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Summary. The relationships existing between MP graphs, metabolic P systems, and
ODE systems are investigated. Formal results show that every MP system, once derived
by its MP graph, results in an ODE system whose solution equals, in the limit, the solution
obtained by a non-cooperative MP system that is ODE equivalent to the original one.
The freedom of choice of the ODE equivalent from the original MP system resembles the
same freedom which is left in the choice and optimization of a numerical scheme while
computing the solution of an ODE system.

1 Introduction

MP systems [10] reconsider P systems [12] by including a deterministic procedure
for their computation. This procedure, called metabolic algorithm [4], aims at
capturing the salient chemical mechanisms that are responsible of the dynamics
of a wide class of biomolecular processes [1].

For the sake of their comprehension, MP systems can be well represented by
MP graphs [11]. MP graphs, in fact, yield an immediate depiction of the structural
aspects of a biodynamic model which is similar, meanwhile not under-determined,
to that offered by other graphical representation such as signal transduction net-
works, metabolic pathways and so on [9].

MP systems have shown effective for modeling the dynamics of several bio-
chemical processes [5, 3, 2]. Despite this, some concern arises when comparing, for
a given process, the quantitative conclusions that are drawn with MP systems with
the results coming out by the numerical simulation, made using known methods
[7], of more traditional differential equation-based models [8].

In this paper we analyze the relationships existing between MP and ordinary
differential equation (ODE) systems. Originally started in a study of predator-prey
models [6], the analysis is here proposed in a more systematic formal arrangement.
Application examples are under development.
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2 Differential Equation Systems of Biochemical Reaction
Mechanisms

A general autonomous system of differential equations in the functions x1(t), . . . ,
xN (t) can be put in the following form [8].

x′1 = g1(x1, . . . , xN ),
. . . (1)

x′N = gN (x1, . . . , xN ),

where x′1, . . . , x
′
N are time derivatives of x1, . . . , xN and g1, . . . , gN are time-

independent nonlinear functions.
Biochemical reaction mechanisms are usually described by systems having a

structure as in (1), in which g1, . . . , gN are polynomials in the variables x1, . . . , xN .
For instance, such a structure is adopted in Stoichiometric Network Analysis (SNA)
[13], where the system has the form

x′i =
r∑

j=1

νijkj

N∏

i=1

x
kij

i =
r∑

j=1

νijνj , i = 1, . . . , N, (2)

and x1, . . . , xN are to be read as concentrations of the elements participating to a
complex reaction.

The differential equations systems we deal with in this paper in general can
have the form (1). Though, in most application cases we will encounter differential
equations as those described by (2).

3 Metabolic P Graphs

Various graphic formalizations of coupled chemical reactions and biochemical
processes exist in the literature [13]. By our side, we work with metabolic P
(MP) graphs [11]. These networks allow for much flexibility in the definition of
a metabolic process, furthermore they put the accent on the role of biochemical
elements in the reaction, that is, either to be consumed by the chemical transfor-
mation or to act as promoters/enzymes without being consumed.

We give, here, a compact definition of an MP graph, and refer the reader to
the cited references for a more comprehensive treatment.

Definition 1 (MP graph). An MP graph is a graph made of

• source nodes, denoted as white-filled triangles;
• element nodes denoted as white-filled circles and labeled by element names;
• reaction nodes denoted as black-filled circles and labeled by reaction names;
• regulation nodes denoted as black-filled squares and labeled by functions of ele-

ment variables (every variable is associated to an element);
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(a) (c) (d)(b) (e)

Fig. 1. MP graph connections.

• sink nodes denoted as white-filled triangles;
• branches connecting source, element, reaction, and sink nodes, according to the

representation given in Figure 1 where we distinguish solid and dashed line
connections with or without orientation.

MP graphs are designed to have a direct association with the components that
form a reaction. More precisely, we associate

• every source node to a gate;
• every element node to a reactant;
• every reaction node to a reaction;
• every regulation node to a reaction rate;
• every sink node to an outgoing gate.

3.1 From MP graphs to metabolic P systems

An MP graph translates into a metabolic P (MP) system made of one membrane
as soon as an initial state is given. The peculiarity of MP systems is that their
dynamics is governed by the metabolic algorithm [4]. We address them in short,
while referring the reader to [11] for a thorough definition.

Definition 2 (MP system). An MP system is a construct (T, Q,R, F, q0), where:

• T = {Xi | i = 1, . . . , N} is the set of symbols;
• Q is the set of possible states; every state is a function q : T → R from symbols

to real numbers R, where for every X ∈ T , q(X) is the amount of substance of
type X;

• R = {ri | i = 1, . . . , L} is the set of rules, i.e., pairs of strings made over T ;
• F = {fi | i = 1, . . . , L} is the set of reaction maps, where fi : Q → R;
• q0, the initial state, is an element in Q.

From this definition it emerges that we import reacting elements, amounts, re-
actions, and reaction rates into an MP system directly. Then, the MP system
computes the network dynamics according to the metabolic algorithm and up-
dates its state Q at every transition. In the following we will see that the state has
a direct correspondence with the concentrations xi, i = 1, . . . , N , appearing in the
ODE (1).

