Corollary 1. For a finite nesting structure N the set WTC(hfs(N)) ordered by
the membership relation ∈ forms a structure which is isomorphic to that structure
which is given by the set NN of parts in N ordered by ≺.

Proof. The corollary is a consequence of Theorem 1. By 1) a mapping from
WTC(hfs(N)) into NN given by y 7→ supp(y) is a bijection which preserves the
ordering by 2), where 1) and 2) are the conditions from Theorem 1 which hold for
x = hfs(N).

Example 1. The set x of the form

{{{
1,
{

2, {3}
}}
,
{{

2, {3}
}
,
{
{3}, {4}

}}
,

{{
{3}, {4}

}
,
{

5, {4}
}}}

,

{
6,
{{
{3}, {4}

}
,
{

5, {4}
}}}

}

is a hereditarily finite set such that hfs(Nx) = x, where Nx is a semilattice illus-
trated in Fig. 0.

• •

• • •

• • •

• •

•

{3} {4}

{2, 3} {3, 4} {4, 5}

{1, 2, 3} {2, 3, 4} {3, 4, 5}

{1, 2, 3, 4, 5} {3, 4, 5, 6}

{1, 2, 3, 4, 5, 6}

Fig. 0.

252 A. Obtu lowicz

The representation of finite nesting structures by hereditarily finite sets de-
scribed in Theorem 1 and Corollary 1 provides that already defined constructions
and proved properties of hereditarily finite sets x satisfying hfs(Nx) = x can be
transferred or interpreted in the class of finite nesting structures. In particular, the
basic concepts and constructions describing mobile systems1 modeled by heredi-
tarily finite sets, see [18] and Appendix in the present paper, can be transferred to
the class of finite nesting structures via the representation. The following theorem
is a starting point of this transfer.

Theorem 2. Let x be a hereditarily finite set such that hfs(Nx) = x. Then the
following conditions hold :

C1) if y ∈ x with y ∈ HF, then for u1 = (x − {y}) ∪ y the condition NNu1 =
NNx − {supp(y)} holds,

C2) if {y, z} ⊆ x ∩ HF with y 6= z, then for u2 = (x − {y, z}) ∪ {z ∪ {y}} the
condition NNu2 = (NNx − {supp(y)}) ∪ {supp(y) ∪ supp(z)} holds,

C3) if z ∈ y ∈ x with z ∈ HF, then for u3 = (x−{y})∪ {y−{z}, z} the condition
NNu3 = (NNx − {supp(y)}) ∪ {supp(y − {z})} holds.

Moreover, if Nx is such that NNx is a tree, then for every i ∈ {1, 2, 3} the set
NNui is also a tree and hfs(Nui) = ui.

Proof. We prove the theorem by induction on the depth of x.

We interpret Theorem 2 in the following way. The conditions C1), C2), C3)
correspond to the following process capabilities discussed in [7]:

• condition C1) corresponds to the capability “can open an ambient”,
• condition C2) corresponds to the capability “can enter an ambient”,
• condition C3) corresponds to the capability “can exit out an ambient”.

The above capabilities are capabilities of some “spatial” moves of parts of systems
with respect to hierarchical organization of systems determined by nesting relation
of parts.

A mathematical description of the mentioned capabilities for systems modeled
by hereditarily finite sets x (with WTC(x) meant as a collection of parts of x) is
contained in conditions C1), C2), C3), where for every i ∈ {1, 2, 3} the conditions
written between “if” and “then” in Ci) are (pre)conditions which provide a re-
alization of a move and the equation defining ui written after “then” in Ci) is a
(post)condition describing the result ui of the move.

For a hereditarily finite set x modeling a system with parts represented by
elements of WTC(x) the capabilities of moves can be applied (or referred) to the
elements of WTC(x) and these applications are called local moves in x. The local
moves are described in terms of Gh. Păun’s evolution rules and their applications
in [18], see also Appendix of the present paper, where a local action is a mathe-
matical description of a local move.

1 Related to mobile ambient systems in [7].

Methods and Tools for an Analysis of Harmony-Seeking Computations 253

A collisionless set of simultaneous local moves in a given x (more than one
local move in a unit of time) is described in [18] and Appendix as a proper set of
local actions over x.

An inductive formula for assembly of a whole system from the results of local
moves belonging to a collisionless set of simultaneous local moves in a hereditarily
finite set x is given in [18], see also the inductive definition of Ap(A, x) in Appendix,
where Ap(A, x) is the result of assembly for a proper set A of local actions over x.
Theorem 3 in Appendix is the final and concluding step of the discussed transfer
of the basic concepts and constructions describing mobile systems modeled by
hereditarily finite sets into the area of nesting structures.

Remark. For x given in Example,

y =

{{
1,
{

2, {3}
}}
,
{{

2, {3}
}
,
{
{3}, {4}

}}
,
{{
{3}, {4}

}
,
{

5, {4}
}}}

,

and
z =

{{
2, {3}

}
,
{
{3}, {4}

}}

we have that z ∈ y ∈ x which means that preconditions in C3) hold for these
x, y, z. Then for u3 = (x − {y}) ∪ {y − {z}, z} we have that Nu3 = Nx (because
supp(y − {z}) = supp(y) in this case) which means that capability “can exit out
an ambient” does not lead to any real move leaving Nx unchanged.

Conclusion

By virtue of Theorem 2 and Theorem 3 in Appendix every finite nesting structure
N with NN being a tree is mobile with respect to simultaneous (massively paral-
lel) local moves determined by process capabilities “can open an ambient”, “can
enter an ambient”, and “can exit out an ambient”. The case discussed in Remark
shows that mobility of some nesting structures N with NN being a semilattice is
problematic.

Appendix

We consider those evolutive transformations of hereditarily finite sets into heredi-
tarily finite sets which are determined by evolution rules written in Păun’s manner
as the parenthesis expressions, cf. [19]:

R1) []→ (dissolution rule),
R2) [][]→ [[]] (in-rule),
R3) [[]]→ [][] (out-rule),

The single applications from the top of the above rules to hereditarily finite
sets are described in the following way:

254 A. Obtu lowicz

• if y ∈ x∩HF, then the dissolution rule []→ can be applied to x and the result
of its application is a new hereditarily finite set of the form

(x− {y}) ∪ y,

• if {y, z} ⊆ x ∩ HF, and z 6= y, then the in-rule [][]→ [[]] can be applied to x
and the result of its application is a new hereditarily finite set of the form

(x− {y, z}) ∪ {z ∪ {y}},

• if z ∈ y ∈ x ∈ HF, z ∈ HF, and y −{z} 6= ∅, then the out-rule [[]]→ [][] can
be applied to x and the result of its application is a new hereditarily finite set
of the form

(x− {y}) ∪ ({y − {z}, z}− {∅}).
The above described single applications of evolution rules R1), R2), R3) from

the top determine evolutive transformations of hereditarily finite sets into new
hereditarily finite sets from the top. One sees that these rules are related to pro-
cess capabilities “can open an ambient”, “can enter an ambient”, “can exit out an
ambient”, introduced in [6]. The evolution rules may describe forces in patterns,
cf. [3]. We describe by using ∪, −, and {?} a more complicated case of evolutive
transformations of hereditarily finite sets, where these transformations are deter-
mined by simultaneous applications of different rules to many different elements
of WTC(x) for a hereditarily finite set x to be transformed.

The evolutive transformations of hereditarily finite sets considered above can
be “transferred” to nesting structures by using the construction of Nx (see The-
orem 1 and Corollary 1) to define evolutive transformations of nesting structures
themselves.

We restrict our considerations to tree-like hereditarily finite sets which are
defined to be such that hfs(Nx) = x and Nx is a tree.

Let x be a tree-like hereditarily finite set. By a local action over x we mean
an ordered pair a = (P a, Ra), where P a is a bijection from dom(a) into scope(a)
with scope(a) ⊂WTC(x) and Ra is an evolution rule such that

a1) if Ra is a dissolution rule []→, then dom(a) = {0, 1} and P a(1) ∈ P a(0),
a2) if Ra is an in-rule [][] → [[]], then dom(a) = {0, 1, 2} and {P a(1), P a(2)} ⊂

P a(0),
a3) if Ra is an out-rule [[]]→ [][], then dom(a) = {0, 1, 2} and P a(2) ∈ P a(1) ∈

P a(0).

For a local action a over x the bijection P a is meant as a place of application
of the rule Ra, where it will be seen later than one can interpret scope(a) as the
scope of the local transformation of x according to the rule Ra.

Let A be a set of local actions over x. For a set y ∈ WTC(x) and a set
z ⊆ y we write A � (y − z) to denote the set of local actions a over y − z such
that a ∈ A or P a(0) = y − z with a∗ = (P a∗ , Ra) ∈ A for P a∗ : dom(a) →
(scope(a)−{y− z})∪ {y} with P a∗(i) = P a(i) for all i ∈ dom(a)−{0}. If z = ∅,

Methods and Tools for an Analysis of Harmony-Seeking Computations 255

then A � (y − z) = A � y is simply the set of those local actions over y which
belong to A. If z = y, then A � (y − z) = A � ∅ = ∅.

For a set A of local actions over x we adopt the following notation

Aα = {a ∈ A|Ra is an α-rule} for α ∈ {in, out},
Adiss = {a ∈ A|Ra is a dissolution rule}.

We define now a property of sets A of local actions over tree-like hereditarily
finite sets x such that if A has this property, then one can construct the result of
transformation of x with respect to A in a consistent (unambiguous) way, where
x is transformed according to simultaneous application of the rules Ra in places
P a, respectively for all a ∈ A.

A set A of local actions over x is called a proper set of local actions over x
if for all local actions a, a′ in A if a 6= a′, then scope(a) ∩ scope(a′) = ∅ or the
disjunction of the following conditions holds:

(C1) P a(0) = P a′(0) and (scope(a)− {P a(0)}) ∩ (scope(a′)− {P a′(0)}) = ∅,
(C2) if {a, a′} ⊆ Adiss, then P a(0) = P a′(1),
(C3) if {a, a′} ⊆ Ain, then P a(1) = P a′(1) or P a′(0) ∈ {P a(1), P a(2)},
(C4) if {a, a′} ⊆ Aout, then P a(0) = P a′(2)

or {P a(1), P a(2)} ∩ {P a′(0), P a′(1)} = {P a(1)},
(C5) if a ∈ Adiss and a′ ∈ Ain, then P a(1) = P a′(0)

or P a(0) ∈ {P a′(1), P a′(2)},
(C6) if a ∈ Adiss and a′ ∈ Aout, then P a(1) = P a′(0) or {P a(0), P a(1)} ∩

{P a′(1), P a′(2)} = {P a(0)},
(C7) if a ∈ Ain and a′ ∈ Aout, then P a(1) = P a′(1) or P a′(0) ∈ {P a(1), P a(2)}

or scope(a) ∩ {P a′(1), P a′(2)} = {P a(0)}.
We adopt the following conventions to explain and illustrate the notion of a

proper set of local actions.
For a tree-like non-empty hereditarily finite set x whose content is not specified

(or is not important for considerations) we illustrate x by a drawing given by a
triangle below whose bottom vertex is labeled by x.

• x

..

For a tree-like non-empty hereditarily finite set x whose content is not specified
we illustrate one-element set {x} by a drawing given by a triangle with an arrow
glued to the bottom vertex of the triangle as below

256 A. Obtu lowicz

•

•

x

{x}

..

where the bottom vertex of the drawing is that vertex which is labeled by {x}.
If a tree-like hereditarily finite set x is such that x = u∪w for hereditarily finite

sets u,w with (HF ∩ u) ∩ (HF ∩ w) = ∅ such that there are given the drawings
used for illustrations of u and w, respectively, then we illustrate x by a drawing
below

• x

wu

..

where the meta-triangles labeled by u and w contain the drawing used to illustrate
u and the drawing used to illustrate w, respectively. In the above drawing which
illustrates x = u ∪ w the bottom vertex labeled by x is the result of gluing of
the bottom vertex of the drawing used to illustrate u and the bottom vertex of
the drawing used to illustrate w. Here the intersection of the set of vertices of the
drawing for u and the set of vertices of the drawing for w is the one-element set
containing the result of gluing described above, which is the vertex labeled by x.

Thus for tree-like hereditarily finite sets x, y, z such that z ∈ y ∈ x one can
illustrate x by the drawing

x − {y}

y − {z}

•

•

• x

y

z

.

.

.

where the contents of x− {y}, y − {z}, and z are not specified.
We explain and illustrate the conditions (C1)–(C7).
Ad (C1). For two different local actions a ∈ Adiss and a′ ∈ Aout satisfying

(C1) the places P a and P a′ are illustrated in Fig. 1(a). The result of simultaneous
application of the rules Ra and Ra′ in places P a and P a′ , respectively, is illustrated
in Fig. 1(b), where P a(1) is “dissolved” in P a(0) and P a′(2) is “sent out” of P a′(1)

Methods and Tools for an Analysis of Harmony-Seeking Computations 257

.

.

•

• •

•

(a)
P a(0) = P a

′

(0)

r

s

P a(1) P a
′

(1)

P a
′

(2)

•

••

r P a(1)

.

P a
′

(2) s

r ∪ P a(1) ∪ {P a
′

(2), s}
(b)

where r = P a(0) − {P a(1), P a
′

(1)} and s = P a
′

(1) − {P a
′

(2)}

Fig. 1.

into P a(0) = P a′(0). The remaining cases of a and a′ satisfying (C1) are explained
and illustrated in a similar way.

Ad (C2). For two different local actions a, a′ belonging to Adiss with P a(0) =
P a′(1) the places P a and P a′ are illustrated in Fig. 2(a). The result of simultaneous
application of the rules Ra and Ra′ in places P a and P a′ , respectively, is illustrated
in Fig. 2(b), where both P a(1) and P a′(1)−{P a(1)} are “dissolved” simultaneously
in P a′(0).

•

•

•

.

.

r

s

P
a
′

(0)

P
a(0) = P

a
′

(1)

P
a(1)

(a)

r P
a(1) s

r ∪ P
a(1) ∪ s

(b)

where r = P
a
′

(0) − {P a(0)} and s = P
a(0) − {P a(1)}

Fig. 2.

Ad (C3). For two different local actions a, a′ belonging to Ain with P a(1) =
P a′(1) the places P a and P a′ are illustrated in Fig. 3(a). The result of simultaneous
application of the rules Ra and Ra′ in these places P a and P a′ , respectively, is
illustrated in Fig. 3(b), where both P a(2) and P a′(2) are “sent into” P a(1) =
P a′(1) simultaneously. We point out that for all two different local actions a and a′

258 A. Obtu lowicz

with scope(a) ∩ scope(a′) 6= ∅ the condition (C3) implies P a(1) 6= P a′(2), which
excludes the case such that simultaneous application of Ra and Ra′ in places P a

and P a′ is ambiguous. The remaining cases of a and a′ satisfying (C3) are explained
and illustrated in a similar way.

.

• • •

•

.

r

(a)
P a(0) = P a

′

(0)

P a(1) = P a
′

(1) P a(2) P a
′

(2)

•

•

• •

r

P a(1)

(b)
r ∪ {P a(1) ∪ {P a(2), P a

′

(2)}}

P a(1) ∪ {P a(2), P a
′

(2)}

P a(2) P a
′

(2)

where r = P a(0) − {P a(1), P a(2), P a
′

(2)}

.

Fig. 3.

Ad (C4). For two different local actions a, a′ belonging to Aout we explain the
case of {P a(1), P a(2)} ∩ {P a′(0), P a′(1)} = {P a(1)} which is equivalent to the
disjunction of the following two conditions:

i) P a′(0) = P a(1) and P a′(1) 6= P a(2),
ii) P a(1) = P a′(1).

The places P a and P a′ for the case i) are illustrated in Fig. 4(a). The result of
simultaneous application of Ra and Ra′ in these places P a and P a′ , respectively,
is illustrated in Fig. 4(b), where P a(2) and P a′(2) are simultaneously “sent out”
of P a(1) into P a(0) and of P a′(2) into P a′(0) = P a(1), respectively. The condition
P a′(1) 6= P a(2) in i) excludes the case such that simultaneous application of Ra

and Ra′ in places P a and P a′ is ambiguous. The case ii) and the remaining cases
in (C4) are explained and illustrated in a similar way.

Ad (C5). One explains and illustrates this condition in a way similar to (C1)
and (C3).

Ad (C6). One explains and illustrates this condition in a way similar
to (C4). We point out here that for two different local actions a ∈ Adiss and
a′ ∈ Aout with scope(a) ∩ scope(a′) 6= ∅ the condition

{P a(0), P a(1)} ∩ {P a′(1), P a′(2} = {P a(0)}

is equivalent to the disjunction of the following two conditions:

iii) P a(0) = P a′(1) and P a(1) 6= P a′(2),

Methods and Tools for an Analysis of Harmony-Seeking Computations 259

.

.

r

s

t

(a)
P a(0)

P a(1) = P a
′

(0)

P a(2) P a
′

(1)

P a
′

(2)

•

•

• •

•

r

s

r ∪ {P a(2), s ∪ {t, P a
′

(2)}}
(b)

P a(2) s ∪ {t, P a
′

(2)}

t P a
′

(2)

where r = P a(0) − {P a(1)}, s = P a(1) − {P a(2), P a
′

(1)}

and t = P a
′

(1) − {P a
′

(2)}

•

• •

• •

Fig. 4.

iv) P a(0) = P a′(2).

The condition P a(1) 6= P a′(2) in iii) excludes the case such that simultaneous
application of Ra and Ra′ in the places P a and P a′ is ambiguous.

Ad (C7). For two different local actions a ∈ Ain and a′ ∈ Aout we explain the
case of scope(a)∩{P a′(1), P a′(2)} = {P a(0)} which is equivalent to the disjunction
of the following two conditions:

v) P a(0) = P a′(1) and P a′(2) /∈ {P a(1), P a(2)},
vi) P a(0) = P a′(2).

The places P a and P a′ in the case v) are illustrated in Fig. 5(a). The result of
simultaneous application of Ra and Ra′ in these places P a and P a′ , respectively, is
illustrated in Fig. 5(b), where P a(2) is “sent into” P a(1) and P a′(2) is “sent out” of
P a′(1) = P a(0) into P a′(0) simultaneously. The condition P a′(2) /∈ {P a(1), P a(2)}
in v) excludes the case such that simultaneous application of Ra and Ra′ in the
places P a and P a′ is ambiguous. The case vi) and the remaining cases in (C7) are
explained and illustrated in a similar way.

Let A be a proper set of local actions over a tree-like hereditarily finite set x.
By the result of evolutive transformation of x with respect to A we mean a set,
denoted by Ap(A, x), which is defined inductively (with respect to the number of
elements of A and the depth of x) by the following equations:

1) Ap(∅, x) = x and Ap(∅,∅) = ∅,

260 A. Obtu lowicz

.

r

s

P a
′

(0)

P a(0) = P a
′

(1)

P a(1) P a(2) P a
′

(2)

(a)
•

•

• • •

•

•

•

•

•

r

s

P a(1)

.

(b)
r ∪ {s ∪ {P a(1) ∪ {P a(2)}}, P a

′

(2)}

s ∪ {P a(1) ∪ {P a(2)}}

P a(1) ∪ {P a(2)}

P a(2)

P a
′

(2)

where r = P a
′

(0) − {P a
′

(1)} and s = P a(0) − {P a(1), P a(2), P a
′

(2)}

Fig. 5.

