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Summary. P systems are a biologically inspired model introduced by Gheorghe Păun
with the aim of representing the structure and the functioning of the cell. Since their
introduction, several variants of P systems have been proposed and explored.

We concentrate on the class of catalytic P systems without priorities associated to
the rules. We show that the divergence problem (i.e., checking for the existence of an
infinite computation) is decidable in such a class of P systems.

As a corollary, we obtain an alternative proof of the nonuniversality of deterministic
catalytic P systems, an open problem recently solved by Ibarra and Yen.

1 Introduction

Membrane computing is a branch of natural computing, initiated by Gheorghe
Păun with the definition of P systems in [11, 12, 13]. The aim is to provide a formal
modeling of the structure and the functioning of the cell, making use especially of
automata, languages and complexity theoretic tools.

Quoting from the Milano webpage [17], “A P system is a computing model
which abstracts from the way the alive cells process chemical compounds in their
compartmental structure. In short, in the regions defined by a membrane struc-
ture we have objects which evolve according to given rules. The objects can be
described by symbols or by strings of symbols (in the former case their multiplic-
ity matters, that is, we work with multisets of objects placed in the regions of the
membrane structure; in the second case we can work with languages of strings or,
again, with multisets of strings). By using the rules in a nondeterministic, max-
imally parallel manner, one gets transitions between the system configurations.
A sequence of transitions is a computation. With a halting computation we can
associate a result, in the form of the objects present in a given membrane in the
halting configuration, or expelled from the system during the computation. Var-
ious ways of controlling the transfer of objects from a region to another one and
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of applying the rules, as well as possibilities to dissolve, divide, create, or move
membranes were considered.”

Since their introduction, plenty of variants of P systems have been introduced,
and a lot of research effort has been carried out, especially concerned with the
study of the expressivity and the universality of the proposed models and with the
ability to solve NP-complete problems in polynomial time.

In this paper we concentrate on catalytic P systems, namely systems whose
rules are of one of the following kinds:

• context–free rules, with the form a → v and representing the fact that an
instance of a is consumed and the objects in v are produced, or

• catalytic rules, with the form ca → cv and representing the fact that a is
consumed and the objects in v are produced, provided that an instance of
catalyst c is present inside the membrane, and that such an instance of c has
not been used yet by another concurrently executed rule. As we will see in
Section 3, catalysts are neither produced nor consumed by evolution rules, but
they are used to bound the number of instances of catalytic rules applied in a
maximal parallelism step.

The computational power of catalytic P systems has been tackled in various
papers: in [12] the universality of P systems with catalysts and priorities is proved;
the result has been improved in [15, 16] by showing that priorities are not necessary
for universality. In [5, 4] some minimality properties for universality are investi-
gated; in particular, [4] shows that two catalysts are sufficient to get universality.

However, the encodings presented in the aforementioned works present a high
degree of nondeterminism. For example, in [4] an encoding of deterministic Min-
sky’s register machines [10] is provided, that satisfies the following properties:

• if the register machine halts, then the encoding of the register machine has a
halting computation (but there could also be other nonterminating computa-
tions);

• if the register machine does not halt, then all the computations of the encoding
are nonterminating.

A corollary of this result is the undecidability of the existence of an halting com-
putation for catalytic P systems, but the nondeterministic nature of the encoding
leaves the door open to the possibility for other properties to be decidable. This
fact is quite relevant from the point of view of systems biology, where the interest
is to predict the behavior of the living matter.

In the present paper we show that divergence, namely, the existence of a nonter-
minating computation, is decidable for catalytic P systems. The proof is based on
the theory of well-structured transition systems [3]: the existence of an infinite com-
putation starting from a given state is decidable for finitely branching transition
systems, provided that the set of states can be equipped with a well-quasi-ordering,
i.e., a quasi-ordering relation which is compatible with the transition relation and
such that each infinite sequence of states admits an increasing subsequence. To
this aim, we define a quasi-ordering on the configurations of catalytic P systems
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that turns out to be a well-quasi-ordering compatible with the maximally parallel
evolution rule.

A consequence of this result is the impossibility to provide a deterministic en-
coding of any Turing powerful formalism in catalytic P systems, as for determinis-
tic systems divergence and the existence of an halting computation are equivalent
properties. This yields to an alternative proof of the nonuniversality of determin-
istic catalytic P systems, an open problem raised in [6, 14] and recently solved by
Ibarra and Yen [8, 9].

