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Summary. Different stochastic strategies for modeling biological systems with P sys-
tems are reviewed in this paper, such as the multi-compartmental approach and dynam-
ical probabilistic P systems. The respective results obtained from the simulations of a
test case study (the quorum sensing phenomena in Vibrio Fischeri colonies) are shown,
compared and discussed.

1 Introduction

The aims of this work are (i) to review some stochastic approaches that were re-
cently defined in the framework of P systems as new tools for the modeling of
biological systems, (ii) to compare their respective results in simulating the be-
havior of bacteria colonies, and finally (iii) to discuss their advantages, as well
as their limits and possible improvements. The models used to describe biological
systems are usually huge and complex although few copies of each reactant are
present inside them. This is the reason why, in this framework, the classical ap-
proach with differential equations is not suitable. This has driven the direction of
research to look for experimental evidences of the stochastic noise in these kinds
of phenomena, and the importance of this behavior is now clearly stated in the
literature, as reported in [4].

Here, we briefly report some notes on a well known and used stochastic algo-
rithm, which is also the underlying structure at the core of the stochastic strategies
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reviewed in this paper. Namely, the exact stochastic simulation algorithm (SSA),
introduced by Gillespie in [3], is applicable to well-stirred chemical reaction systems
contained inside a single fixed volume, at a constant temperature. A biochemical
system of this type is assumed to contain N molecular species S1, . . . , SN interact-
ing through M reactions channels R1, . . . , RM , with reaction constants c1, . . . , cM

which only depend on the physical condition of the system (e.g., the temperature)
and on properties of the molecules. At time t, Xi(t) molecules of the species Si

are assumed to be present inside the system, for any i = 1, . . . , N .
The SSA algorithm is based on the fundamental hypothesis that cρδt, for any

ρ = 1, . . . ,M , is the average probability that a particular reactants combination for
reaction Rρ will react in the next time interval δt. According to the current state
of the system, this assumption allows to derive P (τ, ρ)dτ , that is, the probability
determining (1) the next reaction that will occur in the volume V during the next
differential time interval (t + τ, t + τ + dτ), and (2) that such reaction will be Rρ.
Thus, the SSA algorithm computes both which reaction will be the next one in
the system, and when it will be actually applied.

The explicit derivation of P (τ, ρ) = P1(τ)P2(ρ) involves the definition of the
propensity function aρ = hρcρ, where hρ is the number of distinct reactant mole-
cules combinations and cρ is the stochastic rate constant associated to reaction
Rρ. By defining a0 =

∑M
ρ=1 aρ, the explicit expressions for the probabilities are

P1(τ) = a0e
−a0τ , (1)

P2(ρ) =
aρ

a0
, (2)

which allow to retrieve the information for when (τ) and which one (ρ) will be
the next applied reaction from the probability density function P (τ, ρ), just by ex-
tracting two random numbers r1 and r2 from the uniform unit-interval distribution
and then taking

τ =
1
a0

ln
( 1

r1

)
(3)

as the time of the next reaction, and choosing the integer corresponding to the
next reaction by evaluating

ρ−1∑

j=1

aj < r2a0 ≤
ρ∑

j=1

aj . (4)

The SSA algorithm has been widely used as the seed and the main reference
model for many stochastic simulations in biochemistry and biology, and it is im-
plemented in many of the most popular cellular simulators within the Systems
Biology Markup Language project [13], such as E-Cell, Cellware, Dizzy, Stocks,
SBW.

Given this brief review of the Gillespie algorithm, the rest of the paper is
structured as follows. In Section 2 we recall some stochastic strategies defined
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so far in the area of P systems, namely the multi-compartmental approach and
sequential/parallel dynamical probabilistic P systems. Then, in Section 3 we report
the simulations on a biological case study, the quorum sensing in Vibrio Fischeri,
performed by the different stochastic approaches. We also compare the obtained
results in Section 4. We conclude with some final remarks and ideas for future
work.

2 Different Strategies for Stochastic Simulations in P
Systems

In this section we recall some stochastic strategies, based on SSA, appeared so far
in P systems for the modeling of biological or biochemical systems. In Section 3 we
will then compare their respective outcomes on a specific biological system, used
as a test case study.