2) if A 6= ∅, then Ap(A, x) = (L ∩ x) ∪ Ap •(A, x) for

Ap •(A, x) =
⋃

1≤i≤4

Api(A, x),

where
• Ap1(A, x) = {Ap(A � y, y) |y ∈ x ∩ HF and y /∈ ⋃{scope(a) |P a(0) =

x and a ∈ A}},
• Ap2(A, x) =

⋃{Ap •(A � P a(1), P a(1)) |P a(0) = x and a ∈ Adiss},
• Ap3(A, x) = {Ap •(A � P a(2), P a(2)) |P a(0) = x and a ∈ Aout},
• Ap4(A, x) = {Ap •(A � (y − P y), y − P y) ∪Qy |y ∈ INOUTxA} for

INOUTxA = {P a(1) |P a(0) = x and a ∈ Ain ∪ Aout},
P y = {P a(2) |P a(1) = y and A ∈ Aout},
Qy = {Ap •(A � P a(2), P a(2)) |P a(1) = y and a ∈ Ain}.

The result Ap(A, x) of evolutive transformation of x with respect to A is the
result of simultaneous application of the rules Ra in places P a, respectively for
a ∈ A, such that Ap(A, x) inherits some basic properties of x which are described
in the following theorem.

Theorem 3. Let x be a tree-like hereditarily finite set and let A be a proper set of
local action over x. Then Ap(A, x) is a tree-like hereditarily finite set.

Proof. One proves the theorem by induction on the number of elements of A and
the depth of x. Theorem 2 in Section 3 provides the first inductive step.

Methods and Tools for an Analysis of Harmony-Seeking Computations 261

References

1. Ch. Alexander: Harmony-Seeking Computations. International Journal of Uncon-
ventional Computation, to appear; see also
http://www.livingneighborhoods.org.

2. Ch. Alexander: A city is not a tree. Architectural Forum, 122, 1 (1965), 58–61; 2
(1965), 58–62; http://www2.rudi.net/bookshelf/classics/city.

3. Ch. Alexander: Pattern Languages. Oxford Univ. Press, New York, 1977.
4. J. Byrnes, W. Sieg: An abstract model for parallel computations: Gandy’s Thesis.

The Monist, 82, 1 (1999), 150–164.
5. L. Cardelli: Brane calculi. Interactions of biological membranes. In Proc. Computa-

tional Methods in System Biology, 2004, Springer, Berlin.
6. L. Cardelli, A.D. Gordon: Mobile ambients. In Foundations of Software Science and

Computation Structures, Lecture Notes in Comput. Sci. 1378, Springer, Berlin, 1998,
140–155.

7. L. Cardelli, A.D. Gordon: Mobile ambients. Coordination. Theoret. Comput. Sci.,
240 (2000), 177–213.

8. L. Cardelli, Gh. Păun: An universality result for (mem)brane calculus based on
mate/drip operations. In Proc. Cellular Computing (Complexity Aspects), ESF PESC
Exploratory Workshop, January 31–February 2, 2005 (M.A. Gutiérrez-Naranjo et al.,
eds.), 75–94.

9. N. De Pisapia: Gandy Machines: an Abstract Model for Parallel Computations, for
Turing Machines, the Game of Life, and Artificial Neural Networks. M.S. Thesis,
Carnegie Mellon Univ., Pittsburgh 2000, http://artsci.wustl.edu/~ndepisap.

10. R. Gandy: Church’s thesis and principles for mechanisms. In The Kleene Symposium
(J. Barwise et al., eds.), North-Holland, Amsterdam, 1980, 123–148.

11. C. Graciani Diaz et al., eds.: Proceedings of Fourth Brainstorming Week on Membrane
Computing, Sevilla, January 30–February 3, 2006, vol. I and II, Sevilla, 2006.

12. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez: Fractals and P systems. In Proceed-
ings of Fourth Brainstorming Week on Membrane Computing, Sevilla, January 30–
February 3, 2006 (C. Graciani Diaz et al., eds.), Sevilla 2006, vol. II, 65–86.

13. M.A. Gutiérrez-Naranjo et al., eds.: Proc. Cellular Computing (Complexity Aspects).
ESF PESC Exploratory Workshop, January 31–February 2, 2005, Sevilla, 2005.

14. H.J. Hoogeboom et al., eds.: Pre-proceedings of the 7th Workshop on Membrane
Computing WMC7 . 17–21 July 2006, Lorenz Center, Leiden, Leiden, 2006.

15. Membrane computing web page http://psystems.disco.unimib.it.
16. A. Obtu lowicz: Mathematical (denotational) semantics of some reducts of Ambient

Calculus and Brane Calculi. Romanian Journal of Information Science and Technol-
ogy, to appear.

17. A. Obtu lowicz: Gandy’s principles for mechanisms and membrane computing. In
Proc. Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop,
January 31–February 2, 2005 (M. A. Gutiérrez-Naranjo et al., eds.), Sevilla, 2005,
267–276.

18. A. Obtu lowicz: Relational membrane systems. In Membrane Computing, 6th Inter-
national Workshop, WMC 2005, Vienna, Austria, July 18–21, 2005 (R. Freund et
al., eds.), Lecture Notes in Comput. Sci. 3850, Springer, Berlin, 2006, 342–355.

19. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
20. N.A. Salingaros: Fractals in New Architecture. Katarxis 3, September 2004,

http://www.katarxis3.com/Salingaros-Fractals.htm.

262 A. Obtu lowicz

21. W. Sieg: Computability Theory. Seminar Lectures, University of Bologna, November
2004,
http://www.phil.cmu.edu/summerschool/2006/Sieg/computability theory.pdf.

22. W. Sieg: Calculations by man and machine: conceptual analysis. Lecture Notes in
Logic, 15 (2002), 390–409.

Twenty Six Research Topics
About Spiking Neural P Systems

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania
and
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
george.paun@imar.ro, gpaun@us.es

1 Foreword

To continue the tradition of the previous brainstorming weeks on membrane com-
puting, I am collecting here a series of open problems and research topics, not
about membrane computing in general, but about one of the directions of research
which were pretty much investigated in the last year: spiking neural P systems. In
general, one mentions issues which look of a broader nature, but also some precise
problems are formulated. As usual with such lists of problems, the selection is
subjective, by no means exhaustive.

Of course, choosing only problems related to spiking neural P systems does not
mean that there are no longer enough problems waiting to be solved in the general
framework of membrane computing – on contrarily (e.g., separate lists can refer
to computational complexity issues, to dynamical systems approaches, etc.), but
such problems tend to become rather specialized and technical at the present stage
of the development of membrane computing. Instead, the membrane computing
models with a neural inspiration are at the beginning of a systematic exploration,
and, as claimed below, this area of research looks very promising.

2 Forecast

It is obvious that the (human) brain structure and functioning, from neurons,
astrocytes, and other components to complex networks and complex (chemical,
electrical, informational) processes taking place in it, should be – and only par-
tially is – a major source of inspiration for informatics (I choose this more general
term rather that the restrictive, but usual, “computer science”, in order to stress

264 Gh. Păun

that I have in mind both mathematics per se and practice, both the theory of com-
putability and the use of computing machineries). If biology is such a rich source
of inspiration for informatics as natural computing proves, then the brain should
be the “golden mine” of this intellectual enterprise. Risking a forecast, I believe
that if something really great is to appear in informatics in the near future, then
this “something” will be suggested by the brain (and this will probably be placed at
the level of “strategies” of computing, not at the “tactic” level – just in balance
with the two computing devices already learned from the brain activity and which
can be considered the most central notions in informatics, the Turing machine and
the finite automaton).

The previous statements do not intend to suggest that spiking neural P sys-
tems are the answer to this learning-from-brain challenge, but only to call (once
again) the attention to this challenge. Becoming familiar with brain functioning,
in whatever reductionistic framework (as spiking neural P systems investigation
is), can however be useful. After all, “the road of one thousand miles starts with
the first step”, Lao Tze said. . . Let us make from spiking neural P systems “the
first step”.

3 Some (Neural) Generalities

The neuron is a highly specialized cell, at the same time intricate and simple, ro-
bust and fragile, like any other cell, but having the particularity of being involved
(in general) in huge networks by means of the synapses established with partner
neurons. It is not at all the intention of these lines to give any biological information
from this area, but only to point out some of the peculiarities related to neurons
and the brain: the functioning of each neuron assumes chemical, electrical, and
informational processing at the same time; the axon is not a simple transmitter
of impulses, but an information processor; in the communication between neu-
rons the spiking activity plays a central role (which means that the distance in
time between consecutive spikes is used to carry information, that is, time is a
support of information); the neurons are not cooperating only through synapses,
but their relationships are also regulated through the calcium waves controlled by
the astrocytes, “eavesdroppers” of axons playing an important role in the neu-
ral communication; the brain displays a general emergent behavior which, to my
knowledge and to my understanding, cannot be explained only in terms of neuron
interrelationships (something is still missing in this picture, maybe of a quantum
nature – as Penrose suggests, maybe related to the organization of parts, maybe
of a still subtler or even unknown nature). Some of these ideas (especially spiking)
are supposed to lead to “neural computing of the third generation”, which suggests
that already computer scientists are aware of the possibility of major progresses
to be made (soon) on the basis of progresses in neuro-biology.

The bibliography of this note contains several titles, both from the general
biology of the cell [1], general neurology [41], and from neural computing based on

Twenty Six Research Topics About Spiking Neural P Systems 265

spiking [3], [29], [16], [26], [27], [28], about the axon as an information processor
[39], astrocytes and their role in the brain functioning [37], [40]. Of course, these
titles are only meant to be initial “dendrites” to the huge bibliography related to
(computer science approaches to) brain functioning.

4 Spiking Neural P Systems – Informal Presentation

Spiking neural P systems (SN P systems, for short) were introduced in [23] in the
precise (and modest: trying to learn a new “mathematical game” from neurology,
not to provide models to it) aim of incorporating in membrane computing ideas
specific to spiking neurons; the intuitive goal was to have (1) a tissue-like P system
with (2) only one (type of) object(s) in the cells – the spike, with (3) specific rules
for evolving populations of spikes, and (4) making use of the time as a support of
information.

In what follows, I briefly describe several classes of SN P systems investigated
so far, as well as some of the main types of results obtained in this area.

In short, an SN P system (of the basic form – later called a standard SN P
system) consists of a set of neurons placed in the nodes of a directed graph and
sending signals (spikes, denoted in what follows by the symbol a) along the arcs
of the graph (they are called synapses). The objects evolve by means of spiking
rules, which are of the form E/ac → a; d, where E is a regular expression over
{a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron
containing k spikes such that ak ∈ L(E), k ≥ c, can consume c spikes and produce
one spike, after a delay of d steps. This spike is sent to all neurons to which a
synapse exists outgoing from the neuron where the rule was applied. There also
are forgetting rules, of the form as → λ, with the meaning that s ≥ 1 spikes are
removed, provided that the neuron contains exactly s spikes.

An extension of theses type of rules was considered (with a mathematical mo-
tivation) in [30], [14]: rules of the form E/ac → ap; d, with the meaning that when
using the rule, c spikes are consumed and p spikes are produced (one assumes that
c ≥ p, not to produce more than consuming). Because p can be 0 or greater than
0, we obtain a generalization of both spiking and forgetting rules, while forgetting
rules also have a regular expression associated with them.

An SN P system (with standard as well with extended rules) works in the
following way. A global clock is assumed and in each time unit each neuron which
can use a rule should do it (the system is synchronized), but the work of the system
is sequential locally: only (at most) one rule is used in each neuron. One of the
neurons is considered to be the output neuron, and its spikes are also sent to the
environment. The moments of time when a spike is emitted by the output neuron
are marked with 1, the other moments are marked with 0. This binary sequence is
called the spike train of the system – it might be infinite if the computation does
not stop.

266 Gh. Păun

With a spike train we can associate various numbers, which can be considered
as computed (we also say generated) by an SN P system. For instance, in [23]
only the distance between the first two spikes of a spike train was considered,
then in [33] several extensions were examined: the distance between the first k
spikes of a spike train, or the distances between all consecutive spikes, taking
into account all intervals or only intervals that alternate, all computations or only
halting computations, etc.

An SN P system can also work in the accepting mode: a neuron is designated
as the input neuron and two spikes are introduced in it, at an interval of n steps;
the number n is accepted if the computation halts.

Two main types of results were obtained: computational completeness in the
case when no bound was imposed on the number of spikes present in the system,
and a characterization of semilinear sets of numbers in the case when a bound was
imposed.

Another attractive possibility is to consider the spike trains themselves as the
result of a computation, and then we obtain a device generating a (binary) lan-
guage. We can also consider input neurons and then an SN P system can work
as a transducer. Such possibilities were investigated in [34]. Languages – even on
arbitrary (i.e., not only binary) alphabets – can be obtained also in other ways:
following the path of a designated spike across neurons, as proposed in [12], or
using rules of the extended form mentioned above. Specifically, with a step when
the system sends out i spikes, we associate a symbol bi, and thus we get a language
over an alphabet with as many symbols as the number of spikes simultaneously
produced. This case was investigated in [14], where representations or characteri-
zations of various families of languages were obtained. (An essential difference was
found between the case when zero spikes sent out is interpreted as a symbol b0 and
the case when this is interpreted as inserting λ, the empty string, in the result.)

Other extensions were proposed in [21] and [20], where several output neurons
were considered, thus producing vectors of numbers, not only numbers. A detailed
typology of systems (and of sets of vectors generated) is investigated in the two
papers mentioned above, with classes of vectors found in between the semilinear
and the recursively enumerable ones.

The proofs of all computational completeness results known up to now in this
area are based on simulating register machines. Starting the proofs from small
universal register machines, as those produced in [25], one can find small universal
SN P systems (working in the generating mode, as sketched above, or in the
computing mode, i.e., having both an input and an output neuron and producing a
number related to the input number). This idea was explored in [30] and the results
are as follows: there are universal computing SN P systems with 84 neurons using
standard rules and with only 49 neurons using extended rules. In the generative
case, the best results are 79 and 50 neurons, respectively.

In the initial definition of SN P systems several ingredients are used (delay,
forgetting rules), some of them of a general form (unrestricted synapse graph,
unrestricted regular expressions). As shown in [19], several normal forms can be

Twenty Six Research Topics About Spiking Neural P Systems 267

found, in the sense that some ingredients can be removed or simplified without
losing the computational completeness. For instance, the forgetting rules or the
delay can be avoided, and the outdegree of the synapse graph can be bounded by
2, while the regular expressions from firing rules can be of very restricted forms.
The dual problem, of the indegree bounding, was solved (affirmatively) in [35].

Besides using the rules of a neuron in the sequential mode introduced above,
it is possible to also use the rules in a parallel way. A possibility was considered in
[24]: when a rule is enabled, it is used as many times as possible, thus exhausting
the spikes it can consume in that neuron. As proved in [24], SN P systems with
the exhaustive use of rules are again universal, both in the accepting and the
generative cases.

In the proof of these results the synchronization plays a crucial role, but both
from a mathematical point of view and from a neuro-biological point of view it is
rather natural to consider non-synchronized systems, where the use of rules is not
obligatory: even if a neuron has a rule enabled in a given time unit, this rule is not
obligatorily used, the neuron may remain still, maybe receiving spikes from the
neighboring neurons; if the unused rule may be used later, it is used later, without
any restriction on the interval when it has remained unused; if the new spikes made
the rule non-applicable, then the computation continues in the new circumstances
(maybe other rules are enabled now). This way of using the rules applies also to the
output neuron, hence now the distance in time between the spikes sent out by the
system is no longer relevant. That is why, for non-synchronized SN P systems we
take as a result of a computation the total number of spikes sent out; this, in turn,
makes necessary considering only halting computations (the computations never
halting are ignored, they provide no output). Non-synchronized SN P systems
were introduced and investigated in [7], where it is proved that SN P systems with
extended rules are still equivalent with Turing machines (as generators of sets of
natural numbers).

5 Some (More) Formal Definitions

To make clearer some of the subsequent formulations, I recall here the definition
of central classes of SN P systems, but more details should be found in the papers
mentioned in the bibliography. No general notions or notations from language
or automata theory, computability, complexity, computer science in general, or
membrane computing, are recalled.

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is a
construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);

268 Gh. Păun

2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:
a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of rules of the following general form:

E/ac → ap; d,

where E is a regular expression with a the only symbol used, c ≥ 1, and
p, d ≥ 0, with c ≥ p; if p = 0, then d = 0, too.

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);
4. out ∈ {1, 2, . . . ,m} indicates the output neuron.

A rule E/ac → ap; d with p ≥ 1 is called a firing (we also say spiking) rule; a
rule E/ac → ap; d with p = d = 0 is written in the form E/ac → λ and is called
a forgetting rule. If L(E) = {ac}, then the rules are written in the simplified form
ac → ap; d and ac → λ. A system having only rules of the forms E/ac → a; d and
ac → λ is said to be restricted (we also use to say that such a system is a standard
one).

The rules are applied as follows: if the neuron σi contains k spikes, ak ∈ L(E)
and k ≥ c, then the rule E/ac → ap; d ∈ Ri (with p ≥ 1) is enabled and it can be
applied; applying it means that c spikes are consumed, only k − c remain in the
neuron, the neuron is fired, and it produces p spikes after d time units. If d = 0,
then the spikes are emitted immediately, if d = 1, then the spikes are emitted in
the next step, and so on. In the case d ≥ 1, if the rule is used in step t, then in
steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed, and it cannot receive new
spikes (if a neuron has a synapse to a closed neuron and sends spikes along it,
then the spikes are lost). In step t+ d, the neuron spikes and becomes again open,
hence can receive spikes (which can be used in step t+d+1). The p spikes emitted
by a neuron σi are replicated and they go to all neurons σj such that (i, j) ∈ syn
(each σj receives p spikes). If the rule is a forgetting one, hence with p = 0, then
no spike is emitted (and the neuron cannot be closed, because also d = 0).

In the synchronized mode, considered up to now in all SN P systems investiga-
tions except [7], a global clock is assumed, marking the time for all neurons, and in
each time unit, in each neuron which can use a rule, a rule must be used. Because
two rules E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2 can have L(E1) ∩ L(E2) 6= ∅,
it is possible that two or more rules can be applied in a neuron, and then one
of them is chosen non-deterministically. Note that the neurons work in parallel
(synchronously), but each neuron processes sequentially its spikes, using only one
rule in each time unit.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm of spikes present in each neuron. During the computation, a con-
figuration is described by both the number of spikes present in each neuron and
by the state of the neuron, more precisely, by the number of steps to count down
until it becomes open (this number is zero if the neuron is already open). Thus,
〈r1/t1, . . . , rm/tm〉 is the configuration where neuron σi, i = 1, 2, . . . ,m contains
ri ≥ 0 spikes and it will be open after ti ≥ 0 steps; with this notation, the initial
configuration is C0 = 〈n1/0, . . . , nm/0〉 (see an example in Figure 2).

Twenty Six Research Topics About Spiking Neural P Systems 269

Using the rules as suggested above, we can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where all neurons
are open and no rule can be used. With any computation, halting or not, we as-
sociate a spike train, a sequence of digits 0 and 1, with 1 appearing in positions
which indicate the steps when the output neuron sends spikes out of the system
(we also say that the system itself spikes at that time). With any spike train we
can associate various numbers, which are considered as computed (generated) by
the system; in the spirit of spiking neural computing, the distance between certain
spikes are usually taken as the result of a computation (e.g., the distance between
the first two spikes). Because of the non-determinism in using the rules, a given
system computes in this way a set of numbers. An SN P system can be also used
in the accepting mode: a number n is introduced in the system in the form of
the distance between two spikes entering a specified neuron, and this number is
accepted if the computation eventually halts.