The paper is organized as follows. After providing some basic definitions in
Section 2, in Section 3 we define catalytic P systems. Section 4 is devoted to
recalling some basic notions and results concerning well-quasi-orderings and well-
structured transition systems that will be used in the following. Section 5 is devoted
to the decidability result: after providing a finer notion of the configurations and
evolution rules of catalytic P systems that is suitable to our aims, we define a
quasi-ordering relation on the configurations and show that it turns out to be
a well-quasi-ordering compatible with the maximally parallel evolution rule, and
finally we make use of the theory of well-structured transition systems to get the
decidability of divergence. Some conclusive remark is reported in Section 6.

2 Basic definitions

In this section we provide some definitions that will be used throughout the paper.
We start with the definition of multisets and multiset operations.

Definition 1. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S |m(s) 6= 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m such
that dom(m) = ∅ is called empty. The empty multiset is denoted by ∅.

Given the multiset m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S
while ⊕ denotes their multiset union: m⊕m′(s) = m(s) + m′(s). The operator \
denotes multiset difference: (m \m′)(s) = if m(s) ≥ m′(s) then m(s)−m′(s) else
0. The scalar product, j ·m, of a number j with m is (j ·m)(s) = j · (m(s)). The
cardinality of a multiset is the number of occurrences of elements contained in the
multiset: |m| = ∑

s∈S m(s).

The set of parts of a set S is defined as P(S) = {X | X ⊆ S}.
The restriction to a subset of a multiset is defined as follows:

Definition 2. Let m be a finite multiset over S and X ⊆ S. The multiset m|X is
defined as follows: for all s ∈ S,

m|X(s) =
{

m(s) if s ∈ X,
0 otherwise.

We provide some basic definitions on strings, cartesian products and relations.
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Definition 3. A string over S is a finite (possibly empty) sequence of elements in
S. Given a string u = x1 . . . xn, the length of u is the number of occurrences of
elements contained in u and is defined as follows: |u| = n.

With S∗ we denote the set of strings over S, and u, v, w, . . . range over S.
Given n ≥ 0, with Sn we denote the set of strings of length n over S.

Given a string u = x1 . . . xn and i such that 1 ≥ i ≥ n, with (u)i we denote the
i-th element of u, namely, (u)i = xi.

Given a string u = x1 . . . xn, the multiset corresponding to u is defined as
follows: for all s ∈ S, mu(s) = |{i | xi = s ∧ 1 ≤ i ≤ n}|. With abuse of notation,
we use u to denote also mu.

Definition 4. With S × T we denote the cartesian product of sets S and T , with
×nS, n ≥ 1, we denote the cartesian product of n copies of set S and with ×n

i=1Si

we denote the cartesian product of sets S1, . . . , Sn, i.e., S1 × . . . × Sn. The ith
projection of (x1, . . . , xn) ∈ ×n

i=1Si is defined as πi(x) = xi, and lifted to subsets
X ⊆ ×n

i=1Si as follows: πi(X) = {πi(x) | x ∈ X}.
Given a binary relation R over a set S, with Rn we denote the composition of

n instances or R, with R+ we denote the transitive closure of R, and with R∗ we
denote the reflexive and transitive closure of R.

3 Catalytic P Systems

We recall the definition of catalytic P systems without priorities on rules provided
in [4]. For a thorough description of the model, motivation and examples see, e.g.,
[1, 2, 11, 12, 13].

To this aim, we start with the definition of a membrane structure:

Definition 5. Given the alphabet V = {[, ]}, the set MS is the least set inductively
defined by the following rules:

• [ ] ∈ MS,
• if µ1, µ2, . . . , µn ∈ MS, n ≥ 1, then [µ1 . . . µn] ∈ MS.

We define the following relation over MS: x ∼ y iff the two strings can be writ-
ten in the form x = [1. . . [2. . .]2 . . . [3. . .]3 . . .]1 and y = [1. . . [3. . .]3 . . . [2. . .]2 . . .]1
(i.e., if two pairs of parenthesis that are neighbors can be swapped together with
their contents).

The set MS of membrane structures is defined as the set of equivalence classes
w.r.t. the relation ∼∗.

We call a membrane each matching pair of parenthesis appearing in the mem-
brane structure. A membrane structure µ can be represented as a Venn diagram,
in which any closed space (delimited by a membrane and by the membranes im-
mediately inside) is called a region of µ.
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Definition 6. A catalytic P system (of degree d, with d ≥ 1) is a construct

Π = (V, C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0),

where:

1. V is a finite alphabet whose elements are called objects;
2. C ⊆ V is a set of catalysts;
3. µ is a membrane structure consisting of d membranes (usually labeled with i

and represented by corresponding brackets [i and ]i, with 1 ≤ i ≤ d);
4. w0

i , 1 ≤ i ≤ d, are strings over V associated with the regions 1, 2, . . . , d of µ;
they represent multisets of objects present in the regions of µ (the multiplicity
of a symbol in a region is given by the number of occurrences of this symbol in
the string corresponding to that region);

5. Ri, 1 ≤ i ≤ d, are finite sets of evolution rules over V associated with the
regions 1, 2, . . . , d of µ; these evolution rules are of the forms a → v or ca →
cv, where c is a catalyst, a is an object from V \ C, and v is a string from
((V \ C)× {here, out, in})∗;

6. i0 is a number between 1 and d and it specifies the output membrane of Π.

