
On the Syntactic Complexity of Darwinian
Membrane Systems?

Jürgen Dassow1, Erzsébet Csuhaj-Varjú2

1 Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
PSF 4120, D–39016 Magdeburg, Germany
dassow@iws.cs.uni-magdeburg.de

2 Computer and Automation Research Institute,
Hungarian Academy of Sciences
Kende u. 13–17, H-1111 Budapest, Hungary
csuhaj@sztaki.hu

Summary. Membrane or P systems form a distributed parallel model of computing
which is obtained as an abstraction from the structure and functioning of living cells.
In this paper we consider a very basic membrane system and add to it checkers which
are special finite automata to check whether or not a configuration of the membrane
system is “good” or “bad”. The computation is only continued if the configuration is
good, otherwise it stops without a result. Such membrane systems are called Darwinian
P systems. There are three parameters characterizing the size of a system, the number
of membranes, the number of checkers, and the size of the checkers measured by the
number of states. We prove that we can generate all sets of Parikh vectors of recursively
enumerable languages if we restrict the number and size of checkers to one checker with
six states or to five checkers with two states. Moreover, we prove that Darwinian systems
with one membrane and checkers with at most two states are also sufficient to generate
all Parikh sets of recursively enumerable languages. The latter result is optimal since
Darwinian systems with checkers with only one state generate only sets of Parikh vectors
of ET0L languages. All results are valid for length sets instead of sets of Parikh vectors,
too.

1 Introduction

Membrane systems (also called P systems) form a distributed parallel model of
computing which is obtained as an abstraction from the structure and functioning
? This research was supported in part under grant no. D-35/2000 and HUN009/00 by

the Intergovernmental S&T Cooperation Programme of the Office of Research and
Development Division of the Hungarian Ministry of Education and its German partner,
the Federal Ministry of Education and Research (BMBF), and under grant no. F037567
by the Hungarian Scientific Research Fund, “OTKA”.

2 J. Dassow, E. Csuhaj-Varjú

of living cells. They consists of a membrane structure and evolving rules for any
region formed by the membranes. The evolving rules substitute a symbol by some
other symbols which can also be sent to the inner and outer neighbors of the
region. A configuration is a tuple formed by the multisets of symbols occurring in
the regions. By maximally parallel applications of the evolving rules of a region to
the symbols in the region we produce sequences of configurations. A configuration
is called halting, if, for any region, there is no applicable rule. The result of such
a “computation” process is the Parikh vector of the multiset (or the number of
symbols in the multiset) contained in a region, which is determined in advance,
at the end of a successful computation. By this simple type of membrane systems
we can only generate semilinear sets or ultimately periodic sets of integers as
shown in [3] (see also [6]). In order to increase the generative power several further
ideas from cell biology are added, e.g., membrane dissolving, priorities between the
evolving rules, cooperation between symbols in a region. For a detailed discussion
of membrane systems we refer to the monograph [6].

In [1] the authors introduced checkers for the above simple membrane system.
A checker is a finite automaton which reads symbols of a multiset in some order
and rejects or accepts if all symbols are read. Such checkers are used to evaluate
the configurations of a membrane system. The computation stops without a result
if the checker rejects and is continued otherwise. Membrane systems with checkers
are called Darwinian because we have a selection process by the checkers.

In [1] it has been shown that Darwinian membrane systems are very power-
ful. They can generate all recursively enumerable sets of vectors of non-negative
integers. Moreover, this computational completeness already holds for Darwinian
systems with one membrane and one checker as well as for systems with one mem-
brane and checkers with at most three states.

In this paper we improve the latter result, showing that one membrane and
checkers with at most two states are sufficient to generate all sets of Parikh vec-
tors of recursively enumerable languages or all length sets of recursively enumer-
able languages. Moreover, this bounds are sharp because we show that Darwinian
membrane systems with checkers with only one states generate exactly the sets of
Parikh vectors or the length sets of ET0L languages which form a proper subset
of the recursively enumerable sets. Furthermore, we prove that we can bound the
number of checkers and the size of the checkers to small numbers without loosing
the computational completeness.

2 Matrix Grammars and ET0L Systems

Throughout the paper we assume that the reader is familiar with the basic concepts
of formal language theory. We recall here some notions and their notations; for
details we refer to [8], [7], [2].

The set of non-empty words over an alphabet V is denoted by V +; if the empty
string λ is included, then we use the notation V ∗. A set of strings L ⊆ V ∗ is said

On the Syntactic Complexity of Darwinian Membrane Systems 3

to be a language over V . For a string w ∈ V ∗, we denote the length of w by |w|,
and for a set of symbols U ⊆ V we denote by |w|U the number of occurrences of
letters of U in w. The length set N(L) of a language L is defined as

N(L) = {|w| | w ∈ L} .

Let V = {a1, a2, . . . , an} be an alphabet. With any word w ∈ V ∗ we associate
its Parikh vector

πV (w) = (|w|a1 , |w|a2 , . . . , |w|an) .

For a language L ⊆ V ∗, we define its Parikh language by

πV (L) = {πV (w) | w ∈ L} .

By PsRE (and NRE) we denote the family of all Parikh sets (and length sets,
respectively) of recursively enumerable languages.