We denote by Ngen(Π) the set of numbers generated (in the synchronized
way) by a system Π in the form of the number of steps elapsed between the
first two spikes of a spike train. Then, by Spik2SPm(rulek, consp, forgq, deld) we
denote the family of such sets of numbers generated by systems with at most
m neurons, each of them containing at most k rules, all of them of the stan-
dard form, and each rule consuming at most p spikes, forgetting at most q spikes,
and having the delay at most d. When using extended SN P systems, we use
Spik2EPm(rulek, consp, prodq, deld) to denote the family of sets Ngen(Π) gener-
ated by systems with at most m neurons, each of them containing at most k rules
(of the extended form), each spiking rule consuming at most p spikes, producing
at most q spikes, and having the delay at most d. When any of the parameters
m, k, p, q, d is not bounded, it is replaced by ∗. When using the rules in the exhaust-
ing or the non-synchronized mode, we write Nex

gen(Π), Nnsyn
gen (Π), respectively, and

the superscripts ex and nsyn are also added to Spik in the families notation.
The notations should be changed when dealing with other sets of numbers than

the distance between the first two spikes, with accepting systems, when generating
or accepting languages, but I do not enter here into details. Instead, I close this
section by introducing two important tools in presenting SN P systems, namely,
the graphical representation and the transition diagram.

Figures 1, 2 are recalled from [9]. The graphical representation of an SN P
system is rather intuitive: the neurons are represented by membranes, placed in
the nodes of a directed graph whose arrows represent the synapses; an arrow also
exits from the output neuron, pointing to the environment; in each neuron we
specify the rules and the spikes present in the initial configuration.

Figure 1 represents the initial configuration of a system Π. We have three
neurons, labeled with 1, 2, 3, with neuron σ3 being the output one. Each neuron
contains two rules, with neurons σ1 and σ2 having the same rules (firing rules which
can be chosen in a non-deterministic way, the difference between them being in the
delay from firing to spiking), and neuron σ3 having one firing and one forgetting

270 Gh. Păun

'

&

$

%

'

&

$

%

'

&

$

%
-

�

@
@

@
@R@

@
@

@I �
�

�
�	

-

1 2

3

a

r11 : a → a; 0

r12 : a → a; 1

a

r21 : a → a; 0

r22 : a → a; 1

a2

r31 : a → a; 0

r32 : a2 → λ

Fig. 1. The initial configuration of the SN P system Π

rule. In the figure, the rules are labeled, and these labels are useful below, in
relation with Figure 2.

This figure can be used for analyzing the evolution of the system Π: because
the system is finite, the number of configurations reachable from the initial con-
figuration is finite, too, hence, we can place them in the nodes of a graph, and
between two nodes/configurations we draw an arrow if and only if a direct transi-
tion is possible between them. In Figure 2 there are also indicated the rules used
in each neuron, with the following conventions: for each rjk we have written only
the subscript jk, with 31 being written in bold face, in order to indicate that a
spike is sent out of the system at that step; when a neuron σj , j = 1, 2, 3 uses no
rule, we have written j0, and when it spikes (after being closed for one step), we
write js.

The functioning of the system, both as a number generator and as a string
generator, can easily be followed on this diagram.

6 Open Problems and Research Topics

The following list of problems should be read with the standard precautions: it
is not meant to be exhaustive, there is no ordering of the problems (according to
their significance/interest), some problems are very general, others are much more
particular, in many cases the formulation is preliminary/informal and addressing
the problem should start with a precise/suitable formulation, in many cases related
results exist in the literature, and so on. Most problems are stated in a short way,
with reference to the discussion from Section 4 and the definitions from Section 5.

A. Let us start with a general and natural idea: linking the study of SN P
systems with neural computing. This can be a rich source of ideas, based on trans-

Twenty Six Research Topics About Spiking Neural P Systems 271

〈3/0, 0/0, 1/0〉 〈4/0, 0/0, 0/0〉

〈2/0, 0/1, 0/0〉

〈2/0, 1/0, 2/0〉

+

Nq
-

10,20,31

10

21

32

10 2s
30

10
22

32

〈1/0, 0/1, 1/0〉 〈1/0, 1/0, 1/0〉

?

}

y

11
21

31

11,22,31

11
2s
31

〈0/1, 0/0, 1/0〉 〈0/1, 0/1, 0/0〉

〈1/0, 1/0, 2/0〉

7 �

z

Y12
2s

31 1s
20
31

12
21
31 12

22
31

? q

y 1s
2s

30

12
22

32

12

21

32

〈0/0, 0/1, 1/0〉

〈2/0, 0/0, 1/0〉

〈3/0, 0/0, 0/0〉

)

�

?

112232

10
2s

31

10
20
31

' $
?

11,21,32

Fig. 2. The transition diagram of system Π from Figure 1

ferring from an area to the other one research topics which make sense also in the
destination framework. What means, for instance, training (in general, learning,
adaptation, evolving) in terms of SN P systems? More elementary: what means
solving a problem by using an SN P system, implicitly, what means to solve a
problem in a better way? Maybe the starting point should not be (only) neural
computing, which is already an abstract, specialized, reductionistic framework,
but (also) from neurology, from learning in the general psycho-pedagogical sense.

B. This problem is related to another general, natural, and important one:
bringing more ingredients from neurology. Just a few quick ideas: considering an
energy associated with firing/spiking; taking into considerations the antiport pro-

272 Gh. Păun

cesses which are performed in synapses; introducing circadian periodicity in the
functioning of neurons and of nets of neurons, with “tiredness”, “resting periods”,
etc.

C. In particular, the recent discoveries related to the role of astrocytes in the
functioning of the brain need to be examined and formalized. Astrocytes are a
class of cells that form a supporting and insulating structure for the neurons, but
also participate in the process of communication between neurons. They “listen”
the spikes passing along axons and accordingly regulate the release of neurotrans-
mitters from the nerve terminals, thus relating in an intricate way the functioning
of different neighboring axons. The regulation is either excitatory or inhibitory,
and it is done by means of calcium waves. I refer to [37] and [40] for further details
– and further references. How can astrocytes be considered in an SN P system and
with what consequences?

D. The neuron-astrocyte coupling is based on signaling pathways of a kind
which reminds the controlling pathways which were recently modeled and simu-
lated in terms of P systems in many papers, and this suggests the next general
research challenge: applications (in neurology). This is perhaps a too ambitious
goal at this stage of the development of the study of SN P systems and it is first
necessary to have answers to the previous two problems, but it is important to keep
in mind the possibility of applications when devising new classes of SN P systems.
It is difficult to forecast which would be the most promising types of applications
– looking for conceptual clarifications, for analytical results, for computer experi-
ments and simulations, for all these intertwined? Of course, the cooperation with
a biologist/neurologist would be very important in this respect.

E. Making a step from neurobiology to mathematics, the problem appears
to consider systems using more than one type of spikes. At the first sight, this is
against the spirit of spiking neural computing, and can lead to standard membrane
systems. Still, the question makes sense in various setups. For instance, neurology
deals both with excitatory and inhibitory impulses, both in neurons and at the
level of astrocytes. How inhibitory spikes can be defined and used?

F. Then, there are features of SN P systems which were not considered for
general P systems. Using a regular expression for enabling a rule looks like con-
trolling the application of rules by means of promoters, inhibitors, activators, but
a notion of delay does not exits in membrane computing. Can it be of any interest
also for usual P systems? Then, defining the result of a computation in a P system
in terms of the time elapsed between two specified events, in particular, sending a
given object outside, was briefly investigated in [5], but this issue deserves further
research efforts.

G. Conversely, there are many ingredients of usual P systems which were not
considered for SN P systems and might make sense also in this area, at least
at a mathematical level. Of a particular interest can be tools to exponentially
increase the working space in a polynomial (if possible, even linear) time, for

Twenty Six Research Topics About Spiking Neural P Systems 273

instance, by operations similar to cell division and cell creation in P systems with
active membranes. How new neurons can be created (added to a system) in such
a way to make possible polynomial solutions to computationally hard (typically,
NP-complete) problems? The brain is supposed to be a very efficient computing
device – how SN P systems can be made efficient from this point of view?

H. This touches a more general issue, that of considering SN P systems with
a dynamical structure. The dynamism can be achieved both in terms of neurons
and synapses, or only for synapses. From birth to maturity, the brain essentially
evolves at the level of synapses, learning means establishing new synapses, cutting
them, making them more stable/fast when used frequently, and so on and so forth.
How this can be incorporated in SN P systems? A related idea is to associate a
duration to each synapse (which is not of interest when the duration is constant),
and to vary it in time, according to the intensity of using that synapse, and this
looks rather motivated from a learning point of view.

I. Making synapses to have a duration or a length, depending on their use,
can be related to a similar idea [8] at the level of spikes: considering a duration
of life also for spikes, in the form of a decaying constant associated with them (at
the level of the whole system, or locally, for each neuron). If a spike is not used a
number of steps larger than the decaying threshold, then it is removed (a sort of
forgetting rules are thus implicitly acting, depending on the age of each spike).

J. Moving further to theoretical issues, let us consider an idea related both
to “classic” membrane computing and to the efficiency issue: using the rules in a
parallel manner. This has been already considered in [24], in the particular form of
using the rules in the exhaustive mode: if a neuron contains kn + r spikes and has
a rule E/an → a; d such that akn+r ∈ L(E) and k ≥ 1, 0 ≤ r < n, then the rule is
enabled and it is applied k times; kn spikes are consumed, r remain unused, and
k are produced. Besides continuing the research from [24] (where it is only proved
that SN P systems with an exhaustive use of rules are Turing complete both in
the generative and the accepting modes), several other problems remain to be
investigated. Actually, most problems usually considered for SN P systems with a
sequential use of rules can be formulated also for the exhaustive mode: generating
or accepting languages, translating strings of infinite sequences, looking for small
universal systems, etc.

K. Then, the problem arises to consider other forms of parallelism, at the level
of each neuron or at the level of the whole system. What about using several rules
at the same time, in the same way as the rules of a usual P system are applied
in the maximally parallel manner? Variants inspired from grammar systems area
can also be considered, thus obtaining a bounded parallelism: at least k, at most
k, exactly k rules to be used at a time. This last idea can be transferred also
at the level of neurons: in each step, only a prescribed number of neurons, non-
deterministically chosen, to be active. Finally, one can borrow to this area the idea
of minimal parallelism from [15]: when a neuron can use at least one rule, then

274 Gh. Păun

at least one must be used, without any restriction about how many. A significant
non-determinism is introduced in this way in the functioning of the system.

L. When the number of rules to be used in each neuron is “at least zero” (and
this is equivalent with making evolve “at least zero” neurons at a time), we get
the rather natural idea of a non-synchronized functioning of an SN P system. In
such a case, in each time unit, any neuron is free to use a rule or not.

I have described the functioning of such a system in the end of Section 4. I
only recall that, because now “the time does not matter”, the spike train can have
arbitrarily many occurrences of 0 between any two occurrences of 1, hence the
result of a computation can no longer be defined in terms of the steps between two
consecutive spikes, but as the total number of spikes sent into the environment by
(or contained in) the output neuron. In this way, only halting computations can
be considered as successful.

In [7] it is proved that SN P systems with extended rules are Turing equivalent
even in the non-synchronized case, but the problem was left open whether this is
true also for systems using standard rules. The conjecture is that this does not
happens, hence that synchronization plays a crucial role in this case.

Similar to the exhaustive mode of using rules, also the non-synchronization can
be investigated in relation with many types of problems usual in the SN P systems
area: handling languages, looking for small universal systems, etc.

M. A related issue is to consider the class of systems for which the synchro-
nization does not matter, i.e., they generate/accept the same set of numbers in
both modes. Furthermore, time-free, clock-free, time-independent systems can be
considered, in the same way as in [4], [6], [38].

N. Several times so far, the idea of efficiency was invoked, with the need to
introduce new ingredients in the area of SN P systems in such a way to make
possible polynomial solutions to intractable problems. Actually, such a possibility
was already considered in [10]: making use use of arbitrarily large pre-computed
resources. The framework is the following: an arbitrarily large net of neurons is
given, of a regular form (as the synapse graph) and with only a few types of
neurons (as contents and rules) repeated indefinitely; the problem to be solved is
plug-in by introducing a polynomial number of spikes in certain neurons (of course,
polynomially many), then the system is left to work autonomously; in a polynomial
time, it activates an exponential number of neurons, and, after a polynomial time,
it outputs the solution to the problem. The problem considered in [10] was the
SAT problem.

This strategy is attractive from a natural computing point of view (we may as-
sume that the brain is arbitrarily large with respect to the small number of neurons
currently used, the same with the cells in liver, etc.), but it has no counterpart in
the classic complexity theory. A formal framework for defining acceptable solutions
to problems by making use of pre-computed resources needs to be formulated and
investigated. What kind of pre-computed workspace is acceptable, i.e., how much
information may be provided for free there, what kind of net of neurons and what

Twenty Six Research Topics About Spiking Neural P Systems 275

kind of neurons? (We have to prevent “cheating” by already placing the answer to
the problem in the given resources and then “solving” the problem just by visiting
the right place where the solution waits to be read.) What means introducing a
problem in the existing device? (Only spikes, also rules, or maybe also synapses?)
Defining complexity classes in this case remains as an interesting research topic.

O. Coming back to the initial definitions, there are several technical issues
which are worth clarifying (most probably, for universality and maybe also for
efficiency results, they do not matter, but it is also possible to exist other situations
where these details matter). For instance, the self-synapses are not allowed in the
synapse graph. However, a neuron with a rule a → a and a self-synapse can
work forever, hence it can be used for rejecting a computation in the case when
successful computations should halt. Similarly, (in the initial definition from [23])
the forgetting rules as → λ were supposed to have as /∈ L(E) for all spiking
rules E/ac → a; d from the same neuron, while in extended rules E/ac → ap; d
it was assumed that c ≥ p. Is there any situation where these restrictions make
a difference? Then, in [19] it was shown that some of the ingredients used in the
definition of SN P systems with standard rules can be avoided. This is the case
with the delay, the forgetting rules, the generality of regular expressions. Can these
normal forms be combined, thus avoiding at the same time two of the mentioned
features?

P. What then about using a kind of rules of a more general form, namely
E/an → af(n); d, where f is a partial function from natural numbers to natural
numbers (maybe with the property f(n) ≤ n for all n for which f is defined), and
used as follows: if the neuron contains k spikes such that ak ∈ L(E), then c of
them are consumed and f(c) are created, for c = max{n ∈ N | n ≤ k, and f(n) is
defined}; if f is defined for no n smaller than or equal to k, then the rule cannot
be applied. This kind of rules looks both adequate from a neurobiological point
of view (the sigmoid excitation function can be captured) and powerful from a
mathematical point of view (arbitrarily many spikes can be consumed at a time,
and arbitrarily many produced).

Q. A standard problem when dealing with accepting devices concerns the
difference between deterministic and non-deterministic systems. Are they different
in power, does determinism imply a decrease of the computing power? Up to now,
all computability completeness proofs for the accepting version of SN P systems
of various types were obtained for deterministic systems. Are there classes (maybe
non-universal) for which the determinism matters?

Actually, the problem can be refined. The determinism is defined usually in
terms of non-branching during computations: a computation is deterministic if for
every configuration there is (at most) one next configuration. A first subtle point:
is this requested for all possible configurations or only for all configurations which
are reachable from the initial one?

Maybe more interesting for SN P systems is the possibility to define a strong
determinism, in terms of rules: an SN P system is said to be strongly deterministic

276 Gh. Păun

if L(E)∩L(E′) = ∅ for all rules E/ac → a; d and E′/ac′ → a; d′ from any neuron.
Obviously, such a system is deterministic also when defining this notion in terms
of branching (even for arbitrary configurations, not only for the reachable ones).

Is any class of SN P systems for which these types of determinism are separated?

R. Different from the case of general P systems, where finding infinite hierar-
chies on the number of membranes was a long awaited result, for SN P systems
one can easily find such hierarchies, based on the characterization of semilinear
sets of numbers (by means of systems with a bounded number of spikes in their
neurons): if for each finite automaton with n states (using only one symbol) one
can find an equivalent SN P system with g(n) neurons, and, conversely, for each
SN P system with m neurons one can find an equivalent (i.e., generating strings
over an one-letter alphabet whose lengths are numbers generated/accepted by the
SN P system) with h(m) states, then, because there is an infinite hierarchy of
regular one-letter languages in terms of states, we get an infinite hierarchy of sets
of numbers with respect to the number of neurons. Still, several problems arise
here. First, not always the characterization of semilinear sets of numbers is based
on proving the equivalence of bounded SN P systems with the finite automata.
Then, this reasoning only proves that the hierarchy is infinite, not also that it is
“dense” (connected is the term used in classic descriptional complexity: there is n0

such that for each n ≥ n0 there is a set Qn whose neuron-complexity is exactly n).
Finally, what about finding classes intermediate between semilinear and Turing
computable for which the hierarchy on the number of neurons is infinite (maybe
connected)?

S. The previous question directly suggests two others. The first one is looking
for small universal SN P systems (here “universal” is understood in the sense of
“programmable” – the existence of a fixed system which can simulate any particu-
lar system after introducing a code of the particular system in it – not in the sense
of “Turing complete”, although there is a direct connection between these two
notions). This question is considered in [30] for SN P systems with standard and
with extended rules, working either in the computing mode or in the generating
mode. For standard rules, 84 and 76 neurons were used, while for extended rules 49
and 50 neurons were used, respectively. Are these results optimal? A negative an-
swer is expected (however, a significant improvement is not very probable). What
about universal SN P systems of other types – in particular, with exhaustive or
non-synchronized use of rules?

T. Problem R also suggests to look for classes of SN P systems which are not
equivalent with Turing machines, but also not computing only semilinear sets of
numbers, hence equivalent in power with finite automata. This does not look as
an easy question, but it is rather interesting, in view of the possibility of finding
classes of systems with decidable properties, but (significantly) more powerful than
bounded SN P systems. Such a class would be attractive also from the point of

Twenty Six Research Topics About Spiking Neural P Systems 277

view of applications, because of the possibility of finding properties of the modeled
processes by analytical, algorithmic means.

U. Again in a direct continuation with the previous issue, there appears the
need to find characterizations of classes of languages, other than finite, regular,
and recursively enumerable, in terms of SN P systems. The investigations from [9],
[12], [14] have left open these questions, and this fits with the general situation
in membrane computing (as well as in DNA computing): the Chomsky hierarchy
seems not to have a counterpart in nature, families like those of linear, context-free,
and context-sensitive languages do not have (easy) characterizations in bio-inspired
computing models. The same challenge appears for families of languages generated
by L systems (sometimes, with the exception of ET0L languages).

V. L systems can be related with SN P systems also at the level of infinite
sequences: both by iterating morphisms (D0L systems) and by taking infinite spike
trains we can get classes of infinite sequences. Directly as spike trains we have
binary sequences, but, for extended rules (and for SN P systems with a parallel use
of rules) we can get as an output of a computation a string or an infinite sequence
over an arbitrary alphabet. A preliminary examination of the binary case was done
in [34], but many problems were left open, starting with the comparison of SN P
systems as tools for handling infinite sequences (of bits) with other tools from
language and automata theory (with ω-languages computed by finite automata,
Turing machines, etc.) and with known infinite sequences, e.g., those from [42].