The translation from MP graphs to MP systems is made using the following
procedure:
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Procedure 3.1 (From MP graphs to MP rules) Visit all reaction nodes of
the MP graph. For every reaction node rk, k = 1, . . . , L, we do the following:

• Define the rule

rk : Xk,1 · · ·Xk,n → Xk,n+1 · · ·Xk,n+l, (3)

where Xk,1, . . . , Xk,n ∈ T refer to element nodes incoming to the reaction node
rk and Xk,n+1, . . . , Xk,n+l ∈ T refer to element nodes outgoing from the reac-
tion node rk.
In particular, if only a source node exists for the reaction node, then we simply
have () or λ in place of those symbols,
Should only an outgoing branch exist for the same reaction node, leading to a
sink node, then the right part of the rule will be () or λ.

• Define the reaction map fk by importing the label fk from the corresponding
regulation node.

In this way we have assigned to our MP system a rule set that, along with the
corresponding reaction maps, given an initial state allows to compute the evolution
of a MP system according to the metabolic algorithm.

3.2 From MP to ODE systems

Let [11]:

• αr be the left part of the rule r;
• βr be the right part of the rule r;
• hr(X) be the number of occurrences of X in αr;
• gr(X) be the number of occurrences of X in βr;
• Sub(r) be the set containing the symbols appearing in the left part of the rule

r, i.e., the substrate of r;
• RSub(X) = {r ∈ R | X ∈ Sub(r)};
• Rβ(X) = {r ∈ R | X appears in βr};
• P (r) =

∏
X∈Sub(r) q(X)hr(X).

A way to translate MP into ODE systems is given by the following

Algorithm 3.1 (MP-ODE) Consider an MP system containing N symbols and
L reactions. Consider an ODE system made of N equations. For every symbol
X ∈ T define the ODE equation (x′ is the derivative with respect to the time
variable):

x′ =
∑

r∈Rβ(X)

gr(X)frP (r)−
∑

r∈RSub(X)

hr(X)frP (r). (4)
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Note that hr(X) and gr(X) are equal to zero when X does not appear in the
left and right part of r, respectively. Hence, (4) can be rewritten in the following
more compact form:

x′ =
∑

r∈R

{gr(X)− hr(X)}frP (r). (5)

Furthermore, note that a symbol X appearing both in the left and the right part
of the rule r, with hr(X) = gr(X), translates into a null component of equation
(5). In fact, by (3) we get gr(X)− hr(X) = 0 for the component of x′ indexed by
r in the summation in (5). If this happens for all rules, then we have x′ = 0 (e.g.,
X is neither created nor consumed).

4 Non-cooperative MP Systems

Definition 3 (Non-cooperative MP system). A non-cooperative MP system
is an MP system whose rules are non-cooperative, e.g., αr ∈ T for every r.

It is immediate to see that a non-cooperative MP system is associated with an MP
graph in which no more than one branch comes to every reaction node.

Non-cooperative MP systems provided with transparent rules [4] have a re-
markable characteristics when the reaction maps associated to such rules are all
equal.

Let us add, in an MP system containing N symbols, the following rules and
corresponding reaction maps, all of them being equal to the constant φ.

ρ1 : X1 → X1, φ1 = φ,

...
...

ρN : XN → XN , φN = φ.

(6)

Theorem 1. The computation of a non-cooperative MP system provided with
transparent rules that are all equal to the value φ converges, as φ → ∞, to the
solution provided by the ODE system obtained by using MP-ODE.

Proof. Let us compute every reaction weight Wr(X), r ∈ R, X ∈ Sub(r) [4]. Since,
by non-cooperation, Sub(r) = X, the reaction weights depend on only one symbol.
For this reason we denote them simply as Wr:

Wr =
fr

φ +
∑

ρ∈RSub(Sub(r))

fρ

=
fr

φ + γr
, r ∈ R, (7)
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where we have introduced the term γr for compactness of the notation. In this
way, for every X ∈ T the variation of q(X) at every system transition is equal to
[11]:

∆q(X) =
∑

r∈Rβ(X)

gr(X)WrP (r)−
∑

r∈RSub(X)

hr(X)WrP (r) (8)

=
∑

r∈Rβ(X)

gr(X)
fr

φ + γr
q(Sub(r))−

∑

r∈RSub(X)

fr

φ + γr
q(X),

where we have used (7) and the fact that if Sub(r) contains one symbol, then
P (r) = q(Sub(r)) and hr(Sub(r)) = 1.

By noticing that for every r ∈ R we have

Wr =
fr

φ + γr
=

1
φ

fr

1 + γr/φ
, (9)

from (8) we can immediately compute the limit

lim
φ→∞

φ∆q(X) =
∑

r∈Rβ(X)

gr(X)frq(Sub(r))−
∑

r∈RSub(X)

frq(X) . (10)

Now, suppose that our MP system performs a transition every T seconds. By
denoting with q(X)[t] the state at time t we can express the variation of q(X)
between two subsequent transitions as

∆q(X) = q(X)[t + T ]− q(X)[t] . (11)

Suppose also that the finer the granularity of the observation, the shorter the
transition time. This relation between time and granularity implies that the portion
of objects participating to a reaction becomes smaller as much as the time between
subsequent transitions becomes shorter.

