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Summary. It is known that P systems with symport/antiport rules simulate the register
machines, i.e., they are computationally complete. Hence, due to the existence of universal
register machines, there exist computationally complete subclasses of symport/antiport P
systems with a number of rules limited by a constant. However, there was no estimation
of this number in the literature. In this article, we first give a simple estimation of
this constant, and then we show that the number can be reduced by grouping together
several instructions of the simulated variant of the register machines. Finally, a universal
P system with symport/antiport having only 44 rules is obtained.

1 Introduction

The theory of P systems is a recent vivid scientific field, on the borderline of
bio-computing and theoretical computer science. P systems or membrane systems
were introduced by Gheorghe Păun in 1998 (the full version of the first article
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appeared in [8]) in order to introduce a computational concept which mimics the
architecture and the functioning of the living cell and thus to provide us with a
powerful unconventional computational device and a suitable tool for describing
biological phenomena at the cellular (bio-molecular) level. Since then, the rapid
development of the area and the obtained results have confirmed the expectations.

A P system or a membrane system is a structure of hierarchically embedded
membranes, each having a label and enclosing a region containing a multiset of
objects and possibly other membranes. The out-most membrane is called the skin
membrane. The objects in the regions correspond to bio-chemical ingredients, the
membranes to the membranes of the cell. During the functioning of the P system,
the objects in the different regions may change and move across the membranes.
The rules of the changes and the communication between the membranes can be
defined in various manners, thus making possible to create and study different
variants of P systems, with different motivations.

Especially important, biologically well-motivated variants of P systems are the
so-called P systems with symport/antiport rules which realize models where the
rules are purely communication rules, i.e., the objects do not change under the
functioning of the system, they are only communicated (transported) from one
region to some other one. The notion was introduced in [7]. Symport rules move
objects across a membrane in one direction, while antiport rules move objects
across the membranes in the two opposite directions. Similarly to other variants of
P systems, these construct are computationally complete devices, even with only
one membrane [2, 4, 3].

These constructs have been studied in details, with special emphasis on their
size complexity. It has been shown that P systems with symport/antiport rules
with bounded size parameters (the number of objects, the number of membranes,
the number of rules per membrane, the number of objects carried together in one
step, etc.) are as powerful as the general models, i.e., as powerful as the Turing
machines. The interested reader is refereed to [1] for a survey on the results proved
so far.

In [10] another important size complexity measure that was not investigated
before, namely, the total number of rules in a P system was investigated. The
authors showed that splicing tissue P systems with 8 rules are as powerful as
the Turing machines. This result motivated the investigations to obtain a similar
result for object-based P systems, in particular for symport/antiport P systems.
The problem was also mentioned at the “6th Workshop on Membrane Computing”,
Vienna, July, 2005. In this paper, we give an answer to this question: we prove
that any strongly universal register machine can be simulated by a P system with
only one membrane and 44 antiport rules. The proof is based on a result by
Ivan Korec [5], which shows that it is possible to construct a strongly universal
register machine with not more than 32 instructions of three types (incrementing,
decrementing, and zero-test).
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2 Preliminaries

We assume that the reader is familiar with basic notions of formal language theory,
computability, and membrane computing, i.e., the theory of P systems. For further
details and unexplained notions we refer to [11], [6], [9]. For the notations and the
results on register machines we use throughout the paper, the reader is advised to
consult [5].

Let V be an alphabet, let V ∗ be the set of all words over V , and let V + =
V ∗ − {ε} where ε denotes the empty word. We denote by N the set of all non-
negative integers.

Let V be a set – the universe – of objects. A multiset is a pair M = (V, f),
where f : V → N is a mapping which assigns to each object a ∈ V its multiplicity.
The support of M = (V, f) is the set supp(M) = {a ∈ V | f(a) ≥ 1}. If supp(M)
is a finite set, then M is called a finite multiset. The set of all finite multisets over
the set V is denoted by V ◦.

