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Summary. Following [2], we present in this paper various number encodings and opera-
tions over multisets. We obtain the most compact encoding and several other interesting
encodings and study their properties using elements of combinatorics over multisets. We
also construct P systems that implement their associated operations. We quantify the ef-
fect of adding order to a multiset thus obtaining a string, as going from encoding lengths
of the number n in base b and time complexities of operations of the order b

√
n to lengths

and complexities of order logbn.

1 Introduction

Membrane systems represent a new abstract model inspired by cell compartments
and molecular membranes. Essentially, such a system is composed of various com-
partments, each compartment with a different task, and all of them working si-
multaneously to accomplish a more general task of the whole system. A detailed
description of the membrane systems (also called P systems) can be found in [9]. A
membrane system consists of a hierarchy of membranes that do not intersect, with
a distinguishable membrane, called the skin membrane, surrounding them all. The
membranes produce a delimitation between regions. For each membrane there is a
unique associated region. Regions contain multisets of objects, evolution rules and
possibly other membranes. Only rules in a region delimited by a membrane act
on the objects in that region. The multisets of objects from a region correspond
to the “chemicals swimming in the solution in the cell compartment”, while the
rules correspond to the “chemical reactions possible in the same compartment”.
Graphically, a membrane structure is represented by a Venn diagram in which two
? Work partially supported by the CEEX grant 47/2005
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sets can be either disjoint, or one is a subset of the other. We refer mainly to the
so-called transition membrane systems. Other variants and classes are introduced
[9].

The membrane systems represent a new abstract machine. For each abstract
machine, the theory of programming introduces and studies various paradigms of
computation. For instance, Turing machines and register machines are mainly re-
lated to imperative programming, and λ-calculus is related to functional program-
ming. Looking at the membrane systems from the point of view of programming
theory, we intend to provide useful results for future definitions and implementa-
tions of P system-based programming languages, that is, programming languages
that generate P systems as an executable form. The authors of such languages
will certainly have to face the problem of number encoding using multisets, since
the multiset is the support structure of P systems. The idea to encode numbers
using multisets and to define arithmetical operations in membrane computing is
presented in [2]. Here we present more details, emphasizing other interesting as-
pects related to the number encoding using multisets and P systems. We outline
various approaches of the most compact encodings using one membrane, also com-
paring it to the most compact encoding using strings. This comparison is meant
to offer some hints about information encoding in general, specifically how do
we most compactly encode information over structures that have underlying or-
der (strings), or just multiplicity (multisets), or neither (sets), that is how do we
encode information using strings, multisets or sets.

Prior work related to number encodings using multisets was done in [1], where
the encoding is done by allocating a membrane for each digit, thus “stringising”
the multiset, constructing a string-like structure over it. Then this string-like struc-
ture is used to encode numbers in the classical manner. Our approach does not
attempt to superimpose this string structure over the multiset, but tries to use
only the already present quality of multiset elements, multiplicity, to encode num-
bers and, by extension, information. Thus, this approach is a more native one
and might be easier to use in related biochemical experiments. Another advan-
tage is that using this approach it is possible to represent numbers with arbitrary
number of digits, without membrane creation, division or dissolution. One dis-
advantage is that the arithmetic operations have slightly higher complexity. We
have designed and implemented sequential and parallel software simulators [5, 6]; a
web-based implementation is presented in [3]. We have implemented the arithmetic
operations, and each example is tested with our web-based simulator available at
http://psystems.ieat.ro/.

2 Combinatorics Over Multisets (Review)

To develop encoding and decoding algorithms for the above encodings we start
with a short review of combinatorics over multisets based on [4].

Let M be a multiset.
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2.1 Permutations over multisets

Definition: An r − permutation of M is an ordered arrangement of r objects of
M . If |M | = n then an n− permutation of M is called a permutation of M .

Theorem 1. Let M be a multiset of k different types where each type has
infinitely many elements. Then the number of r − permutations of M equals kr.

2.2 Combinations over multisets

Definition: An r − combination of M is an unordered collection of r objects
from M . Thus an r − combination of M is itself an r − submultiset of M . For
a multiset M = {∞a1,∞a2, ...,∞an}, an r − combination of M is also called
an r − combination with repetition allowed of the n-set S = {a1, a2, ..., an}. The
number of r − combinations with repetition allowed of an n-set is denoted by〈

n
r

〉
.

Theorem 2. Let M = {∞a1,∞a2, ...,∞an} be a multiset of n types. Then
the number of r − combinations of M is given by

〈
n
r

〉
=

(
n + r − 1

r

)
=

(
n + r − 1

n− 1

)

3 Number Encodings Over Multisets

We consider several encodings with useful features such as the most compact en-
coding (MCE), Gray-style most compact encoding (GSMCE), square root en-
coding (SqRE), and Gray-style square root encoding (GSqRE).

Gray-style most compact encoding (GSMCE)

Gray-style encodings are based on the fact that a minimal change is performed
on the encoded number to obtain its successor or predecessor. The change means
either converting an existing symbol or adding a new symbol (with the remark
that after this step cannot be performed an other addition step).