2.1 Multi-Compartmental Approach

In this section we briefly summarize the multi-compartmental algorithm, intro-
duced in [1], [2] and lately applied in [7]. The aim of this method is to exploit the
P systems topology, namely, the hierarchical structure of its compartments. The
core of this approach, based on the Gillespie one, is the creation of an appropriate
common list for all the applicable rules occurring in all the membranes, at each
time step. The sorting of this list (over time) then allows to choose always the first
reaction that has to be applied in the whole system. This approach is intrinsically
sequential and inherits the precision of the SSA, but with the additional feature
of working with different compartments and moving objects among compartments
(by means of the classical communication rules in P systems).

Let us consider a P system Π = (O, Lab, µ,M1,M2, . . . , Mn, R1, . . . , Rn),
where each membrane initially contains the multiset Mm and is labeled with a
symbol in Lab (different membranes can have the same label), and with the set of
rules Rm, 1 ≤ m ≤ n.

Each membrane m is considered a compartment enclosing a volume, therefore
the index ρ of the next rule to be used inside membrane m, and its waiting time τ ,
will be computed using the classical Gillespie algorithm, which returns the triple
(τm, ρm,m).

The procedure used in the multi-compartmental approach is the following:

• Initialization
◦ set time of the simulation t = 0;
◦ for each membrane m in µ compute a triple (τm, ρ, m) using the SSA;

construct a list containing all these triples;
◦ sort the list of triples (τm, ρ, m) according to τm (in decreasing order);

• Iteration
◦ extract the first triple (τm, ρ,m) from the list;
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◦ set time of the simulation t = t + τm;
◦ update the waiting time for the rest of the triples in the list by subtracting

τm;
◦ apply the rule ρ only once, accordingly changing the number of objects in

the membranes affected by the application of the rule;
◦ for each membrane m′ affected by the application of the rule ρ, remove the

corresponding triple (τ ′m′ , ρ′,m′) from the list;
◦ for each membrane m′ affected by the application of the rule ρ, run again

the Gillespie algorithm for the new context in m′ to obtain the triple
(τ ′′m′ , ρ′′,m′), the next rule ρ′′ to be used inside membrane m′, and its
waiting time τ ′′ρ′ ;

◦ add the new triples (τ ′′m′ , ρ′′, m′) in the list, sort this list according to each
waiting time and iterate the process.

• Termination
◦ Terminate the procedure when time t reaches or exceeds a preset maximal

time of simulation.

As a general remark about the multi-compartmental approach, we can say
that it is useful when one wants to simulate small systems that involve several
compartments, each one with a homogeneous distribution of molecules. Exploiting
the P systems structure, and possibly defining “virtual” compartments (e.g., re-
gions corresponding to the cellular membrane bilayers) besides the real biological
ones, it might be possible to reproduce the previous outlined conditions for many
biological processes, thus opening P systems to a vast area of applications.

This approach encapsulates the Gillespie algorithm in each compartment, the
resulting description of the dynamics of each membrane is exact and the overall
description of the system is accurate.

It is well known that Gillespie algorithm does not scale linearly with the number
of objects and the number of rules defined in the system, and this property is
obviously inherited also by the multi-compartmental approach. Even a different
programming version for the code (i.e., distributed over a set of processors) would
not significantly reduce this difficulty, since the structure of the algorithm itself
forces to apply one rule at each step. In fact, once that the rule has been fired, the
computation takes place only in those membranes affected by the application of
this rule. This limits the benefits of a distributed coding only in the initialization
stage of the algorithm, where all the membrane compute the propensity function
in order to obtain the triples to be inserted in the list.

2.2 Dynamical Probabilistic P Systems

In this section we review the stochastic approach underlying dynamical probabilis-
tic P system (DPP, in short), introduced in [8] and lately developed and applied in
[9, 10] (the code is available in the software section of the P systems web page [12]).
The aim of this strategy is to capture the major features of a membrane system
(compartments, communication, parallelism) and to understand how they could
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be exploited in realistic simulations of biological systems. In particular, while the
importance and the applicability of a membrane structure has been largely inves-
tigated from a practical and a theoretical point of view, it is a matter of fact that
the role of maximal parallelism in nature is still not completely understood (and
one of the main motivation of this work).

We recently implemented the DPP approach using the MPI (Message Passing
Interface) C libraries [11] in order to: (i) spread the computation over a cluster of
processors to achieve scalability, (ii) have a direct mapping of the communications
among the membranes, and (iii) speed up the computation. As a direct outcome,
the performances obtained by DPP with MPI implementation allow to easily and
actually execute parallel processes, managing the communication between them,
and thus to achieve higher scalability than the multi-compartmental approach.