The number of objects in a finite multiset M = (V, f), the cardinality of
M, is defined by card(M) =

∑
a∈V f(a). We say that a ∈ M = (V, f) if a ∈

supp(M). M1 = (V, f1) ⊆ M2 = (V, f2) if supp(M1) ⊆ supp(M2) and for all
a ∈ V , f1(a) ≤ f2(a). The union of two multisets is defined as (M1∪M2) = (V, f ′)
where for all a ∈ V , f ′(a) = f1(a) + f2(a), the difference is defined for M2 ⊆ M1

as (M1 −M2) = (V, f ′′) where f ′′(a) = f1(a) − f2(a) for all a ∈ V . We say that
M is empty, if its support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string w
over the alphabet V with |w|a = f(a) where a ∈ V and where |w|a denotes the
number of occurrences of the symbol a in the string w.

2.1 P systems with symport/antiport rules

In the following we briefly recall the basic notions concerning P systems with
symport/antiport rules. For more details on these systems, we refer to [7], and for
more information on P systems in general, the reader is advised to consult [9].

A P system is a structure of hierarchically embedded membranes, each hav-
ing a label and enclosing a region containing a multiset of objects and possibly
other membranes. The out-most membrane which is unique and usually labeled
with 1, is called the skin membrane. The membrane structure is denoted by a
sequence of matching parentheses where the matching pairs have the same la-
bel as the membranes they represent. If x ∈ {[i, ]i | 1 ≤ i ≤ n}∗ is such a
string of matching parentheses of length 2n, denoting a structure where mem-
brane i contains membrane j, then x = x1 [i x2 [j x3 ]j x4 ]i x5 for some
xk ∈ {[l, ]l | 1 ≤ l ≤ n, l 6= i, j}∗, 1 ≤ k ≤ 5. If membrane i contains mem-
brane j, and there is no other membrane, k, such that k contains j and i contains
k (x2 and x4 above are strings of matching parentheses themselves), then we say
that membrane i is the parent membrane of j, and at the same time, membrane j
is one of the child membranes of i.
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By the contents of a region we mean the multiset of objects which is contained
by the corresponding membrane excluding those objects which are contained by
any of the other membranes which are included by the considered one.

The evolution of the contents of the regions of a P system is described by rules
associated to the regions. Applying the rules synchronously in each region, the
system performs a computation by passing from one configuration to another one.
The rules are applied in the maximally parallel manner, i.e., at each step of the
computation as many rules are applied in parallel in each region as possible.

The computation starts in the initial configuration (with initial contents of the
regions). The end of the computation is defined by halting: a P system halts when
no more rules can be applied in any of the regions. The result of the computation
can be given in several ways, see [9] for more details. In the following we shall
consider as the result of the computation the number of objects of a certain type
that can be found in a certain region at halting.

In the sequel, we shall consider communication rules called antiport rules. An
antiport rule is of the form (x, in; y, out), x, y ∈ V ◦. If such a rule is associated with
a membrane, then objects of x must enter from the parent region and at the same
step, objects of y have to leave to the parent region. (Obviously, the successful
application of the rule is only possible if the region contains x and its parent
region contains y.) If the communication is one-way, then we speak of symport
rules. A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. In this case either
the objects of the multiset x must enter from the parent region or must leave to
the parent region, parent(i), respectively.

Formally, a P system with n membranes and antiport rules is a construct
Π = (V, O, µ, E, (w1, P1), . . . , (wn, Pn, ), i0), where n ≥ 1,

• V is a finite alphabet of objects, O ⊆ V is the set of terminal objects, and
E ⊆ V is the set of objects appearing in the environment in arbitrarily many
copies,

• µ is a membrane structure of n membranes with membrane 1 being the skin
membrane, and for all i, 1 ≤ i ≤ n,
– wi ∈ V ◦ is the initial contents (state) of region i, i.e., it is the finite multiset

of objects contained by region i,
– Pi is a finite set of antiport rules associated with membrane i,
– i0 ∈ {1, . . . , n} is a designated membrane, called the output membrane.

The result of a halting computation in Π is defined as the number of objects from
O that can be found in membrane i0 in the end of the computation.