A particular problem from [34] is the following. SN P systems cannot compute
arbitrary morphisms, but only length preserving morphisms (codes). An extension
of these latter functions are the so-called k-block morphisms, which are functions
f : {0, 1}k −→ {0, 1}k (for a given k ≥ 1) prolonged to f : {0, 1}ω −→ {0, 1}ω

by f(x1x2 . . .) = f(x1)f(x2) In [34] it is only shown that 2-block morphisms
can be computed by SN P systems, and the conjecture was formulated that this
is true for any k.

In general, more should be found about the use of SN P systems as tools for
transducing strings and infinite sequences.

W. Maybe useful in addressing the previous problem – and interesting also
from other points of view (e.g., if starting investigations in terms of process alge-
bra), is the issue of compositionality: looking for ways to pass from given systems
to more complex systems, for instance, to systems generating/accepting the result
of an operation between the sets of numbers or the languages generated/accepted
by the initial systems. Morphisms were mentioned also above, but there are many
other set-theoretic or language-theoretic operations to consider, as well as serial
and parallel composition, embedding as a subsystem, etc. Of course, a central
point in such operations is that of synchronization. It is expected that the case of
non-synchronized systems is much easier (maybe, instead, less interesting theoret-
ically).

X. I have mentioned at the beginning of these notes that the axon is not a
simple transmitter of spikes, but a complex information processor. This suggests

278 Gh. Păun

considering computing models based on the axon functioning (Ranvier nodes am-
plification of impulses, and other processes) and a preliminary investigation was
carried out in [13]. Many questions remain to be clarified in this area (see also
the questions formulated in [13]), but a more general and probably more inter-
esting problem appears, namely, of combining neurons and axons (as information
processing units) in a global model; maybe also astrocytes can be added, thus
obtaining a more complex model, closer to reality.

Y. I will conclude with two general issues, where nothing was done up to
now. First, SN P systems have a direct (pictural) similarity with Petri nets, where
tokens (like spikes) are moved through the net according to specific rules. Bridging
the two areas looks then rather natural – with “bridging” understood as a move
of notions, tools, results in both directions, from Petri nets to SN P systems and
the other way round.

Z. Then, directly important for possible applications is the study of SN P
systems as dynamical systems, hence not focusing on their output, but on their
evolution, on the properties of the sequences of configurations reachable from each
other. The whole panoply of questions from the (discrete) dynamical systems the-
ory can be brought here, much similar to what happened in general membrane
computing.

As it was the case also other times, I have to stop because of reaching the
end of the alphabet. . . – with the hope that the reader will shorten this list by
providing answers to some problems.

7 Final Remarks

Many other open problems and research topics can be found in the papers devoted
to SN P systems – the interested reader can check the titles below in this respect
(the bibliography contains all papers about SN P systems which I was aware of
at the beginning of November 2006). On the other hand, because the research
in this area is quite vivid, it is possible that some of these problems were solved
at the same time or shortly after writing these notes, without being possible to
mention the respective results here. That is why, the reader is advised to follow
the developments in this area, for instance, through the information periodically
updated at the Milano web page [43].

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology
of the Cell, 4th ed. Garland Science, New York, 2002.

2. A. Alhazov, R. Freund, M. Oswald, M. Slavkovik: Extended variants of spiking neu-
ral P systems generating strings and vectors of non-negative integers. In Pre-proc.
WMC7, Leiden, July 2006, 88–101, and [18], 123–134.

Twenty Six Research Topics About Spiking Neural P Systems 279

3. A. Carnell, D. Richardson: Parallel computation in spiking neural nets. Available at
http://people.bath.ac.uk/masdr/.

4. M. Cavaliere, V. Deufemia: On time-free P systems. Intern. J. Found. Computer
Sci., 17, 1 (2006), 69–90.

5. M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun: Event-related outputs of computa-
tions in P systems. In Proc. Third Brainstorming Week on Membrane Computing,
Sevilla, 2005, RGNC Report 01/2005, 107–122.

6. M. Cavaliere, D. Sburlan: Time-independent P systems. In Membrane Computing.
International Workshop WMC5, Milano, Italy, 2004, LNCS 3365, Springer, 2005,
239–258.

7. M. Cavaliere, M. Ionescu, Gh. Păun: Asynchronous spiking neural P systems. Sub-
mitted, 2007.

8. M. Cavaliere, M. Ionescu: SN P systems with decaying spikes. Personal communica-
tion, 2006.

9. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. In [17], Vol. I, 169–194.

10. H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P systems. In
[17], Vol. I, 195–206, and Proc. 8th Intern. Conf. on Electronics, Information, and
Communication, Ulanbator, Mongolia, June 2006, 49–52.

11. H. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Spiking
neural P systems with extended rules: Universality and languages. Natural Comput-
ing, to appear.

12. H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa: On trace languages generated
by spiking neural P systems. In [17], Vol. I, 207–224, and Proc. Eighth International
Workshop on Descriptional Complexity of Formal Systems (DCFS 2006), June 21-23,
2006, Las Cruces, New Mexico, USA, 94–105.

13. H. Chen, T.-O. Ishdorj, Gh. Păun: Computing along the axon. In [17], Vol. I, 225–240,
and Pre-proc. BIC-TA, Wuhan, 2006, 60–70.

14. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In [17], Vol. I, 241–265.

15. G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez: P systems with minimal paral-
lelism. Theoretical Computer Sci., to appear.

16. W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge Univ. Press, 2002.

17. M.A. Gutiérrez-Naranjo et al., eds.: Proceedings of Fourth Brainstorming Week on
Membrane Computing, Febr. 2006, Fenix Editora, Sevilla, 2006.

18. H.J. Hoogeboom, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Membrane Computing,
International Workshop, WMC7, Leiden, The Netherlands, 2006, Revised, Selected,
and Invited Papers. LNCS 4361, Springer, Berlin, 2006.

19. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sosik, S. Woodworth: Nor-
mal forms for spiking neural P systems. In [17], Vol. II, 105–136, and Theoretical
Computer Sci., 372, 2-3 (2007), 196–217.

20. O.H. Ibarra, S. Woodworth: Characterizations of some restricted spiking neural P
systems. In Pre-proc. WMC7, Leiden July 2006, 387–396, and [18], 424–442.

21. O.H. Ibarra, S. Woodworth, F. Yu, A. Păun: On spiking neural P systems and par-
tially blind counter machines. In Proc. UC2006, York, LNCS 4135, Springer, 2006,
113–129.

22. M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Computing with spiking neu-
ral P systems: Traces and small universal systems. In Proc. DNA12 (C. Mao, Y.

280 Gh. Păun

Yokomori, B.-T. Zhang, eds.), Seoul, June 2006, 32–42.
23. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-

maticae, 71, 2-3 (2006), 279–308.
24. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with exhaustive use

of rules. Intern. J. Unconventional Computing, to appear.
25. I. Korec: Small universal register machines. Theoretical Computer Science, 168

(1996), 267–301.
26. W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-

cessing of TELEMATIK, 8, 1 (2002), 32–36.
27. W. Maass: Paradigms for computing with spiking neurons. In Models of Neural Net-

works. Early Vision and Attention (J.L. van Hemmen, J.D. Cowen, E. Domany, eds.),
Springer, Berlin, 2002, 373–402.

28. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.
29. C. O’Dwyer, D. Richardson: Spiking neural nets with symbolic internal state. Avail-

able at http://people.bath.ac.uk/masdr/.
30. A. Păun, Gh. Păun: Small universal spiking neural P systems. In [17], Vol. II, 213–

234, and BioSystems, in press.
31. Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.
32. Gh. Păun: Languages in membrane computing. Some details for spiking neural P

systems. In Proc. of Developments in Language Theory Conference, DLT 2006, Santa
Barbara, CA, June 2006, LNCS 4036, Springer, Berlin, 2006, 20–35.

33. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.

34. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural
P systems. Submitted, 2006.

35. Gh. Păun, M.J. Perez-Jimenez, A. Salomaa: Bounding the indegree of spiking neural
P systems. TUCS Technical Report 773, 2006.

36. Gh. Păun, M.J. Pérez-Jiménez, A. Salomaa: Spiking neural P systems. An early
survey. Intern. J. Fund. Computer Sci., 2007.

37. G. Perea, A. Araque: Communication between astrocytes and neurons: a complex
language. J. Physiol. – Paris, 96 (2002), 199–207.

38. D. Sburlan: Promoting and Inhibiting Contexts in Membrane Computing. PhD The-
sis, Univ. Sevilla, Spania, 2006.

39. I. Segev, E. Schneidman, Axons as computing devices: basic insights gained from
models. J. Physiol. (Paris), 93 (1999), 263–270.

40. X. Shen, P. De Wilde: Long-term neuronal behavior caused by two synaptic modifi-
cation mechanisms. Neurocomputing, to appear.

41. G.M. Shepherd: Neurobiology. Oxford University Press, NY Oxford, 1994.
42. N.J.A. Sloane, S. Plouffe: The Encyclopedia of Integer Sequences. Academic Press,

New York, 1995.
43. The P Systems Web Page: http://psystems.disco.unimib.it.

Membrane Computing Schema Based on String
Insertions

Mario J. Pérez-Jiménez1, Takashi Yokomori2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

2 Department of Mathematics
Faculty of Education and Integrated Arts and Sciences
Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku
Tokyo 169-8050, Japan
yokomori@waseda.jp

Summary. In this note we introduce the notion of a membrane computing schema for
string objects. We propose a computing schema for a membrane network (i.e., tissue-like
membrane system) where each membrane performs unique type of operations at a time
and sends the result to others connected through the channel. The distinguished features
of the computing models obtained from the schema are:

1. only context-free insertion operations are used for string generation,
2. some membranes assume filtering functions for structured objects(molecules),
3. the generating model and accepting model are obtained in the same schema, and

both are computationally universal,
4. several known rewriting systems with universal computability can be reformulated

in terms of membrane computing schema in a uniform manner.

The first feature provides the model with a simple uniform structure which facilitates a
biological implementation of the model, while the second feature suggests further feasi-
bility of the model in terms of DNA complementarity.

Through the third and fourth features, one may have a unified view of a variety
of existing rewriting systems with Turing computability in the framework of membrane
computing paradigm.

1 Introduction

In the theory of bio-inspired computing models, membrane systems (or P systems)
have been widely studied from various aspects of the computability such as the
optimal system designs, the functional relations among many ingredients in differ-
ent levels of computing components, the computational complexity and so forth.

282 M.J. Pérez-Jiménez, T. Yokomori

Up to the present, major concerns are focused on the computational capability of
multisets of certain objects in a membrane structure represented by a rooted tree,
and there are a relatively limited amount of works in the membrane structure of
other types (like a network or graph) on string objects and their languages; those
are, for example, in the context of P system on graph structure ([15]), of the tissue
P systems ([10]) and of spiking neural P systems ([2, 6]).

On the other hand, in DNA computing theory, a string generating device called
insertion-deletion system has been proposed and investigated from the uniqueness
of non-rewriting nature in generating string objects. Among others, string insertion
operation with no context is of our particular interests, because of the relevance
to biological feasibility in terms of DNA sequences.

In this paper, we are concerned with tissue-like membrane systems with string
insertion operations and investigate the computational capability of those systems.
By using the framework of tissue-like membrane systems, however, our major focus
is on studying the new aspects of the computational mechanisms used in a variety
of existing models based on string rewriting.

To this aim, we propose the notion of a membrane computing schema which
provides a unified view and framework to investigate new aspects of the variety
of computational mechanisms. That is, by a membrane computing schema Π , we
represent a core structure of the computing model M at issue. At the same time,
we also consider an interpretation I to Π which specifies the details of M . Then,
we have M that is embodied as a tissue-like membrane system I(Π) with string
insertion operation.

The advantages of this schematic approach to computing are the following:
(1) High transparency of the computing mechanism is obtained from separating
the skeletal (core) part from other detailed specificity of the computation. (2)
Structural modularity of the computing model facilitates our better understanding
of the computing mechanism.

With this framework we will present not only new results of the computing
models with universal computability but also a unified view of those models from
the framework of tissue-like membrane system with string insertion operations.

2 Preliminaries

We assume the reader to be familiar with all formal language notions and notations
in standard use. For unexplained details, consult, e.g., [14, 16].

For a string x over an alphabet V (i.e., x in V ∗), lg(x) denotes the length of
x. For the empty string, we denote it by λ. For an alphabet V , V = {a | a ∈ V }.
A binary relation ρ over V is called an involution if ρ is injective and ρ2 is an
identity (i.e., for any a ∈ V , if we write ρ(a) = a, then it holds that ρ(a) = a). A
Dyck language Dk over V ∪ V is a language generated by a context-free grammar
G = ({S}, V, P, S), where P = {S → SS, S → λ} ∪ {S → aSa | a ∈ V } and k is
the cardinality of V .

Membrane Computing Schema Based on String Insertions 283

An insertion system ([9]) is a triple γ = (V, P,A), where V is an alphabet, A
is a finite set of strings over V called axioms, and P is a finite set of insertion
rules. An insertion rule is of the form (u, x, v), where u, x, v ∈ V ∗. We define
the relation 7→ on V ∗ by w 7→ z iff w = w1uvw2 and z = w1uxvw2 for some
insertion rule (u, x, v) ∈ P , w1, w2 ∈ V ∗. As usual 7→∗ denotes the reflexive and
transitive closure of 7→. The insertion language generated by γ is defined as follows:
L(γ) = {w ∈ V ∗| s 7→∗ w, s ∈ A}. An insertion rule of the form (λ, x, λ) is said to
be context-free, and we denote it by λ→ x.

We denote by RE,CF,LIN and RG the families of recursively enumerable
languages, of context-free languages, of linear languages, and of regular languages,
respectively.

A matrix grammar with appearance checking is a constructG = (N,T, S,M, F),
where N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the
form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with
Ai ∈ N, xi ∈ (N ∪ T)∗, in all cases), and F is a set of occurrences of rules in M
(we say that N is the nonterminal alphabet, T is the terminal alphabet, S is the
axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An →
xn) in M and the strings wi ∈ (N∪T)∗, 1 ≤ i ≤ n+1, such that w = w1, z = wn+1,
and, for all 1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈

(N ∪ T)∗, or wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears
in F . (The rules of a matrix are applied in order, possibly skipping the rules in F
if they cannot be applied; we say that these rules are applied in the appearance
checking mode.) If F = ∅, then the grammar is said to be without appearance
checking (and F is no longer mentioned).

We denote by =⇒∗ the reflexive and transitive closure of the relation =⇒.
The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.

The family of languages of this form is denoted by MATac. When we use only
grammars without appearance checking, then the obtained family is denoted by
MAT . It is known that MAT ⊂MATac = RE.

A matrix grammar G = (N,T, S,M, F) is said to be in the binary normal form
if N = N1 ∪N2 ∪{S,#}, with these three sets mutually disjoint, and the matrices
in M are of one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ N2 ∪N2

2 ∪ T ∪ {λ},
3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∪ {λ}.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap-symbol, once introduced,
it is never removed. A matrix of type 4 is used only once, at the last step of a
derivation.

For each matrix grammar (with appearance checking) there effectively exists
an equivalent matrix grammar (with appearance checking) in the binary normal

284 M.J. Pérez-Jiménez, T. Yokomori

form. (Note that the definition of the binary normal form presented here is a
variant of the one in [4].)

A random context grammar is a construct G = (N,T, S, P), where N,T are
disjoint alphabets, S ∈ N , P is a finite set of rules of the form (A → x,Q,R),
where A→ x is a context-free rule (A ∈ N, x ∈ (N ∪ T)∗), Q and R are subsets of
N .

For α, β ∈ (N ∪ T)∗ we write α =⇒ β iff α = uAv, β = uxv for some
u, v ∈ (N ∪ T)∗, (A → x,Q,R) ∈ P , all symbols of Q appear in uv, and no
symbol of R appears in uv. We denote by =⇒∗ the reflexive and transitive closure
of the relation =⇒.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The
family of languages of this form is denoted by RC. It is known that RC = RE
([4]).

3 Membrane Computing Schema, Interpretation and
Languages

We now introduce the notion of a membrane computing schema in a general form,
then we will present a restricted version, from which a variety of specific com-
puting models based on insertion operations and filtering can be obtained in the
framework of a tissue-like membrane computing. That is, a membrane comput-
ing schema is given as a skeletal construct consisting of a number of membranes
connected with synapses (or channels) whose structure may be taken as a kind of
tissue P systems (e.g., [10]).

3.1 Membrane Computing Schema

A membrane computing schema of degree (k, p) is a construct

Π = (V, T, Syn, Com,Ope, F il, is, Out),

where:

(i) V is a finite alphabet with an involution relation ρ called the working alphabet.
(ii) T is a subset of V called the terminal alphabet.
(iii) Syn ⊆ (Com×Ope)∪(Ope×Com)∪(Com×(SubF il∪{SF}))∪({FF}×Com)

∪ (SubF il×Ope) ∪ {(SF, FF), (FF,Out)},
where Com = {Com1, · · · , Comp} called a set of communication cells,

Ope = {Ope1, · · · , Opek} called a set of operation cells,
Fil = {SF, FF} ∪ SubF il called a set of filtering cells,
where SubF il = {FF1, · · · , FFt} called a set of subfilter cells.

Syn determines the tissue membrane structure of Π . (See Figure 1. In the
figure, the thick arrow indicates multiple arrows of one-way or two-way direc-
tions.)

Membrane Computing Schema Based on String Insertions 285

(iv) Each cell Comi serves as a communication channel. That is, any string x in
the cell Comi is sent out to all the cells indicated by Syn(Comi).

(v) Each cell Opej consists of a finite number of rules {σj1, · · · , σjs}, where each
σji is a string insertion operation of the form : λ→ u, where u ∈ V ∗.

(vi) SF and FF , called structured filter and final filter, are associated with two
languages LSF and LFF over V , respectively. Further, each cell FFi, called
subfilter, is also associated with a language LFFi .

(vii) is(= Com1) is the distinguished cell (to designate some specific role).
(viii) Out is the output cell (for obtaining the outputs).

3.2 Interpretation of Π

In order to embody a membrane computing schema Π , we need to give more
information about Π which specifies each operation in Ope, and materializes SF
and FF . Let us consider such an interpretation I to the schema Π which enables
us to have a computing model I(Π) that is feasible in a practical sense.

[Notation] For any x in Com ∪ SubF il ∪ {FF}, let Syn(x) = { j | (x, yj) ∈
Syn} and for any y in Ope∪SupF il∪{SF}, let Syn−1(y) = { i | (xi, y) ∈ Syn}.
(Note that both Syn(x) and Syn−1(y) refer to sets of indices.)

Formally, an interpretation I to Π is a construct I = ({R1, · · · , Rk}, LSF ,
LFF , {LFFi | 1 ≤ i ≤ t}), where

(i) Ri specifies a set of insertion operations used in Opei (for i = 1, · · · , k)
(ii)LSF (LFF) materializes a concrete specification about the function of SF (FF ,

respectively). In practical operational phases (described below), we assume the
following:
• In the cell SF , each string is assumed to form a certain structure (e.g.,
structured molecule based on hybridization in terms of H-bonds via minimal
energy principle). SF takes as input a string u over V and allows it to filter
through if it is in LSF (otherwise, the string u is lost). Then, after building up
a structured form s(u) of u, SF removes all parts of structures from s(u) and
produces as output the concatenation of all remaining strings. The output v is
sent out to the cell FF .
• FF receives as input a string v over V (from SF). A string v filters through
if it is in LFF and is sent out to Out. Otherwise, it is sent out to all cells
indicated by Syn(FF).
• Each FFi receives as input a string u over V . Then, a string v filters through
if it is in LFFi and is sent out to all cells indicated by Syn(FFi). Otherwise,
it is lost.
• Filtering applies simultaneously to all strings in the filtering cell.