Granularity can be managed in the MP system by tuning the value of φ. More
precisely:

lim
T→0

q(X)[t + T ]− q(X)[t]
T

= lim
φ→∞

q(X)[t + 1/φ]− q(X)[t]
1/φ

. (12)

By (11), then (12) is equal to

lim
T→0

∆q(X)
T

= lim
φ→∞

∆q(X)
1/φ

= lim
φ→∞

φ∆q(X), (13)

which in turn equals (10). Furthermore, (12) is also equal to

lim
T→0

q(X)[t + T ]− q(X)[t]
T

= q′(X)[t] = x′(t) , (14)

in which the last equation comes out by recalling that the time derivative of q(X)
at time t is the instantaneous variation of x at the same time in the ODE. Hence,
the right member of (14) equals the right member of (10) and this completes the
proof. In fact, (10) corresponds to (4) in the case of non-cooperation.
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Equation (10) can be written in a more compact form that equals (5), again
in the non-cooperative case:

x′ =
∑

r∈R

{gr(X)− hr(X)}frq(Sub(r)) . (15)

5 Non-cooperative ODE Equivalent MP Systems

Definition 4. Two MP systems are ODE equivalent if their translation made us-
ing MP-ODE results in the same ODE system.

Proposition 5.1 Given an MP system Π = (T, Q,R, F, q0) there exists a non-
cooperative MP system Π ′ = (T, Q,R′, F ′, q0) which is ODE equivalent to Π.

Proof. Define R′ and F ′ by using the following procedure.
For every r ∈ R:

1. choose X̃ ∈ Sub(r), and set

r′ : X̃ → βr, fr′ = fr
P (r)
q(X̃)

; (16)

2. if other occurrences of X̃ exist, define

r′
X̃

: X̃ → (), fr′
X̃

= {hr(X̃)− 1}fr
P (r)
q(X̃)

; (17)

3. for every other symbol X ∈ Sub(r)− {X̃}, define

r′′X : X → (), fr′′X = hr(X)fr
P (r)
q(X)

; (18)

4. add such rules in R′; add the corresponding reaction maps in F ′.

Let us pose x′ = x′+ + x′−. By MP-ODE:

x′+ + x′− =
∑

ρ∈R′β(X)

gρ(X)fρq(Sub(ρ))−
∑

ρ∈R′Sub(X)

fρq(X). (19)

Consider the additive part x′+ (first summation) in (19). By (16) it is

fr′q(Sub(r′)) = fr
P (r)
q(X)

q(X) = frP (r) . (20)

By noting that βr ∈ r′ if and only if βr ∈ r, then by direct substitution of the
right part of (20) into the additive part in (19) we have
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x′+ =
∑

ρ∈R′β(X)

gρ(X)fρq(Sub(ρ)) =
∑

r∈Rβ(X)

gr(X)frP (r) . (21)

Now, consider the subtractive part x′− (second summation) in (19). By the
construction of R′, every r ∈ RSub(X) translates either into two rules r′, r′X ∈
R′Sub(X), or into one rule r′′X ∈ R′Sub(X). In the former case r′ and r′X result, by
MP-ODE, in a component in x′− equal to the sum of the corresponding reaction
maps times the amount of X in the system. So, by (16) and (17), this component
is equal to:

fr′q(X) + fr′X q(X) = {1 + hr(X)− 1}fr
P (r)
q(X)

q(X) = hr(X)frP (r) . (22)

In the latter case r′′X results, by (18), in a component in x′− equal to

fr′′X q(X) = hr(X)fr
P (r)
q(X)

q(X) = hr(X)frP (r) . (23)

The one-to-one correspondence between r and either r′ and r′X , or r′′X , implies
that the subtractive part in (19) is equal to

x′− =
∑

ρ∈R′Sub(X)

fρq(X) =
∑

r∈RSub(X)

hr(X)frP (r) . (24)

By summing (21) and (24) and comparing to (4) we obtain the ODE equivalence
between Π and Π ′.

The non-cooperative MP system obtained using Proposition 5.1 is not uniquely
determined. Although, on the one hand, by Theorem 1 we know that all possible
non-cooperative MP systems obtained using Proposition 5.1 converge to the same
ODE, on the other hand the way they converge depends on the choice made while
deriving the non-cooperative MP system.

6 Conclusions

A theoretical procedure has been devised which finds, for an MP system, the ODE
that is solved. Since this result holds in the limit with an infinite precision of the
computation along time, MP systems can be seen as a family of numerical schemes
for the solution of a specific class of ODE systems which, in particular, account
for virtually all the differential equation models of biochemical processes.

The indetermination on the ODE equivalent MP systems one must derive to
solve a specific differential problem resembles the same indetermination existing for
most numerical schemes in which, during the solution of an ODE system, aspects
such as the choice and parameterization of the scheme are driven by the problem
itself, and often left to the experience of the experimenter.
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