The membrane structure and the multisets represented by wi, 1 ≤ i ≤ d, in Π
constitute the initial state1 of the system. A transition between states is governed
by an application of the evolution rules which is done in parallel; all objects, from
all membranes, which can be the subject of local evolution rules have to evolve
simultaneously.

The application of a rule2 u → v in a region containing a multiset m results in
subtracting from m the multiset identified by u, and then in adding the multiset
defined by v. The objects can eventually be transported through membranes due
to the targets in and out (we usually omit the target here). Note that the catalysts
are neither created nor destroyed by the application of the rules: they simply bound
the number of occurrences of (particular sets of) rules in a maximal parallelism
step. Moreover, catalysts cannot move across the membranes.

The system continues parallel steps until there remain no applicable rules in
any region of Π; then the system halts. We consider the number of objects from
V contained in the output membrane i0 when the system halts as the result of the
underlying computation of Π.

We say that a P system Π diverges if there exists an infinite computation
starting from the initial state of Π.

For example, a graphical representation of the initial state of the P system
Π1 = ({a, b, c}, {c}, [1[2 ]2]1, aabc, abc, {a → b, cb → ca, ca → caa}, {ca → cb, cb →
cba}, 1) is depicted in Figure 1.

1 Here we use the term state instead of the classical term configuration because we will
define a (essentially equivalent but syntactically) different notion of configuration in
Section 5.

2 We use u → v as a shorthand to denote both the rules of kind a → w and ca → cw.



68 N. Busi

'

&

$

%

'

&

$

%

1

2
aabc

a → b

cb → ca

ca → caa

abc

ca → cb

cb → cba

Fig. 1. The initial state of the P system Π1.

Even if both a copy of a and a copy of b are present in the membrane 1 in the
initial state, rules cb → ca and ca → caa cannot be applied together in the same
step, as only a single instance of catalyst c is present in such a state.

We introduce a couple of functions on membrane structures that will be useful
in the following:

Definition 7. Let µ be a membrane structure consisting of d membranes, labelled
with {1, . . . , d}.

Given two membranes i and j in µ, we say that the i is contained in j if the
surface delimited by the perimeter of i in the Venn diagram representation of µ is
contained inside the perimeter of j.

We say that i is the father of j (and j is a child of i) if the membrane j is
contained in i, and no membrane exists that contains j and is contained in i.

The partial function father : {1, . . . , d} → {1, . . . , d} returns the father of a
membrane i, or is undefined if i is the external membrane.

The function children : {1, . . . , d} → P({1, . . . , d}) returns the set of children
of a membrane.

For example, take µ = [1[2[3 ]3]2 [4 ]4]1; then, father(2) = father(4) = 1,
father(3) = 4 and father(1) is undefined; moreover, children(4) = ∅ and
children(1) = {2, 4}.

4 Well-Structured Transition Systems

We start by recalling some basic definitions and results from [3], concerning well-
structured transition systems, that will be used in the following.

A quasi-ordering (qo) is a reflexive and transitive relation.

Definition 8. A well-quasi-ordering (wqo) is a quasi-ordering ≤ over a set X such
that, for any infinite sequence x0, x1, x2, . . . in X, there exist subscripts i < j such
that xi ≤ xj.
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Note that, if ≤ is a wqo, then any infinite sequence x0, x1, x2, . . . contains an
infinite increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .).

Transition systems can be formally defined as follows.

Definition 9. A transition system is a structure TS = (S,→), where S is a set
of states and →⊆ S × S is a set of transitions.
We write Succ→(s) to denote the set {s′ ∈ S | s → s′} of immediate successors of
s ∈ S.
TS is finitely branching if ∀s ∈ S : Succ(s) is finite. We restrict to finitely branch-
ing transition systems.

Well-structured transition systems, defined as follows, provide the key tool to
decide properties of computations.

