
Reaction Cycles in Membrane Systems and
Molecular Dynamics

Michael Muskulus?1, Sanne Houweling2, Grzegorz Rozenberg3, Daniela Besozzi4,
Paolo Cazzaniga5, Dario Pescini5, Robert Brijder3

1 Leiden University, Mathematical Institute
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
muskulus@math.leidenuniv.nl

2 Vrije Universiteit Amsterdam, Faculteit der Bewegingswetenschappen
Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
s.houweling@fbw.vu.nl

3 Leiden University, Leiden Institute of Advanced Computer Science
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
{rbrijder,rozenber}@liacs.nl

4 Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione
Via Comelico 39, 20135 Milano, Italy
besozzi@dico.unimi.it

5 Università degli Studi di Milano
Dipartimento di Informatica, Sistemistica e Comunicazione
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{pescini,cazzaniga}@disco.unimib.it

Summary. We are considering molecular dynamics and (sequential) membrane systems
from the viewpoint of Markov chain theory. The first step is to understand the structure of
the configuration space, with respect to communicating classes. Instead of a reachability
analysis by traditional methods, we use the explicit monoidal structure of this space with
respect to rule applications. This leads to the notion of precycle, which is an element of
the integer kernel of the stoichiometric matrix. The generators of the set of precycles
can be effectively computed by an incremental algorithm due to Contejean and Devie.
To arrive at a characterization of cycles, we introduce the notion of defect, which is a
set of geometric constraints on a configuration to allow a precycle to be enabled, that
is, be a cycle. An important open problem is the efficient calculation of the defects. We
also discuss aspects of asymptotic behavior and connectivity, as well as give a biological
example, showing the usefulness of the method for model checking.

? Corresponding author

186 M. Muskulus et al.

1 Introduction

In the framework of Molecular Dynamics [9] (MD), chemical reactions in a well-
mixed volume are simulated under simplifying assumptions. The probability dis-
tributions of collisions with ensuing reactions between chemical objects can be
calculated from empirically measured reaction constants, and, through stochas-
tic simulation, the time evolution of the system and its behavior can be studied.
The standard algorithm used is the Stochastic Simulation Algorithm (SSA) due
to Gillespie [9]. Recently, important improvements on the simulation speed have
been gained through the use of approximate versions of the SSA, in particular
the Poisson or binomial τ−leap methods [10, 28] and the efficient implementation
of the reaction rate update process [8]. Yet all these methods suffer from their
forbiddingly large time demands under realistic conditions, i.e., large numbers of
molecules (whereas the number of different chemical species is usually quite small).

Independently from this research, the framework of membrane systems [20, 21],
for short P systems, has emerged as a well-studied model in natural computing.
It features parallel, non-deterministic multiset rewriting in hierarchical reaction
volumes (membranes). A special class are so-called Dynamical Probabilistic P
Systems [22] (DPP) which introduce probabilities on rule application, and are
increasingly being used to simulate and understand biological processes. A single-
membrane DPP which runs sequentially (1sDPP), choosing one rewriting rule at
each evolution step according to some probability law, is equivalent to a non-
deterministic version of a corresponding MD system. Running a stochastic simu-
lation on a 1sDPP, the resulting trajectory is the same as for a corresponding MD
system, apart from the fact that there is ignorance about the reaction times. In
particular, simulation time is still the main problematic issue for realistic situa-
tions.

There is relatively few research on analytic properties of such systems. Chemical
Reaction Network Theory [12] deals with corresponding continuous systems of
ODE and is able to make strong statements about dynamic features, e.g., fixed
points. Although there are some attempts into this direction [26], a similar theory
for the discrete case has yet to be developed (see [19] for further possibilities and
other issues of relevance).

Here we are studying 1sDPP systems in the context of Markov chain theory.
The first step will be to understand the structure of the state space with respect
to communicating classes (and a full probabilistic treatment could then be under-
taken in the future). For generic Markov chains the communicating classes can
be computed by generating the state set and checking for mutual reachability,
i.e., cycles in the evolution digraph. Algorithms exist for both issues, but tend to
focus mainly on storage efficiency [16] and on reachability issues [3, 15]. In this
generality, the known algorithms are relatively inefficient. Taking into account the
monoidal structure of the rewriting rules allows for much better algorithms, as
well as posing some interesting mathematical questions, as we will show in the
remainder of the paper.

Reaction Cycles in Membrane Systems and Molecular Dynamics 187

Knowledge of molecular dynamics [9] and membrane systems [21] will be helpful
for understanding the paper. In some of the examples we use a graphical represen-
tation by place-transition Petri nets [24, 17] for illustration. Relevant notions from
graph theory and Markov chain theory can be found in the monographs [6, 1] and
[2], respectively.

The structure of the paper is as follows: In Section 2 we provide some back-
ground information on molecular dynamics, membrane systems, Markov chain
theory and directed graphs. Section 3 introduces and discusses the concepts re-
lated to reaction cycles and their calculation. In Section 4 we are concerned with
communicating classes, where we focus on the asymptotic regime in which all rules
can be used without constraints. A biochemical example illustrates the ideas of the
paper in Section 5, and in Section 6 there is a short discussion and a few pointers
to related work.

2 Background

2.1 Molecular dynamics

The standard approach to simulating a chemical system is due to Gillespie [9]
who derived the relevant methodology and algorithms. This model is based on
the following assumptions: (i) a well-mixed single reaction volume, populated with
spherical objects, (ii) instantaneous chemical reactions via collisions of particles.
Reaction rates have to be given as parameters, e.g., from empirical measurements
or theoretical arguments, with underlying exponential waiting time distributions.

2.2 Membrane systems

Membrane systems [20] (P systems, for short) are a formal computational model
for biochemical reactions in several hierarchically connected reaction volumes. The
structural part of a P system consists of a nested membrane structure, formally
represented (usually) as a tree. To each membrane corresponds its (inner) region,
which can contain other membranes and a multiset of objects, i.e., chemical species,
which can undergo reactions. The outermost membrane, the root in the tree rep-
resentation, is called the skin membrane, since it separates the system from the
environment, which is an assumed outer region in which the system resides.

The dynamical part is given by rewriting rules on the objects, corresponding
to possible biochemical reactions, which are associated with a certain region. Since
we are dealing with multisets, it is important to differentiate between object species
(for short species), which are the different chemical species modeled by the system,
and object representatives (for short objects), such that different objects can belong
to the same species.