Note that in the case SubF il is empty in a given Π , an interpretation to Π is
simply written as I = ({R1, · · · , Rk}, LSF , LFF).

286 M.J. Pérez-Jiménez, T. Yokomori

Fig. 1. Modular Structure of Membrane Network in Π

3.3 Transitions and Languages

Given a schema Π and its interpretation I , we now have a membrane system I(Π)
based on string insertions. In what follows, we define a transition sequence of I(Π)
and the language associated with I(Π).

The (p+ 1)-tuple of languages over V represented by (L1, . . . , Lp, Lout) consti-
tutes a configuration of the system, where each Li represents the set of all strings
in the cell Comi (for all i = 1, · · · , p), and Lout is the set of strings presented in
the output cell at some time instance.

Let C1 = (L1, . . . , Lp, Lout) and C2 = (L′1, . . . , L
′
p, L
′
out) be two configurations

of the system.
We define one transition from C1 to C2 in the following steps:

(0) Pre-checking Step: For each ` = 1, · · · , t, let Syn−1(FF`) = {`1, · · · , `q}
and consider L[`] = ∪qi=1L`i . Then, each cell FF` filters out all strings of L[`] that
are not in LFF` , and all strings that have passed through are sent to all the cells
indicated by Syn(FF`). (In the case of t = 0, this step is skipped.)

(1) Evolution Step: For each j = 1, · · · , k, let σj1, · · · , σjs be all the operations
given in Opej .

Suppose that we apply operations σji : λ → uji (1 ≤ i ≤ s) to a string v
which means that each σji is applied to v simultaneously. Further, when we apply

Membrane Computing Schema Based on String Insertions 287

σji to v, the location in v to insert uji is nondeterministically chosen and the
result σji(v) is considered as the set of all possible strings obtained from v by σji.
(Note that if two or more rules share the same location to insert, then all possible
permutations of those rules are considered to apply to the location.) The result of
such an application of all operations in Opej to v is denoted by Opej(v).

Let L(j) = ∪tm=1Ljm , where Syn−1(Opej) = {j1, · · · , jt}. Then, the total result
performed by Opej to L(j) is defined as

Opej(L(j)) = ∪v∈L(j)Opej(v).

This result is then sent out to all cells indicated by Syn(Opej) simultaneously.

(2) Filtering Step: For each i = 1, · · · , p, let L̃i = ∪rn=1Opein(L(in)), where
Syn(Comi) = {i1, · · · , ir}. Further, let Le = ∪gn=1L̃in , where Syn−1(SF) =
{i1, · · · , ig}.

SF takes as input the set Le and produces as output a set of strings Lf . (Recall
that in the cell SF , each string u is assumed to form a certain structure, and the
output of SF is the reduced string by removing structural parts from u in LSF .)
Then, SF sends out Lf to FF . (Any element of Le that was filtered off by SF is
assumed to be lost.)

Finally, the cell FF filters out strings of Lf depending upon whether they are
in LFF or not. All strings in Lf that passed through FF are sent out to Out,
while others are simultaneously sent to Comi for all i ∈ Syn(FF) or they are all
lost if Syn(FF) = ∅.

Let Lff be the set of all strings that were filtered off by FF . Then, we define
C2 = (L′1, . . . , L

′
p, L
′
out) by setting for each i = 1, · · · , p

L′i =

{
Lff , if i ∈ Syn(FF),

L̃i, otherwise.

Further, let L′out = Lout ∪ Lf (Out), where Lf (Out) = Lf − Lff (the set of all
stings that have passed through FF and been sent to Out).

Remarks.
(1) Each cell in Com not only provides a buffer for storing intermediate results in
the computation process but also transmits them to the cells specified by Syn.
(2) The system has a global clock and counts time in such a way that every cell
(including communication cells) takes one unit time to perform its task irrespective
of the existence of strings in it, while a pre-checking step by a subfilter cell FFi is
assumed to be executed within the unit time for its corresponding operation cells
in Syn(FFi).

Let I be an interpretation of Π . When we have a transition from C1 to C2 of
I(Π), we write C1 =⇒ C2. A configuration C0 = ({w}, ∅, · · · , ∅), where w ∈ V ∗, is
called the initial configuration. A sequence of transitions between configurations
of the system I(Π), starting from the initial configuration, is called a computation
of I(Π).

288 M.J. Pérez-Jiménez, T. Yokomori

Let =⇒∗ be the reflexive and transitive closure of =⇒. For any n ≥ 0, let

C0 =⇒n Cn = (L1,n, · · · , Lp,n, L(n)
out) be a computation of I(Π) with n transitions

from C0. We consider two types of computing models induced from I(Π); one is
the generating model and the other the accepting model.

[Generating Model] In the case of a generating model, we consider all compu-
tations whose results are present in the output cell. That is, we define the language
generated by I(Π) as follows:

Lg(I(Π)) = ∪n≥0L
(n)
out.

[Accepting Model] In the case we consider an accepting model, let w be an input
string. Then, we assume that if w is recognized, then the result Yes or No is present
in the output cell after a certain number of transitions from C0 = ({w}, ∅, · · · , ∅).
Thus, we define the language accepted by I(Π) as follows:

La(I(Π)) = {w ∈ T ∗ | Y es ∈ L(n)
out for some n ≥ 0}.

For a class of interpretations I to Π , we denote by LMSx(Π, I) the family of
all languages Lx(I(Π)) specified by those systems as above, where I is in I. That
is,

LMSx(Π, I) = {Lx(I(Π)) | I ∈ I},
where x is in {a, g}.

4 Characterizations by Membrane Schema Π0

The structure of the membrane computing schema Π introduced in the previous
section seems to be general enough to induce a computing device with universal
computability power by finding an appropriate interpretation. In what follows, we
will show that such a universal computability can be realized by much simpler
schemas together with appropriate interpretations of moderately simple filtering
cells.

First we consider the following simple membrane computing schema:

Π0 = (V, T, Syn, Com,Ope, F il, is, Out),

where:

(1) V , T , Ope, is and Out are the same as in Π ,
(2) Fil = {SF, FF} (i.e., SubF il is empty),
(3) Com = {Com1, Com2},
(4) Syn = {Com1, Opei), (Opei, Com2) | 1 ≤ i ≤ k}

∪{(FF,Com1), (Com2, SF), (SF, FF), (FF,Out)} (see (a) of Figure 2).

We are now in a position to present our first result.

Membrane Computing Schema Based on String Insertions 289

Theorem 4.1 There exists IG such that RE = LMSg(Π0, IG).

Proof. We prove only the inclusion ⊆. (The opposite inclusion is a consequence of
the Turing-Church thesis.)

Let L be any language in RE that is generated by a Chomsky type-0 gram-
mar G = (N,T, S, P). Then, we consider the following interpretation IG =
(RG, LSF , LFF), where

(i) For each r : u → v in P , construct Rr = {λ → vr, λ → uRr}, and let
RG = { Rr | r ∈ P}.

(ii) • LSF is given as following language:
Lmir = V ∗{ wwR | w ∈ V ∗}V ∗ = { xwwRy | x, y, w ∈ V ∗ } .

That is, a string filters through SF iff it is an element in Lmir, where
V = N ∪T ∪{r | r ∈ P}. (Recall that, by definition of SF , any string in SF is
assumed to form a structure, and we assume the hybridization by involution
relation ρ over V . Specifically, SF performs two functions: it only accepts all
structures of molecules containing a special hairpin ww, and then it removes
the portion of a hairpin from the structure and send out the rest part of the
string to FF (see (b) of Figure 2). The structures rejected by SF are all lost.)
• LFF is simply given as T ∗, so that only strings in T ∗ can pass through FF
and are sent to the output cell Out. Other strings are all sent to Com1. (Note
that (FF,Com1) is in Syn of Π0.)

For any n ≥ 1, let C0 = ({S}, ∅, ∅) =⇒n Cn = (L1,n, L2,n, L
(n)
out) be a computation

with n transitions in IG(Π0). Suppose that S =⇒n−1 α⇒r β in G, where α = xuy,
β = xvy and r : u→ v is used. Then, we can show that

(i) α is in L1,(n−1),

(ii) β′ = xvruuRry is in SF , and
(iii) after filtering by SF , the reduced string of β′, i.e., a string xvy(= β) is

sent to FF .
In FF , if β is not in T ∗, then it is sent to Com1 and, therefore, in L1,n, where

Cn = (L1,n, L2,n, L
(n)
out). Otherwise, β is sent to L

(n)
out. That is, if β is in L(G), then

we have that β is in Lg(IG(Π0)).

Conversely, suppose that for any n ≥ 1, α is in L1,n. Then, there exists α′ =
α1ww

Rα2 in Com2 such that α = α1α2. From the way of constructing RG, there
uniquely exists r : u → v in P such that Rr = {λ → vr, λ → uRr} and w = ru.
(No other Rr′(r

′ 6= r) can make a substring wwR by insertion operations because
of the uniqueness of r.)

Therefore, we can write α′ = α1ruu
Rrα2 for some α1, α2. Then, there must

exist α′1 such that α1 = α′1v because of the rule λ → vr. Hence, we have that
α′ = α′1vruu

Rrα2 from which we can derive that α′1uα2 is in L1,(n−1). Thus, there
exists a derivation: α′1uα2 =⇒r α

′
1vα2 = α in G. By iteratively applying the above

argument, we eventually conclude that there exists a derivation S =⇒n α in G.

290 M.J. Pérez-Jiménez, T. Yokomori

Taking L1,0 = {S} into consideration, it holds that for any n ≥ 0, L1,n = {α |
S =⇒n α in G }. If α is in Lg(IG(Π0)), then it is also in L(G). Thus, we have that
L(G) = Lg(IG(Π0)), which completes the proof. 2

Note. The language Lmir used for LSF can be replaced with the simpler
(regular) language LG = ∪r∈PV ∗{ruuRr}V ∗, where r : u→ v ∈ P and P is from
a given G. However, we choose Lmir here because of its independence of G.

Fig. 2. Membrane Computing Schema: Π0

Theorem 4.2 There exists IM such that RE = LMSa(Π0, IM).

Proof. We use the same strategy as in Theorem 4.1, but start with a (nondeter-
ministic) Turing machine M . That is, let L be any language in RE accepted by
M = (Q,T, U, δ, p0, B, F), where B(/∈ U) is a blank symbol. (Without loss of gen-
erality, we may assume that M immediately stops as soon as it enters into a final
state of F .) An instantaneous description (ID) of M is represented by a string
xpay in U∗QU∗, where xay is the tape content (x, y ∈ U∗, a ∈ U) and M is in the
state p(∈ Q) and the tape head is on a.

Given an input w(∈ T ∗), M starts computing w from the state p0, which
is represented by an ID: p0w. (We assume that the tape content has the left-
boundary (the leftmost of w) and no right-boundary where blank symbols B are
initially filled.) In general, suppose that a transition rule (p, a) → (q, c, i) ∈ δ is
applied to an ID xbpay. Then, we have a transition between IDs of M :

• xbpay =⇒ xbcqy (if i = R and a 6= B),
• xbpay =⇒ xqbcy (if i = L and a 6= B),
• xbpa =⇒ xbcq (if i = R, a = B and y = λ),

Membrane Computing Schema Based on String Insertions 291

• xbpa =⇒ xqbc (if i = L, a = B and y = λ).

Thus, in each case one can consider a rewriting rule : for example, a rule pa→ cq
for the case (i). Let PM be the set of rewriting rules obtained from δ in this manner.
We define an interpretation IM = (RM , LSF , LFF) as follows:

(i) For each r : u → v in PM , construct Rr = {λ → vr, λ → uRr}, and let
RM = { Rr | r ∈ PM}.

(ii)LSF is the same as the one in IG.
(iii) LFF is given as V ∗FV ∗, where V = U ∪Q ∪ {B} ∪ {r | r ∈ PM}.

Let w be any string in T ∗ and n ≥ 0. Then, from the way of constructing
IM together with discussion above, it is easily seen that p0w =⇒n xqy for some

q ∈ F , x, y ∈ U∗ iff there exists Y es ∈ L(n)
out such that C0 = ({w}, ∅, ∅) =⇒n Cn =

(L1,n, L2,n, L
(n)
out). Thus, we have that L(M) = La(IM (Π0)), which completes the

proof. 2

5 Further Results by Some Variants of Membrane Schema

We give now another membrane computing schema Π1,t which is a variant of Π0

and also able to induce a family of computing devices I(Π1,t) (with an appropriate
interpretation I) that can characterize RE.

The membrane computing schema Π1,t is given as follows:

Π1,t = (V, T, Syn, Com,Ope, F il, is, Out),

where:

(1) V , T , Ope, is and Out are the same as in Π0.
(2) Com = {Com1}.
(3) Fil = {SF, FF} ∪ SubF il, where SubF il = {FFi | 1 ≤ ∀i ≤ t} or = ∅ (t = 0).
(4) Syn = {(Com1, FFi), (FFi, Opei) | 1 ≤ i ≤ t}∪{(Com1, Opej) | t+1 ≤ j ≤ k}

∪(Opei, Com1) | 1 ≤ ∀i ≤ k} ∪ {(Com1, SF), (SF, FF), (FF,Out)}.
(aee (a) of Figure 3).

Note: In (3) and (4) above, t can take any integer between 0 and k, and when
t = 0, it means the corresponding set is empty.

The difference between Π1,t and Π0 is that Π1,t has only one Com1, while
several Opeis possibly require subfiltering cells FFi for prechecking of strings.

Notation. We denote by Π1.5 a schema Π1,t where 1 ≤ t < k, and write Π1 for
a schema Π1,k(i.e., t coincides with k).

Theorem 5.1 There exists IGm such that RE = LMSg(Π1.5, IGm).

292 M.J. Pérez-Jiménez, T. Yokomori

Fig. 3. Membrane Computing Schema Π1.5

Proof sketch. We use a similar argument to the one in the proof of Theorem 4.1
and start with a matrix grammar. That is, let L be any language in RE generated
by a matrix grammar Gm = (N,T, S,M, F) with appearance checking, where
N = N1 ∪N2 ∪ {S,#}, and we may assume that G is in the binary normal form.

We consider the following interpretation IGm = (RGm , LSF , LFF , {LFFi | 1 ≤
i ≤ t}), where

(i) (1) Let k be the cardinality of M and t be the number of appearance checking
matrix rules in M . For each appearance checking rule mi : (X → Y,A → #)
(1 ≤ i ≤ t), construct Rmi = {λ→ Y smi , λ→ Xsmi}.
(2) For other rules mj : (X → Y,A → x) in M (where Y ∈ N1 ∪ {λ}, x ∈
T ∪ N2 ∪ N2

2 ∪ {λ}; t + 1 ≤ j ≤ k), construct Rmj = {λ → Y smj , λ →
Xsmj , λ→ xrmj , λ→ Armj}. Then, let RGm = {Rm1 , · · · , Rmk}.

(ii) • LSF is given as the regular language Lmat = LsLm, where

Ls = {smXXsm | m : (X → Y,A→ #) ∈M}∗, and

Lm = (T ∪ {rmAArm | m : (X → Y,A→ y) ∈M})∗.

• LFFi is given as follows: Let t be the number of appearance checking matrix
rules in M . For each appearance checking rule mi : (X → Y,A → #) (1 ≤
i ≤ t), consider Lmi = (V ∪ V)∗ − (V ∪ V)∗{A}(V ∪ V)∗, where V = T ∪N ∪
{sm, rm | m ∈ M}. Then, LFFi is given as Lmi . (Thus, FFi performs in such
a way that it allows only strings in Lmi to pass through and send them to the
cell Opei. Other strings are all lost.)

Membrane Computing Schema Based on String Insertions 293

• Finally, LFF is given as T ∗, so that only strings in T ∗ can pass through FF
and are sent to Out.

Let C0 = ({XA}, ∅), where (S → XA) ∈M , and consider a transition sequence

C0 =⇒n Cn = (L1,n, L
(n)
out). Then, for any α ∈ (N ∪ T)∗ and n ≥ 0, it holds that

α ∈ L1,n iff XA =⇒n α in Gm. Thus, we have L(Gm) = Lg(IGm(Π1.5)). 2

Theorem 5.2 There exists IGr such that RE = LMSg(Π1, IGr).

Proof sketch. We use the same argument as the one in the proof of Theorem
5.1, but we start with a random context grammar Gr = (N,T, S, P) generating
an arbitrary recursively enumerable language L. (See Preliminary section.) Then,
consider the following interpretation IGr = (RGr , LSF , LFF , {LFFi | 1 ≤ i ≤ k}),
where

(i) Let k be the cardinality of P . For each rule ri : (A → x,Q,R) (1 ≤ i ≤ k),
construct Rri = {λ→ xri, λ→ Ari}. Then, let RGri = {Rri | ri ∈ P}.

(ii) • LSF is defined by the regular language Lm (in LSF for IGm).
• LFFi is given as follows: For each rule ri : (A → x,Q,R), if A ∈ Q, then
let Lri = (V ∪ V)∗{A}(V ∪ V)∗{A}(V ∪ V)∗ ∩ ∩X∈Q−{A}(V ∪ V)∗{X}(V ∪
V)∗ ∩ ∩X∈R((V ∪ V)∗ − (V ∪ V)∗{X}(V ∪ V)∗). Otherwise (i.e., A /∈ Q), let
Lri = ∩X∈Q(V ∪V)∗{X}(V ∪V)∗ ∩∩X∈R((V ∪V)∗− (V ∪V)∗{X}(V ∪V)∗),
where V = N ∪ T ∪ {r | r ∈ P}. Then, LFFi is defined by Lri . (That is, each
FFi performs in such a way that it allows only strings in Lri to pass through
and send them to the cell Opei. Other strings are all lost.)
• Finally, LFF is given as T ∗, so that only strings in T ∗ can pass through FF
and are sent out to Out.

Let C0 = ({S}, ∅), where S is the starting symbol of Gr, and consider a

transition sequence C0 =⇒n Cn = (L1,n, L
(n)
out). Then, for any α ∈ (N ∪ T)∗

and n ≥ 0, it holds that α ∈ L1,n iff XA =⇒n α in Gr. Thus, we have that
L(Gr) = Lg(IGr (Π1)). 2

We give yet another membrane computing schema Π2 which is simpler than
Π0 but still able to provide the universal computability of those models induced
from the schema with appropriate interpretations, but at the price of increasing
the structural complexity in the filtering function SF .

The membrane computing schema Π2 is given as follows:

Π2 = (V, T, Syn, Com,Ope, F il, is, Out),

where:

(1) V , T , Ope, Fil, is and Out are the same as in Π0.
(2) Com = {Com1}.
(3) Syn = {(Com1, Opei), (Opei, Com1) | 1 ≤ i ≤ k}

∪{(Com1, SF), (SF, FF), (FF,Out)} (see (a) of Figure 4).

294 M.J. Pérez-Jiménez, T. Yokomori

From this simpler schema Π2, we can induce a family of computing devices I(Π2)
(with an appropriate interpretation I) that can characterize RE. (Note that Π2

is nothing but a schema Π1,0.)

Fig. 4. Membrane Computing Schema: Π2

Theorem 5.3 There exists I ′G such that RE = LMSg(Π2, I ′G).

Proof sketch. Let L be any language in RE that is generated by a Chomsky type-
0 grammar G = (V, T, S, P). Then, consider the following interpretation I ′G =
({RG}, LSF , LFF), where

(i) For each r : u → v in P , construct Rr = {λ → vr, λ → uRr}, and let
RG = ∪r∈PRr.