We say that Π ′ is a scheme of P systems with antiport rules if no initial con-
tents of the regions are specified, i.e., Π ′ = (V, O, µ, P1, . . . , Pn, i0), where V, O, µ,
P1, . . . , Pn are defined as for Π above.

Π ′ is said to be a universal antiport P system if for any register machine M
there exists a simulating antiport P system Π ′′ such that Π ′′ is obtained from Π ′

with adding axioms to the regions, i.e., Π ′′ = (V, O, µ, (w1, P1), . . . , (wn, Pn, ), i0),
for some wi ∈ V ◦, 1 ≤ i ≤ n.
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It is known that P systems with symport/antiport rules are computationally
complete, moreover, for any register machine with 3 registers we can construct a P
system with symport/antiport rules with one membrane such that the contents of
the first register at halting will be equal to the number of a certain symbol found
in the unique region of the system at halting.

2.2 Register machines

In the following we recall the main concepts and results concerning register ma-
chines from [6] and [5].

A deterministic register machine consists of a finite control unit and uses a
finite number of registers, R1, . . . , Rk. Each register may contain an arbitrary
non-negative integer. These machines are deterministic (analogously to the Turing
machines) and work in discrete time. Various classes of register machines exist,
which differ from each other by the allowed one-step tests and/or operations,
called instructions. We shall use the following five types of instructions from [5]:

1. [RiP ] – Add 1 to the content of register Ri;
2. [RiM ] – Subtract 1 from the content of register Ri if it is a positive value;
3. 〈Ri〉 – Check whether or not the contents of register Ri is zero; the next inner

state depends on the result.
4. 〈RiZM〉 – Test whether the content of register Ri is positive or not and sub-

tract 1 from the content of Ri in the first case. The new inner state of the
machine depends on the result of the test.

5. Halt – this is the halting operation, the machine stops working.

It is easy to see that 〈RiZM〉 joins 〈Ri〉 and [RiM ].
Formally, a deterministic register machine is the following construction:

M = (Q,R, q1, q0, P ),

where Q is a set of states, R = {R1, . . . , Rk} is the set of registers, q1 ∈ Q is the
initial state, q0 ∈ Q is the final state and P is a set of transitions (called also
rules or commands) of the form (q, I, s1, . . . , sm) where I is one of the instructions
above ([RiP ], [RiM ], 〈Ri〉, 〈RiZM〉) and s1, . . . , sm are states from Q (m depends
on the type of instruction: 1 for [RiP ] and [RiM ], 2 for 〈Ri〉 and 〈RiZM〉, 0 for
Halt).

We note that for each state q there is only one instruction of the type above.
A configuration of a register machine is given by the k +1-tuple (q, n1, . . . , nk)

describing the current state of the machine as well as the contents of all registers.
A transition of the register machine consists of updating/checking the value of a
register according to an instruction of one of the types above and by changing
the current state to some other one. More exactly, the machine works as follows.
Depending on the state q, the corresponding instruction is performed and the new
state from s1, . . . , sm is selected. By convention, if register Ri is not zero, then
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after performing instruction 〈Ri〉, state s1 is chosen, otherwise state s2 is chosen.
State q1 is called the initial state and state q0 is called the halting state.

We say that M computes a value y ∈ N on the input x ∈ N if starting
from the initial configuration (q1, x, 0, . . . , 0) it reaches the final configuration
(q0, y, 0, . . . , 0). If the machine halts in some other inner state, the value y is
not defined. It is well-known that register machines compute all partial recursive
functions and only them.

We say that M recognizes the set S ⊆ N if for any input x ∈ S the machine
stops and for any y 6∈ S the machine performs an infinite computation. It is known
that register machines recognize all recursively enumerable sets of numbers [6].
Moreover, only three registers are sufficient to obtain this power.