3.1 Most compact encoding using one membrane (MCE)

The natural encoding is easy to understand and work with, but it has the dis-
advantage that for very large numbers the P system membranes will contain a
very large number of objects, which is undesirable for practical reasons. First we
analyze the most compact encoding using two object types (binary case) and then
briefly the ternary case.
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Decimal
MCE1

Natural
encoding

MCE2 MCE3 GSMCE2 SqRE2 GSqRE2

0 λ = a0 λ=0010 λ=001020 λ=0010 λ=0010 λ=0010

1 a1 0=0110 0=011020 0=0110 00=0210 00=0210

2 a2 1=0011 1=001120 1=0011 01=0111 01=0111

3 a3 00=0210 2=001021 11=0012 11=0012 11=0012

4 a4 01=0111 00=021020 10=0111 0000=0410 1111=0014

5 a5 11=0012 01=011120 00=0210 0001=0311 1110=0113

6 a6 000=0310 02=011021 000=0310 0011=0212 1100=0212

7 a7 001=0211 11=001220 001=0211 0111=0113 1000=0113

8 a8 011=0112 12=001121 011=0112 1111=0014 0000=0410

9 a9 111=0013 22=001022 111=0013 000000=0610 000000=0610

10 a10 0000=0410 000=031020 1111=0014 000001=0511 000001=0511

11 a11 0001=0311 001=021120 1110=0311 000011=0412 000011=0412

12 a12 0011=0212 002=021021 1100=0212 000111=0313 000111=0313

13 a13 0111=0113 011=011220 1000=0113 001111=0214 001111=0214

Table 1. Number encodings

b/m 0 1 2 3 4 5 6 7 8 9
2 1 2 3 4 5 6 7 8 9 10
3 1 3 6 10 15 21 28 36 45 55
4 1 4 10 20 35 56 84 120 165 220
5 1 5 15 35 70 126 210 330 495 715
6 1 6 21 56 126 252 462 792 1287 2002

Table 2. Number of numbers encoded in base b with m objects

Definitions, properties

We denote as N(b, m) the number of numbers encoded in base b with m objects.
Here are some values for the function N(b,m):
For our representations, the definition of r − combinations is useful in deter-

mining the number of objects represented with m objects in a multiset with b
types. b indicates our base.

N(b,m) =
〈

b
m

〉
=

(
b− 1 + m

m

)
=

(
b− 1 + m

b− 1

)
(1)

which is also the number of m− combinations of a multiset of b types.
Based on the Pascal formula:

(
n
r

)
=

(
n− 1

r

)
+

(
n− 1
r − 1

)
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and its extended form:

(
n
r

)
=

r∑

i=0

(
n− 1− i

r − i

)
(2)

we replace in 2 b− 1 + m for n and m for r,

N(b,m) =
〈

b
m

〉
=

(
b− 1 + m

m

)
=

(
(b− 1)− 1 + (m− i)

(m− i)

)
=

m∑

i=0

〈
b− 1
m− i

〉
=

m∑

i=0

〈
b− 1

i

〉
=

m∑

i=0

N(b− 1, i)

and obtain that

N(b,m) =
m∑

i=0

N(b− 1, i) (3)

To develop encoding and decoding algorithms for a certain base b we have to
solve this equation:

m−1∑

i=0

N(b, i)− n = 0

Since from 3
m−1∑

i=0

N(b, i) = N(b + 1, m− 1) =
〈

b + 1
m− 1

〉
=

(
b + m− 1

m− 1

)
=

(b + m− 1)!
b!(m− 1)!

=
∏b−1

i=0 (m + i)
b!

we obtain that
m−1∑

i=0

N(b, i)− n = 0 ⇔
∏b−1

i=0 (m + i)
b!

− n = 0. (4)

The integer part of its greatest real positive root of 4 will represent m, i.e. the
number of objects needed to represent the natural number n.

We also note that

∏b−1
i=0 (m + i)

b!
=

b∑

i=1

[
b
i

]
mi (5)

where
[

b
i

]
are the Stirling numbers of the first kind b cycle i.

Equation 5 generates some notable number sequences:
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b Sequence name
2 triangular numbers (2-simplex)
3 tetrahedral numbers (3-simplex)
4 pentatopal numbers (4-simplex)
k k-simplex numbers

The integer part of its greatest real positive root of equation 4 will represent
m, i.e. the number of objects needed to represent the natural number n.

We also note that n = O(mb), where b is the base, as opposed to the most
compact encoding on a string, where n = O(bm).

Most compact binary encoding (MCE2)

To minimize the number of objects (object instances) we encode natural numbers
in the way depicted in the MCE2 column of Table 1. We use two object types to
illustrate this encoding, thus obtaining a binary encoding over multisets (unordered
binary encoding).

We can say that the binary case of the most compact encoding using one
membrane is a Cantor encoding, just because the related inverse of the Cantor
pairing function. The Cantor pairing function is the bijection π:NxN→ N defined
by π(k1, k2) = 1

2 (k1 + k2)(k1 + k2 + 1) + k2. In fact, we consider this encoding as
a variant of the Hopcroft-Ullman function. Cantor pairing function and Hopcroft-
Ullman function are the only quadratic functions with real coefficients that are
bijections from NxN to N. They were introduced naturally by Cantor in the proof
of |Q| = |N| = κ0. For more details see [10].

Here we present an explicit description of this encoding; other descriptions
using the fact that the encoding is the inverse of the Cantor pairing function are
possible.

Encoding
To encode the natural number n, we first have to determine the number m

of objects needed to represent it, and then the object types. The length of the
representation is the size of the multiset containing the number. We represent the
number 0 as λ.