For a context-free rule r = a → w, we set lhs(r) = a and rhs(r) = w.
A matrix grammar with appearance checking is a construct G =

(N, T, S,M, F), where N,T are disjoint alphabets, S ∈ N , M is a finite set of
sequences of context-free rules over N ∪ T , and F is a set of occurrences of rules
in M . The elements of N are called nonterminals, those in T are called terminals,
S is the axiom, the sequences in M are written in the form

m = (A1 → x1, . . . , An → xn), n ≥ 1, Ai ∈ N, xi ∈ (N ∪ T)∗ for 1 ≤ i ≤ n,

and are called matrices.
For w, w′ ∈ (N ∪ T)∗ we write w =⇒ w′ if there is a matrix m = (A1 →

x1, A2 → x2, . . . , An → xn) in M and strings w1, w2, . . . , wn+1 in (N ∪ T)∗ such
that w1 = w, wn+1 = w′, and for each i = 1, 2, . . . , n, one of the following cases
holds:

— wi = w′iAiw
′′
i and wi+1 = w′ixiw

′′
i , or

— |wi|Ai = 0, wi = wi+1, and Ai → xi appears in F .
In words, all the rules in m are used one after the other, possibly skipping

those rules which appear in F providing that they cannot be applied to the current
sentential form.

The language generated by G is defined by

L(G) = {x ∈ T ∗ | S =⇒∗ x},
where =⇒∗ is the reflexive and transitive closure of the relation =⇒.

For any recursively enumerable language L, there is matrix grammar G with
appearance checking such that L = L(G) (see [2] for a proof). From this fact,
it follows that PsRE (and NRE) are the families of all Parikh sets (and length
sets, respectively) of languages generated by matrix grammars with appearance
checking.

A matrix grammar G = (N,T, S, M, F) with appearance checking is in binary
normal form if N = N1 ∪N2 ∪ {S, #}, where these sets are mutually disjoint, and
all matrices of M have one of the following forms:

4 J. Dassow, E. Csuhaj-Varjú

1. (S → XA) with X ∈ N1, A ∈ N2,
2. (X → Y,A → x) with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗,
3. (X → Y,A → #) with X, Y ∈ N1, A ∈ {B1, B2} ⊂ N2,
4. (X → λ,A → x) with X ∈ N1, A ∈ N2, x ∈ T ∗,

F exactly consists of all rules A → # appearing in matrices of type 3, and there
is only one matrix of type 1. # is a trap symbol, once introduced, it is never
removed. By [2] and [4], for any matrix grammar G1 with appearance checking,
there is a matrix grammar G2 with appearance in binary normal form such that
L(G1) = L(G2). In the sequel we will assume that

– m1,m2, . . . , mq1 are the matrices of type 2 or type 4,
– mq1+1,mq1+2, . . . ,mq2 are the matrices of type 3 with A = B1, and
– mq2+1,mq2+2, . . . ,mq are the matrices of type 3 with A = B2.
Moreover, for 1 ≤ i ≤ q, let mi = (ri, si) where ri and si are the context-free

rules given in the order as above.
An ET0L system is an n + 3-tuple G = (V, T, P1, P2, . . . , Pr, w), where V is an

alphabet, T is a subset of V (the alphabet of terminal symbols), w ∈ V + is the
axiom, and, for 1 ≤ i ≤ r, Pi is a complete set of context-free productions over V ,
i.e., for any symbol a ∈ V , the production set Pi contains a rule with a being on
its left-hand side and an word from V ∗ on its right-hand side.

For two strings x = x1x2 . . . xn, y = y1y2 . . . yn with n ≥ 1, xi ∈ V, yi ∈ V ∗

for 1 ≤ i ≤ n, we say that x directly derives y, denoted by x =⇒G y if there is a
production set Pj , 1 ≤ j ≤ r, such that xi → yi ∈ Pj for 1 ≤ i ≤ n. The language
L(G) generated by an ET0L system is defined as the set of all words over T which
can be obtained from S by a sequence of direct derivation steps.

A regularly controlled ET0L system G = (V, T, P1, P2, . . . , Pr, S, R) is an ET0L
system (V, T, P1, P2, . . . , Pr, S) equipped with a regular set R over the set of pro-
ductions. The language generated by a regularly controlled ET0L system consists
of all words over T which can be obtained from S by application of a sequence r
of productions where r ∈ R.

In [5] (see also [2]) the following lemma has been shown.

Lemma 1. For any regularly controlled ET0L system G, there is an ET0L system
G′ such that L(G) = L(G′).

By PsET0L (and NET0L) we denote the set of all Parikh sets (and length sets,
respectively) of languages generated by ET0L systems.

3 Darwinian Membrane Systems

Throughout the paper we assume that the reader is familiar with basic concepts
of membrane computing. We here recall some notions informally; for details we
refer to [6].

On the Syntactic Complexity of Darwinian Membrane Systems 5

A multiset M is a pair (V, f) where V is a finite set3 and f is a mapping from
V into N. For a ∈ V , f(a) is called the multiplicity of a. The support supp(M)
of M = (V, f) is defined as the set of all elements a of V with f(a) > 0. Given a
multiset M = (V, f) with V = {a1, a2, . . . , an}, we define its Parikh vector and its
length by setting

πV (M) = (f(a1), f(a2), . . . , f(an)) and l(M) =
n∑

i=1

f(ai) .

Let w ∈ V ∗. We define the multiset M(w) associated with w by M(w) = (V, f)
where f(a) = |w|a. Conversely, any multiset M = (V, f) can be described by a
word w(M) = a

f(a1)
1 a

f(a2)
2 . . . a

f(an)
n .