Register machines and partial recursive functions are strongly related, namely
for every n ∈ N, with every register machine M having n registers, an n-ary partial
recursive function Φn

M is associated.
Let Φ0, Φ1, Φ2, . . . , be a fixed admissible enumeration of the set of unary

partial recursive functions. Then, a register machine M is said to be strongly
universal if there exists a recursive function g such that for all x, y ∈ N it
holds that Φx(y) = Φ2

M (g(x), y). A register machine M is called universal if
there exist recursive functions f, g, h such that for all x, y ∈ N it holds that
Φx(y) = f(Φ2

M (g(x), h(y)).
We also note that the power and the efficiency of a register machine M de-

pends on the set of instructions that are used. In [5] several sets of instructions
are investigated. In particular, it is shown that there are strongly universal reg-
ister machines with 32 instructions of form [RiP ], 〈Ri〉, and [RiM ], and there
exist strongly universal register machines with 22 instructions of form [RiP ] and
〈RiZM〉. Moreover, these machines can be effectively constructed.

Since our result is based on the first construction, namely, the construction of
the strongly universal register machine U32 from [5], we provide the reader with
some necessary details. Firstly, we recall the construction of machine U32.

We define U32 = (Q, {R0, . . . , R7}, q1, q0, P ), where Q = {q0, q1, . . . , q32}, and
P is defined as shown in Table 1.

The proof that U32 is a strongly universal register machine ([5]) is based on
the following considerations.

The idea is to simulate any partial recursive function by register machines
belonging to a very restricted class of machines. In [5], the considered machines
are called R3a-machines. They consist of three register machines with additional
constraints on the instructions which are restricted to three kinds always using the
same registers and the same operations on the registers. Using standard tools, see
[6] for instance, it is not difficult to prove that R3a-machines simulate any partial
recursive function.

The idea of the simulation by the universal register machine of [5] is to encode
the list of instructions into a finite sequence of numbers which can be extracted
from a unique positive integer x thanks to an appropriate application of the Chi-
nese remainder theorem. However, here, an additional property is used: we can
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(1) : (q1, 〈R1〉, q2, q6) (2) : (q2, [R1M ], q3)
(3) : (q3, [R7P ], q1) (4) : (q4, 〈R5〉, q5, q7)
(5) : (q5, [R5M ], q6) (6) : (q6, [R6P ], q4)
(7) : (q7, 〈R6〉, q8, q4) (8) : (q8, [R6M ], q9)
(9) : (q9, [R5P ], q10) (10) : (q10, 〈R7〉, q11, q13)
(11) : (q11, [R7M ], q12) (12) : (q12, [R1P ], q7)
(13) : (q13, 〈R6〉, q14, q1) (14) : (q10, 〈R4〉, q15, q16)
(15) : (q15, [R4M ], q1) (16) : (q16, 〈R5〉, q17, q23)
(17) : (q17, [R5M ], q18) (18) : (q18, 〈R5〉, q19, q27)
(19) : (q19, [R5M ], q20) (20) : (q20, 〈R5〉, q21, q30)
(21) : (q21, [R5M ], q22) (22) : (q22, [R4P ], q16)
(23) : (q23, 〈R2〉, q24, q25) (24) : (q24, [R2M ], q32)
(25) : (q25, 〈R0〉, q26, q32) (26) : (q26, [R0M ], q1)
(27) : (q27, 〈R3〉, q28, q29) (28) : (q28, [R3M ], q32)
(29) : (q29, [R0P ], q1) (30) : (q30, [R2P ], q31)
(31) : (q31, [R3P ], q32) (32) : (q32, 〈R4〉, q15, q0)

Table 1. The instructions of the strongly universal machine U32

require that the expected numbers are realized as the remainders of x+1 modulo
non-divisors of x+1 whose ranks represent the instructions. If we denote by F (x, y)
the function given by (x, y) 7→ (x+1) mod nd(x+1, y), where nd(z, j) is the jth

non-divisor of z, then it is not difficult to compute F (x, i): we stop when the ith

non-zero test of the division of x+1 by k is positive, k being incremented at each
test. Next, we code both the next state j of an instruction and the instruction
I itself as 3j + ν(I) where ν(I) ranges in {0, 1, 2} as we use only three types of
instructions.

