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Summary. This is a list of research topics prepared on the occasion of the Fourth
Brainstorming Week on Membrane Computing, Sevilla, January 30 – February 3, 2006
(hence the title). The selection is subjective, the presentation is informal (in most cases,
the precise formulation of the question to investigate is already part of the research task),
the bibliographical information is partial (giving only a starting point for searching the
literature; as usual, for a complete bibliography the reader should refer to [36]).

1 Introduction

The present notes mainly intend to keep the tradition of the previous editions of
the Brainstorming, when lists of open problems and research topics were circulated
– see [24, 26, 27]. Also, continuing in an inductive manner the tradition, with the
alternation of lists of twenty six problems, like [24] and [27], and of shorter lists,
like [26], the present collection of problems/research topics is shorter – although,
ambiguously enough, the title would suggest that there are mentioned more than
two thousand problems. . . This does not mean that, if somebody would have
enough time and energy to check the literature, (s)he will not be able to produce
such a long list: the number of precise open problems mentioned in area papers
is really large (with the mentioning that many of these problems are of a rather
technical nature; a good example is that of the borderline between universality
and non-universality for various classes of P systems, when taking into account
descriptional complexity parameters such as the size of rules, the number of mem-
branes, etc., and where many sharp results were obtained, and, if some problems
are still open, they concern pretty small variations of the mentioned parameters –
a few such precise problems will be mentioned in Section 2).

Anyway, I stress the fact that this list is subjective, it contains mainly topics
which I have touched in the last time and which I find of (a personal) interest. In
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some sense, the main goal of this discussion is to call attention to several recently
considered directions of research, not to formulate precise questions. Many other
topics could be more important or more attractive (of course, the importance and
the appeal of a problem is also a context-sensitive issue). This is, for example, the
case with the problems related to the computational complexity investigations,
where rather sound-nice-unexpected results were recently obtained (see, e.g., [12]
and [33]) and where many intriguing open problems and conjectures still wait
for research efforts (and ideas to attack them). In spite of this, in what follows,
only one complexity problem will be formulated, although for sure many related
problems deserve a special attention.

Similarly, it will not be separately considered1 the fundamental issue of appli-
cations in biology and medicine, in general, the problem of keeping a close contact
with the biological reality (and to try to provide models, tools, techniques to the
biologist), although this is (at least in this moment), independently of personal
choices, important for the health and visibility of membrane computing (for get-
ting funding sources, too. . . ). After having several applications which have proved
that multiset processing in the compartmentalized structure of cell-like or tissue-
like P systems is adequate and relevant, reliable and easy to handle, extensible
and easy to understand, etc., etc. (see, e.g., [9]), it is both possible and neces-
sary to prove that this approach is also useful, in the practical sense, as defined
by users from biology and medicine, not by computer scientists working in mem-
brane computing. The short formulation of this issue can be: let us (try to) pass
from post-diction to pre-diction (running our models and programs on research
data, not on data already published, useful only for validating the new approach;
checking hypotheses through computer simulations and providing conclusions to
biologists and physicians, who can then either directly trust these conclusions or
can transform them in next level hypotheses to be checked in laboratories, in the
traditional way).

Another standard caution concerns the fact that the ordering of the re-
search topics below has no significance and that most of the questions are in-
formally/preliminarily formulated. In general, the problems are selected in such
a way that the present list is “as disjoint as possible” from the previous lists, al-
though this is not completely true/posssible, because there are issues which were
considered also before and which deserve now to be formulated in new, up-dated
terms. (In general, a good meta-problem would be to follow the trace of the prob-
lems from the previous lists, checking the literature for solutions to them. This is
not easy, but it can be interesting – and somewhat rewarding: for instance, most
of the problems considered in [24] were solved, or at least addressed and partially
settled. This might motivate the compilation of similar lists, including the present
one. . . ).