In the sequel we often present a multiset by listing all its elements in braces
(as in the cases of sets, however, any element a is listed f(a) times).

We now present the notion of a membrane structure which is one of the ba-
sic notions of membrane computing. Intuitively, a membrane structure µ can be
given as a Venn diagram of a set and its subsets where a subset is included in
another subset or the subsets are disjoint. The borders of the sets correspond to
the membranes. A region corresponds to a set from which we have taken away all
elements of its subsets. More formally, µ is a tree where the root corresponds to
the set, and a node i is a child of a node j, if the set corresponding to i is a subset
of the set corresponding to j. If i is a child of j, then we call the region i (more
precisely, the region corresponding to i) an inner region of the region j, and the
region j is called an outer region of i. Another description of a membrane struc-
ture can be given as a string of matching parentheses. If i contains the subsets
i1, i2, . . . , in (or equivalently, i has the children i1, i2, . . . , in), then we represent
this by [i[i1]i1 [i2]i2 . . . [in]in]i. Obviously, the number of regions corresponds to
the number of membranes.

Let µ be a membrane structure with m membranes, and let V be an alphabet.
A configuration of µ over V is an m-tuple (K1,K2, . . . , Km), where, for 1 ≤ i ≤ m,
Ki is a multiset over V , i.e., Ki = (V, fi) for some fi. Intuitively, we consider a
one-to-one relation between the m regions of µ to the numbers 1, 2, . . . ,m, and
assume that the i-th region contains the multiset Ki of symbols of V .

Obviously, if we only consider a configuration itself it is not necessary to know
the concrete membrane structure µ, it is sufficient to know the number of regions
(or membranes) of µ.

We say that a word

C ′ = [i1at1]i1 [i2at2]i2 . . . [iqatq]iq ,

where we assume that the letter atj is contained in the ij-th region, is associated
with a configuration C = (K1,K2, . . . , Km) if

3 In general, V can be an infinite set, but for our purposes it is sufficient to restrict to
finite sets.

6 J. Dassow, E. Csuhaj-Varjú

Ki = {atj | ij = i} .

We are interested in evaluations of configurations where we restrict to eval-
uations which only distinguish “bad” configurations from “good” configurations.
This will be done by checkers which are defined as follows. A checker is a finite
automaton

H = (Q,V,m, s0, F, P),

where Q is a finite set of states, V is an alphabet, m is a positive integer (the
number of regions of a membrane structure), s0 is the initial state, F is the set of
final states, and P is a set of rules of the form s[ia]i → [ia]is′, where s, s′ ∈ Q, a ∈
V, 1 ≤ i ≤ m (which define the transitions of the automaton). If a checker is in
state s and reads the object a of region i, then it changes its state to s′.

We extend the relation → to words associated with a configuration by setting

[i1at1]i1 . . . [ip−1atp−1]ip−1s[ip
atp

]ip
. . . [iq

atq
]iq

=⇒H

[i1at1]i1 . . . [ip
atp

]ip
s′[ip+1atp+1]ip+1 . . . [iq

atq
]iq

,

if s[ip
atp

]ip
→ [ip

atp
]ip

s′ ∈ P . Let =⇒∗
H be the reflexive and transitive closure of

=⇒H .
Given a configuration C of a membrane structure µ over V , the checker H can

analyze the words associated with C in the same way as a finite automaton. We
say that the configuration C is accepted by the checker H = (Q,V,m, s0, F, P),
and we write H(C) = ok, if there are a word C ′ associated with C and a state
s ∈ F such that s0C

′ =⇒∗
H C ′s.

Now we introduce the variant of membrane systems we are going to investigate
in this paper.

A Darwinian membrane system (for short a Darwinian P system) is a construct

Π = (O, µ,M1,M2, . . . ,Mm, R1, R2, . . . , Rm, i0,H1,H2, . . . ,Hn, tr),

where:

1. O is the alphabet of objects,
2. µ is a membrane structure (of degree m, with the membranes labeled in a

one-to-one manner with non-negative integers, for the remaining part of this
paper by 1, 2, . . . , m),

3. for 1 ≤ i ≤ m, Mi is a multiset of objects initially present in the i-th region
of µ,

4. for 1 ≤ i ≤ m, Ri is the set of evolution rules associated with the i-th region
of µ, where an evolution rule is of the form a → u, where a ∈ O, u ∈ (O ×
{here, out, in})∗,

5. i0 ∈ {1, 2, . . . , m} indicates the output membrane of the system,
6. for 1 ≤ i ≤ n, Hi = (Qi, O,m, s0,i, Fi, Pi) is a checker,
7. tr is a regular language over {H1,H2, . . . , Hn}.