The universal machine consists of three blocks of instructions. The first block
extracts F (x, i) and gives it as k. The second block extracts j and ν(I) from k =
3j +ν(I). Then, instruction I is executed in the third block, possibly transforming
j into j−1, depending on I. And as the new label is known, we find the next code
of an instruction by computing F (x, j).

It is important to note that there are infinitely many representations of a given
R3a-machine by a number x. The set of all the representations is not recursively
enumerable but it contains recursive subsets in which there is at least one repre-
sentative for each machine. This is enough for the validity of the proof.

The proof combines a few non-trivial results of prime number theory and com-
binatorial considerations on algorithms and register machines. It is very tricky and
intricate.

We remark, that if instructions of type 〈RiZM〉 are used, then corresponding
machine (U22) has 22 instructions. This machine can be easily obtained from U32.
Indeed, we note that most of the 〈Ri〉 instructions are followed by [RiM ] instruc-
tions. Hence these two instructions can be combined into one 〈RiZM〉 instruction.
However, this is not the case for state q13, therefore an additional [R6P ] instruction
shall be added. This gives a total of 22 rules.



274 E. Csuhaj-Varjú, M. Margenstern, G. Vaszil, S. Verlan

To help the reader in the easier understanding how the machine functions, we
recall on Figure 1 the flowchart of the computation by machine U32, Fig. 1, page
269, from [5].

3 Constructing a Small Universal Antiport P System

We shall construct a universal P system with only antiport rules and one membrane
which simulates register machine U32 (more exactly, register machine U22 derived
from U32). We describe the simulation in several steps.

3.1 A basic simulation technique

We first show how to simulate rules of an arbitrary register machine M =
(Q,R, q1, q0, P ) using instructions [RiP ] and 〈RiZM〉 by a P system Π with only
antiport rules and one membrane. For the sake of simplicity, we specify only the
rules of Π, the alphabets of objects and terminal objects can be extracted easily
from the presented rules.

It is easy to see that a rule (p, [RiP ], q) of M can be simulated by an antiport
rule (p, out; qRi, in) of Π, where p,Ri, q are objects of Π. Symbols p and q in Π
correspond to states p and q of M , while the occurrences of symbols Ri represent
the contents of register Ri. (The number of objects Ri found in the region of Π
corresponds to the actual contents of register Ri of M.)

A rule (p, 〈Ri〉, q, s) in M can be simulated by the following group of rules in
Π:

(p, out; p′Cp,i, in),
(Cp,iRi, out;C ′p,i, in), (p′, out; p′′, in),
(p′′C ′p,i, out; q, in), (p′′Cp,i, out; s, in).

As above, p, p′, p′′, Ri, Cp,i, C
′
p,i, q, s are objects of Π. The idea behind this sim-

ulation is very simple. Firstly, symbol p (which corresponds to state p of M) is
replaced by two symbols Cp,i and p′. The first symbol tries to decrease the number
of Ris by one (in this case it becomes C ′p,i), while the second symbol is renamed
to p′′. Now, depending on the ability of Cp,i to decrease the number of Ris, i.e.,
on the emptiness or non-emptiness of register Ri in M , the symbol corresponding
to the new state of M is selected.

3.2 New commands

We note that using the basic simulation technique described above, one can trans-
late machine U32 into an antiport P system with 13 · 5 + 9 = 74 rules. Now we
show that this number can be decreased.

Firstly, we shall introduce new commands for the register machine U32 and
then we shall show how to simulate these commands efficiently.

We introduce the following commands (see also Figure 2):

(p, ifplus(Ri−, Rk+), q, s).
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This command tries to subtract one from the contents of register Ri. If
this is possible, then it increases the contents of register Rk by one and
enters state q. Otherwise, it enters state s. The graphical representation of
this command is depicted in Figure 2 (a). The path labeled by z is selected
when the contents of Ri is zero, otherwise the other path is chosen.

(p, mod3(Ri, Rk), q0, q1, q2).