1 Well, this paragraph is “separated” enough, hence the issue itself is emphasized enough
in this rhetoric way. . .
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2 Four Jewel–Problems About Borderlines

Finding the borderline between universality and non-universality (reaching or not
the Turing computing power), and between efficiency (solving NP-complete prob-
lems in polynomial time) and non-efficiency is both a mathematical challenge and
a question with a larger significance, including a practical one (non-universality
could mean decidability, efficiency is much desired – provided that it can be im-
plemented). These borderlines can be defined either in a qualitative manner (in-
gredients to be used or not, and making a difference in the power/efficiency of
P systems) or in a quantitative manner (size of parameters, hence descriptional
complexity).

I have selected only four problems of this type, although many others can be
found in the literature, and I have called them “jewels” because they deal with
basic classes of P systems and refer to very small differences in the used features
and/or the size of parameters; implicitly, this also means that there were many
efforts spent around these problems, before arriving to the tinny space where the
borderline has to be found.

The first problem is already classic: catalytic P systems are universal when
using at least two catalysts ([10]), but not when using only one catalyst and having
all rules catalytic (each rule is of the form ca → cu; see [14]), but the case of systems
with one catalyst and using both catalytic and non-catalytic rules (ca → cu and
a → u, where a is an object, u is a multiset, and c is the catalyst) is still open. In
both proofs from [10] and [14] one uses only one membrane, with the catalyst(s)
ignored when counting the result in the halting configuration.

A similarly restricted space to search the borderline between universality and
non-universality is available now for P systems with symport/antiport rules: sys-
tems with three membranes are known to be universal when using minimal symport
and antiport rules (sym1 and anti1), or only symport rules of weight at most 2
(sym2), but the case of two membranes is open. For two membranes, universality
results were obtained only modulo a terminal alphabet, or when ignoring numbers
smaller than a given threshold – see details and more precise definitions in [1].
Are two membranes universal in the “pure” case, when no additional symbols are
allowed?

Related to symport/antiport systems, but playing now with the number of
objects used in the system, is the following problem. Having a restricted number
of objects, the rules cannot be of a bounded weight (or can they, at least “par-
tially”, for instance, using bounded symport rules and arbitrary antiport rules, or
conversely?), hence a trade-off has appeared between the number n of objects and
the number m of membranes. The following results are the currently best ones
in this respect (see again [1]): systems with (n,m) ∈ {(5, 1), (4, 2), (3, 3), (2, 4)}
are universal. The problem is open whether or not systems with one object and
any number of membranes are universal. (The conjecture is that the answer is
negative.)
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After three problems concerning the universality non-universality borderline,
let us consider one jewel–problem concerning the efficiency non-efficiency border-
line. It was several times asked the question whether or not P systems with active
membranes (hence using membrane division) can solve NP-complete problems
in polynomial time without using membrane polarizations (with the conjecture
that the answer is negative – of course, without adding further features, such as
label changing, cooperation, etc.) Actually, it turned out that the problem and
the conjecture should take into consideration also other “actors”, among them,
surprisingly, being necessary to include the “innocent looking” operation of mem-
brane dissolution. Indeed, as proved in [12], P systems without polarizations, us-
ing membrane division for only elementary membranes or also for non-elementary
membranes, with the construction uniform or semi-uniform, solve in polynomial
time exactly the problems in the classical class P, provided that the operation of
membrane dissolution is not allowed. Adding membrane dissolution changes dras-
tically the result, at least in the case when division of non-elementary membranes
is allowed and the construction is semi-uniform: NP-complete problems can be
solved in polynomial time in this framework.

Thus, the borderline between efficiency and non-efficiency is defined in terms
of the following features: (i) membrane dissolution, (ii) constructing the system
in a non-uniform way, and (iii) using membrane division also for non-elementary
membranes (of course, in all cases, the membranes do not have polarizations).
Somewhere between using none of these features and using all of them lies the
borderline we look for (in the proofs from [12], essential was the use/non-use of
membrane dissolution).

I stop here with such technical problems (four jewels are anyway a good col-
lection. . . ), and pass now to more general research topics.