In the binary encoding we notice that we can represent m + 1 numbers with
m objects, for m > 0. Thus, the number n represented with m objects will have
before it at least

∑m
i=1 i numbers. So m is the greatest natural number that verifies:∑m

i=1 i = m(m+1)
2 ≤ n. The sequence m(m+1)

2 = C2
m+1 represents the triangular

numbers. To find m we thus need to solve this equation: x(x+1)
2 −n = 0.The roots

are x1,2 = −1±√8n+1
2 . The greatest (and only positive) root is x1 = −1+

√
8n+1

2 ,and
m = [x1] = [−1+

√
8n+1

2 ].
To determine the types of these m objects, we notice that the first number

encoded with m objects will have all objects of type 0. The position of n between
the numbers represented with m objects is given by the difference n− m(m+1)

2 .So
there will be k = n− m(m+1)

2 objects of type 1, the rest being 0.
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Decimal MCE2

0 λ
1 0
2 1
3 00
4 01
5 11
6 000
7 001
8 011
9 111
10 0000
11 0001
12 0011

Number of numbers Number of objects
1 0
2 1

3 2

4 3

... ...
m + 1 m

Table 3. The binary encoding

Decoding
We decode the number encoded using m objects with k objects of type 1 as

n = m(m+1)
2 + k.

4 P Systems for MCE

We present the P systems that implement the arithmetic operations on numbers
encoded using the most compact encodings. We provide the XML code which
could be used to test the arithmetical operations defined in this paper, by using
our WebPS simulator available at http://psystems.ieat.ro (see also [3]).

4.1 Natural encoding MCE1

Addition
Time complexity: O(1)

Addition is trivial; we consider n objects a and m objects b. The rule b → a says
that an object b is transformed in one object a. Such a rule is applied in parallel
as many times as possible. Consequently, all objects b are erased. The remaining
number of objects a represents the addition n + m.

Π = (V, µ,w0, (R0, ∅), 0),
V = {a, b},
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µ = [0]0,
w0 = anbm,

R0 = {b → a}.
Simulator example:

<psystem>
<membrane name="0">

<object name="a" count="2" />
<object name="a" count="4" />
...

</membrane>
<query text="count of (objects from 0)" />

</psystem>

Subtraction
Time complexity: O(1)

Subtraction is described in the following way: given n objects a and m objects b, a
rule ab → λ says that one object a and one object b are deleted (this is represented
by the empty symbol λ). Consequently, all the pairs ab are erased. The remaining
number of objects represents the difference between n and m.

Π = (V, µ,w0, (R0, ∅), 0),
V = {a, b},
µ = [0]0,

w0 = anbm,

R0 = {ab → λ}.
Simulator example:

<psystem>
<membrane name="0">

<object name="a" count="6" />
<object name="b" count="4" />
<rule body="a+b->">

</membrane>
<query text="count of (objects from 0)" />

</psystem>

Multiplication

Figure 1 presents a P system Π1 without promoters for multiplication of n (objects
a) by m (objects b), the result being the number of objects d in membrane 0. In
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this P system we use the priority relation between rules; for instance bv → dev has
a higher priority than av → u, meaning the second rule is applied only when the
first one cannot be applied anymore. Initially only the rule au → v can be applied,
generating an object v which activates the rule bv → dev m times, and then
av → u. Now eu → dbu is applied m times, followed by au → v. The procedure
is repeated until no object a is present within the membrane. We note that each
time when one object a is consumed, then m objects d are generated.

Π1 = (V, µ, w0, (R0, ρ0), 0),
V = {a, b, e, v, u},
µ = [0]0,

w0 = anbmu,

R0 = {r1 : au → v, r2 : bv → dev, r3 : av → u, r4 : eu → dbu},
ρ0 = {r2 > r1, r4 > r3}.

£

¤

¢

¡
an bm u

eu → dbu
bv → dev

0

av → u
au → v>

>

Fig. 1. Π1 multiplier without promoters (natural encoding)

Simulator example:

<psystem>
<membrane name="0">

<object name="a" count="4"/>
<object name="b" count="3"/>
<object name="u" />
<rule body="a+u->v"/>
<rule body="b+v->e+v+d" priority="1"/>
<rule body="a+v->u"/>
<rule body="e+u->b+u+d" priority="1"/>

</membrane>
<query text="count of (objects from 0 where (objects d)) "/>

</psystem>

Figure 2 presents a P system Π2 with promoters for multiplication of n (objects
a) by m (objects b), the result being the number of objects d in membrane 0. In
this P system we use rule with priority and with promoters. The object a is a
promoter in the rule b → bd|a, i.e., this rule can only be applied in the presence
of object a. The available m objects b are used in order to apply m times the
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rule b → bd|a in parallel; based on the priority relation and the availability of a
objects (except one a as promoter), the rule au → u is applied in the same time.
The priority relation is motivated because the promoter a is a resource for which
the rules b → bd|aand au → u are competing. The procedure is repeated until no
object a is present within the membrane. We note that each time when one object
a is consumed, then m objects d are generated.

Π2 = (V, µ,w0, (R0, ρ0), 0),
V = {a, b, u},
µ = [0]0,

w0 = anbmu,

R0 = {r1 : b → bd|a, r2 : au → u},
ρ0 = {r1 > r2}.