In the following, we summarize the algorithm used for the evolution of a DPP,
referring the reader to [9], where the original version running on a single machine
is described. Here we remark that, with respect to the single processor program
of DPP, the use of the MPI library affects only the system communications while
preserving the rest of the code. In this way each membrane evolves independently
from the others for everything but the communication, such that it could reside
on an independent process.

Each membrane m in a DPP will be considered as a single volume, and will
be simulated using an MPI process. All the membranes of a DPP simultaneously
evolve, and require to be synchronized at the end of each step to allow the com-
munication process. Since in each membrane the rules are applied in a maximally
parallel way, in each membrane we can divide a step in three stages: (1) the com-
putation of the probability distribution for the rules, (2) the assignment to the
rules of all objects which can be modified by rules, (3) the communication and
multisets updating.

The corresponding algorithm is:

• Initialization
◦ create all parallel processes;
◦ set the current step t = 0;
◦ load the set of rules and the initial multisets for each process.

• Iteration (for each process)
◦ make a snapshot of the current status of the system;
◦ calculate the propensity functions of rules with SSA;
◦ toss the rules until all the objects are exhausted, and build the relative

trace using the snapshot;
◦ update the system state according to the generated trace and, for each rule,

do what follows:
• if the rule target is here, update the multisets values according to the

left and right side of the rule;
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• if the rule target is in or out, decrease the value of the local multisets
according to the left side of the rule, and send the message to the process
(i.e., the membrane) indicated by the target of the rule;

• wait until all other processes have executed one rule;
◦ check any incoming messages (i.e., objects from other membranes) and in-

crease the value of the multisets according to the received objects;
◦ increment by one the step value.

• Termination
◦ terminate the simulation when the current step reaches the maximal value

previously fixed.

Note that the waiting step in the algorithm is needed to synchronize the ex-
ecution between the membranes, otherwise a process i could, for instance, check
for any received messages before another process j will send a message to i.

An advantage of this approach consists in the fact that, with slight changes
in the program code, it is possible to probe various degrees of parallelism. For
instance, by forcing the simulator to apply one rule at each step it is possible to
obtain a parallel version of the Gillespie algorithm. In this case, if in each mem-
brane we also allow to compute the τ of its rules, then each membrane evolves
with its own time stream. One common step corresponds to a potentially different
τ in each membrane, thus creating some paradox when objects are to be commu-
nicated between two membranes. An example could be a message received in a
membrane in a time that corresponds to the past time of the sending membrane.
This approach will be referred hereafter as 1 rule dynamical probabilistic P system
(1rDPP).

Another way to probe the role of parallelism in this framework is the insertion
of rules of the type A → A, which will compete for the same objects with other
rules having A as the left side, without affecting the system evolution, so that the
result is a reduced consumption of these objects. Examples of these strategies will
be given in Sections 3.3 and 3.4.

Obviously, the main problem that affects a DPP approach is the lack of a
defined common time stream for all the membranes, which only allows to derive
qualitative descriptions of the modeled phenomena. A deeper investigation of this
problem, and of the role of parallelism in nature, is already under development
and will appear elsewhere.

The added value of this approach is the independent evolution of the mem-
branes, which is fundamental to lead to a reliable and scalable simulator for large
and complex systems, such as biological ones. A pure sequential approach binds
the computational efficiency of the simulation to the efficiency of the computer
on which the simulation itself is running, while the possibility of sharing the work
among multiple processing units allows to scale the simulation with respect to the
number of the membranes involved.
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3 The Different Strategies in Practice

In Section 3.1 we briefly describe the quorum sensing phenomena in a Vibrio
Fischeri bacteria colony and the corresponding P system based model presented
in [2] and [1]. In Sections 3.2, 3.3, 3.4 we apply the strategies previously described
on this biological model, used as a test case study.

3.1 Quorum Sensing in Vibrio Fischeri. A Case Study

The marine bacterium Vibrio Fischeri regulates the expression of certain genes
in response to population density using a family of transcriptional regulators, in
a process called auto-induction. In the free living state these bacteria are non
luminescent, but they start to produce light when are at high cell density.