3 Where Is the Nucleus?

This question was raised by S. Istrail during the recent Unconventional Compu-
tation conference (October 2005, Sevilla). It is simple and provocative. We claim
to start from the cell, the eukaryotic cell has a membrane/region which plays a
central role in its life, the nucleus. How to bring this in our models? Of course,
it is not sufficient to design a membrane of a P system as the distinguished one
called “nucleus”, but to consider a class of systems where this membrane behaves
like the nucleus of a cell. A first possible answer to this challenge is to place in
this special membrane somewhat like a genome, containing the description of the
whole cell (actually, organism), a DNA-like support of information which would
codify the whole architecture and functioning of the system.

At this general level, this issue is directly related to the question several times
formulated of self-reproduction of P systems. Is this a way to address this latter
question?

We can, however, be less ambitious and try to put in the nucleus only data
about the functioning of the system, not also about its structure. Otherwise stated,
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the membranes are given, but they are empty, they contain no objects and no rules,
objects are placed only in the nucleus. Some of these objects can codify standard
evolution rules, others can codify usual objects, to be evolved by the rules in the
compartments of the system.

For instance, we can place in the nucleus tokens of the form 〈u → v〉, where
u and v are multisets of objects over a given alphabet O, as well as tokens of the
form 〈u〉, where u is a multiset over O. Some “promoters” should be also placed
in the nucleus, in the form of simple objects a ∈ O.

Then, we provide “transcription rules” (more neutrally, we can say “decoding
rules”) of the forms

〈u → v〉b → 〈u → v〉〈u → v; @h〉,
〈u〉b → 〈u〉〈u; @h〉,

where b ∈ O plays the role of a promoter for “expressing the genes” 〈u → v〉 and
〈u〉. The idea is that in the presence of b, the “genes” 〈u → v〉 and 〈u〉 produce a
copy of the rule u → v and of the multiset u, which have as destination region h of
the system; the operation consumes the promoter b, but reproduces the “genes”.
In turn, the rule u → v and the multiset u will move towards region h, on the
shortest path to the destination, crossing one membrane in each time unit. During
this journey, the rule and the multiset are not active (they are encapsulated in the
“vesicle” 〈. . .〉), and they become active only after reaching region h.

In the regions of the system, the rules and the objects behave as usual in
membrane computing (the rules are applied in a specified way – maximally parallel,
minimally parallel, sequentially – to the existing objects, non-deterministically
choosing the rules and the objects), with the following important difference: the
rules are present in the multiset sense, and, after being used, they are consumed.
For instance, if two copies of a rule aa → bc were sent to membrane i and there
are three copies of a available, then one rule disappears, and the resulting multiset
is abc; if there are five copies of a, then both rules are consumed and we get the
multiset abbcc.

The objects introduced by rules can have usual target indications, hence in this
way certain objects can be sent to the nucleus, thus promoting the expression of
further “genes”.

At the first sight, the “life” of such a system is much different from the evo-
lution of a usual P system – but this intuition remains to be checked, starting
with more precise definitions of the system components and the system function-
ing. Then, the research topics which naturally appear in this context are many –
besides the above-mentioned issue of self-reproduction. The previous idea can be
formulated for various types of P systems (for various types of rules); which ones
are more attractive? Which is the computing power of such systems? Because the
universality is plausible (for specific ingredients), it is natural then to ask which
is the size (of nucleus) of minimal universal systems? Which is the minimal size
of a system with a non-trivial (infinite, cyclic, non-cyclic, complex enough from
specific points of view) evolution?
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4 The Brane-Membrane Bridge

Staying close to biology, let us point out that recently ([5]) a research area some-
what complementary to membrane computing was initiated, with the same starting
point, the living cell, but focusing mainly on the operations which directly involve
membranes, under the control of proteins embedded in them, and letting aside
the biochemistry taking place in the compartments. Two main so-called brane cal-
culi were introduced, based on pino-exo-phago and mate-drip-bud operations. The
framework and techniques used are those of process algebra, and an important
difference from the standard P systems is the fact that the systems introduced
in this area are unsynchronized. This is essential in what concerns the comput-
ing power of the obtained systems: synchronized brane systems are non-universal,
while synchronized systems are universal – see details in [4], [3].

However, the bridge between brane calculi and membrane computing can be
established in various ways, and it looks rather fruitful theoretically. The simple
starting idea is to consider P systems with brane-like operations with membranes.
This was already done in [6] for the mate-drip operations, which were shown to
lead to universality; other combinations of operations still wait to be considered –
with the mentioning that in [19] there are results of this kind.