£

¤

¢

¡
an bm u

0

au → u>b → bd|a

Fig. 2. Π2 multiplier with promoters (natural encoding)

Simulator example:

<psystem>
<membrane name="0">

<object name="a" count="4"/>
<object name="b" count="3"/>
<object name="v" />
<rule body="b->b+d|a" priority="1"/>
<rule body="a+v->v"/>

</membrane>
<query text="count of (objects from 0 where (objects d)) "/>

</psystem>

The important aspects related to the complexity of both multipliers are pre-
sented in the following table

The membrane systems for multiplication differ from others presented in the
literature [9] because they do not have exponential space complexity, and do not
require active membranes. As a particular case, it would be quite easy to compute
n2 by just placing the same number n of objects a and b. Another interesting
feature is that the computation may continue after reaching a certain result, and
so the system acts as a P transducer [7].
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Type of objects No of rules No of priority levels Time complexity
Π1 6 4 2 O(n ·m)
Π2 4 2 2 O(n)

Table 4. Minimal P systems for multiplication

Thus if initially there are n (objects a) and m (objects b), the system evolves
and produces n ·m objects d. Afterwards, the user can inject more objects a and
the system continues the computation obtaining the same result as if the objects
a are present from the beginning. For example, if the user wishes to compute
(n + k) · m, it is enough to inject k objects a at any point of the computation.
Therefore this example emphasizes the asynchronous feature and a certain degree
of reusability and robustness.

Division

We implement division as repeated subtraction.We compute the quotient and the
remainder of n2 (objects a in membrane 1) divided by n1 (objects a in membrane
0) in the same P system evolution. The evolution starts in the outer membrane
by applying the rule a → b(v, in1). The (v, in1) notation means that the object v
is injected into the child membrane 1. Therefore the rule a → b(v, in1) is applied
n1times converting the objects a into objects b, and object v is injected in the
inner membrane 1. The evolution continues with a subtraction step in the inner
membrane, with the rule av → e applied n1 times whenever possible. Two cases
are distinguished in the inner membrane:

Π = (V, µ, w0, w1, (R0, ρ0), (R1, ρ1), 0),
V = {a, b, b′, c, s, u, v},
µ = [0[1]1]0,

w0 = an1s,

w1 = an2s,

R0 = {a → b(v, in1), b′ → a, r1 : bu → b′|¬v, r2 : u → λ|¬v, r3 : csu → u|v},
ρ0 = {r1 > r2, r2 > r3},
R1 = {r1 : av → e, r2 : v → (v, out),

r3 : es → s(u, out)(c, out), r4 : e → (u, out)},
ρ1 = {r1 > r2, r2 > r3, r3 > r4}.

• If there are more objects a than objects v, only the rules es → s(u, out)(c, out)
and e → (u, out) are applicable. The (u, out) notation means that the object
u is sent out to the parent membrane. Rule es → s(u, out)(c, out) sends out
to membrane 0 a single c (restricted by the existence of a single s into this
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membrane) for each subtraction step. The number of objects c represents the
quotient. On the other hand, both rules send out n1 objects u (equal to the
number of objects e). The evolution continues in the outer membrane by ap-
plying bu → b′|qv of n1times, meaning the objects b are converted into objects
b′ by consuming the objects u only in the absence of v (|qv denotes an inhibitor
having an effect opposite to that of a promoter). Then the rule b′ → a produces
the necessary objects a to repeat the entire procedure.

• When there are less objects a than objects v in the inner membrane we get
a division remainder. After applying the rule av → e, the remaining objects
v activate the rule v → (v, out). Therefore all these objects v are sent out to
the parent membrane 0, and the rules es → s(u, out)(c, out) and e → (u, out)
are applied. Due to the fact that we have objects v in membrane 0, the rule
bu → b′|qv cannot be applied. Since n2 is not divisible by n1, the number of
the left objects u in membrane 0 represents the remainder of the division. A
final cleanup is required in this case, because an object c is sent out even if we
have not a ”complete” subtraction step; the rule ctu → u|v removes that extra
c from membrane 0 in the presence of v. This rule is applied only once because
we have a unique t in this membrane.

±

²

°

¯

µ

¶

´

³

0

1

an2 s

a → b(v, in1)

an1

bu → b′|¬v

b′ → a

av → e > v → (v, out)

>

e → (u, out)>es → s(u, out)(c, out)>

t

ctu → u|v

Fig. 3. P system for division (natural encoding)

Simulator example:

<psystem>
<membrane name="0">

<object name="a" count="14" />
<object name="s" count="1" />
<rule body="a->b+v(1)" />
<rule body="b+u->b’|!v" priority="2" />
<rule body="u->|!v" priority="1"/>
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<rule body="b’->a" />
<rule body="c+s+u->u|v" />
<membrane name="1">

<object name="a" count="26" />
<object name="s" count="1" />
<rule body="a+v->e" priority="3"/>
<rule body="v->v(0)" priority="2" />
<rule body="e+s->s+u(0)+c(0)" priority="1"/>
<rule body="e->u(0)" />

</membrane>
</membrane>
<query text=’objects from *’ />
<query text=’count of (objects from 0 where (objects u))’ />
<query text=’count of (objects from 0 where (objects c))’ />

</psystem>

4.2 Successor, predecessor, adder and multiplier P systems for MCE2

Successor MCE2

Time complexity: O(1)

Complexity proof ; by the evolution we can observe that:
- If an object 0 appears in the encoding then the rule 0s → 1 transforms a single
0 into an 1; 1 time unit
- else, if the number is encoded using only objects 1, the rule 1 → 0|s transforms
all objects 1 into 0, 1 time unit (because of the maximal parallelism); and, the
rule s → 0 produces an additional 0, 1 time unit.
Consequently, the time complexity of the successor is O(1) because the evolution
succeeds in 1 or 2 time units.
P system evolution
The successor of a number in this encoding is computed in the following manner:
either we have an object 0 and the rule 0s → 1 transforms this 0 into an 1, or we
have a number encoded using only objects 1 and the rule 1 → 0|s transforms all
1s into 0s; moreover the rule s → 0 produces an additional 0.