The quorum sensing mechanism in Vibrio Fischeri relies on the synthesis, ac-
cumulation and subsequent sensing of a signal molecule, which we will call OHHL.
When only a small number of bacteria are present, the signal is produced by
the bacteria at a low level. OHHL diffuses out of the bacterial cells and into the
surrounding environment. At high cell density, the signal accumulates in the area
surrounding the bacteria and can also diffuse to the inside of the bacterial cells. The
signal is able to interact with the LuxR protein to form the complex LuxR-OHHL,
which binds to a region of DNA called the Lux Box causing the transcription of
the luminescence genes, a small cluster of 5 genes, luxCDABE. Adjacent to this
cluster are two regulatory genes for the transcription of LuxR and OHHL. In this
sense OHHL and LuxR are said to be auto-inducers because they activate their
own synthesis.

In this section we present the model used in [6] to simulate a colony of bacteria
of this type, in order to reproduce the mechanisms at the base of the luminescent
behavior observed in nature.

Using the framework of P systems, each bacterium is represented by a mem-
brane, and the skin membrane of the system is intended to enclose the environment
(the depth of the system is 2, because each bacteria is an elementary membrane).
In this way we can look at the evolution of every single bacterium, as well as at
the evolution of the whole system.

The system used for the simulations is

ΠV f (N) = (O, {e, b}, µ, (w1, e), (w2, b), . . . , (wN+1, b),Rb,Re), (5)

where:

1. N represents the number of bacteria in the colony;
2. the alphabet is:

O = {OHHL, LuxR,LuxR-OHHL, LuxBox, LuxBox-LuxR-OHHL};

3. the membrane structure is: µ = [e[b ]b . . . [b ]b]e;
4. the initial multisets are: w1 = ∅, wi = {LuxBox}, 2 ≤ i ≤ N + 1;
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5. the rules used inside the system are:
r1 : [ LuxBox ]b

c1−→ [ LuxBox , OHHL ]b
r2 : [ LuxBox ]b

c2−→ [ LuxBox , LuxR ]b
r3 : [ LuxR , OHHL ]b

c3−→ [ LuxR-OHHL ]b
r4 : [ LuxR-OHHL ]b

c4−→ [ LuxR , OHHL ]b
r5 : [ LuxBox , LuxR-OHHL ]b

c5−→ [ LuxBox-LuxR-OHHL ]b
r6 : [ LuxBox-LuxR-OHHL ]b

c6−→ [ LuxBox , LuxR-OHHL ]b
r7 : [ LuxBox-LuxR-OHHL ]b

c7−→ [ LuxBox-LuxR-OHHL , OHHL ]b
r8 : [ LuxBox-LuxR-OHHL ]b

c8−→ [ LuxBox-LuxR-OHHL , LuxR ]b
r9 : [ OHHL ]b

c9−→ OHHL [ ]b
r10 : [ OHHL ]b

c10−→ [ ]b
r11 : [ LuxR ]b

c11−→ [ ]b
r12 : [ LuxR-OHHL ]b

c12−→ [ ]b
r13 : OHHL [ ]b

c13−→ [ OHHL ]b
r14 : [ OHHL ]e

c14−→ [ ]e

The rules from r1 to r12 are placed inside each bacterium, whereas rules r13

and r14 are placed inside the environment.
The following set of parameters have been chosen for running simulations:

c1 = 2, c2 = 2, c3 = 9, c4 = 1, c5 = 10, c6 = 2, c7 = 250, c8 = 200, c9 =
50, c10 = 30, c11 = 20, c12 = 20, c13 = 0.1 · N, c14 = 1. These stochastic rate
constants (expressed in hours−1) have been taken or suggested by the literature
(see [6] and references therein).

3.2 Multi-Compartmental Approach

In this section we present the results obtained by simulating the Vibrio Fischeri
colony model with the multi-compartmental approach.

Two different kinds of membranes are to be initialized: the environment, and
the internal membranes corresponding to bacteria. Moreover, all bacteria share
the same set of rules.

As previously said, every membrane evolves with the SSA dynamics, apart from
the execution of communicating rules, because, in such cases, the rule can affect two
membranes (i.e., the environment and one bacterium). It is clear that there are two
kinds of communication rules: (1) the environment executes a communicating rule
nondeterministically choosing a bacterium of the colony and sending one OHHL
signal into it; (2) the bacterium applies a deterministic communicating rule always
sending an OHHL signal to the environment.

The multi-compartmental approach is suitable for the simulation of this model
because it can trace the behavior of the single bacterium, as well as the behavior
of the whole system. In the following, we present the results of the simulations for
colonies consisting of 10, 300, 400, 500, and 600 bacteria.