A different approach is that considered in [7], where objects are placed both in
the regions and on the membranes of a P system, and they evolve both by means
of membrane operations and directly, by means of multiset rewriting rules; the
objects can move from membranes to regions and conversely. A restricted frame-
work is investigated in [22], where the membranes have “proteins” placed on them,
and the objects from the compartments evolve by means of symport/antiport-like
rules which are controlled by the proteins. Specifically, rules of several forms are
considered (the fact that a protein p is on a membrane (with label) i is written in
the form [

i
p|; “res” indicates that we use here rules of a “restricted” form):

Type Rule Effect
1res [ ip|a → [ ip|b

a[
i
p| → b[

i
p| modify an object, but not move

2res [
i
p|a → a[

i
p|

a[
i
p| → [

i
p|a move one object unmodified

3res [
i
p|a → b[

i
p|

a[
i
p| → [

i
p|b modify and move one object

4res a[
i
p|b → b[

i
p|a interchange two objects

5res a[
i
p|b → c[

i
p|d interchange and modify two objects

In these rules, the protein is not changed, but a generalization is to allow
rules of the forms below (now, “cp” means “change protein”), where p, p′ are two
proteins (possibly equal; if p = p′, then the rules of type cp become rules of type
res):
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Type Rule Effect (besides changing also the protein)
1cp [

i
p|a → [

i
p′|b

a[
i
p| → b[

i
p′| modify an object, but not move

2cp [
i
p|a → a[

i
p′|

a[
i
p| → [

i
p′|a move one object unmodified

3cp [
i
p|a → b[

i
p′|

a[ ip| → [ ip
′|b modify and move one object

4cp a[ ip|b → b[ ip
′|a interchange two objects

5cp a[ ip|b → c[ ip|d interchange and modify two objects

An intermediate case can be that of changing proteins, but in a restricted
manner, by allowing at most two states for each protein, p, p̄, and the rules either
as in the first table (without changing the protein), or changing from p to p̄ and
back (like in the case of bistable catalysts). Rules with such flip-flop proteins are
denoted by nff, n = 1, 2, 3, 4, 5 (note that in this case we allow both rules which
do not change the protein and rules which switch from p to p̄ and back).

Various combinations of these rules were shown in [22] to be universal, but still
several combinations wait to be examined.

Besides these specific problems, the general issue of combining ideas from the
two areas, brane calculi and membrane computing, deserves to be emphasized as
an interesting research topic – at least because the cell does not separate its life in
two distinct biochemistries, one considering what happens in compartments and
one considering the membranes themselves. . .

5 Spiking Neural P Systems

The question of incorporating ideas from neuro-biology into membrane computing
was formulated several times as a research topic, and there are several contributions
to this issue, including a chapter in [25]. Still, this research direction is not at
all explored as it deserves to be; the neurons functioning and especially their
cooperation in various constructions, the brain included, is a huge source of ideas.
Recent contributions were added to this topic by introducing so-called spiking
neural P systems, which capture the important idea of neural biology concerning
the way the neurons communicate by means of “spikes”, electrical impulses of
identical intensity and shape, but occurring at time moments which are carrying
information in the distance between them. We refer to [20], [21] for details and
further references about the biological processes related to spiking and about the
way they are used in neural computing (one speaks in the last years about a “third
generation” neural computing based on spiking neurons).

The way the idea is modeled in terms of P systems is rather simple: one con-
siders only one type of objects, the spike, denoted by a, and neurons linked by
synapses (elementary membranes placed in the nodes of a directed graph), con-
taining spikes and rules for handling them. These rules are of two forms:

(1) E/ar → a; t, where E is a regular expression over {a}, r ≥ 1, and t ≥ 0;
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(2) as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any rule
E/ar → a; t of type (1) from the same neuron.

The rules of type (1) are firing (we also say spiking) rules, the rules of type (2)
are forgetting rules.