On the Syntactic Complexity of Darwinian Membrane Systems 7

We now explain the functioning of a Darwinian P system. Let C =
(K1,K2, . . . , Km) and D = (K ′

1,K
′
2, . . . , K

′
m) be two configurations of µ. A transi-

tion from C to D is performed with respect to the sets R1, R2, . . . , Rm of evolving
rules (written as C =⇒ D) in the following way. Any Ri is applied in a maximally
parallel way to the letters of Ki, i.e. for any letter a in Ki we choose nondetermin-
istically a rule a → u of Ri and put into Ki all letters from u with an assignment
here, put nondeterministically any letter of u with assignment in into a set K ′

j

where j is an inner region of i, and all letters of u with assignment out into K ′
l

where l is the outer region of i; if there is no such rule a → u ∈ Ri, then we put
into K ′

i as many occurrences of a as we have in Ki.
A sequence of transitions (hence a computation) is successful if it halts, and all

its configurations are accepted by the checkers indicated by a sequence of checkers
generated by the expression tr. Formally, a computation

C0 =⇒ C1 =⇒ . . . =⇒ Ct

is successful, if no further rule can be applied to Ct, and there is a sequence
Hi1Hi2 . . . Hit

in tr such that His
(Cs) = ok for all 1 ≤ s ≤ t.

For a Darwinian membrane system Π as above, we define two sets generated
by Π. We set

Ps(Π) = {πO(Ki0) | (M1,M2, . . . ,Mm) =⇒ . . . =⇒ (K1,K2, . . . , Km)
is a successful computation}

and

N(Π) = {l(Ki0) | (M1,M2, . . . ,Mm) =⇒ . . . =⇒ (K1,K2, . . . ,Km)
is a successful computation} ,

i.e., we consider the sets of Parikh vectors or lengths of multisets contained in the
output region at the end of a successful computation.

The size of a Darwinian P system can be describe by three parameters: the
number of membranes/regions, the number of checkers, and the size of the checkers
where the size of a checker is given by the number of its states. With respect to
these parameters we define the sets PsDP(m,n, r) and NDP(m,n, r) of all sets
Ps(Π) and N(Π), respectively, which can be generated by Darwinian P systems
Π with at most m regions in its membrane structures, at most n checkers, and
with checkers of size at most r. If we do not bound some of these parameters, then
we use the same notation but we replace the bounds m or n or r by ∗.

The following statements have been proven in [1].

Theorem 1. PsRE = PsDP(1, ∗, 3) = PsDP(1, 1, ∗) and NRE = NDP(1, ∗, 3) =
NDP(1, 1, ∗).

8 J. Dassow, E. Csuhaj-Varjú

4 Restricting the Number and the Size of Checkers

By Theorem 1, there is no loss of generative power if one simultaneously restricts
the number of regions and checkers or the number of regions and the size of the
checkers to small numbers. In this section we shall add the third possible result in
this direction. We restrict simultaneously the number and the size of the checkers.

Theorem 2. i) PsRE = PsDP(∗, 1, 6) = PsDP(∗, 2, 4) = PsDP(∗, 3, 3) =
PsDP(∗, 5, 2),
ii) NRE = NDP(∗, 1, 6) = NDP(∗, 2, 5) = NDP(∗, 3, 3) = NDP(∗, 5, 2).

Proof. We only give a proof for i); the proof of ii) follows completely the same
arguments.

We first prove that PsRE = PsDP(∗, 3, 3).
Let L be a recursively enumerable language, and let G = (N, T, S,M, F) be

a matrix grammar with appearance checking in binary normal form as given in
Section 2 such that L(G) = L. We shall also use the notation given there.

We construct the Darwinian P system

Π = (O, µ, {X,A}, ∅, ∅, . . . , ∅, R0, R1, . . . , Rq1 , 0,H1,H2,H3, tr),

where (S → XA) is the only matrix of type 1 of G and

O = N1 ∪N2 ∪ T ∪
⋃

X∈N1

q1⋃

i=1

{Xi, X
′
i} ∪

⋃

A∈N2

q1⋃

i=1

{Ai, A
′
i} ∪

⋃

X∈N1

q⋃

i=q1+1

{X ′
i} ,

µ = [0[1[2. . . [q1−1[q1]q1]q1−1 . . .]2]1]0 ,

R0 = {X → (Xi, in) | X = lhs(ri), 1 ≤ i ≤ q1}
∪ {A → (Ai, in) | A = lhs(si), 1 ≤ i ≤ q1}
∪ {X → (X ′

i, in) | X = lhs(ri), q1 + 1 ≤ i ≤ q}
∪ {B → B | B ∈ N2 ∪ T} ,

R1 = {X1 → X ′
1 | X ∈ N1} ∪ {A1 → A′1 | A ∈ N2}

∪ {Xj → (Xj , in) | X ∈ N1, 2 ≤ i ≤ q1}
∪ {Aj → (Aj , in) | A ∈ N2, 2 ≤ i ≤ q1}
∪ {A′i → (M(x), out) | x = rhs(si), 1 ≤ i ≤ q1} ,

∪ {X ′
i → (Y, out) | Y = rhs(ri), 1 ≤ i ≤ q} ,

Ri = {Xi → X ′
i | X ∈ N1} ∪ {Ai → A′i | A ∈ N2}

∪ {Xj → (Xj , in) | X ∈ N1, i + 1 ≤ j ≤ q1}
∪ {Aj → (Aj , in) | A ∈ N2, i + 1 ≤ j ≤ q1}
∪ {X ′