Definition 10. A well-structured transition system (with strong compatibility)
is a transition system TS = (S,→), equipped with a quasi-ordering ≤ on S, also
written TS = (S,→,≤), such that the following two conditions hold:

1. well-quasi-ordering: ≤ is a well-quasi-ordering, and
2. strong compatibility: ≤ is (upward) compatible with →, i.e., for all s1 ≤ t1

and all transitions s1 → s2, there exists a state t2 such that t1 → t2 and
s2 ≤ t2.

The following theorem (a special case of a result in [3]) will be used to obtain
our decidability result.

Theorem 1. Let TS = (S,→,≤) be a finitely branching, well-structured transi-
tion system with decidable ≤ and computable Succ. The existence of an infinite
computation starting from a state s ∈ S is decidable.

To show that the quasi-ordering relation we will define on P systems is a well-
quasi-ordering we need the following results on well-quasi-ordering relations for
finite sets and multisets.

Proposition 1. Let S be a finite set. Then the equality is a wqo over S.

Lemma 1. [Dickson] Let S be a finite set. The relation ⊆ is a wqo over Mfin(S).

The following proposition permits to obtain a well-quasi-ordering on the carte-
sian product of sets equipped with well-quasi-orderings:

Proposition 2. Let Si be sets and ≤i, be wqo over Si, for i = 1, . . . , n. The
relation ≤ over ×n

i=1Si is defined as follows: x ≤ y iff πi(x) ≤i πi(y) for i =
1, . . . , n. The relation ≤ is a wqo over ×n

i=1Si.
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5 Decidability of Divergence for Catalytic P Systems

In this section we show that the existence of a divergent computation is decidable
for the class of catalytic P systems defined in Section 3.

The decidability proof is based on the theory of well-structured transition sys-
tems [3]: the existence of an infinite computation starting from a given state is
decidable for finitely branching transition systems, provided that the set of states
can be equipped with a well-quasi-ordering, i.e., a quasi-ordering relation which
is compatible with the transition relation and such that each infinite sequence of
states admits an increasing subsequence.

To this aim, we need a finer definition of the computation of a P system, where
a maximal parallelism evolution step is represented as a (maximal) sequence of
simple evolution steps, which are obtained by the application of a single evolution
rule.

After defining such preliminary notions, we propose a well-quasi-ordering that
turns out to be compatible with the maximal parallelism evolution step.

5.1 Partial configurations, reaction relation, and maximal parallelism
step

To represent the states of the system reached after the execution of a non-maximal
sequence of simple evolution rules, we introduce the notion of partial configuration
of a system. In a partial configuration, the contents of each region is represented
by two multisets:

• The multiset of active objects contains the objects that were in the region at
the beginning of the current maximal parallelism evolution step. These objects
can be used by the next simple evolution step.

• The multiset of frozen objects contains the objects that have been produced in
the region during the current maximal parallelism evolution step. These objects
will be available for consumption in the next maximal parallelism evolution
step.

Definition 11. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem.
A partial configuration of Π is a tuple (w1, w̄1), . . . , (wd, w̄d) ∈ ×d(V × V ).
We use ×d

i=1(wi, w̄i) to denote the partial configuration above.
The set of partial configurations of Π is denoted by ConfΠ . We use γ, γ′, γ1, . . .

to range over ConfΠ .

In the above definition, w1, . . . , wd represent the active multisets, whereas
w̄1, . . . , w̄d represent the frozen multisets.

For example, ((aabc, ∅), (abc, ∅)) and ((abc, cb), (c, ∅)) are partial configurations
(not necessarily reachable from the initial state) of the P system in Figure 1.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.
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Definition 12. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem.
A configuration of Π is a partial configuration ×d

i=1(wi, w̄i) satisfying the fol-
lowing: w̄i = ∅ for i = 1, . . . , d.

The initial configuration of Π is the configuration ×d
i=1(w

0
i , ∅) .

For example, ((aabc, ∅), (abc, ∅)) is a configuration (actually the initial config-
uration) of the P system in Figure 1, whereas the partial configuration ((ab, caa),
(abc, ∅)) is not a configuration.

The size of a partial configuration is the number of active objects contained in
the configuration; it will be used to prove the results in the following part of the
paper:

Definition 13. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and γ = ×d
i=1(wi, w̄i) be a partial configuration. The size of γ is #(γ) =∑d

i=1 |wi|.
The execution of a simple evolution rule is formalized by the notion of reaction

relation, defined as follows:

Definition 14. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem.
The reaction relation 7→ over ConfΠ × ConfΠ is defined as follows:
×d

i=1(wi, w̄i) 7→ ×d
i=1(w

′
i, w̄

′
i) iff there exist k, with 1 ≤ k ≤ d, an evolution

rule u → v ∈ Rk and a migration string ρ ∈ {1, . . . , d}|v| such that

• u ⊆ wk,
• w′k = wk \ u,
• ∀i : 1 ≤ i ≤ d and i 6= k implies w′i = wi,
• ∀j : 1 ≤ j ≤ |v| the following holds:

– if π2((v)j) = here, then (ρ)j = k,
– if π2((v)j) = out, then3 (ρ)j = father(k),
– if π2((v)j) = in, then4 (ρ)j ∈ children(k),

• ∀i, 1 ≤ i ≤ d : w̄′k = w̄k ⊕
⊕

1≤j≤|v|,(ρ)j=k(v)j.