Since rules are associated with regions, objects could undergo potentially differ-
ent reactions in different regions. In the standard mode of behavior, the rewriting

188 M. Muskulus et al.

rules are applied in a maximally parallel fashion, i.e., a global clock is assumed, and
at each time step a set of applicable rules is chosen nondeterministically for each
region, using up the available objects, such that there exists no larger applicable set
of rules. This can be thought of as modeling parallel biochemical reaction channels,
and is a powerful computational feature (as well as a convenience for analysis).
The products of the reactions will be available without delay in the following time
step for new reactions. Note also that a rule can specify a possible transportation
of product objects by one step in the membrane hierarchy, i.e., each product can
move up to the parent region, go down into one of the child membrane regions
(given they exist), or stay put. Formal details can be found in the textbook [21].

The maximally parallel execution of rules has led to some controversy [18]. It
facilitates analysis, but seems unnatural with respect to biochemical reality. In
fact, simulations in molecular dynamics are done sequentially for good reasons6

and apart from very specialized applications, e.g., in periodically induced chemical
reactions, maximal parallelism has to be considered an unwanted artifact in most
biochemical applications.

2.3 Dynamic probabilistic P systems

The nondeterminism in the definition of membrane systems has to be replaced
with some probability law, if we are to consider statistical properties of such a
system, and not only topological ones. Although we do not consider these issues
in this paper, we give some background information here, since this defines our
long-term motivation and leaves room for future research.

The recently introduced Dynamical Probabilistic P Systems [22, 23] modify
the definition of membrane systems by introducing a rate constant k ∈ R+ to each
rule, which dynamically determines a probability law. More precisely, this is done
by considering a combinatorial factor7 for all possible choices of the needed objects
from the available ones — as prescribed by mass-action kinetics – multiplying this
by the rate constant, normalizing the resulting numbers to probabilities and then
randomly choosing reactions according to this probability law. The details can be
found in [22, 23] but are not needed for our presentation here.

6 It can be argued that nature works sequentially almost surely (in the sense of proba-
bility theory, i.e., with respect to a set of exceptions with measure zero). When con-
sidering kinetic particle models, for example, the probability of two collisions taking
place at the same time is zero. The same applies to a quantum-mechanical treatment
(cf. [13]). If reactions are considered not to be instantaneous, but take a finite time
(as in the binding of reactants to a reaction complex, for example, or in the decay of
metastable states), reactions can of course occur in parallel. The important point is,
though, that the initiation of reactions has to be considered in a sequential manner,
and not in a synchronized way as exemplified by maximal parallelism.

7 Note: In a quantum mechanical application of membrane systems (see [13] for a possible
approach) this factor equals one, since quantum mechanically different copies of the
same object cannot be distinguished.

Reaction Cycles in Membrane Systems and Molecular Dynamics 189

2.4 Markov chains and digraphs

Molecular dynamics and membrane systems can be studied in the more general
setting of Markov chain theory, where (sequential) membrane systems correspond
to topological Markov chains, and sDPP systems and MD systems correspond to
Markov chains.

A (generalized) matrix Pij with entries in R, i ∈ I, j ∈ J , for some countable
index sets I, J , is a mapping from I × J → R. It is stochastic, if its row sums∑

j Pij are equal to unity for all i ∈ I. A Markov chain on a countable space E is
a (generalized) stochastic matrix Pij , i, j ∈ E, with nonnegative entries.

In this paper we are mainly concerned with the discrete space (Nm
0 ,+), called

configuration space throughout, except for Section 4.1, where this will be (Zm,+).
Elements of configuration space are called configurations or states. The topological
Markov chain of a Markov chain Pij is the (generalized) matrix Fij containing a
one everywhere where Pij > 0, and a zero where Pij = 0, thereby encoding the
information on the possible transitions of a state, without their probabilities. A
topological Markov chain Fij on configuration space corresponds to a map F1 from
configuration space to itself, qua

F1 : Nm
0 → 2N

m
0 , F1(c) =

⋃

Fcc′=1

{c′}. (1)

This map is called the coevolution map of Fij . It assigns to each configuration
c ∈ Nm

0 its possible 1-step evolutions F1(c) and can be extended to a set-valued
map

F1 : 2N
m
0 → 2N

m
0 , F1(C) =

⋃

c∈C

F1(c). (2)

We define its iterates Fn(c) inductively via Fn+1(c) = F1(Fn(c)).
Reachability of states is defined as usual: a state c′ ∈ Nm

0 is (strictly) reachable
from a state c ∈ Nm

0 if there exists a (positive) nonnegative integer k, such that
c′ ∈ Fk(c). We denote this by c → c′. The evolution digraph of the topological
Markov chain Fij on configuration space Nm

0 is the digraph (directed graph) G =
(V, E), V = Nm

0 , E = {(v1, v2) | v1, v2 ∈ V, v1 → v2}.
A path of size k ∈ N0 in a digraph G = (V,E) is a sequence of vertices

(c0, . . . , ck), such that (ci, ci+1) ∈ E for all i < k. We also say that the path
is from c0 to ck. In a digraph, a path c = (c0, . . . , ck) forms a cycle, if c0 = ck

and the path contains at least one edge. If all vertices of the cycle are distinct, we
speak of a simple cycle.

Clearly, c′ is reachable from c iff there is a path from c to c′ in the evolution
digraph. Two states c, c′ ∈ Nm

0 are communicating, if c → c′ and c′ → c. We
write this as c ∼ c′. This is equivalent to the existence of a cycle which contains
both c and c′. The communicating relation is an equivalence relation, giving rise
to a partition of configuration space into communicating classes. The nontrivial
communicating classes are also called the strongly connected components of the
digraph. Two or more communicating classes are said to be independent of each

190 M. Muskulus et al.

other if no element of one such class is reachable by any element of the others, and
vice versa. The trivial communicating classes, consisting of only one element, are
referred to in their totality as the transient set Trans.

We can characterize these by the cycles of the evolution digraph:

Proposition 2.1 A cycle (c0, . . . , ck) of length k in the evolution digraph lies in
a communicating class C ⊆ Nm

0 , i.e., with ci ∈ C(c0) for all 0 ≤ i ≤ k. Vice
versa, each nontrivial communicating class C (with |C| > 1) contains at least one
nontrivial simple cycle c.

We call the communicating class C in the above proposition the communicating
class of the cycle c and denote this by [c].

Cycles in digraphs can be concatenated to give rise to another cycle. Concate-
nation is associative and the cycles form a monoid Cyc ⊆ Nm

0 under this operation.
It is well known that:

Proposition 2.2 Each cycle can be decomposed into simple cycles.

Given two transient configurations c, c′ ∈ Trans, they are transient-equivalent
if one can be reached from the other in the transient set, i.e., by a path that does
not leave Trans. We denote this by c ∼t c′.