Π = (V, µ, w0, (R0, ρ0), 0),
V = {0, 1, s},
µ = [0]0,

w0 = 0n−k1ks,

R0 = {r1 : 0s → 1, r2 : 1 → 0|s, r3 : s → 0},
ρ0 = {r1 > r2, r2 > r3}.
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§

¨

¦

¥
0n−k

0
1k s

0s → 1 > 1 → 0|s s → 0>

Fig. 4. Successor in MCE2

Simulator example:

<psystem>
<membrane name="0">

<object name="0" count="4" />
<object name="1" count="3" />
<object name="s" />
<rule body="0+s->1" priority="2" />
<rule body="1->0|s" priority="1" />
<rule body="s->0" />

</membrane>
<query text="objects from *" />

</psystem>

Predecessor MCE2

Time complexity: O(1)

Complexity proof ; by the evolution we can observe that:
- If an object 0 appears in the encoding then the rule 1s → 0 transforms a single
1 into an 0; 1 time unit
- else, if the number is encoded using only objects 0, the rule 0s → u transforms
erase an objects 0, 1 time unit; and, the rule 0 → 1|u transforms all the other
objects 0 into 1, 1 time unit(because of the maximal parallelism).
Consequently, the time complexity of the predecessor is O(1) because the evolution
succeeds in 1 or 2 time units.
P system evolution
The predecessor of a number is computed by turning an 1 into a 0 by the rule
1s → 0 whenever we have objects 1; otherwise we consume one 0 by the rule
0s → u, and transform all the other objects 0 into 1 by rule 0 → 1|u.

Π = (V, µ, w0, (R0, ρ0), 0),
V = {0, 1, s},
µ = [0]0,

w0 = 0n−k1ks,
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R0 = {0 → 1|u, r1 : 1s → 0, r2 : 0s → u},
ρ0 = {r1 > r2}.

£

¤

¢

¡
0n−k 1k s

>1s → 0 0s → u
0 → 1|u

0

Fig. 5. Predecessor in MCE2

Simulator example:

<psystem>
<membrane name="0">

<object name="0" count="4" />
<object name="1" count="3" />
<object name="s" />
<rule body="1+s->0" priority="1" />
<rule body="0+s->u" />
<rule body="0->1|u" />

</membrane>
<query text="objects from *" />

</psystem>

Addition in MCE2

Time complexity: O(n)

Complexity proof ; Considering that we have the number n encoded in predeces-
sor and the number m encoded in successor. Because the evolution of the ad-
dition is means incrementing a number while decrementing the other until we
cannot decrement anymore, we can count n decrements (n predecessor evolu-
tions, each O(1) time complexity) and the same number of increments (n suc-
cessor evolutions, each O(1) time complexity). Consequently, addition succeeds in
2n ·O(1) = O(2n) = O(n) time complexity.
P system evolution
We implement addition by coupling the predecessor and successor through a “com-
munication token”. We use the general idea that we add two natural numbers by
incrementing a number while decrementing the other until we cannot decrement
anymore. The evolution is started by the predecessor computation in the outer
membrane which injects a communication token s into the inner membrane. For
each predecessor cycle (except the first one) the inner membrane computes the
successor passing back the token s. Since we want to stop the computation when
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the predecessor is reaching 0, we omit computing the successor for one predeces-
sor cycle: the first token s is eaten-up by the single object p present in the inner
membrane.

Π = (V, µ, w0, (R0, ρ0), (R1, ρ1), 1),
V = {0, 1, s, p},
µ = [0[1]1]0,

w0 = 0n1−k11k1s,

w1 = 0n2−k21k2p,

R0 = {r1 : 1s → 0(s, in1), r2 : 0s → u, r3 : 0 → 1|u, r4 : u → (s, in1)},
ρ0 = {r1 > r2, r2 > r3, r3 > r4},
R1 = {r1 : ps → (s, out), r2 : 0s → 1(s, out),

r3 : 1 → 0|s, r4 : s → 0(s, out)},
ρ1 = {r1 > r2, r2 > r3, r3 > r4}.

Simulator example:

<psystem>
<membrane name="0">

<object name="1" count="1" />
<object name="1" count="1" />
<object name="s" />
<rule body="1+s->0+s(1)" priority="3"/>
<rule body="0+s->u" priority="2"/>
<rule body="0->1|u" priority="1"/>
<rule body="u->s(1)"/>
<membrane name="1">

<object name="0" count="1" />
<object name="1" count="1" />
<object name="p" />
<rule body="p+s->s(0)" priority="3"/>
<rule body="0+s->1+s(0)" priority="2"/>
<rule body="1->0|s" priority="1"/>
<rule body="s->0+s(0)"/>

</membrane>
</membrane>
<query text="objects from *"/>

</psystem>



Encodings and Arithmetic Operations in P Systems 17

µ

¶

´

³

±

²

°

¯

0n2−k2 s1k2

1

0n1−k1

0

1k1

0s → 1(s, out) > 1 → 0|s > s → 0(s, out)

1s → 0(s, in1) >0s → u > 0 → 1|u > u → (s, in1)

Fig. 6. Addition in MCE2

Multiplication MCE2

Time complexity: O(n1 · n2) = O(n2), if n1 = n2 = n.