For example, in the P system of Figure 1

((aabc, ∅), (abc, ∅)) 7→ ((ab, caa), (abc, ∅)),
((ab, caa), (abc, ∅)) 7→ ((ab, caa), (a, cba)),
((ab, caa), (a, cba)) 67→ ((ab, cab), (a, cba)).

Note that the size of a configuration represents an upper bound to the length
of the sequences of reactions starting from that configuration. Hence, infinite se-
quences of reactions are not possible.

3 As ρ ∈ {1, . . . , d}|v|, this implies that father(k) is defined.
4 This implies that children(k) is not empty.
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Proposition 3. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and γ be a configuration. If γ 7→n γ′, then n ≤ #(γ).

The size of a configuration is also used to provide an upper bound to the set
of configurations reachable by firing a single reaction:

Proposition 4. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and γ be a configuration and Succ 7→(γ) = {γ′ | γ 7→ γ′}. Then |Succ 7→(γ)| ≤
#(γ) ·max{|Ri| | i = 1, . . . , d} ·max{|v| | ∃i, u : 1 ≤ i ≤ d ∧ u → v ∈ Ri} · d.

The heating function heat transforms the frozen objects of a configuration
in active objects, and will be used in the definition of the maximal parallelism
computation step.

Definition 15. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and ×d
i=1(wi, w̄i) be a partial configuration of Π.

The heating function heat : ConfΠ → ConfΠ is defined as follows:
heat(×d

i=1(wi, w̄i)) = ×d
i=1(wi ⊕ w̄i, ∅)

For example, heat(((ab, caa), (a, cba))) = ((abcaa, ∅), (acba, ∅)).
Now we are ready to define the maximal parallelism computational step Z⇒:

Definition 16. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem.
The maximal parallelism computational step Z⇒ over (nonpartial) configura-

tions of Π is defined as follows: γ1 Z⇒ γ2 iff there exists a partial configuration γ′

such that γ1 7→+ γ′, γ′ 67→ and γ2 = heat(γ′).

For example, in the P system of Figure 1

((aabc, ∅), (abc, ∅)) 7→
((ab, caa), (abc, ∅)) 7→
((ab, caa), (b, cb)) 7→
((b, caab), (b, cb)) 67→

Hence, as heat(((b, caab), (b, cb))) = ((bcaab, ∅), (bcb, ∅)), we obtain

((aabc, ∅), (abc, ∅)) Z⇒ ((bcaab, ∅), (bcb, ∅))

Now we can provide a formal definition of the notion of divergence.

Definition 17. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem.
We say that Π is divergent if there exists an infinite sequence of configurations

γi, i = 0, 1, . . . such that

• γ0 is the initial configuration of Π, i.e., γ0 = ×d
i=1(w

0
i , ∅),

• γi Z⇒ γi+1 for all i ≥ 0.
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A P system is deterministic if the configuration reached by the execution of a
maximal parallelism step is univocally determined.5

Definition 18. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and let γ0 be the initial configuration of Π.
We say that P is deterministic if, for each γ, γ′, γ′′ ∈ ReachΠ : γ Z⇒ γ′ and

γ Z⇒ γ′′ imply γ′ = γ′′.

The set of partial configurations reachable in a computation is defined as fol-
lows:

Definition 19. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and let γ0 be the initial configuration of Π. The set of partial configurations
reachable from the initial configuration of Π is defined as follows:

ReachΠ = {γ ∈ ConfΠ | ∃γ1 : γ0 Z⇒∗ γ1 7→∗ γ}.
To make use of the tools illustrated in Section 4 is is necessary to show that

the transition system is finitely branching:

Proposition 5. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem. The transition system (ReachΠ , Z⇒) is finitely branching.

Proof. (Sketch) Let γ ∈ ReachΠ and Succ Z⇒(γ) = {γ′ | γ Z⇒ γ′}.
We show that Succ Z⇒(γ) is finite.
By definition of Z⇒, it is easy to see that |Succ Z⇒(γ)| ≤ |{γ′ | γ 7→+ γ′}|.
We know by Proposition 3 that #(γ) is an upper bound to the length of any

path starting from γ in the transition system (ReachΠ , Z⇒). Now we consider
the tree obtained as unfolding of the part of transition system reachable from γ.
Thanks to the above observation, this tree has a finite depth, that is not greater
than #(γ).