In Figure 1 the behavior of a single bacterium is shown, where the production
of light (after about 20 hours of simulation time) is due to the fact that this one
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“guessed wrong” the concentration of the population and got up-regulated. But
then, after sensing that the signal does not accumulate in the environment, it
switched off its systems. Auto-quoration is a rare event but it is still possible due
to the stochastic nature of the simulation algorithm, as the figure shows.

In Figure 2 we show the behavior of a colony of 10 bacteria. During the sim-
ulation of 30 hours of real life, the signal inside the environment does not exceed
130 copies and there are at most 2 quorate bacteria at the same time.

 0
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 0  5  10  15  20  25  30

t [h]

OHHL environment
Quorated bacterium

Fig. 1. Single Bacterium Behavior

In Figures 3, 4, 5 and 6 we represent the behaviors of the other colonies (namely,
with 300, 400, 500 and 600 bacteria) studied with this approach; it is possible to see
that the OHHL signal starts to accumulate at the beginning of the simulation and
also the number of quorate bacteria increases until the signal in the environment
reaches a steady state.

In Figure 7 the number of OHHL signal in the environment and the number of
quorate bacteria of all the simulations are shown. It is possible to see that, as the
number of the bacteria of the colony increases, the number of the quorate bacteria
increases as well, but the number of OHHL signal inside the environment is about
the same for all the simulations. This is due to the fact that in each bacterium the
probability to send out a signal does not depend on the whole number N of bacteria
in the colony, but at the steady state they will have an internal common average
concentration of OHHL, since they share the same constants. On the contrary, in
the environment the probability to send a signal inside a bacterium is proportional
to N (see the definition of c13). The net effect is that, at the steady state, the ratio
between these probabilities is independent from the dimension of the colony.
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Fig. 2. 10 Bacteria Colony
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Fig. 3. 300 Bacteria Colony

An advantage of using this approach for simulating biological systems with
different volumes is that we can look at the behavior of every single volume, as
well as that of the whole system. Moreover, choosing the next applied rule and its
waiting time according to the pure SSA, it is possible to trace the simulation time
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Fig. 4. 400 Bacteria Colony
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Fig. 5. 500 Bacteria Colony

line. Therefore, we can achieve a quantitative description of the evolution of the
system.

Anyway, the main problem of this approach remains at the level of scalability,
since incrementing the number of bacteria means to correspondingly increase (in a
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Fig. 6. 600 Bacteria Colony
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Fig. 7. Comparison between the simulations

non linear mode) the time needed to do the simulations. In Figure 8, the number
of bacteria vs the time needed for computations are plotted.
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3.3 One Rule DPP

The simulations performed with this approach have been run using the same initial
conditions described in Section 3.1. Here the simulation begins initializing N + 1
identical processes (where N is the number of bacteria, plus the environment).

Two colonies consisting of 10 and 300 bacteria were simulated with the DPP
approach with the restriction that only one rule per step is allowed.

In Figure 9 the behavior of the simulated colony of 10 bacteria is shown. It is
possible to see that the OHHL signal inside the environment starts to accumulate,
because the environment is not able to send or to degrade the signal because of
the sequential nature of its internal evolution. There is only one bacterium that
guessed wrong the colony density and starts to produce light.

The second simulation done with this approach is for a colony of 300 individu-
als, see Figure 10. The observed behavior is different from the expected one, in the
sense that although the OHHL signal is accumulated inside the environment, there
is a small number of quorate bacteria (this is easier comprehensible by setting a
logarithmic scale to the ordinate axis, as in Figure 11).

This kind of evolution is due to the fact that all the processes evolve in paral-
lel, executing one rule per step. For this reason the environment can send just one
OHHL signal per step to a nondeterministically chosen bacterium. This is quite
unrealistic, compared with the behavior observed in nature, because in this sim-
ulations the environment is not able to send signals to the bacteria in a “faster”
way, so the bacteria cannot sense the real density of the colony. In this way, the
luminescent state of the colony is not reached although the bacteria would be
enough to start to produce light.
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Fig. 9. 10 Bacteria Colony
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Fig. 10. 300 Bacteria Colony

In the next section we present the behavior of a mixed system in which the
environment behaves according to a (parallel) DPP approach, while the single
bacteria behave according to the 1 rule DPP approach.
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Fig. 11. 300 Bacteria Colony – y log scale

3.4 DPP

In the specific case study of quorum sensing in Vibrio Fischeri, this approach puts
the environment in a position to send more than one OHHL signal per step to the
bacteria of the colony. Hence, using DPP, a maximal parallelism at the level of
the objects consumption inside the environment is introduced. The bacteria of the
colony here still evolve in sequential way (one rule each step).