This command adds to Rk the value Ri div 3. After that, if the value
of Ri mod 3 is zero (resp. one, two) then the new state of the machine
becomes q0 (resp. q1, q2). Finally, register Ri becomes empty (its stored
value is zero). In Figure 2 (b) the graphical representation of this command
is given. The exiting paths are labeled by 0, 1, and 2 and they are selected
depending on the value modulo 3 of register Ri.

(p, 2choice(Ri, Rk), q00, q10, q01, q11).

This command performs zero tests on registers Ri and Rk and decreases
the corresponding register(s). Depending on these tests, a new state is
selected (q00 if both registers are zero, q10 if the first register is non-zero
and the second is zero and so on). If the contents of register Ri (resp. Rk)
must not be decreased, then the corresponding states shall be marked by an
overline (resp. underline). The graphical representation of this command
is depicted in Figure 2 (c). This element has 4 exits labeled by a 2-bit
binary string. The first bit of this string corresponds to the test result of
register Ri (0 if Ri is zero, 1 otherwise), while the second bit corresponds
to the test result of register Rk. A small rectangle may be placed over or
under the outgoing edges. If a rectangle is placed over (resp. under) an
edge, then register Ri (resp. Rk) will not be decreased (hence only a zero
test for this register is performed). For example, the element depicted in
Figure 2 (c) corresponds to command (p, 2choice(Ri, Rk), q00, q10, q01, q11).
This command only tests register Ri, and decrements register Rk only if
both Ri and Rk are non-empty.

Now we translate the flow-chart from Figure 1 into a new one, which uses the
new commands given above. This translation can be easily done and Figure 3
shows the new flow-chart. We only remark that the 2choice instruction combining
states q27 and q32 is reused for states q20 and q23, q25. In order to achieve this,
register R3 is incremented, hence only R4 is tested.

3.3 Efficient simulation of U32 with the new commands

We demonstrate that using the new commands we can describe U32 in a more
economic manner than with the original instructions.

Let us start with the ifplus command. Using the basic simulation technique
from Section 2.2., this command can be simulated using 6 instructions. But, it is
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a b c

Fig. 2. The ifplus (a), mod3 (b) and 2choice (c) commands

easy to observe that the plus instruction can be performed during the last step of
the simulation of the subtraction instruction. This gives us 5 rules:

(p, out; p′Cp,i, in),
(Cp,iRi, out; C ′p,i, in), (p′, out; p′′, in),
(p′′C ′p,i, out; qRk, in), (p′′Cp,i, out; s, in).

We note that several incrementing instructions can be performed by an appropriate
modification of the fourth rule.

Now let us consider the mod3 instruction. This corresponds to three consecutive
〈RiZM〉 instructions and to one [RkP ] instruction, and thus by using the basic
simulation technique we need 16 rules. However, 10 rules are sufficient for this
purpose.

(p, out; p′Xp,i, in),
(Xp,iRiRiRi, out; X ′

p,i, in), (p′, out; p′′, in),
(p′′X ′

p,i, out; p′Xp,iRk, in), (p′′Xp,i, out; SpCp,iCp,i, in),
(Cp,iRi, out; C ′p,i, in), (Sp, out; S′p, in),
(S′pC

′
p,iC

′
p,i, out; q2, in), (S′pC

′
p,iCp,i, out; q1, in), (S′pCp,iCp,i, out; q0, in).

We act as in the previous case, but we simulate the decrement of register Ri not by
one but by three. If this is successful, then the process is re-iterated (incrementing
Rk at the same time). When the register cannot be decreased by three, then a
new stage begins and two copies of symbol Cp,i, as well as symbol Sp are brought
from outside. Symbol Cp,i corresponds to symbol Cp,i and symbol Sp corresponds
to symbol p′ from the basic simulation technique. At the end, there are three cases
depending on value of register Ri which are considered by last three rules.