Complexity proof ; Considering that we have the number n1 encoded in predecessor
and the number n2 encoded in adder. The multiplication evolves by performing
n1 times the addition of n2 with the result memorized in the output membrane
(this result start by 0). A predecessor (O(1)) decrease n1 until reaches 0 and for
each decreasing an addition (O(n2)) is performed. Consequently, the multiplication
succeeds in n1 ·O(1) ·O(n2) = O(n1 · n2) time complexity.
P system evolution:
We implement multiplication in a similar manner to addition, coupling a prede-
cessor with an adder. The idea is to provide the first number to a predecessor,
and perform the addition iteratively until the predecessor reaches 0. The prede-
cessor is computed in membrane 0, and in membranes 1, bk, and 2, we have a
modified adder. The evolution is started by the predecessor working over the first
number, in the outer membrane 0. The predecessor activates the adder by passing
a communication token w. The adder is modified to use an extra backup membrane
which always contains the second number, which we named bk (to suggest that
it contains a backup of the second number). When the adder is triggered by the
predecessor, it signals the backup membrane bk which supplies a fresh copy of the
second number to the adder (bk fills membrane 1 with the encoding of the second
number) and a new addition iteration is performed. At the end of the iteration,
the adder sends out a token s to the predecessor in membrane 0. The procedure
is repeated until the predecessor reaches 0.

Π = (V, µ, w0, (R0, ρ0), (R1, ρ1), (R2, ρ2), (Rbk, ρbk), 2),
V = {0, 1, p, q, s, u, w},
µ = [0[1[2]2[bk]bk]1]0,

w0 = 0n1−k11k1s,
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w1 = q,

w2 = 0,

wbk = 0n2−k21k2 ,

R0 = {r1 : 1s → 0(w, in1), r2 : 0s → u, r3 : 0 → 1|u, r4 : u → (w, in1)},
ρ0 = {r1 > r2, r2 > r3, r3 > r4},
R1 = {r1 : 1s → 0, r2 : 0s → u, r3 : 0 → 1|u, r4 : wq → (s, out),

r5 : w → (w, inbk)(p, in2)|¬0¬1, r6 : s → (s, out)|¬0¬1,

u → (s, in2)},
ρ1 = {r1 > r2, r1 > r3, r1 > r4, r1 > r5, r2 > r6},
R2 = {r1 : ps → (s, out), r2 : 0s → 1(s, out),

r3 : 1 → 0|s, r4 : s → 0(s, out)},
ρ2 = {r1 > r2, r2 > r3, r3 > r4}

Rbk = {r1 : 1 → 1(1, out)|w, r2 : 0 → (0, out), r3 : w → (s, out)}
ρbk = {r1 > r3, r2 > r3}.
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Fig. 7. Multiplier in MCE2
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Simulator example:

<psystem>
<membrane name="0">

<object name="0" count="3"/>
<object name="1" count="10"/>
<object name="s"/>
<rule body="1+s->0+w(1)" priority="3"/>
<rule body="0+s->u" priority="2"/>
<rule body="0->1|u" priority="1"/>
<rule body="u->w(1)"/>
<membrane name="1">

<object name="q"/>
<rule body="w+q->s(0)" priority="1"/>
<rule body="w->w(bk)+p(2)|!0+!1"/>
<rule body="s->s(0)|!0+!1"/>
<rule body="1+s->0+s(2)" priority="3"/>
<rule body="0+s->u" priority="2"/>
<rule body="0->1|u" priority="1"/>
<rule body="u->s(2)"/>
<membrane name="bk">

<object name="0" count="3"/>
<object name="1" count="1"/>
<rule body="1->1(1)+1|w" priority="1"/>
<rule body="0->0(1)+0|w" priority="1"/>
<rule body="w->s(1)"/>

</membrane>
<membrane name="2">

<object name="0" count="1"/>
<rule body="p+s->s(1)" priority="3"/>
<rule body="0+s->1+s(1)" priority="2"/>
<rule body="1->0|s" priority="1"/>
<rule body="s->0+s(1)"/>

</membrane>
</membrane>

</membrane>
<query text="objects from 2"/>
<query text="count of (objects from 2)"/>
<query text="count of (objects from 2 where (objects 1))"/>

</psystem>

4.3 Multiple-iterations successor and predecessor

Multiple-iterations successor MCE2

Time complexity: O(p/m) = O(p/
√

n)
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Complexity proof ; by the P system evolution we observe:
- the rule 0s → 1 consumes as many s as possible (maximum m[= the length

of n]); 1 time unit (because of the maximal parallelism)
- the rule su → 0t generates an single 0 (the length of n is increasing by 1

[m = m + 1]); 1 time unit
- the rule 1 → 0|t transforms all (m) objects 1 into 0; 1 time unit

for time complexity the rule t → u is not important because it can be applied in
the same time unit with the first one.

In the first 3 time units m + 1 objects s are consumed, in the next 3 time
units m + 2 objects s are consumed, and so on (m is increasing), until all the
objects s are consumed. We compute all p iterations in 3k time units (where k

is from p =
k∑

i=1

(m + i)), meaning the time complexity is O(3k). If we consider

that the codification length doesn’t grow for each 3 time units, is the same like

for the first 3 unit times m + 1, it is obtaining p =
k∑

i=0

(m + 1) = k(m + 1);

further k = p
m+1 . Consequently, the time complexity is O(3k) = O( 3p

m+1 ) = O( p
m ).