Now we provide an upper bound to the set of arcs exiting from each node of
the tree.

Let Branch(γ) = #(γ) · max{|Ri| | i = 1, . . . , d} · max{|v| | ∃i, u : 1 ≤ i ≤
d ∧ u → v ∈ Ri} · d.

By Proposition 4 we have that |Succ 7→(γ)| ≤ Branch(γ).
By definition of 7→ it is easy to see that the number of active objects decreases

after the firing of a reaction rule, i.e., if γ 7→ γ′, then #(γ) ≥ #(γ′). Hence, from
the fact above we obtain that |Succ 7→(γ′)| ≤ Branch(γ) for all γ′ such that γ 7→ γ′.

Thus, the number of arcs exiting from each node of the tree is bounded by
Branch(γ).

As the depth of the tree is bounded by #(γ), the number of nodes of in the
tree is not greater than (Branch(γ))#(γ).
5 Here we consider a slightly more general notion of determinism, namely, a system is

deterministic even if the target configuration can be reached by firing different sets of
of rules. This notion is sometimes called confluence. In [8, 9] a more restrictive notion
of determinism is considered: namely, a system is deterministic if at each step there
exists at most one maximally parallel multiset of rules that can be applied.
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As |Succ Z⇒(γ)| ≤ |{γ′ | γ 7→+ γ′}|, and |{γ′ | γ 7→+ γ′}| is not greater than
the number of nodes in the tree, we obtain that |Succ Z⇒(γ)| ≤ (Branch(γ))#(γ).
Hence, Succ Z⇒(γ) is finite. ut

A crucial property for the proof of decidability of divergence is the fact that no
catalyst is created or destroyed during the computation; hence, the number of each
catalyst (either active or frozen) in each region of the system is left unchanged by
the execution of both single reaction steps and maximal parallelism steps:

Proposition 6. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and let γ0 = ×d
i=1(w

0
i , ∅) be the initial configuration of Π.

If γ0 7→∗ ×d
i=1(wi, w̄I), then w0

i |C = (wi ⊕ w̄i)|C for i = 1, . . . , d.
If γ0 Z⇒∗ ×d

i=1(wi, w̄I), then w0
i |C = (wi ⊕ w̄i)|C for i = 1, . . . , d.

As a consequence, the above property also holds for all reachable partial con-
figurations:

Corollary 1. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P system,

let γ0 = ×d
i=1(w

0
i , ∅) be the initial configuration of Π and γ = ×d

i=1(wi, w̄i) ∈
Reach(Π) .

Then w0
i |C = (wi ⊕ w̄i)|C for i = 1, . . . , d.

5.2 Well-quasi-ordering on partial configurations compatible with Z⇒

Now we are ready to define a preorder relation over partial configurations of Π
that turns out to be a well-quasi-ordering compatible with Z⇒.

The relation γ1 ≤ γ2 essentially requires that the multisets of active (resp.
frozen) catalysts in each region of the two partial configurations is the same,
whereas the multiset of active (resp. frozen) objects that are not catalysts of γ1

is contained in the corresponding multiset of γ2. We start defining a relation ¹
over the pairs of active and frozen multisets of a single region, then we extend the
notion to a partial configuration.

Definition 20. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem.
The relation ¹ over Mfin(V )×Mfin(V ) is defined as follows: (v, v̄) ¹ (w, w̄)

iff

• v|C = w|C ,
• v|V \C ⊆ w|V \C ,
• v̄|C = w̄|C ,
• v̄|V \C ⊆ w̄|V \C .

The relation ≤ over ConfΠ is defined as follows: ×d
i=1(vi, v̄i) ≤ ×d

i=1(wi, w̄i)
iff, for i = 1, . . . , d, (vi, v̄i) ¹ (wi, w̄i).
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It is easy to see that the relation ≤ is a quasi-ordering over the partial config-
urations of Π.

Now we show that ≤ is a well-quasi-ordering over the partial configurations of
Π.

Lemma 2. Let Π = (V, C, µ,w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P system.

The relation ≤ is a well-quasi-ordering over ReachΠ .

Proof. Let γ ∈ ReachΠ . By Corollary 1 we obtain an upper limit to the multiset
of catalysts in γ, i.e., if γ = ×d

i=1(wi, w̄i), then wi|C ⊆ w0
i |C and w̄i|C ⊆ w0

i |C for
i = 1, . . . , d.