Definition 2.1 The reduced configuration space, denoted by (Nm
0)∼, is

(Nm
0 , +)/ ∼ / ∼t . (3)

This space, where the (nontrivial) communicating classes are reduced to single
points and the transient set is reduced to single entry/exit points, has the struc-
ture of a directed acyclic graph. Giving an initial configuration c0, the set of all
reachable states (from c0) in (Nm

0)∼ forms a tree, the so-called reduced evolution
tree.

3 Reaction Cycles

3.1 Notation and terminology

We begin the mathematical study of sDPP systems by simplifying the notation. It
is easy to show that (sequential) multi-membrane DPP systems are equivalent to
(sequential) one membrane DPP systems with each object species being replaced
by a number of species, one for each membrane region in the original system. To
be more precise: There exists a bijection from one sDPP system Π to a 1sDPP
system Π ′ such that the objects of Π are mapped bijectively to the objects of
Π ′, the rules of Π are mapped bijectively to the rules of Π ′ (and such that this is
compatible with the mapping on the objects), and the (initial) multisets of objects
M0,M2, . . . ,Mn−1 are mapped to a corresponding multiset M ′

0.

Reaction Cycles in Membrane Systems and Molecular Dynamics 191

We therefore exclusively study 1sDPP systems, which can be seen as nor-
mal forms of sDPP systems8. This has the advantage that we have to deal with
rewriting rules only, and no unnecessary complications due to transportation of the
products is encountered. Furthermore, all finite n-sets encountered in the definition
will be canonically identified with lower intervals {1, . . . , n} of the non-negative
integers Z+. Thus, a multiset c : O → N0 over an m-set O will be identified as a
vector c ∈ Nm

0 instead. By an abuse of language we still talk of multisets, though.
For convenience we will also use canonical symbols A, B,C, . . . in place of object
species 1, 2, 3, . . . where we see fit.

In stating the rewriting rules of the system, we allow two different notations,
depending on which is more convenient. A rule r is specified either as a tuple
of multisets r = (q, p), q, p ∈ Nm

0 , or via an arrow notation as in r : q → p.
Furthermore, in the latter case the multisets will be written out additively, such
that a multiset (2, 0, 1) is written as 2A + C, for example.

We do not allow catalytic rules of the form MA +C → MB +C, where MA,MB

are multisets over O, and C ∈ O. Rules of this form, i.e., where one or more
objects appear simultaneously on both sides of the rule, will also be called degen-
erate. The condition of nondegeneracy is no restriction: Since we are only interested
in topological properties, i.e., in the reachability of states, we can accommodate
for degenerate rules by using two rules and an intermediary state (a new object
species), which seems the more realistic behavior in biochemistry anyway, corre-
sponding to (1) a binding action of reactants into a so-called complex, and then
(2) the chemical reaction and dissociation of the complex into the products.

Example: Instead of the (invalid) rule A + C → B + C we would consider the
two rules A + C → D and D → B + C, where D is a new object species that does
not occur in any other rule.

Lemma 3.1 A rule ri = (qi, pi) with qi, pi ∈ Nm
0 is nondegenerate iff 〈pi, qi〉 = 0,

where 〈pi, qi〉 = pi,1 · qi,1 + · · ·+ pi,m · qi,m is the standard scalar product in Nm
0 .

Proof. Since all entries in qi and pi are nonnegative, the scalar product will only
be zero if qi,j and pi,j are not both positive for all 1 ≤ j ≤ m. This means that no
object will appear on both sides of a rule, proving the necessity.

The sufficiency is trivial. ut
This allows the specification of a rule as a difference vector r = p − q ∈ Zm,

since we can recover the multisets p, q ∈ Nm
0 from their vector difference via:

p = max(0, r), (4)

q = −min(0, r). (5)

8 Note: In the original definition of membrane systems, it is also possible for rules to
dynamically dissolve a membrane. But in the context of DPP systems we only consider
the static case where this is not allowed.

192 M. Muskulus et al.

Definition 3.1 A topological molecular system (for short system) Π = (m,R, c0)
of type (m,n) consists of

• a positive integer m,
• an n-tuple of nondegenerate rewriting rules R = (r1, . . . , rn) of the form ri ∈
Zm,

• and c0 ∈ Nm
0 .

In the following, a reference to m,n always refers to the above constants of a
particular system Π under consideration.

Note: A topological molecular system is the same as an AMR system, intro-
duced in [18], except that in the latter we also allow inhibitory rules. Also we have
given the rules in the form of a tuple instead of a set, such that there is an im-
plicit ordering of rules. This is only a notational convenience allowing for an easy
statement of sequences of rules. Therefore the reader should keep in mind that we
tacitly assume that all properties of the system do not depend on this ordering.

The integer m specifies the number of different object species of the system
Π, and the multiset c0 ∈ Nm

0 is interpreted as the initial configuration of Π. The
system evolves in discrete time by sequential application of rules, and we denote
by ct, t = 0, 1, 2, . . . , the configuration of the system at time t, i.e., the multiset
of objects in the system at that time. The configuration space of Π is the monoid
(Nm

0 , +), where addition is the usual vector addition. In fact, such a system is the
same as a vector addition system [25] with an initial non-negative vector affixed to
it. However, since we consider somewhat different problems here, it seems justified
to use a different name.

The application of a rule r = p − q is interpreted as the removal of the reac-
tants q ∈ Nm

0 from Π, followed by the appearance of the products p ∈ Nm
0 and

corresponds to the translation of a configuration ct ∈ Nm
0 by the difference vector

r, i.e., ct+1 = ct + r.
Starting from an initial configuration c0 ∈ Nm

0 , the system evolves by sequen-
tially applying reaction rules. These can only be applied if there are enough reac-
tants for each rule to be consumed:

Definition 3.2 A rule ri ∈ Zm is enabled in the state c ∈ Nm
0 if

ri + c ∈ Nm
0 . (6)

This condition is equivalent to

−min(0, ri) ≤ c. (7)

Definition 3.3 A trace sequence (trace, for short) in Π is a finite sequence τ =
(τ1, . . . , τk), τi ∈ {1, 2, . . . , n}.

A trace τ of length k will be called a k-trace for short. It corresponds to a se-
quence of rules r(τ) = (rτ1 , . . . , rτk

), where we use the implicitly given ordering (of
the rules). In computer science this is often called a control sequence, but we prefer

Reaction Cycles in Membrane Systems and Molecular Dynamics 193

the name trace, since we usually observe the system’s behavior (in applications to
biochemistry) instead of prescribing it.

Definition 3.4 A k-trace τ is enabled for a configuration c0 if each rule rτi ,
i ≤ k, is enabled in

∑
1≤j<i rτj + c0.