Like the multi-compartmental approach, here we have simulated colonies of 10,
300, 400, 500 and 600 individuals, starting from the same initial conditions.

In Figure 12 the behavior of a colony consisting of 10 bacteria is shown. Using
the maximal parallelism inside the environment, the signal does not accumulate,
a high number of OHHL is sent inside the bacteria. This is the reason why the
bacteria got quorate although the density of the colony is too low to start to
produce light.

The evolution of the other colonies are quite similar as shown in Figures 13,
14, 15 and 16, because they follow the same dynamic. At the beginning of the
computation, a large number of OHHL signal is sent from the bacteria to the
environment and, using the parallel application of the rules, the signal is sent back
from the environment to the bacteria.

Thanks to the signal sent from the environment, the bacteria sense that the
colony density is enough to start to produce light and an increasing number of
them got quorate.

The problem of this approach is that we have just a qualitative description
of the evolution. We can only observe the cardinality of the multisets at each
step, but the time evolution of the system cannot be traced (just the internal
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Fig. 12. 10 Bacteria Colony
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Fig. 13. 300 Bacteria Colony

time of every membrane could be). However, using this approach we can share out
the load of work between different nodes of a cluster. In this way, it is possible to
simulate larger colonies in a smaller time, compared with the multi-compartmental
approach.
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4 Conclusion and Future Work

In this work we have shown that the stochastic strategies here presented are able to
reproduce the bacterial mechanism of quorum sensing, which describes how each
bacterium senses the presence of the other members of the colony.
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Fig. 17. Comparison between the simulations

The main difference between the results obtained using the multi-mompart-
mental and the DPP approaches regards the simulation of the 10 bacteria colony.
In the first case (Figure 2), the simulated colony behaves in the right way, that
is, at most 2 bacteria got quorate (because they guessed wrong the size of the
colony) and the OHHL signal does not accumulate in the environment. While
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using the DPPs (Figure 12), we obtained the luminescent behavior although the
colony concentration is not enough to start to produce light, and the OHHL signal
does not accumulate inside the environment, because the signal is immediately
redistributed from the environment to the bacteria in a single parallel step.

Looking at the simulations for the larger colonies performed with both ap-
proaches, it is possible to see that the number of quorate bacteria of the colonies
increases as the cardinality of the colonies increases, as expected. Using the multi-
compartmental approach we can observe that the OHHL signal starts to accumu-
late inside the environment, and then it reaches a steady state value common to all
the simulated colonies. The number of quorate bacteria follows the same dynamic
of the signal.

With the DPPs, the OHHL signal and the concentration of quorate bacteria
do not share the same behavior. A smaller “constant” (average) amount of OHHL
signal is present inside the environment in all the colonies, because of the aforemen-
tioned parallel redistribution of the signal, while the number of quorate bacteria
increases at the beginning of the evolution and then reaches a steady state.

At the moment the great advantage in using the Multi-Compartmental strat-
egy is the defined time stream for the whole simulated system, which allows a
quantitative description of the model evolution. The DPP strategy is still at a
qualitative description of the system evolution, though the parallel design of this
strategy leave room for large improvement (it is currently under deep development)
and it is very promising for its computational performances and its scalability. For
instance, the introduction of mute rules in the DPPs (i.e., A → A) allows to sim-
ulate different “levels” of parallelism. The 1 rule DPP and the DPP represent
the sequential and the maximal parallel approaches, respectively, though between
them there exist different levels of parallelism that could be closer to reality and
thus it is worthwhile to investigate. In the case study of Vibrio Fischeri, one pos-
sible improvement for the DPP model would be to add a mute rule like OHHL
→ (OHHL, here) inside the environment, by means of which we can simulate the
different levels of parallelism just by changing the rate constant of that rule. More-
over, adding mute rules for every symbol of the alphabet in every membrane, it is
easy to simulate the whole system exploiting the parallel processes of the DPPs
for every compartment.
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F.J. Romero-Campero: On P systems as a modelling tool for biological systems.
In Pre-Proceedings of the 6th International Workshop on Membrane Computing
(WMC6) (R. Freund, G. Lojka, M. Oswald, Gh. Păun, eds.), TU Vienna, July 2005,
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