Now we show that ¹ is a wqo over πi(ReachΠ), for i = 1, . . . , d.
Let (w1, w̄1), . . . , (wk, w̄k), . . . be an infinite sequence of elements of πi(ReachΠ).

Consider now the sequence w1|C , . . . , wk|C , . . . of the multisets of active catalysts
in the sequence above. As there exists an upper bound to such multisets, i.e.,
wk|C ⊆ w0

i |C for k ≥ 0, the set {wk|C | k ≥ 0} is finite; hence, by Proposi-
tion 1 it is possible to extract an infinite increasing subsequence w.r.t. the order-
ing relation =, or, in other words, it is possible to extract an infinite subsequence
wi1 |C , . . . , wik

|C , . . . of equal elements, i.e., such that wik
|C = wih

|C for all h, k ≥ 0.
Consider now the sequence wi1 |(V \C), . . . , wik

|(V \C), . . . of active noncatalyst
objects in the extracted subsequence. As V \C is a finite set, by Dickson Lemma 1
it is possible to extract an infinite subsequence that is increasing w.r.t. the multiset
inclusion relation ⊆.

Following the same reasoning it is possible to extract from the subsequence ob-
tained in the previous step a subsequence satisfying the following: the multisets of
frozen catalysts in each element of the subsequence are all equal and the multisets
of frozen noncatalysts in each element of the subsequence are increasing w.r.t. ⊆.

Thus, we have built an infinite subsequence of (w1, w̄1), . . . , (wk, w̄k), . . . that
is increasing w.r.t. the ordering relation ¹ of Definition 20. Hence, the relation ¹
is a wqo over πi(ReachΠ).

By definition of ≤ and by Lemma 2, we obtain that ≤ is a wqo over ReachΠ .
ut

Here we show that the relation ≤ is strongly compatible with the maximal
parallelism relation Z⇒. To this aim, we need an auxiliary ordering relation ¿ on
the set of partial configurations.

Definition 21. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem.
The relation ≺≺ overMfin(V )×Mfin(V ) is defined as follows: (v, v̄) ≺≺ (w, w̄)

iff

• v|C ⊇ w|C ,
• v|V \C ⊆ w|V \C ,
• (v ⊕ v̄)|C = (w ⊕ w̄)|C ,
• v̄|V \C ⊆ w̄|V \C .
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The relation ¿ over ConfΠ is defined as follows: ×d
i=1(vi, v̄i) ¿ ×d

i=1(wi, w̄i)
iff, for i = 1, . . . , d, (vi, v̄i) ≺≺ (wi, w̄i).

It is easy to see that ≤ is stronger than ¿:

Proposition 7. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and γ1, γ2 ∈ ConfΠ . If γ1 ≤ γ2, then γ1 ¿ γ2.

Moreover, if γ1 ¿ γ2 and no reaction is fireable in γ1, then γ1 is smaller than
any partial configuration that can be reached from γ2 by executing a reaction rule:

Proposition 8. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and γ1, γ2 ∈ ConfΠ . If γ1 ¿ γ2, γ1 67→ and γ2 7→ γ′2 then γ1 ¿ γ′2.

Proof. (Sketch) If γ2 7→ γ′2 two cases can happen:

• An instance of rule a → v has been applied in region i of γ2; if a → v cannot
be applied on γ1, then object a does not belong to the active objects of region
i of γ1, hence γ1 ¿ γ′2.

• An instance of rule ca → cv has been applied in region i of γ2; by definition
of ¿, the set of active catalysts in region i of γ1 is greater or equal to the set
of active catalysts in region i of γ2; hence c belongs to the active catalysts in
region i of γ1; as rule ca → cv is not fireable in γ1, this means that a does not
belong to the active objects of region i of γ1. Hence γ1 ¿ γ′2. Note that the
fact that an active catalyst is removed from region i when moving from γ2 to
γ′2 does not prevent the relation γ1 ¿ γ′2 to hold. ut
Another result that will be useful in the proof of strong compatibility of ≤ is

the following:

Proposition 9. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P sys-

tem and γ1, γ2 ∈ ConfΠ . If γ1 ¿ γ2, then heat(γ1) ≤ heat(γ2).

Lemma 3. Let Π = (V, C, µ,w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P system.

The relation ≤ is a strongly compatible with 7→ over ConfΠ .

Proof. (Sketch) Let γ1, γ
′
1 and γ2 ∈ ConfΠ such that γ1 ≤ γ2. Suppose that γ1 7→

γ′1. Then there exists a migration string ρ satisfying the conditions of Definition 14.
The key idea consists in using the migration string ρ to show that there exists
γ′2 ∈ ConfΠ such that γ2 7→ γ′2. ut
Theorem 2. Let Π = (V,C, µ, w0

1, . . . , w
0
d, R1, . . . , Rd, i0) be a catalytic P system.