The trajectory T (c0, τ) = (c0, . . . , ck) of the system, given an enabled k-trace
τ and an initial configuration c0, is defined as follows:

ci+1 = ci + R(vi+1 − vi) (single evolution step), (8)

ci = c0 + Rvi (cumulative evolution step). (9)

A topological membrane system Π corresponds to a topological Markov chain
Fij on configuration space, where Fij = 1 if j is reachable from i in a single
evolution step by some enabled rule, and Fij = 0 otherwise.

In order to calculate the cumulative effect of a trace on the system, the following
notion is useful:

Definition 3.5 Given a k-trace τ , the corresponding cumulative vector trace is
v(τ) = (v0, v1, . . . , vk) where v0 = 0, vj =

∑j
i=1 eτi

∈ Nn
0 and the canonical unit

vectors ej are zero everywhere, except at the j-th coordinate, which is one.

We call vk(τ) the application vector of the trace sequence τ . It counts how often
each rule has been applied in the k time steps that have been traced.

3.2 The stoichiometric matrix

The notion of stoichiometric matrix [7, 26] is given in the context of membrane
systems as follows:

Definition 3.6 The stoichiometric matrix of the topological membrane system Π
is

R =
(

r1 r2 · · · rn

)
. (10)

This is a (m,n)-matrix of integer entries, such that the i-th rule ri corresponds
to the i-th column, and the j-th row corresponds to the possible changes in object
species j by all n rules. Note again: The stoichiometric matrix depends on the
implicit ordering of the rules, but we are only interested in properties which are
invariant with respect to the ordering.

Example 3.1 Consider ΠB = (m,R, c0), where m = 3, and R = (r1, . . . , r4) is
given by r1 : λ → A, r2 : A → B, r3 : 2A + B → C, r4 : C → 3A, where λ desig-
nates the empty multiset (and can be interpreted as the effect of the environment,
modeling some inflow of the system). The initial configuration c0 is left unspecified
for the moment. This system has the following stoichiometric matrix:

RB =

1 −1 −2 3
0 1 −1 0
0 0 1 −1

 (11)

194 M. Muskulus et al.

This example will be further analyzed in the following sections. It is the equiva-
lent of the Brusselator [22], a discrete model for the Belousov-Zhabotinskii chemical
reaction, formulated as an open system (see Section 3.3). A Petri net representa-
tion (as a place-transition net) is given in Figure 1.

A B

C

2

3

Fig. 1. Petri net representation of Brusselator example.

Note that we can decompose this matrix uniquely as R = R+ − R−, with
R+, R− ≥ 0 and 〈R+

i , R−i 〉 = 0 for all i columns. This decomposition is the main
reason why we restrict the rules of Π to be non-degenerate.

Lemma 3.2 A cumulative vector k-trace v(τ) is enabled for a configuration c0 iff
c0 + Rvi ∈ Nm

0 for all 0 ≤ i ≤ k.

Proof. The result follows directly from the definitions. ut
We are interested in the following two problems:

Problem 3.1 Given a k-trace τ = (τ1, . . . , τk) in Π, characterize the set of all
configurations of Π for which τ is enabled.

Problem 3.2 Given an application vector a ∈ Nn
0 , characterize efficiently the set

of all configurations of Π for which there exists an enabled k-trace τ with vk(τ) = a.

The first problem is easy, giving rise to the notion of defect (see Definition 3.9
below). The second problem is challenging: of course we could compute all possible
permutations of the rules in the application vector and their defects (see Defini-
tion 3.11), but this would be too inefficient for practical use with large application
vectors.

Reaction Cycles in Membrane Systems and Molecular Dynamics 195

3.3 Open systems

In Example 3.1 we used a rule with the reactant multiset empty, denoted by the
symbol λ on the left hand side of the rule. This was used to model some inflow of
the system. In this section we show the general use of in- and out-flows.

Rules of the form r : λ → p, p ∈ Nm
0 , model inflow of some molecular species

into the system, i.e., therewith it is possible to model some nutritient/energy
supplies.

Rules of the form r : q → λ, q ∈ Nm
0 , model outflow of some species of the

system, i.e., the removal of some product or waste, or random degradation, i.e., a
turnover effect.

We call a system with at least one in- or outflow rule an open system, since
there is the possibility of interaction with the environment, in contrast to a closed
system.

Object species which partake both in the in- and outflow of the system are
called buffered (for details of buffering in continuous modeling see [27]).

With the following rules it is possible to reduce systems to a simpler form,
retaining the essential dynamics. Topologically, i.e., with respect to the commu-
nicating classes discussed below, buffered species do not constrain the system. To
be more precise, if an object species O is buffered, the number of objects O in
the system can be increased or reduced (minimally to zero) by in- and outflow
(almost) arbitrarily. Given a configuration c0, the communication class this be-
longs to is the same as for a configuration with a different number of objects O,
but otherwise identical to c0. The number of objects of O therefore contains no
information about the communicating class, and we can remove this species from
all rules, i.e., replace it with λ and eliminate all redundant rules created in the
process.

Criterion 3.1 Buffered species can be removed from a system’s definition. Call
this the rule of buffering.

Criterion 3.2 Inflow or outflow species which act only as sources or sinks, re-
spectively, can also be removed from the system’s description. Call this the rule of
self-buffering.

Example 3.2 The Brusselator rules as given in [22] are: Consider the system ΠB

with m = 6 and (invalid) rules

r1 : A → B,

r2 : B + C → D + E,

r3 : 2B + D → 3B,

r4 : C → F.

It is usually assumed that this system has continuous inflow of species A and
C, therefore we need the following additional rules r5 : λ → A, r6 : λ → C.

196 M. Muskulus et al.

Furthermore we can assume continuous removal of the species E and F from the
system, giving rise to additional rules r7 : E → λ, r8 : F → λ. Rewriting the
third rule according to our requirement of nondegeneracy (introducing a new object
species G) and reducing the system by applying Criterion 3.2 to species A, E and
F , we thus arrive at the following rule set:

r′1 : λ → B,

r′2 : B + C → D,

r′3 : 2B + D → G,

r′4 : G → 3B,

r′5 : C → λ,

r′6 : λ → C.

Since C is buffered, we can apply Criterion 3.1, leaving us with

r′′1 : λ → B,

r′′2 : B → D,

r′′3 : 2B + D → G,

r′′4 : G → 3B,

which is the system studied in Example 3.1, albeit with different names of the
objects.

3.4 Compound space

Sometimes it is advantageous to rewrite a system Π to an “equivalent” system
ΠC which simplifies the original dynamics, but increases the number of rules. To
be more precise, in this section we want to construct a system ΠC such that the
system Π is embedded in ΠC via injective mappings on configurations and rules,
compatible with each other (as discussed at the beginning of Section 3.1).