We obtained O(p/m) to compute p successor iterations with Multiple-iteration
successor, better than simple successor which needs p ·O(1) = O(p) to compute p
successor iterations.
P system evolution
The multiple-iterations successor performs p successor iterations on the number n.
The number of iterations is the number of s objects. In this encoding the multiple-
iterations successor is computed in the following manner. Considering the order
of priority, the rule 0s → 1 is applied; it consumes as many s as possible and
objects 0 are transformed into objects 1. Then if objects s still exist, the rule
su → 0t generates a single 0, and generates a t which promotes the rule 1 → 0|t,
transforming all objects 1 into objects 0. Together with one 0 generated by the
su → 0t rule, the number of objects in the encoding is increased. The last rule
t → u converts the object t into an u which allows the second rule to consume a
single s. If the objects s are not entirely consumed, then this process is repeated.

Π = (V, µ,w0, (R0, ρ0), 0),
V = {0, 1, s, t, u},
µ = [0]0,

w0 = 0n−k1kspu,

R0 = {r1 : 0s → 1, r2 : su → 0t, r3 : 1 → 0|t, r4 : t → u},
ρ0 = {r1 > r2, r2 > r3, r3 > r4}.
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Fig. 8. Multiple-iterations successor

Simulator example:

<psystem>
<membrane name="0">
<object name="0" count="2"/>
<object name="1" count="1"/>
<object name="s" count="5"/>
<object name="u"/>
<rule body="0+s->1" priority="3"/>
<rule body="s+u->0+t" priority="2"/>
<rule body="1->0|t" priority="1"/>
<rule body="t->u"/>

</membrane>
<query text="objects from *"/>

</psystem>

Multiple-iterations predecessor MCE2

Time complexity: O(m) = O(
⌊

−1+
√

8n+1
2

⌋
) = O(

√
n)

Complexity proof ; by the P system evolution we observe:
- the rule 1s → 0 consumes as many s as possible (maximum m[= the length

of n]); 1 time unit (because of the maximal parallelism)
- the rule 0su → t erases an single 0 (the length of n is decreasing by 1

[m = m− 1]); 1 time unit
- the rule 0 → 1|s transforms all (m) objects 0 into 1; 1 time unit

for time complexity the rule t → u is not important because it can be applied in
the same time unit with the first one (1s → 0).

In the first 3 time units m + 1 objects s are consumed, in the next 3 time
units m objects s are consumed, and so on (m is decreasing), until all the objects
s are consumed. We compute all p iterations in 3k time units (where k is from

p =
k∑

i=1

(m− i)), meaning the time complexity is O(3k). If we consider that m is
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decreasing until it reaches 0 (decoder), it is obtaining k = m and p =
m∑

i=0

(m− i).

Consequently, the time complexity is O(3k) = O(3m) = O(m). We obtained O(m)
to compute p predecessor iterations with Multiple-iteration predecessor, better
than simple predecessor which needs p × O(1) = O(p) to compute p predecessor
iterations, usualy p > m.
P system evolution
The multiple-iterations predecessor performs p predecessor iterations on the num-
ber n. The number of iterations is the number of objects s. The multiple-iterations
predecessor is computed in the following manner. Considering the order of priority,
the rule 1s → 0 is applied, consuming as many s as possible, and objects 1 are
transformed into objects 0. If we still have objects s, the rule 0su → t removes
a single 0, after which the rule 0 → 1|s transforms all 0s into 1s. The number of
objects in the encoding is decreased by the rule 0su → t. The last rule t → u
converts the object t into an u which allows the second rule to consume a single
s. If the objects s are not entirely consumed, then this process is repeated.

Π = (V, µ, w0, (R0, ρ0), 0),
V = {0, 1, s, t, u},
µ = [0]0,

w0 = 0n−k1kspu,

R0 = {r1 : 1s → 0, r2 : 0su → t, r3 : 0 → 1|s, r4 : t → u},
ρ0 = {r1 > r2, r2 > r3, r3 > r4}.
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> >1s → 0 0su → t 0 → 1|s
t → u
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Fig. 9. Multiple-iterations predecessor

Simulator example:

<psystem watchRules="false">
<membrane name="0">
<object name="0" count="1" />
<object name="1" count="1" />
<object name="s" count="5" />
<object name="u" count="1" />
<rule body="1+s->0" priority="2" />
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<rule body="0+s+u->t" priority="1"/>
<rule body="0->1|s" />
<rule body="t->u" />

</membrane>
<query text="objects from *" />

</system>

Decoder MCE2

Time complexity: O(m)

Complexity proof ; Time complexity of Decoder MCE2 is the same as for the
Multiple-iteration predecessor MCE2

P system evolution
The decoder is an multiple-iterations predecessor that performs n predecessor it-
erations on the number n (the encoded number). Instead of consuming s objects
it produces d objects. The number of d objects is n when the system stops.