The relation ≤ is a strongly compatible with Z⇒ over ConfΠ .

Proof. Let γ, γ′ and σ ∈ ConfΠ such that γ ≤ σ. Suppose that γ Z⇒ γ′. We show
that there exists σ′ ∈ ConfΠ such that σ Z⇒ σ′ and γ′ ≤ σ′.

As γ Z⇒ γ′, there exists a sequence γ1, . . . , γn such that γ 7→ γ1 7→ . . . 7→ γn,
γn 67→ and γ′ = heat(γn).
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By repeated application of Lemma 3, there exists σ1, . . . , σn such that σ 7→
σ1 7→ . . . 7→ σn and γi ≤ σi for i = 1, . . . , n.

Now, as σn ≥ γn, it may happen that σn 7→. By Proposition 3 there exists
a (possibly empty) reactions sequence starting from σn of the following form:
σn 7→ σn+1 7→ . . . σn+k.

We obtained above that γn ≤ σn; by Proposition 7 we obtain γn ¿ σn; as
γn 67→, by repeated application of Lemma 8 we obtain γn ¿ σn+k.

From σ 7→ . . . 7→ σn 7→ . . . 7→ σn+k and σn+k 67→ we get σ Z⇒ heat(σn+k).
From γn ¿ σn+k and Proposition 9 we obtain heat(γn) ≤ heat(σn+k).
Hence, by taking σ′ = heat(σn+k) we have shown that there exists σ′ such that

σ Z⇒ σ′ and γ′ ≤ σ′). ut

5.3 Decidability of divergence

Now we are ready to state the main result of the paper.

Theorem 3. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P system.

The transition system (ReachΠ , Z⇒,≤) is a well-structured transition system with
decidable ≤ and computable Succ Z⇒.

Proof. Strong compatibility of ≤ with the maximal parallelism computational step
Z⇒ has been proved in Theorem 2. By Lemma 2 we have that ≤ is a wqo over
ReachΠ . From Definition 20 it is easy to deduce an effective procedure to check
≤. From Definitions 14 and 16 – and by proof of Proposition 3 – it is easy to
deduce an effective procedure to compute Succ Z⇒. Proposition 5 shows that the
transition system (ReachΠ , Z⇒,≤) is finitely branching. ut

By the above theorem and by Theorem 1 we obtain the following

Corollary 2. Let Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0) be a catalytic P system.

The existence of an infinite computation starting from the initial configuration of
Π is decidable.

As a consequence of the above corollary we obtain an alternative proof of the
result in [8, 9], showing that deterministic catalytic P systems are not universal. In
deterministic P systems there exists a unique (possibly infinite) computation start-
ing from the initial configuration; hence, checking for the existence of an halting
computation is equivalent to checking that all computations halt, or, equivalently,
that there exists a divergent computation. By Corollary 2 we obtain the decid-
ability of the existence of an halting computation for deterministic catalytic P
systems. This means that there exists no encoding of any Turing powerful formal-
ism in deterministic catalytic P systems that preserves the existence of an halting
computation.
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6 Conclusion

In this paper we showed that the existence of a divergent computation is a decid-
able property for catalytic P systems.

As a byproduct, we also obtain an alternative proof of the nonuniversality of
deterministic catalytic P systems, an open problem recently solved by Ibarra and
Yen [8, 9]. Actually, the decidability of divergence permits to derive a slightly more
general result, i.e., the nonuniversality of the class of P systems which is uniform
w.r.t. termination (we say that a P system is uniform w.r.t. termination iff the
following property holds: the P systems has a terminating computation iff all of
its computations terminate).

Finally, as in [4], we consider P systems without priorities associated to the
rules. A detailed investigation of the expressivity of various classes of deterministic
P systems with priorities has been carried out in [8, 9]. An investigation of the
impact of the introduction of priorities on our result is left for future investigation.

In the present paper we showed that divergence is a decidable property for cat-
alytic P systems. The technique employed to prove the decidability of divergence is
based on the theory of well-structured transition systems: besides universal termi-
nation, such a theory permits to analyse other interesting properties, such as, e.g.,
coverability, boundedness, and eventuality properties [3]. We plan to investigate
the possibility to use this theory for the analysis of other (biologically relevant)
properties.

Acknowledgement: I’m grateful to George Păun, Oscar Ibarra and, last but
not least, Claudio Zandron for their precious comments and suggestions.
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13. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
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