(ii)LSF adopts the Dyck language Dn, where n = |N ∪ T ∪ {r | r ∈ P}|.
(iii) LFF is given as T ∗, so that only strings in T ∗ can pass through FF and are

sent out to Out.

Consider a transition sequence C0 = ({S}, ∅) =⇒n Cn = (L1,n, L
(n)
out). Then, for

any α ∈ (N∪T)∗ and n ≥ 0, it holds that α ∈ L1,n iff S =⇒n α in G. Thus, we have
that L(G) = Lg(I

′
G(Π2)). (The proof is based on the fact that each recursively

enumerable language L can be represented in the form L = h(L′ ∩Dk)), where L′

is an insertion language, h is a projection and Dk is a Dyck language. (Theorem
3.1 in [13]). In order to understand the idea of the proof, it would be helpful to

Membrane Computing Schema Based on String Insertions 295

note that RG in Com1 generates the insertion language L′, while a pair of SF and
FF plays the same role as a pair of Dk and h.) 2

6 Concluding Remarks

In this paper we have introduced the notion of a membrane computing schema and
showed that several known computing models with the universal computability
can be reformulated in a uniform manner in terms of the framework of the schema
together with its interpretation. A similar idea in the context of grammar schema
has been proposed and discussed in [1, 5] to prove the computational completeness
of new type of P systems based on the framework of the random context grammars
for both string and multiset languages. (Note that the definition of random context
in those papers is not on a string to be rewritten but on the applicability of rules to
rewrite, different from the standard notion.) As for the communication by sending
objects and the use of filtering function, there are several papers that have been
devoted to studying the computational powers of communicating distributed H
systems (e.g., [3, 11]), and of the hybrid networks of evolutionary processors (e.g.,
[7, 8]).

Table 1 summarizes the results we have obtained. From the table, one can
have a unified view of a variety of computing models based on string rewriting.
For example, it is seen that there exists a trade-off between the complexity of
network structure in the schema and the complexity of the filtering SF .

More specifically, for new terminologies, L is a star language iff L = F ∗ for
some finite set F . Further, L is an occurrence checking language iff L = V ∗FV ∗

for some finite set F . Then, it should be noted that
(i) LG is a finite union of occurrence checking languages,
(ii) Ls and Lm are star languages,
(iii) Lri is a finite intersection of occurrence checking languages and their
complements,
(iv) Lmi is the complement of an occurrence checking language.

Since Π0 (or Π1) is more complex than Π2, one may see a trade-off between
the complexity of the schema and that of SF , telling that LG for single (or Lmat
for multiple) hairpin checking is simpler than Dk for nested hairpin checking.
This kind of trade-off can also be seen in complexity between a series of schemas
(Π1, Π1.5, Π2) and the corresponding SFs (Lm, Lmat, Dk).

It should be remarked that if we start with a programmed context-free gram-
mar Gpr ([4]), then we have the result that RE = LMSg(Π1, IGpr), where an
interpretation IGpr consists of Lm (for SF), T ∗ (for FF) and Lmi (for FFi),
which suggests that programmed context-free grammars can be regarded as hy-
brid systems between matrix grammars with appearance checking and random
context grammars.

296 M.J. Pérez-Jiménez, T. Yokomori

Table 1

Schema SF FF SubFil

Chomsky type-0 Π0 LG(∈ RG) T ∗ (N.A.)
Grammar or Lmir(∈ LIN)

Turing Π0 LM (∈ RG) V ∗FV ∗ (N.A.)
Machine or Lmir(∈ LIN)

Random Context Π1 Lm(∈ RG) T ∗ Lri(∈ RG)
Grammar

Matrixac Π1.5 Lmat = LsLm(∈ RG) T ∗ Lmi (∈ RG)
Grammar

Chomsky type-0 Π2 Dk(∈ CF) T ∗ (N.A.)
Grammar

In this paper we have just made the first step in the new direction towards
understanding and characterizing the nature of the Turing computability from the
novel viewpoint of modularity in the membrane computing schema. There remain
many questions for the future works:

• It would be the most interesting to study the relation between the complexity
of the language classes and that of SF within a given schema. For instance, we
can show that within the schema Π2, CF can be characterized by star (regular)
languages for SF .

• Instead of insertion operations we adopted in this paper, what kind of opera-
tions can be considered for the unique operation in the cells Ope? What kind
of different landscape of the computing mechanisms can be seen from the new
schema?

References

1. M. Cavaliere, R. Freund, M. Oswald, D. Sburlan: Multiset random context grammars,
checkers, and transducers. In Fourth Brainstorming Week on Membrane Computing
(M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J. Romero-Campero, eds.),
Fenix Editora, Sevilla, 2006, Vol. 1, 113–131.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string lan-
guages generated by spiking neural P systems. In Fourth Brainstorming Week on
Membrane Computing (M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J.
Romero-Campero, eds.), Fenix Editora, Sevilla, 2006, Vol. 1, 169–193.

3. E. Csuhaj-Varju, L. Kari, Gh.Păun: Test tube distributed systems based on splicing.
Computers and AI, 15, 2-3 (1996), 211–232.

4. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

5. R. Freund, M. Oswald: Modeling grammar systems by tissue P systems working in
the sequential mode. In Proc. of Grammar Systems Workshop, Budapest, 2004.

6. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

Membrane Computing Schema Based on String Insertions 297

7. M. Margenstern, V. Mitrana, M.J. Pérez-Jiménez: Accepting hybrid networks of
evolutionary processors. Lecture Notes in Computer Science, 3384, Springer-Verlag,
Berlin, 2005, 235–246.

8. C. Martin-Vide, V. Mitrana, M.J. Pérez-Jiménez, F. Sancho-Caparrini: Hybrid net-
works of evolutionary processors. In Proc. of GECCO, Lecture Notes in Computer
Science, 2723, Springer-Verlag, Berlin, 2003, 401–412.

9. C. Martin-Vide, Gh. Păun, A. Salomaa: Characterizations of recursively enumer-
able languages by means of insertion grammars. Theoretical Computer Science, 205
(1998), 195–205.

10. C. Martin-Vide, Gh. Păun, J. Pazos, A. Rodriguez-Paton: Tissue P systems, Theo-
retical Computer Science, 296 (2003), 295–326.

11. Gh. Păun: Distributed architectures in DNA Computing based on splicing: Limiting
the size of components. In Proc. Conf. Unconventional Models of Computation (C.S.
Calude, J. Casti, M.J. Dinneen, eds.), Springer-Verlag, Berlin, 1998, 323–335.

12. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
13. Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori: Representations and characterizations

of languages in Chomsky hierarchy by means of insertion-deletion systems. Submit-
ted. 2007.

14. Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing Paradigms.
Springer-Verlag, Berlin, 1998.

15. Gh. Păun, Y. Sakakibara, T. Yokomori: P systems on graph of restricted forms.
Publicationes Mathematicae Debrecen, 60 (2002), 635–660.

16. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

A Software Tool for Dealing with Spiking Neural
P Systems

Daniel Ramı́rez-Mart́ınez, Miguel A. Gutiérrez-Naranjo

Research Group on Natural Computing
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
thebluebishop@gmail.com, magutier@us.es

Summary. Software simulators for P system are nowadays the main tool to carry out
experiments in the field of Membrane Computing. Although the simulation of a P system
is a quite complex task, current simulators have been successfully used for pedagogical
purposes and also as assistant tools for researchers. In this paper we present a first
software tool for dealing with Spiking Neural P Systems. This tool outputs the transition
diagram of a given system in a step-by-step mode. The code is modular and flexible
enough to be adapted for further research tasks.

1 Introduction

Membrane Computing was introduced by Gh. Păun in [11], starting from the
assumption that the processes taking place in the compartmental structure of a
living cell can be interpreted as computations1. Since then, a large number of
variants and subvariants have been considered, concerning both the syntax and
the semantics of the model. The devices of this model are called generically P
systems.

Roughly speaking, a P system consists of a membrane structure, in the com-
partments of which one places multisets of objects which evolve according to
given rules. The evolution of the rules is usually performed in a synchronous
non-deterministic maximally parallel manner, but this can vary depending on the
model. Let us recall here three of the main variants of P systems: Cell-like P
systems, Tissue-like P Systems, and Spiking Neural P Systems.

In the cell-like model of P systems, membranes are hierarchically arranged in
a tree-like structure (see [11]). The biological inspiration is the morphology of cell,
where small vesicles are surrounded by larger ones. This biological structure can
be abstracted into a tree-like graph, where the root of the graph represents the

1 The foundations of Membrane Computing can be found at [12] and updated bibliog-
raphy at [16].

300 D. Ramı́rez-Mart́ınez, M.A. Gutiérrez-Naranjo

skin of the cell (the outermost membrane), the leaves represent membranes that
do not contain other ones (elementary membranes) and two nodes in the graph
are connected if they represent two membranes such that one of them contains the
other one.

In the tissue P systems ([9, 10]) we consider a general graph instead of a tree-
like membrane structure, where the nodes can be considered as processors and the
edges as connections among them in order to share information. This model has
two biological inspirations (see [10]): intercellular communication and cooperation
between neurons. The common mathematical model of these two mechanisms is
a net of processors dealing with symbols and communicating these symbols along
channels specified in advance. The communication among cells is based on sym-
port/antiport rules: Symport rules move objects across a membrane together in
one direction, whereas antiport rules move objects across a membrane in opposite
direction.

Spiking neural P systems (SN P systems, for short) were introduced in [6]. The
aim of this new model was to incorporate in membrane computing ideas specific
to spiking neurons; the intuitive goal was to have (1) a tissue-like P system with
(2) only one (type of) object(s) in the cells, the spike, with (3) specific rules for
evolving populations of spikes, and (4) making use of the time as a support of
information2.

Irrespectively of the selected approach, it is usually a complex task to predict
or to guess how a P system will behave. Moreover, as there do not exist, up to now,
implementations in laboratories (neither in vitro nor in vivo nor in any electronic
media), it seems natural to look for software tools that can be used as assistants
that are able to simulate computations of P systems.

The first software simulator for P systems appeared in 2000. It was written
by Mihaela Maliţa [8] in LPA-Prolog and, since then, more than ten software
simulators have been presented (see [7] and references therein). Their common
purpose is the better understanding of the computational process of P systems, for
pedagogical purposes as well as assistant for researchers. Among these simulators,
we can find simulators for transition P system (as Maliţa’s one) or simulators
able to deal with P Systems with active membranes (as Ciobanu and Paraschiv’s
simulator [3]). Some of them explore new architectures looking for increasing the
speed of the computation like Ciobanu and Wenyuan’s simulator [5] based on
parallel architecture. Others put the stress on a simulation closer to biological
laws, as the simulator by the Group for Models of Natural Computing [17] in
Verona, based on the implementation of the metabolic algorithm introduced in
[1].

In this paper we present a new tool which is born with the hope of becoming
a tool for the creativity in Membrane Computing. It deals with SN P systems,
and to the best of our knowledge, so far no other software tool has been presented
for dealing with such systems. Our simulator shares the common purpose of the

2 In the next section we will give a brief introduction of some concepts related to SN P
Systems, a detailed description can be found at [13] and the references therein.

A Software Tool for Dealing with Spiking Neural P Systems 301

others simulators: the understanding of the computational process of P systems
and becoming an assistant for researchers. It receives the description of an SN P
System and outputs its transition diagram with an user friendly interface.

The paper is organized as follows. First we recall some definitions related to
SN P systems. Then, the simulator is presented and some features of its imple-
mentation are given. Section 4 provides an example of how the simulator works
and finally, in the last section some remarks and future work lines are presented.

2 The Model

An SN P system consists of a set of neurons placed in the nodes of a directed graph
and sending signals (called spikes) along the arcs of the graph (called synapses).
The objects evolve according to a set of rules (called spiking rules). The idea is
that a neuron containing a certain amount of spikes can consume some of them
and produce other ones. The produced spikes are sent (maybe with a delay of some
steps) to all neurons to which a synapse exists outgoing from the neuron where the
rule was applied. There also are forgetting rules. By the application of these rules
no spikes are sent, simply some spikes are removed from the neuron where the rule
was applied. A global clock is assumed and in each time unit each neuron which
can use a rule should do it, but only (at most) one rule is used in each neuron.
One of the neurons is considered to be the output neuron, and its spikes are also
sent to the environment.

Formally, an SN P system of degree m ≥ 1, is a construct of the form

Pi = (O, σ1, . . . , σm, syn, out),

where:

• O = {a} is the alphabet (the object a is called spike);
• σ1, . . . , σm are neurons, of the form σi = (ni, Ri) with i ∈ {1, . . . ,m} where:

– ni ≥ 0 is the initial number of spikes contained by the neuron;
– Ri is a finite set of rules of the form:

E/ac → ap; d

where E is a regular expression with a the only symbol used, c ≥ 1 and
p, d ≥ 0, with c ≥ p ; if p = 0, then d = 0 too.

• syn ⊆ {1, 2, . . . ,m} × {1, 2, ...,m} with (i, i) 6∈ syn for i ∈ {1, . . . ,m}
(synapses);

• out ∈ {1, 2, . . . ,m} is the output neuron. Notice that only one neuron can send
spikes to the environment.

For the sake of simplicity, if p = d = 0, the rule is written as E/ac → λ instead of
E/ac → a0; 0. This type of rules is called forgetting rules. If L(E) = {ac} then the
rules are written in the simplified form ac → ap; d and ac → λ.

302 D. Ramı́rez-Mart́ınez, M.A. Gutiérrez-Naranjo

'

&

$

%

'

&

$

%

'

&

$

%
-

�

@
@

@
@@R@

@
@

@@I �
�

�
��	

-

1 2

3

a

r11 : a → a; 0

r12 : a → a; 1

a

r21 : a → a; 0

r22 : a → a; 1

a2

r31 : a → a; 0

r32 : a2 → λ

Fig. 1. An example of SN P system

With respect to the application of the rules, if the neuron σi contains k spikes,
ak ∈ L(E) and k ≥ c, then the rule E/ac → ap; d ∈ Ri (with p ≥ 1) can be
applied; applying it means that c spikes are consumed, only k − c remain in the
neuron and it produces p spikes after d time units. If d = 0, then the spikes are
emitted immediately, otherwise the spikes are emitted after d steps. In the case
d ≥ 1, if the rule is used in step t, then in steps t, t + 1, t + 2, . . . , t + d − 1 the
neuron is closed, and it cannot receive new spikes (if a neuron has a synapse to
a closed neuron and sends spikes along it, then the spikes are lost). In step t+ d,
the neuron spikes and becomes again open, hence can receive spikes. The p spikes
emitted by a neuron σi are replicated and they go to all neurons σj such that
(i, j) ∈ syn (each σj receives p spikes). If the rule is a forgetting one, then no spike
is emitted and the neuron cannot be closed.

In each time unit, in each neuron which can use a rule, a rule must be used
non-deterministically chosen if several rules are applicable. Note that each neuron
processes sequentially its spikes, using only one rule in each time unit. During the
computation, a configuration is described by both the number of spikes present in
each neuron and by the number of steps to count down until it becomes open (this
number is zero if the neuron is open, for example, in the initial configuration). Any
sequence of transitions starting in the initial configuration is called a computation.
A computation halts if it reaches a configuration where all neurons are open and
no rule can be used.

The graphical representation of an SN P system is rather intuitive: the neu-
rons are represented by membranes, placed in the nodes of a directed graph whose
arrows represent the synapses. Figure 1 shows an example of the graphical repre-
sentation of an SN P System taken from [2].

In the graphical representation of our software tool, the environment is also
represented by a membrane and an arrow exits from the output neuron, pointing

A Software Tool for Dealing with Spiking Neural P Systems 303

Fig. 2. Screen capture of the designer interface

to this membrane; in each neuron we specify the rules and the spikes present in
the initial configuration. Figure 2 shows a screen capture of the designer module
of our software by showing our graphical representation of the example.

The transition diagram of an SN P System is also a graph where the nodes
are configurations and an arrow is drawn between two nodes/configurations. We
draw an arrow if a direct transition is possible between them. Our software also
provides labels to the arcs with information about the rules used in the transition.

3 The Simulator

The software tool3 for simulating the evolution of an SN P system is composed by
the integration of three modules:

• A Graphical User Interface (GUI) which allows an easy interface to users,
decoupling experimentation and simulation from programming. This module
is written in XBase++ [15], which is an object oriented language to program
database oriented graphic applications.

3 The simulator is available at [16].

304 D. Ramı́rez-Mart́ınez, M.A. Gutiérrez-Naranjo

rule(1-1,a \to a;0). synapses([1-2,2-1,1-3,3-1,2-3,3-env]).

rule(1-2,a \to a;1).

rule(2-1,a \to a;0). initial([1/0,1/0,2/0]).

rule(2-2,a \to a;1).

rule(3-1,a \to a;0).

rule(3-2,a^2 \to \lambda).

Fig. 3. Input file

• A second module, written in SWI-Prolog [14] which is the inference engine.
It takes the initial configuration, the synapses and the rules and produces the
transition diagram in text mode.

• A graphical designer tool, which allows the user to draw neurons, synapses and
to associate spikes and rules with them by using a friendly interface.

Next we briefly describes some features of the software.

3.1 The input data

The basic way of providing the data to the simulator is by a plain text file with
the information stored in an appropriate way. Figure 3 shows the input file of the
example depicted in Figure 1.

The syntax is quite intuitive. The file consists of a set of literals with the
predicate symbols rule, synapses and initial.

• Rules are of the form rule(N-X,Latex), where N is the label of the neuron,
X is the ordinal of the rule and Latex is just the rule written in Latex. The
idea is that the researcher preparing a report on SN P systems can move the
set of rules from the report to the simulator and backwards with the minimal
changes. In the current version, we accept seven syntactically different types
of rules:

(1) a^s/a^c \to a^p;d

(2) a^s/a^c \to a;d

(3) a^c \to a^p;d

(4) a^c \to \lambda

(5) a \to a;d

(6) a^c \to a;d

(7) a \to \lambda

• synapses has as argument a list of pairs of neurons Start-End. Notice that
the environment is considered as a special case of neuron without rules and
labeled by env.

• initial stores the initial configuration. We always consider the neurons labeled
with numbers 1, 2, 3, . . . and we do not make explicit the label of the neuron
in the configuration. In this way, a configuration is a list of pairs A/B where

A Software Tool for Dealing with Spiking Neural P Systems 305

the i-th pair A/B denotes the number of spikes (A) and the number of steps to
became open (B) of the neuron with label i.

The simulator also provides a graphical interface which allows the user to design
an SN P system, to store it and build its transition diagram. The SN P system can
be also be exported form the graphical representation to a file with a text mode
representation as described above.

3.2 The inference engine

After the input data have been provided (via the graphical interface or a plain
text file), the generation of the transition diagram starts. The basic data structure
consists of three lists which will be called ExpandedNodes, NonExpandedNodes and
Arcs. We consider that a Node of the transition graph, i.e., a configuration of the
SN P system has been expanded when all the configurations that can be reached
from the Node in one step have been computed.

At the beginning, NonExpandedNodes contains the initial configuration and
ExpandedNodes and Arcs are empty lists. The main procedure is quite natural.
We take a Node from NonExpandedNodes and compute all the configurations that
can be reached from the Node in one step. We will denote by NewNodes the list of
these configurations. The Node is added to ExpandedNodes and all the elements of
NewNodes that do not belong to ExpandedNodes are added to NonExpandedNodes.
Analogously, the labelled arcs with the information of the rules that produce the
reachable configurations are also stored in Arcs. The process ends when the list
NonExpandedNodes is empty.