j → (X ′
j , out) | X ∈ N1, i ≤ j ≤ q1}

∪ {A′j → (A′j , out) | A ∈ N2, i ≤ j ≤ q1} for 2 ≤ i ≤ q1 − 1,

Rq1 = {Xq1 → X ′
q1
| X ∈ N1} ∪ {Aq1 → A′q1

| A ∈ N2}

On the Syntactic Complexity of Darwinian Membrane Systems 9

∪ {X ′
q1
→ (X ′

q1
, out) | X ∈ N1} ∪ {A′q1

→ (A′q1
, out) | A ∈ N2},

H1 = ({s0, s1, s2}, O, q, s0, {s1, s2},
⋃

A∈N2

q1⋃

i=1

q1⋃

j=1

{s0[jAi]j → [jAi]js1, s2[jA′i]j → [jA′i]js2}

∪
⋃

X∈N1

q1⋃

i=1

q1⋃

j=1

{s1[jXi]j → [jXi]js1, s0[jX ′
i]j → [jX ′

i]js2}

∪ {si[0C]0 → [0C]0si | C ∈ N2 ∪ T, 1 ≤ i ≤ 2}),
H2 = ({s0, s3, s4}, O, q1, s0, {s3, s4},

{s0[1X ′
i]1 → [1X ′

i]1s3 | X ∈ N1, q1 + 1 ≤ i ≤ q2}
∪ {s0[jX ′

i]j → [jX ′
i]js4 | X ∈ N1, q2 + 1 ≤ i ≤ q}

∪ {si+2[0C]0 → [0C]0si+2 | C ∈ (N2 \ {Bi}) ∪ T}, 1 ≤ i ≤ 2}),
H3 = ({s0, s5}, O, q1, s, {s5},

⋃

A∈N1∪N2∪T

{s0[0A]0 → [0A]0s5, s5[0A]0 → [0A]0s5}),

tr = ((H2 ∪
q1⋃

i=1

H2i
1)H3)∗.

First we note that if a computation halts with the configuration C =
(K0,K1,. . . ,Kq1), then H3(C) = ok holds. Since H3 only successfully checks con-
figurations where all letters are in region 0, we have C = (K0, ∅, ∅, . . . , ∅). If K0

contains a letter from N1 ∪ N2, then there is a rule in R0 which can be applied.
Thus, in a halting configuration all elements of K0 are in T . Hence the halting
condition of Π is only obtained if the terminating condition of G is satisfied.

Now let us assume that we have a configuration C = (K0,K1,K2, . . . , Kq1)
such that H3(C) = ok. As above we have C = (K0, ∅, ∅, . . . , ∅). This situation also
holds for the initial configuration C0 = ({A,X}, ∅, ∅, . . . , ∅). Furthermore, in both
cases the next checker is H1 or H2.

Let C =⇒ C ′. Let us first assume that H2 is used. We have H2(C ′) = ok
if and only if the configuration C ′ = (K0 \ {X}, {X ′

i}, ∅, ∅, . . . , ∅) satisfies A /∈
K0, q1 + 1 ≤ i ≤ q, and mi = (X → Y, A → #). If the computation is not
blocked, then H3(C ′′) = ok has to hold for C ′′ with C ′ =⇒ C ′′. This implies
C ′′ = ((K0 \ {X}) ∪ {Y }, ∅, ∅, . . . , ∅). This means that C =⇒ C ′ =⇒ C ′′ holds if
and only if w =⇒mi w′′ where K0 = M(w) and (K0 \ {X}) ∪ {Y } = M(w′′), i.e.,
up to the order of elements a derivation step of G is simulated.

If H1 is used, then we get

C1 = (K0 \ {A,X}, {Ai, Xj}, ∅, ∅, . . . , ∅) (1)

or
C1 = (K0 \ {A}, {Ai}, ∅, ∅, . . . , ∅) . (2)

We first discuss (1). By the definition of tr we now have to choose a k, 1 ≤ k ≤ q1,
and (2k − 1)-times in succession to apply H1 for the checking of the sentential

10 J. Dassow, E. Csuhaj-Varjú

forms. Assume that this leads to the derivation

C =⇒ C1 =⇒ C2 =⇒ C3 =⇒ . . . =⇒ C2k =⇒ C2k+1 (3)

with H1(Cu) = ok for 1 ≤ u ≤ 2k and H3(C2k+1) = ok. Let i < j and i ≤ k.
Then Ci+1 contains a letter A′i in region i and Xj in region i+1. This contradicts
H1(Ci+1) = ok. Analogously we get a contradiction if j < i and j ≤ k. If k < i
and k < j, then C2k+1 contains two of the letters Ai, A

′
i, Xj , X

′
j in some regions

different from region 0. This is a contradiction to H3(C2k+1) = ok. Thus, the only
possible situation is i = j = k. Moreover, no letter in region 0 is changed during
the derivation (3). This leads to C2k+1 = ((K0 \{A,X})∪M(x)∪{Y }, ∅, ∅, . . . , ∅)
where mi = (X → Y,A → x), i.e., we have simulated the application of a matrix
of G, again.

In the case of (2) we can analogously show that the derivation is blocked.
Therefore Ps(Π) = Ps(L(G)) = Ps(L).
Since any checker has at most 3 states and we use (at most) 3 checkers (if

no symbol is used in rules of F , then we have only two checkers), Ps(L) ∈
PsDP(∗, 3, 3). Thus PsRE ⊆ PsDP(∗, 3, 3). The converse inclusion is obvious.
Hence PsRE = PsDP(∗, 3, 3).