Definition 3.7 A compound is any non-empty multiset appearing on either the
left- or right-hand side of a rule.

The set of all compounds is then C = ∪i≤n{max(0, ri),−min(0, ri)}. A com-
pound is trivial, if it consists of one object species only.

Example 3.3 Continuing Example 3.1, we have the following compounds: c1 =
(1, 0, 0), c2 = (0, 1, 0), c3 = (0, 0, 1), c4 = (2, 1, 0), c5 = (3, 0, 0), corresponding to
A, B, C, 2A + B, and 3A, respectively. The compounds c1, c2, and c3 are trivial.

Note: The set of compounds is precisely the set of all columns of the matrices
{R+, R−} in the unique decomposition of the given stoichiometric matrix into two
non-negative matrices R+, R− ≥ 0, where 〈R+

i , R−i 〉 = 0 for all i. (This correspon-
dence is another reason why we only allow nondegenerate rules).

Reaction Cycles in Membrane Systems and Molecular Dynamics 197

This idea originates in CRNT [12], where the concept of complex space has
been introduced, carrying the same linear structure as configuration space, albeit
on a higher level of abstraction and with regards to rule applications. Since the
name “complex space” is prone to confusion, we call this differently:

The compound space is the nonnegative cone space generated by the compounds
of the original system Π. In general, this space is smaller than the configuration
space.

Proposition 3.1 Given a system Π, its set of compounds C = {c1, . . . , cm} gen-
erates all of Π’s configuration space iff it contains all unit vectors, i.e., iff all
original objects occur as compounds.

Proof. Sufficiency is trivial, since the unit vectors are part of configuration space.
Necessity follows, since the set of all unit vectors generates all of configuration
space. ut

Since this condition is not always fulfilled, we have to include the original object
species as trivial compounds. This is called augmenting the compounds and leads
to the notion of augmented space, the nonnegative cone generated by the union of
compounds and original object species.

Example 3.4 Consider a system Π of type (2, 1). The single rule is given as
r = (−2, 1), so Π’s compound set is C = {(2, 0), (0, 1)}, and does not contain
(1, 0). Therefore, a configuration (2k1 + 1, k2), k1, k2 ∈ N0, cannot be mapped to a
configuration in compound space.

Given a system Π, we can then consider its (augmented) compound system ΠC ,
which is itself a topological membrane system, where the rules are given by (1)
trivial dynamical rules only acting on the compounds, and (2) nontrivial conversion
rules, transforming each compound into its constituent trivial compounds and vice
versa.

Example 3.5 Writing Example 3.1 as an (augmented) compound system ΠC =
(mC ,RC , c0), we find mC = m (since the compounds of Π already include all
original object species), the following dynamical rules: r′1 : λ → c1, r′2 : c1 → c2,
r′3 : c4 → c3, r′4 : c3 → c5, and the following conversion rules (and their inverses):
r′′1 : c4 2c1 + c2, r′′2 : c5 3c1. Together they form the compound-stoichiometric
matrix, denoted by RC :

RC =

1 −1 0 0 2 3 −2 −3
0 1 0 0 1 0 −1 0
0 0 1 −1 0 0 0 0
0 0 −1 0 −1 0 1 0
0 0 0 1 0 −1 0 1

(12)

198 M. Muskulus et al.

The horizontal line in the matrix separates the trivial compounds (first three
rows) from the nontrivial compounds (last two rows). The vertical line sepa-
rates the dynamical rules (first four columns) from the conversion rules (last four
columns). As usual, the order of the rows and columns of RC does not matter.

The (three-dimensional) configuration space of Π is embedded in the configu-
ration space of ΠC , and all equivalences between nontrivial compounds and their
trivial constituent compounds are given by the communicating relation in ΠC .

3.5 Recurring configurations

In the theory of dynamical systems, the notions of fixed and periodic points play
an important role in the analysis of a dynamical system. The analog in our discrete
setting are recurring configurations.

A k-trace τ is closed if its corresponding application vector vk(τ) fulfills
Rvk(τ) = 0.

Definition 3.8 A configuration c ∈ Nm
0 is recurring if there exists an enabled

closed k-trace τ .

A recurring configuration corresponds to a cycle in the evolution digraph, and
vk(τ) is an element of the integer kernel KerN0 R.

Finding the recurring configurations can be done in two steps: (i) find the non-
negative, integer kernel KerN0 R of the stochiometric matrix R, and (ii) for each
such element of the kernel, characterize those configurations for which there exist
enabled trace sequences.

The elements of KerN0 R, i.e., the solutions x ∈ Nn
0 of R x = 0, are called

reaction precycles. They form a submonoid PreCyc in Nn
0 : addition of two precy-

cles is associative and leads to another precycle. It is easy to see, by considering
the lexicographical ordering of the precycles in Nn

0 , that this submonoid is finitely
generated by its minimal (with respect to the inclusion ordering) elements [4].

If enough objects are present in a configuration to make a reaction precycle
possible (see the notion of defect in Definition 3.9), it is called a reaction cycle for
this configuration.

3.6 The incremental algorithm of Contejean and Devie

Finding the (minimal) reaction precycles corresponds to the problem of solving a
linear homogenous diophantine equation. Background information and an effective
algorithm for the determination of the minimal precycles can be found in [5],
building on earlier work of Fortenbacher [4] and others.

A short sketch of the basic algorithm follows. Consider the pseudocode in Ta-
ble 1. Correctness and termination are proved in [5]. The algorithm starts with
the unit step vectors, one for each rule, as starting elements (tentative solutions).
In each iterative step it checks if the elements solve the equation Ax = 0. Each
of the solutions found is considered a minimal solution (since the algorithm starts

Reaction Cycles in Membrane Systems and Molecular Dynamics 199

at the origin and continuously increments all elements). Elements which dominate
(in the lexicographical ordering) any minimal element are removed, since they are
not minimal. All elements are then increased by one unit step, i.e., the applica-
tion of one additional rule is considered, but only if they satisfy the generalized
Fortenbacher’s restriction. This is a geometric condition on the direction in which
the additional rule moves the system from the current configuration. This change
has to be in such a way that the system moves closer to the origin (measured by
the projection on the current configuration vector, using the scalar product).

This basic algorithm can be further optimized by introducing an ordering on
solutions, and Contejean and Devie finally arrive at an efficient stack-based im-
plementation.