A neuron gets fired when using a rule E/ar → a; t, and this is possible only
if the neuron contains n spikes such that an ∈ L(E) and n ≥ r. This means that
the regular expression E “covers” exactly the contents of the neuron. The use of
a rule E/ar → a; t in a step q means firing in step q and spiking in step q + t.
That is, if t = 0, then the spike is produced immediately, in the same step when
the rule is used. If t = 1, then the spike will leave the neuron in the next step, and
so on. In the interval between using the rule and releasing the spike, the neuron is
assumed closed (in the refractory period), hence it cannot receive further spikes,
and, of course, cannot fire again. This means that if t ≥ 1 and another neuron
emits a spike in any moment q, q + 1, . . . , q + t− 1, then its spike will not pass to
the neuron which has used the rule E/ar → a; t in step q. In the moment when
the spike is emitted, the neuron can receive new spikes (it is now free of internal
electricity and can receive new electrical impulses). This means that if t = 0, then
no restriction is imposed, the neuron can receive spikes in the same step when
using the rule. Similarly, the neuron can receive spikes in moment t, in the case
t ≥ 1.

If a neuron σi spikes, its spike is replicated in such a way that one spike is sent
to all neurons σj such that there is a synapse from σi to σj (we write (i, j) ∈ syn),
and σj is open at that moment. If a neuron σi fires and either it has no outgoing
synapse, or all neurons σj such that (i, j) ∈ syn are closed, then the spike of
neuron σi is lost; the firing is allowed, it takes place, but it produces no spike.

By using a forgetting rule as → λ, s spikes are simply removed (“forgotten”).
Like in the case of spiking rules, the left hand side of a forgetting rule must “cover”
the contents of the neuron, that is, as → λ is applied only if the neuron contains
exactly s spikes.

Note that each neuron uses at most one rule at a time – hence the neurons
work in a sequential manner (but the system itself is synchronized: in each time
unit, each neuron which can use a rule should do it).

One of the neurons is designated as the output neuron of the system and when
it spikes, besides spikes sent to other neurons along synapses, a spike is also sent to
the environment. In this way, the system produces a spike train, a sequence of time
units when we have spikes leaving the system. The number of steps elapsed between
two consecutive spikes can be considered as being computed by the system, with
many possibilities to define the computed set of numbers: taking all intervals,
taking only the interval between the first two spikes, considering alternately the
intervals (we take the first interval, we ignore the second one, we take the third
interval, and so on), considering all computations or only the halting ones. In this
way, the spiking neural P systems behave as number computing devices. It is also
possible to consider the spike train itself as the output of a computation, codified
as a binary sequence: we write 1 for a time unit when the system sends a spike into
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the environment and 0 for a time unit when no spike is sent out. In the non-halting
case we get then an infinite binary sequence. If also input neurons are considered,
then we can work in the accepting case or even with spiking neural P systems as
transducers of binary strings/sequences.

The system from Figure 1 illustrates this discussion, and it also introduces the
way of graphically representing a spiking neural P system working in the generating
mode: neurons (represented by ovals) placed in the nodes of a graph whose edges
represent the synapses, with the output neuron also having an arrow pointing to
the environment; in each neuron we specify the existing spikes and the rules. In
turn, if a firing rule E/ar → a; d has L(E) = {ar}, then we write it in the simpler
form ar → a; d.
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Fig. 1. A non-deterministic SN P system with infinite spike trains

The reader can check that this system generates the spike trains described by
the binary sequences of the forms 1k0ω, for all k ≥ 2.

Many of the above mentioned possibilities of using a spiking neural P systems
were considered in [15], [30], [31], and part of them were also investigated in some
detail. In particular, two main results were proved in [15] for the case of considering
only the distance between the first two spikes, and then extended in [30] to many
other cases:

1. universality in the case when no bound is imposed on the number of spikes
present in neurons,

2. a characterization of semilinear sets of numbers when the number of spikes
present in the neurons is bounded.
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The universality result is obtained for systems with a small number of rules in
each neuron (at most two), and small numbers of spikes consumed in firing and
forgetting rules (at most three), but without any bound on the number of neurons.
Improving the proof from this point of view as well as many other open problems
were formulated in the mentioned papers.