Π = (V, µ,w0, (R0, ρ0), 0),
V = {0, 1, d, t, u},
µ = [0]0,

w0 = 0n−k1ku,

R0 = {t → u, r1 : 1 → 0d, r2 : 0u → td, r3 : 0 → 1},
ρ0 = {r1 > r2, r2 > r3}.
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Fig. 10. MCE2 decoding

Simulator example:

<psystem>
<membrane name="0">
<object name="0" count="1" />
<object name="1" count="1" />
<object name="u" count="1" />
<rule body="1->0+d" priority="2" />
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<rule body="0+u->t+d" priority="1"/>
<rule body="0->1" />
<rule body="t->u" />

</membrane>
<query text="objects from *" />

</system>

Optimized adder MCE2

Time complexity: O(m)

Complexity proof ; by the P system evolution we observe that the optimized adder
contains a multi-iteration predecessor in one membrane and a multi-iterations
successor in the other. Because the successor performs its iterations in an asyn-
chronous manner without any response to the predecessor the time complexity is
given by the worst time complexity between multi-iteration predecessor (O(p/m))
and multi-iterations successor (O(m)). Consequently, the time complexity of the
optimized adder is O(m).
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Fig. 11. Optimized adder

P system evolution:
The optimized adder contains in membrane 0 a multiple-iteration predecessor,
and in membrane 1 a multiple-iterations successor. Each membrane contains a
term of the addition. As opposed to the simple adder where the predecessor and
the successor perform a synchronization after each iteration, in this optimized
adder the predecessor compute in one step multiple iterations, and sends multiple
objects s to the successor. The successor performs its iterations in an asynchronous
manner (without any response to the predecessor). The evolution stops when the
predecessor stops.

Π = (V, µ, w0, w1, (R0, ρ0), (R1, ρ1), 1),
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V = {0, 1, s, t, u},
µ = [0[1]1]0,

w0 = 0n1−k11k1u,

w1 = 0n2−k21k2u,

R0 = {t → u, r1 : 1 → 0d, r2 : 0u → td, r3 : 0 → 1},
ρ0 = {r1 > r2, r2 > r3},
R1 = {r1 : 0s → 1, r2 : su → 0t, r3 : 1 → 0|t, r4 : t → u}
ρ1 = {r1 > r2, r2 > r3, r3 > r4}.

Simulator example:

<psystem>
<membrane name="1">
<object name="0" count="2"/>
<object name="0" count="4"/>
<object name="u" count="1"/>
<rule body="1->0+s(2)" priority="3"/>
<rule body="0+u->t+s(2)" priority="2"/>
<rule body="0->1" priority="1"/>
<rule body="t->u"/>
<membrane name="2">

<object name="0" count="2"/>
<object name="1" count="4"/>
<object name="u"/>
<rule body="0+s->1" priority="3"/>
<rule body="s+u->0+t" priority="2"/>
<rule body="1->0|t" priority="1"/>
<rule body="t->u"/>

</membrane>
</membrane>
<query text="objects from *"/>

</psystem>

4.4 Successor P systems for MCE3

Time complexity: O(1)
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Fig. 12. Optimized adder
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P system evolution
The successor of a number in this encoding is computed in the following manner,
we have four possibilities: - either, we have an object 1 and the rule 1s → 2
transforms an 1 into an 2, - or, we have a number encoded using objects 0 and 2
then the rule 2 → 1|0s transforms all 2s into 1s, moreover the rule 0s → 1 erases
an 0 and generates an 1 - or, the encoding contains only objects 2 then the rule
2s → 00t transforms an object 2 into two objects 0 and a t which promotes the
rule 2 → 0|t. This rule transforms all others 2s into 0s. In this case the length of
the encoding is increased. - or, the encoding contains only objects 0 and then the
rule 0s → 1 transforms an object 0 into 1.

Π = (V, µ, w0, w1, (R0, ρ0), 0),
V = {0, 1, 2, s},
µ = [0]0,

w0 = 0n1−k1−k21k12k2s,

R0 = {r1 : 1s → 2, r2 : 2 → 1|0s, r3 : 2s → 00t, r4 : 2 → 0|t, r5 : 0s → 1},
ρ0 = {r1 > r2, r2 > r3, r2 > r4, r3 > r5}.

Simulator example:

<psystem>
<membrane name="0">
<object name="0" count="3"/>
<object name="2" count="3"/>
<object name="2" count="3"/>
<object name="s"/>
<rule body="1+s->2" priority="4"/>
<rule body="2->1|s+0" priority="2"/>
<rule body="2+s->0+0+t" priority="1"/>
<rule body="2->0|t" priority="1"/>
<rule body="0+s->1"/>

</membrane>
<query text="objects from *"/>

</psystem>

5 Conclusion

The idea to encode numbers using multisets and to define arithmetical opera-
tions in membrane computing is introduced in [2]. In this paper we extend the
presentation including more details and complexity proofs, mentioning some new
encodings, and adding arithmetical operations in more complex encodings.

The most compact encodings over the multisets represent n in O(mb) where b
is the base of the encoding, and m is the codification length. When we consider
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strings instead of multisets, and the position becomes a relevant information, then
the most compact encoding of n is of order O(bm).

Singularity Multiplicity Position
Media set multiset string

Structure atomic composite composite
Encoding length constant b

√
n logbn

number(base, length) - n = O(mb) n = O(bm)

This fact provides some hints about information encoding in general, allowing to
compare the most compactly encoded information over structures as simple sets,
multisets, and strings of elements from a multiset (where position is relevant). A
primary conclusion is that the effect of considering position as relevant over the
elements of a multiset is the reduction of the encoding length from b

√
n to logbn. On

the other hand, the encodings over multisets are much closer to the computational
models inspired by biology, and can help to improve their computation power.

We provide the XML code for each of the arithmetical operations defined in
the paper, and use the web-based simulator of the P systems available at http:
//psystems.ieat.ro/ to implement the arithmetical operations, and test each
operation.
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