1: P ← {e1, . . . en} . Start with unit step vectors, one for each rule.
2: B ← ∅
3: while P 6= ∅ do
4: B ← B ∪ {x ∈ P | Ax = 0} . Found new minimal solution.
5: L ← {x ∈ P −B | ∀s ∈ B : x � s} . Guarantees minimality.
6: P ← {x + ei | x ∈ L, (Ax) · (Aei) < 0} . Fortenbacher’s restriction.
7: end while

Table 1. The incremental algorithm of Contejean & Devie

Example 3.6 Applied to the Brusselator example, the above algorithm finds one
minimal precycle xmin = (0, 1, 1, 1). This is the (only) reaction precycle of the
system and can occur, for example, as the following trajectory: 3A → 2A + B →
C → 3A.

3.7 Defects and their calculation

We introduce the following simple, but important concept:

Definition 3.9 The defect of a closed k-trace τ is

def(τ) = −min{0, Rv1(τ), Rv2(τ), . . . , Rvk(τ) = 0} ∈ Nm
0 . (13)

The minimum in above definition is taken componentwise, of course, and the
minus sign has been introduced such that the defect is nonnegative. The rationale
behind this definition is as follows: Each component di of a defect d = def(τ)
contains the minimum number of objects of species i needed in a configuration to
make the trace τ possible, i.e., enabled. See Figure 2 for the geometrical intuition
behind this.

To define the defect for an application vector (of a reaction precycle), we need
to consider all possible permutations of the application of its rules. Formally this
is done as follows:

200 M. Muskulus et al.

Definition 3.10 Given a multiset x ∈ Nn
0 of size |x| = ∑

i xi, a multiset ordering
σ of x is a sequence (σ1, . . . , σ|x|), with 0 ≤ σi ≤ n, such that

∑

1≤i≤n

δj
σi

= xj

for all j ≤ n, where δj
i denotes the Kronecker delta, which is zero if i 6= j, and has

value one otherwise.

The set of all multiset orderings of a multiset x is denoted by Ξ(x). It contains

|Ξ(x)| =
(|x|
|x1|, |x2|, . . . , |xn|

)
=

|x|!
|x1|! · |x2|! · · · |xn|!

elements.

Example 3.7 Given xmin = (0, 1, 1, 1) from Example 3.6, Ξ(xmin) h S3, the
set of all permutations of three elements. Given x = (2, 1, 2) we get Ξ(x) =
{(1, 1, 2, 3, 3), (1, 2, 1, 3, 3), . . . }, |Ξ(x)| = 30.

(1)

(2)

(3)(4)

defect

#A

#B

Fig. 2. Example illustrating the meaning of defect. The configuration space is two-
dimensional, and the reaction precycle shown results from the application of rules 2B →
A, B → 2A, 4A → 3B, 3B → A. The defect of this particular 4-trace is (1, 2).

From the definitions we see that a multiset ordering σ ∈ Ξ(x) is a |x|-trace.
The inclusion ordering of Nn

0 is given for two configurations c, c′ ∈ Nn
0 by c ≤ c′ iff

c′ − c ∈ Nn
0 .

Definition 3.11 Given a reaction precycle x ∈ Nn
0 , its defect is the set of minimal

elements (in the inclusion ordering) in the set of defects of all multiset orderings
σ ∈ Ξ(x) of x:

Reaction Cycles in Membrane Systems and Molecular Dynamics 201

def(x) = min. elements {def(σ) | σ ∈ Ξ(x)}. (14)

Example 3.8 The precycle xmin from Example 3.6 has a defect consisting of three
elements:

def(xmin) = {(3, 0, 0), (0, 0, 1), (2, 1, 0)},
which result from, for example, the following 3-traces: τ1 = (2, 3, 4), τ2 = (4, 2, 3),
and τ3 = (3, 4, 2).

Definition 3.12 The defect space of a reaction precycle x ∈ Nn
0 is the cone

ds(x) = def(x) + Nm
0 = {v1 + v2 | v1 ∈ def(x), v2 ∈ Nm

0 }.
Note: Addition refers here to the monoid operation. The defect space can also

be characterized by

ds(x) = {c ∈ Nm
0 | c ≥ y, for some y ∈ def(x)} (15)

Geometrically, it is the region of the configuration space in which there exists some
(multiset) ordering σ ∈ Ξ(x) of (the rules from) x, such that the system can cycle
back to where it was before using the rules in the order σ. It is a finite union of
principal cones, i.e., sets of the form {c ∈ Nm

0 | c ≥ c0}, c0 ∈ Nm
0 , with the minimal

elements c0 ∈ def(x) as generators.
Consider an arbitrary precycle x ∈ Nn

0 . As a (nonnegative, integer) solution of
the linear equation Rx = 0, this is a nonnegative, integer, linear combination

x =
∑

1≤i≤|def(x)|,
yi∈def(x)

aiyi, ai ∈ N0 (16)

of minimal precycles.

Proposition 3.2 Given an arbitrary precycle x ∈ Nn
0 , we have

ds(x) ⊇
⋂

y∈def(x)

ds(y). (17)

Proof. Consider two minimal precycles y1, y2 ∈ def(x), and two constants a1, a2 ∈
N. It is surely true that ds(aiyi) ⊇ ds(yi) for i = 1, 2. Furthermore, ds(y1 +
y2) ⊇ ds(y1) ∩ ds(y2). With a standard theorem of set theory it follows that
ds(a1y1 + a2y2) ⊇ ds(y1) ∩ ds(y2). The proposition follows now by induction (the
set def(x) being finite). ut

The following question is of central interest:

Problem 3.3 Given an arbitrary precycle x ∈ Nn
0 , is it true that

ds(x) =
⋂

y∈def(x)

ds(y) ? (18)

202 M. Muskulus et al.

Note: If this would be the case, the defect of a general precycle would be just
the union of all the (pair-by-pair) intersections (i.e., the coordinate-wise maxima)
of the elements of the defects of its minimal precycles, since then

ds(x1 + x2) = {c ∈ Nm
0 | c ≥ max(y1, y2), for some yi ∈ def(xi), i = 1, 2}, (19)

such that
def(x1 + x2) =

⋃

yi∈def(xi),
i=1,2

max(y1, y2) (20)

by de Morgan’s laws. The commutativity and associativity of the maximum com-
plete the inductive argument for the claim.

4 Communicating Classes

4.1 Asymptotic cycles

In this section we want to consider different questions. Call (Zm, +) asymptotic
space and consider the behavior of Π in this space, if all rules are always enabled a
priori, i.e., the system can “borrow” objects as much as it wants. This corresponds
to considering Π in the asymptotic regime, where configurations are far from the
origin, such that all rules are automatically enabled. Defects do not play any role
in this regime, and precycles are cycles. The notions from Section 2.4, formulated
for (Nm

0 , +) originally, carry over to the space (Zm, +) easily.