In the current version, the unique test for finishing the process is to check if
NonExpandedNodes is empty. This means that the simulator is not able to deal
with large transition diagrams, since the memory of the computer can be filled
before the process ends.

The list NewNodes consists of all the configurations that can be reached from
the Node in one step. In order to find all these configurations, for each neuron
we check the set of applicable rules of the neuron according to the set of spikes
and if the neuron is closed or open. To check if a general rule E/ac → ap; d ∈ Ri
is applicable involves to know if an expression of type ak belongs to L(E). In
the current version we only consider a weak version of applicability that can be
extended in future versions of the simulator.

When the set of applicable rules have been found for each neuron, we consider
the Cartesian product of these sets in order to get all the possibilities of reaching a
new configuration. Each possibility gives us an arc of the transition diagram with
a label composed with the following items:

• If the X-th rule of the neuron N is applied, then N-X is added to the label.
• If the neuron N is closed and therefore, no rule is applied, then N-s is added to

the label.
• Finally, if the neuron N is open, but no rule can be applied then we add N-0 to

the label.

306 D. Ramı́rez-Mart́ınez, M.A. Gutiérrez-Naranjo

Fig. 4. Main window of SNPS-GUI

After the set of arcs with its corresponding label is fixed, the application of the
rules starts. We have a set of rules (one rule at most for each neuron) associated
with each arc that produces a new configuration. In order to apply these rules and
build the new configuration we have to consider:

• The spikes sent out from all the neurons.
• For each neuron, all the incoming spikes. Some of them can have been sent

some steps before with delay and arrive in the current step.

We need to keep in memory the spikes sent with delay in the previous steps, so
the internal representation in the software of a neuron is more complicated than
the list of pairs Spikes/Delay of the standard representation of the configuration.

The set of all the configurations reachable are determined by the set of arcs.
When all these configurations have been generated, the list NewNodes is finished
and the main procedure goes on.

3.3 The GUI for the inference engine

The transition diagram of an SN P system is usually a large graph and it can be
useful to have a tool that shows the evolution in time of the diagram. The GUI
module provides a set of images (PS and JPEG files) representing the steps on the

A Software Tool for Dealing with Spiking Neural P Systems 307

Fig. 5. Rule editor window

evolution of the system. At each step, the picture shows the set of reachable con-
figurations till the moment together with the labeled arcs. This GUI also includes
a system designer for the SN P systems.

Basics of SNPS-GUI

This software runs on Windows SO machines, so it has a typical windows 800x600
application look. To complete a simulation the user can follow the following steps4:

• Load an ASCII description of the SN P System which must be compatible with
inference input description (see section 3.1.)

• Click the RUN button.
• Wait
• Navigate through preview images using the ARROW buttons.
• Catch output files, generated in the application directory, showing the evolution

in a graphical way.

4 Along this paper we provide a brief description of the use of the simulator. For a
comprehensive list of features, see the file Readme.txt distributed with the software
for complete information and updated features.

308 D. Ramı́rez-Mart́ınez, M.A. Gutiérrez-Naranjo

Controls and displays

• Preview: After running a simulation, the output PostScript files are converted
into two JPEG series with different resolutions. The software shows the lowest
resolution picture here to preview the evolution.

• Navigation buttons: Two arrows are provided in the preview window, so the
user can see the step-by-step evolution of the graph.

• Input content: A simple text container where the user can check the input for
the engine after having loaded it.

• Command buttons: With these buttons the user can browse for an input file in
the O.S., run the simulation once the file has been loaded or call the Graphical
Designer to paint neurons, synapses and to write rules.

The SN P System Graphical Designer

This internal module inside the GUI provides a graphic interface to generate SN
P system description files. The user simply draw neurons, synapses and describe
rules using a friendly interface. After that, the depicted graph can be exported
into a file that can be loaded and modified into the GUI in future sessions.

As one can see in Figure 2, a neuron is just a colored square with some text
inside. We have tried to keep notation as standard as possible according with the
bibliography without adding unnecessary complexity to the code. As an effective
and intuitive way of represent the information in the system we have inside of each
neuron the following text:

• Label (top-left corner of the neuron): A labeling system based in the creation
order is used. The current version does not allow the user to change the label
of the neuron. The first created neuron is labeled as 1, second as 2 and so
on. If during the creation process a neuron is deleted, the remaining ones are
relabeled to avoid holes in the label list.

• Initial configuration (top-right of the neuron): Number of spikes of the neuron
in the initial configuration.

• Set of rules: The X-th rule of the of the neuron N is denoted by N-X. Because
of the space limitation, the application just show the first four rules inside each
neuron this way. To see all the rules, the Neuron Menu must be activated.

The environment is depicted as a special neuron with a synapse from the output
neuron. Obviously, no rules or synapses for this neuron can be defined. With this
interface the user can create, destroy (delete) and connect neurons just by clicking
neurons, environment and background surface.

Rule editor

A simple rule editor is also provided. It shows to the user the patterns of compatible-
engine rules. By using it, the user can create, modify or delete rules related to the

A Software Tool for Dealing with Spiking Neural P Systems 309

selected neuron. Since there is no syntax corrector implemented in the rule editor
at the current version, the user must check the rules before the system is exported.
The rule editor gives patterns for the seven rules that the engine can recognize.
Every a is intended to be a spike and the rest of constant (s, c, p and d) of the
pattern (e.g. a^s/a^c \to a^p;d) must be replaced by integers in order to have
an engine-compatible file.

4 An Example

In this section we present how the simulator works on a well known example.
We have taken the SN P system of Figure 1 and show the use of our simulator in
order to build its transition diagram. Figure 6, taken from [13], shows the transition
diagram of that SN P system.

After loading the corresponding file, which can be generated by using a text
editor or the designer tool, the simulation can start. At time zero, only the initial
configuration is shown.

After that, the user can develop the transition diagram step by step. The new
elements (nodes or arcs) in each step are depicted in red color. Figure 7 shows
the different stages of the development of the transition diagram. When no new
element can be added to the diagram, it is finished. Figure 8 shows the same
transition diagram from Figure 6 with the representation of our simulator.

5 Final Remarks and Future Work

The success of the simulators in membrane computing is beyond any doubt. On
the one hand, one of the main usefulness of these simulators lies in their use for a
better understanding of membrane computing, so it is a pedagogical tool of first
hand. On the other hand, the simulators have proved to be a useful assistant tool
for the design and verification of complex P systems which solve problems, saving
the researchers heavy hand-made calculations.

To the best of our knowledge, the simulators presented in the literature corre-
sponds to cell-like models of P systems. In this paper we present a first software
tool for dealing with SN P systems with the hope that it will become a useful tool
in the same way like the cell-like ones, both for pedagogical purposes as well as an
assistant for researchers.

Since membrane computing is a vivid area and new variants of P systems based
on neurons and spikes can appear, we have designed a software tool with a code
flexible enough to adapt the simulator to forthcoming ideas. Indeed, one of its
main features is its modularity and the ability of embedding new P system models
in future releases with a minimal modification of the code.

As pointed in [7], one of the common features of the first generation of simu-
lators for cell-like P systems was the lack of efficiency in favor of the expressivity.

310 D. Ramı́rez-Mart́ınez, M.A. Gutiérrez-Naranjo

〈3/0, 0/0, 1/0〉 〈4/0, 0/0, 0/0〉

〈2/0, 0/1, 0/0〉

〈2/0, 1/0, 2/0〉

+

Nq
-

10,20,31

10

21

32

10 2s
30

10
22

32

〈1/0, 0/1, 1/0〉 〈1/0, 1/0, 1/0〉

?

}

y

11
21

31

11,22,31

11
2s

31

〈0/1, 0/0, 1/0〉 〈0/1, 0/1, 0/0〉

〈1/0, 1/0, 2/0〉

7 �

z

Y
12

2s
31

1s

20
31

12
21
31 12

22
31

? q

y 1s
2s

30

12
22

32

12

21

32

〈0/0, 0/1, 1/0〉

〈2/0, 0/0, 1/0〉

〈3/0, 0/0, 0/0〉

)

�

?

112232

10
2s

31

10

20

31

' $
?

11,21,32

Fig. 6. The transition diagram from [13]

The current version of the simulator follows the same line: we keep a high degree
of expressivity, looking for a friendly interface with the user, but some technical
details can be improved. As pointed out above, one of them is the possibility of
fixing a bound of the number of steps performed from the initial configuration in
order to avoid that the software collapses. Anther point is to extend the definition
of the applicability of rules, since in the current version only a restricted definition
is used.

A Software Tool for Dealing with Spiking Neural P Systems 311

<1/0,1/0,2/0> <1/0,1/0,2/0>

<0/1,0/1,0/0>

<0/0,0/1,1/0>

[1-2, 2-1, 3-2]

<0/1,0/0,1/0><0/1,0/0,1/0>

[1-1, 2-1, 3-2]

<0/1,0/1,0/0>

[1-1, 2-2, 3-2]

<0/0,0/1,1/0>

[1-2, 2-2, 3-2]

Time 0 Time 1

<1/0,1/0,2/0>

<0/1,0/1,0/0>

<0/0,0/1,1/0>

[1-2, 2-1, 3-2]

<0/1,0/0,1/0><0/1,0/0,1/0>

[1-1, 2-1, 3-2]

<0/1,0/1,0/0>

[1-1, 2-2, 3-2]

<0/0,0/1,1/0>

[1-2, 2-2, 3-2]

<2/0,0/0,1/0>

[1-s, 2-s, 3-0]

<1/0,1/0,1/0><1/0,1/0,1/0>

[1-0, 2-s, 3-1]

<2/0,0/0,1/0>

[1-s, 2-0, 3-1]

<1/0,1/0,2/0>

<0/1,0/1,0/0>

<0/0,0/1,1/0>

[1-2, 2-1, 3-2]

<0/1,0/0,1/0><0/1,0/0,1/0>

[1-1, 2-1, 3-2]

<0/1,0/1,0/0>

[1-1, 2-2, 3-2]

<0/0,0/1,1/0>

[1-2, 2-2, 3-2]

<2/0,0/0,1/0>

[1-s, 2-s, 3-0]

<1/0,1/0,1/0><1/0,1/0,1/0>

[1-0, 2-s, 3-1]

<2/0,0/0,1/0>

[1-s, 2-0, 3-1]

<1/0,0/1,1/0>

<2/0,1/0,2/0>

<3/0,0/0,0/0><3/0,0/0,0/0>

[1-1, 2-2, 3-1] [1-2, 2-2, 3-1]

[1-2, 2-1, 3-1]

[1-1, 2-1, 3-1]

[1-0, 2-0, 3-1]

<1/0,0/1,1/0>

<2/0,1/0,2/0>

Time 2 Time 3

<1/0,1/0,2/0>

<0/1,0/1,0/0>

<0/0,0/1,1/0>

[1-2, 2-1, 3-2]

<0/1,0/0,1/0><0/1,0/0,1/0>

[1-1, 2-1, 3-2]

<0/1,0/1,0/0>

[1-1, 2-2, 3-2]

<0/0,0/1,1/0>

[1-2, 2-2, 3-2]

<2/0,0/0,1/0>

[1-s, 2-s, 3-0]

<1/0,1/0,1/0><1/0,1/0,1/0>

[1-0, 2-s, 3-1]

<2/0,0/0,1/0>

[1-s, 2-0, 3-1]

<1/0,0/1,1/0>

<2/0,1/0,2/0>

<3/0,0/0,0/0><3/0,0/0,0/0>

[1-1, 2-2, 3-1] [1-2, 2-2, 3-1]

[1-2, 2-1, 3-1]

[1-1, 2-1, 3-1]

[1-0, 2-0, 3-1]

<1/0,0/1,1/0>

<2/0,1/0,2/0>

[1-2, 2-s, 3-1]

<2/0,0/1,0/0><2/0,0/1,0/0>

[1-0, 2-2, 3-2]

<3/0,0/0,1/0>

[1-1, 2-s, 3-1]

<3/0,0/0,1/0>

[1-0, 2-1, 3-2] <2/0,0/1,0/0><2/0,0/1,0/0>

<3/0,0/0,1/0><3/0,0/0,1/0>

<1/0,1/0,2/0>

<0/1,0/1,0/0>

<0/0,0/1,1/0>

[1-2, 2-1, 3-2]

<0/1,0/0,1/0><0/1,0/0,1/0>

[1-1, 2-1, 3-2]

<0/1,0/1,0/0>

[1-1, 2-2, 3-2]

<0/0,0/1,1/0>

[1-2, 2-2, 3-2]

<2/0,0/0,1/0>

[1-s, 2-s, 3-0]

<1/0,1/0,1/0><1/0,1/0,1/0>

[1-0, 2-s, 3-1]

<2/0,0/0,1/0>

[1-s, 2-0, 3-1]

<1/0,0/1,1/0>

<2/0,1/0,2/0>

<3/0,0/0,0/0><3/0,0/0,0/0>

[1-1, 2-2, 3-1] [1-2, 2-2, 3-1]

[1-2, 2-1, 3-1]

[1-1, 2-1, 3-1]

[1-0, 2-0, 3-1]

<1/0,0/1,1/0>

<2/0,1/0,2/0>

[1-2, 2-s, 3-1]

<2/0,0/1,0/0><2/0,0/1,0/0>

[1-0, 2-2, 3-2]

<3/0,0/0,1/0>

[1-1, 2-s, 3-1]

<3/0,0/0,1/0>

[1-0, 2-1, 3-2] <2/0,0/1,0/0><2/0,0/1,0/0>

<3/0,0/0,1/0><3/0,0/0,1/0>

<4/0,0/0,0/0><4/0,0/0,0/0><4/0,0/0,0/0><4/0,0/0,0/0>

[1-0, 2-s, 3-0]

[1-0, 2-0, 3-1]

Time 4 Time 5

Fig. 7. Evolution of the example

We hope that this simulator will become a useful tool for the P systems com-
munity and our aim is to adapt it according to the new developments in the field.
All suggestions are absolutely welcome.

312 D. Ramı́rez-Mart́ınez, M.A. Gutiérrez-Naranjo

<1/0,1/0,2/0>

<0/1,0/1,0/0>

<0/0,0/1,1/0>

[1-2, 2-1, 3-2]

<0/1,0/0,1/0><0/1,0/0,1/0>

[1-1, 2-1, 3-2]

<0/1,0/1,0/0>

[1-1, 2-2, 3-2]

<0/0,0/1,1/0>

[1-2, 2-2, 3-2]

<2/0,0/0,1/0>

[1-s, 2-s, 3-0]

<1/0,1/0,1/0><1/0,1/0,1/0>

[1-0, 2-s, 3-1]

<2/0,0/0,1/0>

[1-s, 2-0, 3-1]

<1/0,0/1,1/0>

<2/0,1/0,2/0>

<3/0,0/0,0/0><3/0,0/0,0/0>

[1-1, 2-2, 3-1] [1-2, 2-2, 3-1]

[1-2, 2-1, 3-1]

[1-1, 2-1, 3-1]

[1-0, 2-0, 3-1]

<1/0,0/1,1/0>

<2/0,1/0,2/0>

[1-2, 2-s, 3-1]

<2/0,0/1,0/0><2/0,0/1,0/0>

[1-0, 2-2, 3-2]

<3/0,0/0,1/0>

[1-1, 2-s, 3-1]

<3/0,0/0,1/0>

[1-0, 2-1, 3-2] <2/0,0/1,0/0><2/0,0/1,0/0>

<3/0,0/0,1/0><3/0,0/0,1/0>

<4/0,0/0,0/0><4/0,0/0,0/0><4/0,0/0,0/0><4/0,0/0,0/0>

[1-0, 2-s, 3-0]

[1-0, 2-0, 3-1]

Fig. 8. The transition diagram from generated by the simulator

Acknowledgement

The second author acknowledges the support of the project TIN2005-09345-C04-
01 of the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds,
and the support of the project of excelence TIC-581 of the Junta de Andalućıa.

A Software Tool for Dealing with Spiking Neural P Systems 313

References

1. L. Bianco, F. Fontana, G. Franco, and V. Manca: P Systems for Biological Dynamics.
In [4], 83–128.

2. H. Cheng, R. Freund, M. Ionescu, Gh. Păun, and M.J. Pérez-Jiménez: On String
Languages Generated by Spiking Neural P Systems. In Fourth Brainstorming Week
on Membrane Computing, Vol. I (M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-
Núñez, F.J. Romero-Campero, eds.) Fénix Editora, Sevilla, 2006, 169–193.

3. G. Ciobanu and D. Paraschiv: P System Software Simulator. Fundamenta Informat-
icae, 49, 1-3 (2002), 61–66.

4. G. Ciobanu, Gh. Păun, and M.J. Pérez-Jiménez, eds.: Applications of Membrane
Computing. Springer, 2006.

5. G. Ciobanu and G. Wenyuan: P Systems Running on a Cluster of Computers. In
Membrane Computing WMC 2003. (C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, A.
Salomaa, eds.) Lecture Notes in Computer Science, 2933, (2004), 123–139.

6. M. Ionescu, Gh. Păun, and T. Yokomori: Spiking Neural P Systems. Fundamenta
Informaticae, 71, 2-3 (2006), 279–308.

7. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, and A. Riscos-Núñez: Available Mem-
brane Computing Software. In [4], 411–439.

8. M. Maliţa: Membrane Computing in Prolog, Pre-proceedings of the Workshop on
Multiset Processing (C.S. Calude, M.J. Dinneen, Gh. Păun, eds.) Curtea de Argeş,
Romania, CDMTCS TR 140, Univ. of Auckland, 2000, 159–175.

9. C. Mart́ın Vide, J. Pazos, Gh. Păun, and A. Rodŕıguez Patón: A New Class of Sym-
bolic Abstract Neural Nets: Tissue P Systems. Lecture Notes in Computer Science
2387, (2002), 290–299.

10. C. Mart́ın Vide, J. Pazos, Gh. Păun, and A. Rodŕıguez Patón: Tissue P Systems.
Theoretical Computer Science, 296, (2003), 295–326.

11. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences,
61, 1, (2000), 108–143.

12. Gh. Păun: Membrane Computing. An Introduction. Springer–Verlag, Berlin, (2002).
13. Gh. Păun: Twenty Six Research Topics About Spiking Neural P Systems. In this

volume.
14. The SWI-Prolog web page http://www.swi-prolog.org

15. The Alaska Software web page http://www.alaska-software.com

16. P systems web page http://psystems.disco.unimib.it/

17. Group for Models of Natural Computing in Verona http://www.di.univr.it

On Two Families of Multiset Tree Automata?

José M. Sempere, Damián López

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
{jsempere,dlopez}@dsic.upv.es

Summary. The relation between the membrane structures of P systems and an exten-
sion of tree automata which introduces multisets in the transition function has been
proposed in previous works. Here we propose two features of tree automata which have
been previously studied (namely, reversibility and local testability) in order to extend
them to multiset tree automata. The characterization of these families will introduce a
new characterization of membrane structures defined by the set of rules used for mem-
brane creation and deletion.

1 Introduction

The relation between membrane structures and tree languages has been explored
in previous works. So, Freund et al. [4] proved that P systems are able to generate
recursively enumerable sets of trees through their membrane structures. Other
works have focused on extending the definition of finite tree automata in order to
take into account the membrane structures generated by P systems. So, in [13], the
authors propose an extension of tree automata, namely multiset tree automata,
in order to recognize membrane structures. In [7], the authors propose the use
of this model to calculate editing distances between membrane structures. Later,
the authors proposed a method to infer multiset tree automata from membrane
observations [14].