A lot of problems are also open in what concerns the case of infinite sequences,
starting with the necessary comparison of the family of sequences computed in
this framework with infinite sequences recognized by finite automata, by Turing
machines, or appearing in other areas (see, e.g., [32], [34], [35]).

Not mentioned in the papers cited above is the following natural question: how
can a spiking neural P system compute a string? Taking prefixes or subwords of
spike trains is one possibility. Working with halting computations and considering
the binary description of their spike trains is another possibility. More flexible is
the idea of looking for representations of languages in terms of languages produced
by spiking neural P systems (e.g., via a gsm mapping, which can discard a finite
prefix and an infinite suffix of a spike train, maybe also translating the remaining
subsequence). This seems to be a non-trivial task, which however might be more
feasible if we import an idea from neural-like P systems as discussed in [25] to
spiking neural P systems: associating a state to each neuron, and using the states
in rules of the following forms

(1) qE/ar → q′a; t, where E is a regular expression over {a}, r ≥ 1, t ≥ 0;
(2) qas → q′, for some s ≥ 1,

with q, q′ being states of the neuron (changed in this way when using the rules).
The study of such systems remains to be carried out (are states useful also

from other points of view, for instance, in order to find representations also for
Turing computable infinite sequences of bits?). The question still looks non-trivial,
at least in the previous formalization, because the states are local, there is no way
to communicate among neurons other than by spikes, as in the systems without
states. Maybe also relaxing the condition of not having forgetting rules as → λ
with as ∈ L(E) for firing rules E/ar → a; t can also help (a further degree of
non-determinism is then allowed).

Not touched in the above mentioned papers are other issues which are natural
to be considered, importing them from classic neural computing or from biology:
learning, adaptation, self healing, etc., which actually are not explored yet in
membrane computing in general.

6 Applications in Economics

This is another possible area of applications, which promises to be fruitful both
from a theoretical point of view, through the many suggestions coming from econ-
omy, and from a practical point of view. Some attempts towards using P systems
as a framework for modeling economic processes were made in [29] (with several
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previous applications, of a more specific type, being reported by the Polish group of
researchers in membrane computing, see, e.g., [17] and the references therein). One
starts from the encouraging observation that many processes taking place in econ-
omy are of a “chemical type”: handling discrete objects, by means of “reactions”
which transform certain objects in other objects. The versatility of the multiset
rewriting was convincingly proved in [29], by considering an idealized case study, of
a producers-retailers interplay, similar to a market functioning (with prices varying
according to the agents behavior and commodities abundance), while the software
previously used to simulate biological processes was successfully used to simulate
this idealized economic process.

Still, many difficulties (differences from the biological framework) were identi-
fied: the role played by psycho-social ingredients (the trust between agents, based
on the history of their previous collaboration), the long-distance transmembrane
communication, across several membranes in one step, the need to have perfor-
mance criteria for choosing the rules to apply (minimizing the costs and maximiz-
ing the profit), and do on. All these make necessary both considering new types
of P systems, but also to write new programs for simulating them. The possible
reward makes this effort worth carrying out, because, although the use of mathe-
matical models in economics has a long and successful history, still the economists
are looking for new tools/techniques especially of a computational type: just be-
cause the economy is so much influenced by human factors, as those mentioned
above, classic mathematical models are not always useful and heuristic approaches
are preferred, based on computer simulations, experiments, adjustments of para-
meters, and so on – much similar to biological experiments.

This is a work to be done mainly in collaboration with an economist, but
also many theoretical aspects appear in this framework. One example is that of
numerical P systems, introduced in [28]. They are rather different in style from
usual P systems, so that I introduce them in some details, using the example
presented in Figure 2.