Problem 4.1 How many communicating classes exist in the asymptotic regime?

We have to distinguish two cases. There might be rules which do not occur in
any cycle of the system. Therefore, these rules lead the system irreversibly from
one communicating class to another. Furthermore, they can be repeatedly applied
(since the asymptotic lattice of configurations is translation-invariant) and thus
there exists an infinite number of asymptotically different communicating classes.
Looking at the reduced (asymptotic) configuration space (recall Definition 2.1), it
will be an infinite tree.

A rule is called transient, if it is not part of any precycle. Otherwise it is called
reversible, since by following the rest of any (permutation of a) cycle in which the
rule under consideration partakes, we can reach the origin again.

Since cycles are asymptotically equivalent to precycles, and all cycles are gen-
erated by the minimal precycles, we only need to check this condition on the
latter.

The set of rulesR is called reversible, if it contains no transient rules. Otherwise
it is called transient. A reversible set of rules guarantees that the communicating
classes in the evolution digraph are independent. But there is still the second
possibility, namely, that more than one independent communicating class exists.
This would mean that there are disconnected dynamical regimes, and a small

Reaction Cycles in Membrane Systems and Molecular Dynamics 203

perturbation of the system (e.g., addition or removal of one object of some species)
could lead the system from one such component to another.

For the corresponding Markov chain this would mean that there would be an
infinite number of stationary distributions, so it is an important to know under
which conditions this happens.

Definition 4.1 The compacted asymptotic configuration space of a topological
membrane system Π is the quotient Zm/ ∼.

Problem 4.2 Under which conditions is the compacted asymptotic configuration
space of a system Π finite?

The following is a sufficient condition for finiteness:

Proposition 4.1 Compacted asymptotic configuration space Zm/ ∼ is trivial
(i.e.,consists of only one communicating class) iff the origin is equivalent (under
the communication relation) to all unit vectors ei, 1 ≤ i ≤ m and their negative
counterparts −ei, 1 ≤ i ≤ m.

Proof. (Similar to the proof of Proposition 3.1.)
Necessity is shown first: If the unit vectors and their negative copies are equivalent
to the origin, this means they are reachable by cycles in asymptotic space (by
applying rules). Since asymptotic space is homogeneous, and therefore translation-
invariant, we can move the origin to one of these vectors. Iterating this argument
shows that we can reach all of asymptotic space, therefore it becomes trivial under
the reachability equivalence relation.

Sufficiency is immediate, since the unit vectors and their counterparts trivially
are elements of asymptotic space. ut

This gives an effective and efficient test for triviality by solving the 2m inho-
mogeneous diophantine equations Rx = ±ei, i ≤ m, which can be achieved by a
modification of Contejean and Devie’s original algorithm, as also described in [5]:

Introduce an extra variable x0 ∈ N0 with r0 = ∓ei as new first row of the
otherwise identical stoichiometric matrix R (note the change of sign). In the algo-
rithm in Table 1, whenever the coordinate associated with x0 reaches the value 1,
it is frozen, i.e., not allowed to be incremented any further.

An application of this criterion can be seen in the example in Section 5.2.

5 Biological Example: LacZ-LacY Regulation

5.1 Precycles of the basic model

We consider the following model for the expressivity of LacZ/LacY proteins in
E. coli bacteria, taken from [28]. Biological species names have been replaced by
capital letters. The correspondence for the most important reactants has been
given in Table 2.

204 M. Muskulus et al.

A + B −→ C (21)

C −→ A + B (22)

C −→ D (23)

D −→ A + E + F (24)

F −→ G (25)

G −→ H + I (26)

I −→ B (27)

E + J −→ K (28)

H + J −→ L (29)

K −→ E + J (30)

L −→ J + H (31)

K −→ E + M (32)

L −→ H + N (33)

M −→ O (34)

N −→ P (35)

O −→ [R] (36)

P −→ [S] (37)

E −→ [T] (38)

H −→ [X] (39)

O + U −→ V (40)

V −→ O + [W] (41)

P −→ U + Q (42)

Q −→ P (43)

More information on the (biological) meaning of these objects and stochastic
simulation results can be also found in [28]. In the equations we have already
indicated by bracketing the outflows and introduced an extra variable Q to ensure
non-degeneracy. In our version of the model the outflows will be replaced by rules
of the form O → λ, P → λ, etc.

Object name B J O P T X
Biological entity RNAP Ribosome LacZ LacY dgrRbsLacZ dgrRbsLacY

Q W E H R S
lactose product RbsLacZ RbsLacY dgrLacZ dgrLacY

Table 2. Names of corresponding biological entities. These consist of molecules as well
as membranes (e.g., Ribosome). The latter are treated in the same manner as normal
molecules, in a slight generalization of Molecular Dynamics.

Reaction Cycles in Membrane Systems and Molecular Dynamics 205

Without these outflows, the system will only show the following three internal
cycles (which are of interest of their own, of course), given in some arbitrary trace
sequence:

A + B → C → A + B (44)

E + J → K → E + J (45)

H + J → L → H + J (46)

Figure 3 shows a Petri net representation of the system, in which the compli-
cated dependencies of the objects are depicted. Outflow species have been shown
without places to make it more readable. It is nontrivial to find the other precycles
for this model.

A B

C D

E J

K

M

F

G

L

H I

N

OU

P

Q

V

λ λ

S

R W

T

X

Fig. 3. Petri net representation of LacZ/LacY example. Outflow species and additional
inflows (see text) are shown without places.

Applying the above algorithm gives us the following additional possibilities9:
9 Note: Most reaction cycles in biology are rather small, given the constant threat of

turnover, i.e., spontaneous degradation of biologically active molecules.

206 M. Muskulus et al.

P + O + U → P + V → P + O + W →
→ P + O → Q + U + O →

→ P + U + O (47)

A + B → C → D → A + E + F →
→ A + E + G → A + E + H + I →

→ A + E + H + B → A + H + B → A + B (48)

The first one is the primal production cycle of the system, with object species W
representing the final product, species O and P being the LacZ and LacY proteins,
respectively. The second one is the ribosomal degradation cycle, with species E, H
representing degraded LacZ and LacY.

5.2 Communicating classes in the LacZ-LacY system

We will check for triviality of the set of communicating classes in above model.
Since not all rules are part of some cycle, this is an indication that we need to
extend the model. We have to include inflows for species B and J , representing
RNAP and Ribosome membrane (site) entities that can be used up. With two
additional rules λ → B, λ → J we find the following additional solutions:

E + J → K → E + M → E + O → E → E + J (49)

H + J → L → H + N → H + P → H → H + J (50)

These are primary degradation cycles for the LacZ and LacY proteins, where
proteins are disabled by turnover (i.e., they degrade spontaneously).