If we construct from H2 and H3 a checker

H ′
2 = ({s0, s3, s4, s5}, O, q1, s0, {s3, s4},

{s0[1X ′
i]1 → [1X ′

i]1s3 | X ∈ N1, q1 + 1 ≤ i ≤ q2}
∪ {s0[jX ′

i]j → [jX ′
i]js4 | X ∈ N1, q2 + 1 ≤ i ≤ q}

∪ {si[0C]0 → [0C]0si | C ∈ (N2 \ {Bi−2}) ∪ T, 3 ≤ i ≤ 4}
∪

⋃

A∈N1∪N2∪T

{s0[0A]0 → [0A]0s5, s5[0A]0 → [0A]0s5}),

then we get as above that the Darwinian P system

Π ′ = (O, µ, {X, A}, ∅, ∅, . . . , ∅, R0, R1, . . . , Rq1 , 0,H1,H
′
2, ((H

′
2 ∪

q1∑

i=1

H2i
1)H ′

2)
∗)

which generates Ps(L). Consequently, PsDP(∗, 2, 4) = PsRE.
If we combine in the same way H1, H2, and H3, we get a checker with 6 states

and then PsDP(∗, 1, 6) = PsRE.
Finally, in an analogous way we can divide H1 and H2 into four checkers H ′

1,
H ′′

1 , H ′′
2 , and H ′′′

2 with the state sets {s0, s1}, {s0, s2}, {s0, s3}, and {s0, s4}. We
set

tr = (H ′′
2 ∪H ′′′

2 ∪
q1⋃

i=1

(H ′
1)

i(H ′′
1)i)H3

and get PsDP(∗, 5, 2) = PsRE. ut

On the Syntactic Complexity of Darwinian Membrane Systems 11

5 A Sharp Bound for the Size of Checkers

In [1] it has been proved that Darwinian P system with one region and checkers
with at most 3 states are sufficient in order to generate Parikh set or length set of
any recursively enumerable language. We improve this result by showing that the
bound for the size of the checkers can be decreased to 2.

Theorem 3. PsRE = PsDP(1, ∗, 2) and NRE = NDP(1, ∗, 2).

Proof. Let L be a recursively enumerable language. Then L can be generated by
a matrix grammar G with appearance checking in binary normal form as given in
Section 2.

We construct the Darwinian P system

Π = (O, [1]1, {X, A}, R1, 1,H1,H
′
1, . . . ,Hq1 , H

′
q1

,Hq1+1,Hq1+2, . . . , Hq,H, tr)

where (S → XA) is the initial matrix of G and

O = N1 ∪N2 ∪
q1⋃

i=1

{Xi, X
′
i, Ai, Ai} ∪

q⋃

i=q1+1

{Xi} ,

R1 = {X → Xi | X = lhs(ri), 1 ≤ i ≤ q} ∪ {A → Ai | A = lhs(si), 1 ≤ i ≤ q1}

∪
q1⋃

i=1

{Xi → X ′
i, Ai → A′i, X ′

i → rhs(ri), A′i → rhs(si)}

∪
q⋃

i=q1+1

{Xi → rhs(si)} ∪ {B → B | B ∈ N2} ,

Hi = ({s0, s1}, O, 1, s0, {s1},
{s0[1Xi]1 → [1Xi]1s1} ∪ {s1[1C]1 → [1C]1s1 | C ∈ N2 ∪ T ∪ {Ai}})
for 1 ≤ i ≤ p ,

H ′
i = ({s0, s1}, O, 1, s0, {s1},

{s0[1A′i]1 → [1A′i]1S1} ∪ {s1[1C]1 → [1C]1s1 | C ∈ N2 ∪ T ∪ {X ′
i}})

for 1 ≤ i ≤ q1 ,

Hi = ({s0, s1}, O, 1, s0, {s1},
{s0[1Xi]1 → [1Xi]1s1} ∪ {s1[1C]1 → [1C]1s1 | C ∈ (N2 \ {B1}) ∪ T})
for q1 + 1 ≤ i ≤ q2 ,

Hi = ({s0, s1}, O, 1, s0, {s1},
{s0[1Xi]1 → [1Xi]1s1} ∪ {s1[1C]1 → [1C]1s1 | C ∈ (N2 \ {B2}) ∪ T})
for q2 + 1 ≤ i ≤ q ,

H = ({s0}, O, 1, s0, {s0}, {s0[1C]1 → [1C]1s0 | A ∈ N1 ∪N2 ∪ T}) ,

tr = ((
q1⋃

i=1

HiH
′
i ∪

q⋃
q1+1

Hi)H)∗ .

12 J. Dassow, E. Csuhaj-Varjú

Let us assume that we have a configuration C = ({X} ∪ M(w)) with some
X ∈ N1 and some word w ∈ (N2 ∪ T)∗ (the initial configuration ({X, A}) has this
form). Then we have H(C) = ok and Hi(C) 6= ok since the multiset contains no
indexed letter.

If we apply R1 to C, we produce a configuration C ′ = (K) where K contains
a letter Xi, 1 ≤ i ≤ q, and some or no letters Aj , 1 ≤ j ≤ q1. By the definition of
tr we have to continue with an application of Hi for some i, 1 ≤ i ≤ q.