In the regions of a membrane structure, we have numerical variables and
production-repartition programs. Such a program (program l from region i) is of
the form

prl,i = (Fl,i(x1,i, . . . , xki,i), cl,1|v1 + cl,2|v2 + . . . + cl,ni |vni),

where Fl,i(x1,i, . . . , xki,i) is the “production function” and cl,1|v1 + cl,2|v2 +
. . . + cl,ni |vni defines the “repartition protocol”. Specifically, we proceed as fol-
lows. Denote Cl,i =

∑ni

s=1 cl,s. We start with given initial values for variables
(indicated in square brackets in Figure 2). At any time t ≥ 0, we compute
Fl,i(x1,i(t), . . . , xki,i(t)). The value q = Fl,i(x1,i(t), . . . ,xki,i(t))/Cl,i represents the
“unitary portion” to be distributed to variables v1, . . . , vni , according to coeffi-
cients cl,1, . . . , cl,ni in order to obtain the values of these variables at time t + 1.
Specifically, vl,s will receive q · cl,s, 1 ≤ s ≤ ni. If a variable receives such “contri-
butions” from several neighboring compartments, then they are added in order to
produce the next value of the variable. A variable used in a production function is
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Fig. 2. An example of a numerical P system

consumed, reset to 0; if a variable does not appear in a production function, then
its value remains unchanged – of course, it can increase by receiving “production
portions” from its region or from the neighboring regions.

In this way, we pass from given values of the variables to next values.
The system can be considered as a number computing device by taking as the

results of a computation all positive values assumed during the computation by a
specified variable from a specified membrane. In such a case, universality is proved
in [28] for numerical P systems with a small number of membranes (eight and
seven), using polynomials as production functions of rather low degrees and with
a small number of variables (degree five in both cases, and five and six variables,
respectively).

Of course, the above parameters need to be checked for optimality. Many other
research topics are formulated in [28], but we do not recall them here as it is
possible that the reader will have his/her own favorite problems about these sys-
tems – in general, concerning the applications in economics and related theoretical
developments.
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7 A Quick Mentioning of Other Topics

As said in the Introduction, the primary goal of these notes is not to mention
precise problems, but mainly to call reader’s attention to some recent ideas which
promise to have fruitful continuations.

One such idea is that of minimal parallelism, proposed in [8] and then investi-
gated in [16]: instead of the maximally parallel mode of using the rules (choosing
a multiset of rules which is maximal, no further rule can be applied), let us ask
that from each set of rules (associated with a region or with a membrane), if at
least one rule can be applied, then at least one must be applied; if more rules can
be used, then any number of rules may be applied, the only restriction (hence the
only information) is to have at least one. Clearly, this is much more relaxed than
the maximal parallelism (and also than the sequential mode, where at most one
rule is applied), hence at the first sight this way of using the rules is weaker and
more difficult to handle than the maximal mode. This is somewhat confirmed in
the papers mentioned above, where universality results were obtained by adding
certain ingredients to systems known to be universal in the maximally parallel
case without those ingredients. Improving these results and considering the mini-
mal parallelism also for other classes of P systems remain as an attractive research
topics.

Another interesting combination of ingredients was considered in [23]: P sys-
tems with string-objects, processed by context-free rewriting rules (such systems
are known not to be universal) without target indications, and with symport-like
rules for transporting strings across membranes. These symport rules are of the
form (E, in) or (E, out), where E is a regular expression. The idea is that a string
which belongs to L(E) can be moved as indicated by the rule. Interesting enough,
very particular forms of the regular expressions used in the transport rules suffice
for universality; consider expressions of the next forms:

1. E = U∗
1 WU∗

2 or E = U∗,
2. E = U∗W , E = WU∗, or E = U∗,
3. E = U∗,

where U , U1, U2 are alphabets and W is a set of symbols.
Rewriting-symport systems with symport rules of types 1 and 2 characterize

RE, and those with rules of type 3 characterize ET0L – with the important
mentioning that the universality is proved for systems with an arbitrary number
of membranes, hence the problem arises to find a bound on this number.

This type of P systems is illustrative for a more general idea, of combining
ingredients of classes of P systems which were never combined, such as string-
objects with operations or rules used traditionally only for symbol-objects.