Now all the rules, apart from the one for the inflow of species B, are used in
some cycle.

Criterion 5.1 Assume (for biological systems) that each inflow and outflow species
is part of some further reaction cycle (in a larger system). In the triviality check
according to Proposition 4.1 we therefore only need to check the existence of a
solution x ∈ Nm

0 , Rx = ei, for all i ≤ m which do not correspond to one such
inflow/outflow object. Call this is the rule of (biological) recycling.

Applying this criterion and running the modified algorithm gives no solution
for e{Q=19} = 1 (as well as to some other unit vectors). This alone shows that the
system will still be transient, with an infinite number of communicating classes
that are different by the amount of species Q — or species P , for that matter, which
will be produced out of the intermediary state Q eventually. In simulations it is
therefore possible to use one constant initial value of these species (asymptotically,
i.e., disregarding possible effects of the defects).

Reaction Cycles in Membrane Systems and Molecular Dynamics 207

6 Discussion

We have seen that cycles in chemical reaction networks and membrane systems
can be effectively calculated with standard algorithms. This information is useful
for model checking, as can be seen in the biological example, where we found
internal as well as production/degradation cycles and had to expand the model
appropriately to find further important cycles. It can also be checked whether or
not there will be essentially disconnected communicating classes, by looking for
transient rules and then solving for positive and negative unit vectors. Furthermore
we have given some open problems concerning the geometry of communicating
classes.

We also should mention the related work of [11] which is concerned with finding
similar cycle bases for chemical reaction networks, and the interesting aspect of
decompositions based on cycles [14].

Acknowledgments. M. Muskulus and R. Brijder acknowledge support by the
Nederlandse Wetenschappelijke Organisatie NWO under grant no. 635.100.006.
The work of D. Besozzi has been supported by the European Research Training
Network “Segravis”.

References

1. J. Bang-Jensen, G. Gutin: Digraphs. Theory, Algorithms and Applications. Springer,
2002.

2. P. Brémaud: Markov Chains. Gibbs Fields, Monte Carlo Simulation, and Queues.
Vol. 31 of Texts in Applied Mathematics, Springer, 1999.

3. P. Buchholz, P. Kemper: Hierarchical reachability graph generation for Petri nets.
Formal Methods in System Design, 21 (2002), 281–315.

4. M. Clausen, A. Fortenbacher: Efficient solution of linear diophantine equations. J.
Symbolic Computation, 8 (1989), 201–216.

5. E. Contejean, H. Devie: An efficient incremental algorithm for solving systems of
linear diophantine equations. Information and Computation, 113 (1994), 143–172.

6. R. Diestel: Graph Theory. 3rd Edition, Springer, 2005.
7. P. Dittrich, P.S. di Fenizio: Chemical Organization Theory: Towards a Theory of

Constructive Dynamical Systems. Tech. rep., arXiv preprint: http://xxx.lanl.gov/
q-bio.MN/abs/0501016 (2005).

8. M.A. Gibson, J. Bruck: Efficient exact stochastic simulation of chemical systems with
many species and many channels. J. Phys. Chem., A 104 (2000), 1876–1889.

9. D.T. Gillespie: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem., 81 (1977), 2340–2361.

10. D.T. Gillespie: Approximate accelerated stochastic simulation of chemically reacting
systems. J. Chem. Phys., 115 (2001), 1716–1733.

11. P.M. Gleiss, P.F. Stadler, A. Wagner, D.A. Fell: Relevant cycles in chemical reaction
networks. Adv. Complex Systems, 4, 5 (2001), 207–226.

12. J. Gunawardena: Chemical Reaction Network Theory for In–silico Biologists. Tech.
rep., Bauer Center for Genomics Research, Harvard University (June 2003).

208 M. Muskulus et al.

13. A. Leporati, G. Mauri, C. Zandron: Quantum sequential P systems with unit rules
and energy assigned to membranes. In Membrane Computing, 6th International
Workshop, WMC 2005 (R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, eds.),
LNCS 3850, Springer, 310–325.

14. M. Loebl, M. Matamala: Some remarks on cycles in graphs and digraphs. Discrete
Mathematics, 233, 1-3 (2001), 175–182.

15. E.W. Mayr: An algorithm for the general Petri net reachability problem. In Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing ACM
Press, 1981, 238–246.

16. A. Miner, D. Parker: Symbolic representation and analysis of large probabilistic sys-
tems. In Validation of Stochastic Systems (C. Baier, B.R. Haverkort, H. Hermanns,
J.-P. Katoen, M. Siegle, eds.), LNCS 2925, Springer, 2004, 296–338.

17. T. Murata: Petri nets: Properties, analysis and applications. Proc. Inst. Electr. Eng.,
77, 4 (1989), 541–580.

18. M. Muskulus, R. Brijder: First steps toward a geometry of computation. In Third
Brainstorming Week on Membrane Computing (M.A. Gutierrez-Naranjo, A. Riscos-
Nunez, F.J. Romero-Campero, eds.), Fenix Editora, Sevilla, 2005, 197–218.

19. M. Muskulus, R. Brijder: Complexity of biocomputation: Symbolic dynamics in mem-
brane systems. Int. J. Found. Comp. Sci., 17, 1 (2006), 147–165.

20. Gh. Păun: Computing with membranes. J. Comput. Syst. Sci., 61, 1 (2000), 108–143.
21. Gh. Păun: Membrane Computing: An Introduction. Springer, 2002.
22. D. Pescini, D. Besozzi, G. Mauri, C. Zandron: Dynamical probabilistic P systems.

Int. J. Found. Comp. Sci., 17, 1 (2006), 183–204.
23. D. Pescini, D. Besozzi, C. Zandron, G. Mauri: Analysis and simulation of dynamics

in probabilistic P systems. In Pre-Proceedings of the 11th International Conference
on DNA Computing (A. Carbone, M. Daley, L. Kari, I. McQuillan, N. Pierce, eds.),
London, Ontario, Canada, 2005, 310–321.

24. J.L. Peterson: Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.
25. C. Reutenauer: Aspects mathématiques des Résaux de Pétri. Masson, 1989.
26. C.H. Schilling, B.O. Palsson: The underlying pathway structure of biochemical reac-

tion networks. Proc. Natl. Acad. Sci. USA, 95 (1998), 4193–4198.
27. B.M. Schmitt: The concept of “buffering” in systems and control theory: From

metaphor to math. ChemBioChem, 5 (2004), 1384–1392.
28. T. Tian, K. Burrage: Binomial leap methods for simulating stochastic chemical ki-

netics. J. Chem. Phys., 121, 21 (2004), 10356–10364.