Assume that 1 ≤ i ≤ q1. If we use a checker Ht, 1 ≤ t ≤ q, t 6= i, then
Ht(C ′) 6= ok. Therefore, we have to use the checker Hi which only accepts C ′ if K
contains – beside Xi – some letters Ai and all other letters of K are non-indexed.
In the following derivation step C ′ =⇒ C ′′ we have to replace Xi by X ′

i and all
Ai by A′i. Moreover, since H ′

i(C
′′) = ok has to hold, we check that – besides X ′

i

– exactly one occurrence of A′i exists and that all other letters remain unchanged.
Now we replace X ′

i by rhs(ri) and A′i by rhs(si). Furthermore, since H(C ′′′) = ok
has to hold, all other letters remain unchanged, again. Thus we have simulated
the application of the matrix mi.

If q1 + 1 ≤ i ≤ q2, then Ht(C) 6= ok for all t with 1 ≤ t ≤ q and t 6= i and the
check by Hi is successful only if X has been replaced by an indexed letter and that
no letter B1 occurs in the configuration. Then we replace Xi by Y = rhs(ri) which
simulates the application of mi = (X → Y, B1 → #) in the appearance checking
mode.

Analogously, if q2 + 1 ≤ i ≤ q, then we simulate an application of mi = (X →
Y,B2 → #).

If the configuration does not contain a symbol of N1, then the derivation is
blocked since the application of R1 leads to a configuration which is rejected by
all checkers Hi, 1 ≤ i ≤ q, and one of these checkers has to be used.

Thus – up to the order of the letters – we simulate a derivation in G which
proves Ps(Π) = Ps(L(G)) = Ps(L) and N(Π) = N(L(G)) = N(L).

By the definition of Π, Ps(L) ∈ PsDP(1, ∗, 2) and N(L) ∈ NDP(1, ∗, 2). Thus
PsRE ⊆ PsDP(1, ∗, 2) and NRE ⊆ NDP(1, ∗, 2). The converse inclusions are ob-
vious. Hence PsRE = PsDP(1, ∗, 2) and NRE = NDP(1, ∗, 2). ut

We now discuss Darwinian P systems where the checkers have only one state.
We note that such a checker with state s has only rules of the form s[iA]i → [iA]is.
This means that the letter A is allowed in the i-th region. Therefore, with any
region i, any checker associates a set of letters allowed in this region.

Lemma 2. For any ET0L system G = (V, T, P1, P2, . . . , Pr, w0), there is a Dar-
winian P system H such that all checkers of H have only one state and Ps(Π) =
Ps(L(G)) and N(Π) = N(L(G)).

Proof. We set V ′ = {b′ | b ∈ V }. With any word w ∈ V ∗, w = b1b2 . . . bt, t ≥ 0,
bi ∈ V for 1 ≤ i ≤ t, we associate the word w′ = b′1b

′
2 . . . b′t ∈ (V ′)∗.

We construct the Darwinian P system

Π = (V ∪ V ′, µ,M(w′0), ∅, ∅, . . . , ∅, P0, P
′
1, P

′
2, . . . , P

′
r, 0,H0, H1, . . . , Hr+1, tr)

On the Syntactic Complexity of Darwinian Membrane Systems 13

where:

µ = [0[1]1[2]2 . . . [r]r]0 ,

P0 = {b′ → (b′, in) | b ∈ V } ∪ {b′ → (b, here) | b ∈ T} ,

P ′i = {b′ → (b′1, out)(b′2, out) . . . (b′t, out) | b → b1b2 . . . bt ∈ Pi} for 1 ≤ i ≤ r,

Hi = ({s}, O, m, s, {s}, {s[ib′]i → [ib′]is | b ∈ V }}) for 0 ≤ i ≤ r,

Hr+1 = ({s}, O, m, s, {s}, {s[0a]0 → [0a]0s | a ∈ T}) ,

tr = ({H1,H2, . . . ,Hr}H0)∗Hr+1 .

Obviously, for 0 ≤ i ≤ r and a configuration C, Hi(C) = ok if and only if all
letters of C are in the i-th region, and Hr+1(C) = ok if and only if all letters of C
are in the region 0 and belong to T . Thus, any successful derivation is of the form

D0 =⇒ Ci1 =⇒ D1 =⇒ Ci2 =⇒ D2 . . . =⇒ Cik
=⇒ Dk =⇒ D

where:

• D0 = (M(w′0), λ, λ, . . . , λ),
• for 0 ≤ j ≤ k − 1, the multisets of Cij

in the regions t 6= ij are empty and the
multiset of Cij in the region ij is M(w′i),

• for 0 ≤ j ≤ k, the multisets of Dj in the regions p 6= 0 are empty and the
multiset of Dj in the region 0 is M(w′i+1),

• for 0 ≤ i ≤ k− 1, wi =⇒Pij
wi+1 in G since the evolution rules of P ′ij

simulate
the application of Pij ,

• D = (wk, λ, λ, . . . , λ) and wk ∈ T ∗ obtained by the parallel application of rules
of the form b′ → (b, here) to all elements of w′k.

Thus we have simulated the derivation w0 =⇒ w1 =⇒ . . . =⇒ wk in G with
wk ∈ T ∗. Therefore Ps(Π) = Ps(L(G)) and N(Π) = N(L(G)). ut
Lemma 3. Let Π be a Darwinian P system such that all checkers of Π have only
one state. Then there is an ET0L system G such that N(L(G)) = N(Π) and
Ps(L(G)) = Ps(Π).