A sort of magical procedure in molecular computing (and nano-technology) is
self-assembly, the self-running processes which build higher order structures from
simple starting “bricks” – see more accurate definitions as well as references in [18].
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Thus, self-assembly means first self- and then -assembly, which makes interesting
to consider as a general case the self-running processes – as any computation in
a P system can be considered: because there is no sequencing of instructions, like
in a usual programming language, the rules from a region of a P system can be
considered as a “program” which works in an opportunistic manner (data driven),
thus, somewhat like in self-assembly. To be closer to the self-assembly philosophy,
it is of interest to consider cases where the “elementary bricks” are as simple as
possible, and this was the strategy recently followed in [11]. A class of population
P systems were considered, with cells of a very restricted form (able of only two
simple operations, multiset rewriting and objects exchange with neighboring cells,
and with only one exit and one entering channel, which establish links between
cells), which evolve in a sort of self-running/self-assembly manner and lead to a
surprising emergent result (with universality again, for reduced values of parame-
ters, e.g., the number of types of cells).

Related research is worth carrying out, as self-assembly can provide nice com-
puting (and complex systems) ideas.

A sort of constant challenge in natural computing is to check in what extent
classic levels of computability are “natural”, they correspond to levels of com-
putability defined in bio-inspired terms. The typical example is that of DNA com-
puting by splicing, where regular languages and recursively enumerable languages
have direct (and in many cases easy) characterizations, but this is not the case
with other intermediate families of languages, such as the linear, context-free, and
context-sensitive languages.

The situation is the same in membrane computing, with the additional diffi-
culty (which sometimes makes the problem senseless) that we mainly work with
sets of numbers and the length sets of regular, linear, and context-free languages
(matrix languages without appearance checking included) are the same. However,
when considering the result of a computation defined in the external mode, as the
sequence of symbols which exit the system, we deal with strings, hence the prob-
lem becomes relevant whether or not languages of other types than the regular
and the recursively enumerable ones can be characterized.

Recently, a characterization of context-sensitive languages was obtained in [13],
using the following type of symport/antiport P systems: one considers accepting
one-membrane systems, with an input alphabet Σ ⊆ O containing a distinguished
symbol $ (the end marker), the environment containing all objects from O − Σ
(and no object from Σ), and rules of the following four types:

1. (u, out; v, in), where u, v ∈ (V −Σ)∗ with |u| ≥ |v|.
2. (u, out; va, in), where u, v ∈ (V − Σ)∗ with |u| ≥ |v|, and a ∈ Σ. A rule of

this type is called a read-rule.
3. (u, out; v, in)|a, where u, v ∈ (V − Σ)∗, and a ∈ Σ (a is a promoter). Note

that there is no restriction on the relative lengths of u and v. In particular,
the length of v can be greater than the length of u.
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4. For every a ∈ Σ, there is at least one rule of the form (a, out; v, in) in the set
R1, where v ∈ (V − Σ)∗. Moreover, this is the only type of rules for which a
can appear on the left part of the rule.

Such a system accepts a language in the following way. An input string x =
a1 . . . an$, where ai is in Σ − {$} for 1 ≤ i ≤ n, is provided in the environment.
The symbols are brought into the system in the order they appear in x by means of
read-rules (i.e., rules of the form (u, out; va, in)), maybe several applied at the same
step, due to the maximal parallelism of using the rules. Note that rules of types
1, 3, and 4 do not consume any input symbol from x and that any symbol a ∈ Σ
that is imported from the environment by a rule of type 2 is always transported
back to the environment in the following step by a rule of type 4. When a rule
of type 4 is applied, the symbol a that is exported to the environment does not
get inserted to the input string, that is, it is never brought again in the system. A
string is accepted if, after reading it completely, the computation eventually halts.

Systems of this type characterize the context-sensitive languages; if some re-
strictions are removed or certain changes are made in the definition, then univer-
sality results are obtained or characterizations of regular languages.

No characterization of linear or of context-free languages is given in [13]. This
remains as a part of a general research topic: find characterizations of language
families from Chomsky hierarchy, Lindenmayer hierarchies, Marcus contextual hi-
erarchies, in terms of symport/antiport systems or of other types of P systems
which generate/recognize languages.
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26. Gh. Păun: Further open problems in membrane computing: Proc. Second Brainstorm-

ing Week on Membrane Computing, Sevilla, 2004, TR 01/04 of Research Group on
Natural Computing, Sevilla University, 2004, 354–365.
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