In this work we introduce two new families of multiset tree automata, by using
previous results taken from tree language theory. We propose a formal definition of
reversible multiset tree automata and local testable multiset tree automata. These
features have been widely studied in previous works [6, 8].

The structure of this work is simple: first we give basic definitions and notation
for tree languages, P systems and multiset tree automata and we define the new
families of multiset tree automata. Finally, we give some guidelines for future
research.
? Work supported by the Spanish Generalitat Valenciana under contract GV06/068.

316 J.M. Sempere, D. López

2 Notation and definitions

In the sequel we will provide some concepts from formal language theory, mem-
brane systems and multiset processing. We suggest the following books to the
reader [12], [10] and [2].

Multisets

First, we will provide some definitions from multiset theory as exposed in [15].

Definition 2.1 Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→
N is a function.

Definition 2.2 Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. The
removal of multiset B from A, denoted by A	B, is the multiset C = 〈D,h〉 where
for all a ∈ D h(a) = max(f(a)− g(a), 0).

Definition 2.3 Let A = 〈D, f〉 be a multiset; we will say that A is empty if for
all a ∈ D, f(a) = 0.

Definition 2.4 Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. Their sum,
denoted by A⊕ B, is the multiset C = 〈D,h〉, where for all a ∈ D h(a) = f(a) +
g(a).

Definition 2.5 Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. We will say that
A = B if the multiset (A	B)⊕ (B 	A) is empty.

The size of any multiset M , denoted by |M | will be the number of elements
that it contains. We are specially interested in the class of multisets that we call
bounded multisets. They are multisets that hold the property that the sum of all
the elements is bounded by a constant n. Formally, we will denote by Mn(D) the
set of all multisets 〈D, f〉 such that

∑
a∈D f(a) = n.

A concept that is quite useful to work with sets and multisets is the Parikh
mappings. Formally, a Parikh mapping can be viewed as the application Ψ : D∗ →
Nn where D = {d1, d2, · · · , dn}. Given an element x ∈ D∗ we define Ψ(x) =
(#d1(x), · · · ,#dn

(x)) where #dj
(x) denotes the number of occurrences of dj in x.

P systems

We will introduce basic concepts from membrane systems taken from [10]. A gen-
eral P system of degree m is a construct

Π = (V, T,C, µ,w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (the objects)
• T ⊆ V (the output alphabet)

On Two Families of Multiset Tree Automata 317

• C ⊆ V , C ∩ T = ∅ (the catalysts)
• µ is a membrane structure consisting of m membranes
• wi, 1 ≤ i ≤ m is a string representing a multiset over V associated with the

region i
• Ri, 1 ≤ i ≤ m is a finite set of evolution rules over V associated with the ith

region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}

and δ is an special symbol not in V (it defines the membrane dissolving action).
From now on, we will denote the set tar by {here, out, ink : 1 ≤ k ≤ m}.

• i0 is a number between 1 and m and it specifies the output membrane of Π (in
the case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging the leaving order (if several objects leave the
system at the same time then permutations are allowed). The set of numbers
that represent the objects in the output membrane i0 will be denote by N(Π).
Obviously, both sets L(Π) and N(Π) are defined only for halting computations.

One of the multiple variations of P systems is related to the creation, division
and modification of membrane structures. There have been several works in which
these variants have been proposed (see, for example, [1, 9, 10, 11]).

In the following, we enumerate some kind of rules which are able to modify the
membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′

2. Creation: a → [hb]h
3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones (e.g.
exocytosis, endocytosis, etc.) has been widely studied in the previously related
works and other ones.

Tree automata and tree languages

Now, we will introduce some concepts from tree languages and automata as
exposed in [3, 5]. First, let a ranked alphabet be the association of an alpha-
bet V together with a finite relation r in V × N. We denote by Vn the subset
{σ ∈ V : (σ, n) ∈ r}.

The set V T of trees over V , is defined inductively as follows:

a ∈ V T for every a ∈ V0

σ(t1, ..., tn) ∈ V T whenever σ ∈ Vn and t1, ..., tn ∈ V T , (n > 0)

and let a tree language over V be defined as a subset of V T .

318 J.M. Sempere, D. López

Given the tuple l =< 1, 2, ..., k > we will denote the set of permutations of
l by perm(l). Let t = σ(t1, ..., tn) be a tree over V T , we will denote the set of
permutations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , ..., tin

) :<
i1, i2, ..., in >∈ perm(< 1, 2, ..., n >)}.

Let N∗ be the set of finite strings of natural numbers, separated by dots, formed
using the catenation as the composition rule and the empty word λ as the identity.
Let the prefix relation ≤ in N∗ be defined by the condition that u ≤ v if and only
if u · w = v for some w ∈ N∗ (u, v ∈ N∗). A finite subset D of N∗ is called a tree
domain if:

u ≤ v where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j)

Each tree domain D could be seen as an unlabeled tree whose nodes correspond
to the elements of D where the hierarchy relation is the prefix order. Thus, each
tree t over V can be seen as an application t : D → V . The set D is called the
domain of the tree t, and denoted by dom(t). The elements of the tree domain
dom(t) are called positions or nodes of the tree t. We denote by t(x) the label of
a given node x in dom(t).

Let the level of x ∈ dom(t) be |x|. Intuitively, the level of a node measures its
distance from the root of the tree. Then, we can define the depth of a tree t as
depth(t) = max{|x| : x ∈ dom(t)}. In the same way, for any tree t, we denote the
size of the tree by |t| and the set of subtrees of t (denoted with Sub(t)) as follows:

Sub(a) = {a} for all a ∈ V0

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, ..., tn) (n > 0)

Given a tree t = σ(t1, . . . , tn), the root of t will be denoted as root(t) and
defined as root(t) = σ. If t = a then root(t) = a. The successors of a tree t =
σ(t1, . . . , tn) will be defined as Ht =< root(t1), . . . , root(tn) >. Finally, leaves(t)
will denote the set of leaves of the tree t.

Definition 2.6 A finite deterministic tree automaton is defined by the tuple A =
(Q,V, δ, F): where Q is a finite set of states; V is a ranked alphabet, Q ∩ V = ∅;
F ⊆ Q is the set of final states and δ =

⋃
i:Vi 6=∅ δi is a set of transitions defined as

follows:

δn : (Vn × (Q ∪ V0)n) → Q n = 1, . . . ,m

δ0(a) = a ∀a ∈ V0

Given the state q ∈ Q, we define the ancestors of the state q, denoted by
Ant(q), as the set of strings

On Two Families of Multiset Tree Automata 319

Ant(q) = {p1 · · · pn : pi ∈ Q ∪ V0 ∧ δn(σ, p1, ..., pn) = q}

From now on, we will refer to finite deterministic tree automata simply as tree
automata. We suggest [3, 5] for other definitions on tree automata.

The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees
as follows:

δ(a) = a for any a ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
you can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q, V, δ, F), where:

Q = Sub(T)
F = T

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q

δ0(a) = a a ∈ V0

Let $ be a new symbol in V0, and V T
$ the set of trees (V ∪ {$})T where each

tree contains $ only once. We will name the node with label $ as link point when
necessary. Given s ∈ V T

$ and t ∈ V T , the operation s#t is defined as:

s#t(x) =
{

s(x) if x ∈ dom(s), s(x) 6= $
t(z) if x = yz, s(y) = $, y ∈ dom(s)

therefore, given t, s ∈ V T , let the tree quotient (t−1s) be defined as:

t−1s =
{

r ∈ V T
$: s = r#t if t ∈ V T − V0.

t if t ∈ V0.

this quotient can be extended to consider set of trees T ⊆ V T as:

t−1T = {t−1s : s ∈ T}

For any k ≥ 0, let the k-root of a tree t be defined as follows:

rootk(t) =
{

t, if depth(t) < k
t′ : t′(x) = t(x), x ∈ dom(t) ∧ |x| ≤ k, otherwise

320 J.M. Sempere, D. López

Multiset tree automata and mirrored trees

We will extend over multisets some definitions of tree automata and tree lan-
guages. We will introduce the concept of multiset tree automata and then we will
characterize the set of trees that it accepts.

Given any tree automata A = (Q, V, δ, F) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1) ⊕MΨ (p2) ⊕ · · · ⊕MΨ (pn) where
∀1 ≤ i ≤ n MΨ (pi) ∈ M1(Q ∪ V0). Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over

the same set of states and symbols but in different order (that is the multiset
induced by 〈p1, p2, · · · , pn〉 equals to the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up pars-
ing as in the tree automaton case.

Definition 2.7 A multiset tree automaton is defined by the tuple MA = (Q,V, δ, F),
where Q is a finite set of states, V is a ranked alphabet with maxarity(V) = n,
Q ∩ V = ∅, F ⊆ Q is a set of final states and δ is a set of transitions defined as
follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi 6= ∅

δi

δi : (Vi ×Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n
δ0(a) = MΨ (a) ∈M1(Q ∪ V0) ∀a ∈ V0

We can take notice that every tree automaton A defines a multiset tree au-
tomaton MA as follows

Definition 2.8 Let A = (Q,V, δ, F) be a tree automaton. The multiset tree au-
tomaton induced by A is defined by the tuple MA = (Q,V, δ′, F) where each δ′ is
defined as follows: MΨ (r) ∈ δ′n(σ,M) if δn(σ, p1, p2, ..., pn) = r and MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A
is non deterministic.

As in the case of tree automata, δ′ could also be extended to operate on trees.
Here, the automaton carries out a bottom-up parsing where the tuples of states
and/or symbols are transformed by using the Parikh mapping Ψ to obtain the
multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns a multiset
with at least one final state, the input tree is accepted. So, δ′ can be extended as
follows

On Two Families of Multiset Tree Automata 321

δ′(a) = MΨ (a) for any a ∈ V0

δ′(t) = {M ∈ δ′
n(σ, M1 ⊕ · · · ⊕Mn) : Mi ∈ δ′(ti)1 ≤ i ≤ n} for t = σ(t1, . . . , tn) (n > 0)

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T : MΨ (q) ∈ δ′(t), q ∈ F}

Another extension which will be useful is the one related to the ancestors of
every state. So, we define AntΨ (q) = {M : MΨ (q) ∈ δn(σ,M)}.

Theorem 2.9 (Sempere and López, [13]) Let A = (Q,V, δ, F) be a tree au-
tomaton, MA = (Q,V, δ′, F) be the multiset tree automaton induced by A and
t = σ(t1, . . . , tn) ∈ V T . If δ(t) = q then MΨ (q) ∈ δ′(t).

Corolary 2.10 (Sempere and López, [13]) Let A = (Q,V, δ, F) be a tree au-
tomaton and MA = (Q, V, δ′, F) be the multiset tree automaton induced by A.
If t ∈ L(A) then t ∈ L(MA).

We will introduce the concept of mirroring in tree structures as exposed in [13].
Informally speaking, two trees will be related by mirroring if some permutations
at the structural level are hold. We propose a definition that relates all the trees
with this mirroring property.

Definition 2.11 Let t and s be two trees from V T . We will say that t and s are
mirror equivalent, denoted by t ./ s, if one of the following conditions holds:

1. t = s = a ∈ V0

2. t ∈ perm1(s)
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists < s1, s2, . . . , sk >∈

perm(< s1, s2, ..., sn >) such that ∀1 ≤ i ≤ n ti ./ si

Theorem 2.12 (Sempere and López, [13]) Let A = (Q,V, δ, F) be a tree automa-
ton, t = σ(t1, . . . , tn) ∈ V T and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q, V, δ′, F)
be the multiset tree automaton induced by A. If t ./ s then δ′(t) = δ′(s).

Corolary 2.13 (Sempere and López, [13]) Let A = (Q, V, δ, F) be a tree automa-
ton, MA = (Q, V, δ′, F) the multiset tree automaton induced by A and t ∈ V T . If
t ∈ L(MA) then, for any s ∈ V T such that t ./ s, s ∈ L(MA).

The last results were useful to propose an algorithm to determine whether two
trees are mirror equivalent or not [13]. So, given two trees s and t, we can establish
in time O((min{|t|, |s|})2) if t ./ s.

322 J.M. Sempere, D. López

3 k-testable in the strict sense (k-TSS) multiset tree
languages and reversible multiset tree languages

In the following section, we will define two new classes of multiset tree languages.
The definitions related to multiset tree automata come from the relation between
mirrored trees and multiset tree automata which we have established in the previ-
ous section. So, whenever we refer to multiset tree languages we are taking under
our consideration the set of (mirrored) trees accepted by multiset tree automata.

We refer [6] in order to know more about reversibility and local testability in
tree languages.

First, we define k-TSS tree languages for any k ≥ 2.

Definition 3.1 Let T ⊆ V T and the integer value k ≥ 2. T is a k-TSS multi-
set tree language if and only if, given whatever two trees u1, u2 ∈ V T such that
rootk−1(u1) = rootk−1(u2), u−1

1 T 6= ∅ and u−1
2 T 6= ∅ implies that u−1

1 T = u−1
2 T

Any multiset tree automaton that holds the definition given before will be
named a k-TSS multiset tree automaton. We can give the following characteriza-
tion of such automata.

Corolary 3.2 Let A be a k-TSS multiset tree automaton. There not exist two
distinct states q1, q2 such that rootk(q1) ∩ rootk(q2) 6= ∅

Example 3.3 Consider the multiset tree automaton with transitions:

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, aq2)= q2

δ(σ, q1q1)= q1

δ(σ, aq2q1)= q3 ∈ F

Note that the multiset tree language accepted by the automaton is k-TSS for
any k ≥ 2.

Note also that the following one does not hold the k-TSS condition for any
k ≥ 2:

δ(σ, aa)= q1

δ(σ, bb)= q2

δ(σ, q2q2)= q2

δ(σ, q1q1)= q1

δ(σ, q2q1)= q3 ∈ F

because both the states q1 and q2 (and q3) share a common k-root.

�

We also extend a previous result concerning k-reversible tree languages (for
any k ≥ 0) to give the following definition.

On Two Families of Multiset Tree Automata 323

Definition 3.4 Let T ⊆ V T and the integer value k ≥ 0. T is a k-reversible
multiset tree language if and only if, given whatever two trees u1, u2 ∈ V T such
that rootk−1(u1) = rootk−1(u2), whenever there exists a context t ∈ V T

$ such that
both u1#t, u1#t ∈ T , then u−1

1 T = u−1
2 T

Example 3.5 Consider the multiset tree automaton with transitions:

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, q2q2)= q2

δ(σ, aaq1)= q1

δ(σ, q1q1)= q3 ∈ F
δ(σ, q2q1)= q3 ∈ F

the multiset tree language accepted by this automaton is k-reversible and it is also
an example of non k-TSS multiset tree language.

�

Finally, we can relate the two families of multiset tree languages that we have
previously defined with the following result.

Theorem 3.6 Let T ⊆ V T and an integer value k ≥ 2, if T is k-TSS then T is
(k − 1)-reversible.

Proof.
Let t#t1 and t#t2 belong to T , with t ∈ V T

$ and rootk(t1) = rootk(t2), trivially
t−1
1 T 6= ∅ and t−1

2 T 6= ∅. If T is a k-TSS tree language, then by previous definitions,
t−1
1 T = t−1

2 T , and also T is (k − 1)-reversible. �

4 Conclusions and future work

We have introduced two new families of multiset tree languages. Now, the open
question is the characterization of membrane structures defined by them. We think
that reversibility and local testability will introduce restrictions in the way of
defining membrane creation and deletion. This will be explored in future works.

References

1. A. Alhazov, T.O. Ishdorj: Membrane operations in P systems with active membranes.
In Proc. Second Brainstorming Week on Membrane Computing. TR 01/04 of RGNC,
Sevilla University, 2004, 37–44.

2. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Processing. LNCS
2235, Springer, 2001.

324 J.M. Sempere, D. López

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, M. Tommasi: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997, release October, 1rst 2002.

4. R. Freund, M. Oswald, A. Păun: P systems generating trees. In Pre-proceedings of
Fifth Workshop on Membrane Computing, WMC5 (G. Mauri, Gh. Păun, C. Zandron,
eds.), MolCoNet project IST-2001-32008, 2004, 221–232.

5. F. Gécseg, M. Steinby: Tree languages. In Handbook of Formal Languages, volume 3,
Springer, Berlin, 1997, 1–69.

6. D. López: Inferencia de lenguajes de árboles. PhD Thesis DSIC, Universidad
Politécnica de Valencia, 2003.

7. D. López, J.M. Sempere: Editing distances between membrane structures. In Pro-
ceedings of the 6th International Workshop on Membrane Computing, Vienna, 2005
(R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 3850, Springer, 2006,
326–341.

8. D. López, J. M. Sempere, P. Garćıa: nference of reversible tree languages. IEEE
Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 34, 4 (2004),
1658–1665.

9. A. Păun: On P systems with active membranes. In Proc. of the First Conference on
Unconventionals Models of Computation (UMC2K), 2000, 187–201.

10. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
11. Gh. Păun, Y. Suzuki, H. Tanaka, T. Yokomori: On the power of membrane division

on P systems. In Proc. Conf. on Words, Languages and Combinatorics, Kyoto, 2000.
12. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, 1997.
13. J.M. Sempere, D. López :Recognizing membrane structures with tree automata. In

3rd Brainstorming Week on Membrane Computing, Sevilla, 2005. RGNC Report
01/2005 Research Group on Natural Computing, Sevilla University, Fenix Editora,
Sevilla, 2005, 305–316.

14. J.M. Sempere, D. López: Identifying P rules from membrane structures with an error-
correcting approach. In Proceedings of the 7th International Workshop on Membrane
Computing, Leiden, 2006 (H.J. Hoogeboom, Gh. Păun, G. Rozenberg, A. Salomaa,
eds.), LNCS 4361, Springer, 2006, 507–520.

15. A. Syropoulos: Mathematics of multisets. In [2], 347–358.

Author Index

Alhazov, Artiom, 1
Ardelean, I. Ioan, 21

Bernardini, Francesco, 33
Binder, Aneta, 63
Bonchiş, Cosmin, 73
Borrego-Ropero, Rafael, 87
Busi, Nadia, 97

Ciobanu, Gabriel, 73

Dı́az-Pernil, Daniel, 87, 113

Ferretti, Claudio, 227
Freund, Rudolf, 1, 63, 131

Garćıa-Arnau, Marc, 157
Gheorghe, Marian, 33
Graciani-Dı́az, Carmen, 179
Gutiérrez-Naranjo, Miguel A., 113, 179, 299

Ignat, Mircea, 21
Ionescu, Mihai, 199, 213
Isbaşa, Cornel, 73

Leporati, Alberto, 227
López, Damián, 315

Margenstern, Maurice, 33
Mauri, Giancarlo, 227
Moisescu, Cristina, 21

Nepomuceno, Juan A., 87

Obtu lowicz, Adam, 247

326

Oswald, Marion, 1, 63

Păun, Gheorghe, 131, 263
Pérez, David, 157
Pérez-Jiménez, Mario J., 113, 131, 179, 281

Ramı́rez-Mart́ınez, Daniel, 299
Riscos-Núñez, Agust́ın, 113
Rodŕıguez-Patón, Alfonso, 157

Sburlan, Dragoş, 199, 213
Sempere, José-Maŕıa, 315
Sosik, Petr, 157

Verlan, Sergey, 1, 33
Vock, Lorenz, 63

Yokomori, Takashi, 281

Zandron, Claudio, 227

	BRAVOL_07-281.pdf
	snps_simulator.pdf
	A Software Tool for Dealing with Spiking Neural P Systems
	Daniel Ramírez-Martínez, Miguel A. Gutiérrez-Naranjo