Proof. Let

Π = (O, µ,K1,K2, . . . ,Km, R1, R2, . . . , Rm, i0, H1,H2, . . . , Hn, tr)

be a Darwinian P system where any checker Hi, 1 ≤ i ≤ n, has only one state.
Thus, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, there is a set Mi,j ⊆ O such that Hi only
checks whether or not all letters in the j-th region belong to Mi,j .

For 1 ≤ i ≤ m, let
O(i) = {b(i) | b ∈ O}

(by the superscript i we want to indicate that the letter is in the i-th region).
For a word w = b1b2 . . . bt, bi ∈ O for 1 ≤ i ≤ t, and 1 ≤ j ≤ m, we set

14 J. Dassow, E. Csuhaj-Varjú

w(j) = b
(j)
1 b

(j)
2 . . . b

(j)
t . With a configuration C = (M1,M2, . . . , Mm) we associate

the word

w(C) = (w(M1))(1)(w(M2))(2) . . . (w(Mm))(m) ∈
m⋃

i=1

O(i) .

Conversely, with a word w ∈ ⋃m
i=1 O(i) we associate the configuration

C(w) = (M(w1),M(w2), . . . , M(wm)) ,

where, for 1 ≤ i ≤ m, wi is the scattered subword of w built by all letters from
O(i) in w.

Assume that s1, s2, . . . , sk are the inner regions of the i-th region, and let t be
the outer region of the i-th region. Then we define the substitution τi by

τi((b, here)) = b(i), τi((b, out)) = b(t) and
τi((b, in)) = {b(s1), b(s2), . . . , b(sk)} for b ∈ O.

With a rule p = b → w ∈ Ri, we associate the set Rp of all rules b(i) → w′ with
w′ ∈ τi(w).

We now define the regularly controlled ET0L system

G = (V, O, P, P1, P2, . . . , Pn, P ′, w((K1,K2, . . . ,Km)), R)

with

N = O ∪ {#} ∪
m⋃

i=1

O(i)

(# is a trap symbol, once introduced, it is never removed),

P = {a → a | a ∈ O} ∪ {# → #} ∪
m⋃

i=1

{b(i) → b(i) | b /∈ dom(Ri)} ∪
m⋃

i=1

⋃

p∈Ri

Rp

(the first three sets ensure the completeness condition for ET0L systems; the sets
Rp ensure that the application of P simulates a derivation step of Π),

Pj = {a → a | a ∈ 0} ∪ {# → #}

∪
m⋃

i=1

{b(i) → b(i) | b ∈ Mi,j} ∪
m⋃

i=1

{b(i) → F | b /∈ Mi,j}

(the application of table Pi introduces no letter # only if all letters in the i-th
region belong to the set Mi,j , i.e., if Pi is applied to w, then no # is introduced
if and only if C(w) contains in the j-th region only letters from Mi,j ; thus it
simulates the check done by Hi),

On the Syntactic Complexity of Darwinian Membrane Systems 15

P ′ = {a → a | a ∈ O} ∪ {# → #} ∪ {b(i) → λ | b /∈ dom(Ri), 1 ≤ i ≤ m, i 6= i0}

∪ {b(i0) → a | b /∈ dom(Ri0)} ∪
m⋃

i=1

{b(i) → # | b ∈ dom(Ri)}

(the application of P ′ does not introduce the letter # if it is applied to a word
corresponding to a halting configuration; moreover, it filters out the word in the
region i0 in a non-indexed version),

R = {PPi1PPi2 . . . PPir
P ′ | Hi1Hi2 . . . Hir

∈ tr}

(since tr is regular, R is regular, too). By the definition of R we alternately simulate
a derivation step of H and the checkers which have to be used at those places.
Thus, we simulate a derivation in Π. Finally, we check by P ′ whether or not we
obtained a halting configuration. Thus we stop with a word w such w = w(Mi0) for
some halting configuration C = (M1,M2, . . . ,Mm) or with a word which contains
the letter # (and does not belong to L(G).

Consequently, Ps(L(G)) = Ps(Π) and N(L(G)) = N(Π).
By Lemma 1, we obtain Ps(Π) = Ps(L(G′)) and N(Π) = N(L(G′)) for some

ET0L system G′. ut
As a consequence from the two preceding lemmas we get the following state-

ment.

Corollary 1. NDP(∗, ∗, 1) = NET0L and PsDP(∗, ∗, 1) = PsET0L.

By Corollary 1 the assertion of Theorem 3 with respect to the size of the
checkers (as well as with respect to the number of regions) is optimal.

References

1. E. Csuhaj-Varjú, C. Mart́ın-Vide, Gh. Păun, A. Salomaa: From Watson-Crick L-
systems to Darwinian P systems. Natural Computing, 2 (2003), 299–218.

2. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language. Springer-Verlag, 1989.
3. J. Dassow, Gh. Păun: On the power of membrane computing. J. Universal Comp.

Sci., 5 (1999), 33–49.
4. R. Freund, Gh. Păun: On the number of non-terminal symbols in graph-controlled,

programmed and matrix grammars. In Machines,Computations, and Universality 2001
(M. Margenstern, Y. Rogozhin, eds.), LNCS 2055, Springer-Verlag, 2001, 214–225.

5. S. Ginsburg, G. Rozenberg: T0L schemes and control sets. Inform. Control, 27 (1974),
109–125.

6. Gh. Păun: Membrane Computing: An Introduction. Springer-Verlag, 2002.
7. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic Press,

1980.
8. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Vol. I–III. Springer-

Verlag, 1997.