Finally, let us consider the 2choice instruction. Using the basic simulation tech-
nique, we can represent this instruction, which is essentially two 〈RiZM〉 instruc-
tions performed one after another, by 10 symport/antiport rules. We show that 8
rules suffice for this purpose:
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Fig. 3. Modified flowchart of strongly universal machine U32
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(p, out;SpCp,iCp,k, in),
(Cp,iRi, out; C ′p,i, in), (Cp,kRk, out;C ′p,k, in), (Sp, out; S′p, in),
(S′pC

′
p,iC

′
p,k, out; q11, in), (S′pC

′
p,iCp,k, out; q10, in),

(S′pCp,iC
′
p,k, out; q01, in), (S′pCp,iCp,k, out; q00, in).

If one of the registers must not be decremented, then we change the corresponding
rule allowing to bring back one copy of the symbol corresponding to the register.
For example, if Ri should not be decremented in the case when both register values
are positive, then the fifth rule becomes (S′pC

′
p,iC

′
p,k, out; q11Ri, in).

We described how to efficiently implement the above three instructions. We
also note that all the remaining addition instructions from the original flowchart
can be combined with the previous instructions during the simulation as it was
shown in the case of the ifplus instruction. Hence, we need 4 · 5+1 · 10+3 · 8 = 54
rules.

This number can be further decreased by using the following technique. For
each register Ri, 0 ≤ i ≤ 7, there are “checker” symbols Ci and C ′i in the simulating
P system Π. By adding rules (CiRi, out; C ′i, in), we allow to check if Ri is not equal
to zero and simultaneously to decrease its contents by one. In this case symbol Ci is
replaced by C ′i. We note that several checks on different registers can be performed
simultaneously. After that, the state of Ci can be checked by some other symbol
S′ and depending on this information the new state can be selected (combined
with an addition instruction if needed). Finally, some initialization is necessary.
As S′ should not be present initially, a rule (S, out;S′, in) shall be added. As an
example, we shall implement instruction (p, 2choice(Ri, Rk), q00, q10, q01, q11). We
obtain the following rules:

(p, out; p′SCiCk, in),
(S, out;S′, in), (p′S′C ′iC

′
k, out; q11Rk, in), (p′S′C ′iCk, out; q10, in),

(p′S′CiC
′
k, out; q01, in), (p′S′CiCk, out; q00, in).

This gives us only 5 rules (comparing to the 8 rules which we had before) because
we only need to add (S, out;S′, in) once. Moreover, this principle can be used in
the case of instruction ifplus as well which brings it to 3 rules. Using the same
idea in the case of instruction mod3 we can save two rules (hence it will need only
8 symport/antiport rules). Of course, the above idea also adds 9 rules, but at the
end we gain more: only 4 ·3+9+3 ·5+8 = 44 rules are needed for the simulation.

Summarizing the previous discussions, we can state the following statements.

Theorem 1.

1. For any strongly universal register machine there exists a simulating universal
symport/antiport P system with only one membrane and 44 antiport rules.

2. Any partial recursive function can be computed by a symport/antiport P system
with only one membrane and 44 antiport rules.

3. Any recursively enumerable set of numbers can be computed with a sym-
port/antiport P system with only one membrane and 46 rules.
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Proof. The first two statements follow from the discussion above, since any partial
recursive function can be computed by the universal U32 machine where the code
of the simulated machine is in register 1, the input in register 2 and the output in
register 0. Thus, if we initialize the P system based on U32 with the appropriate
number of R1 and R2 objects and make R0 be the only terminal, then it computes
the same value as U32. To prove the third statement, consider the same P system
built according to U32 and initialize it only with a number of R1 symbols. If now we
add a new initial state symbol q and two rules (q, out;R2q, in), (q, out; q0, in), then
we can generate any number which is computed by the machine corresponding to
the number of R1 symbols which was used to initialize the system. ut

4 Conclusion

In this paper we proved that antiport P systems with 44 rules are as powerful as
the Turing machines. Since this is a first estimation of the upper bound of this size
complexity parameter, it is a open question which number is the sharp bound if
the system is supposed to have only one membrane. A further interesting research
direction is to give an upper bound for a size description of these systems similar
to the size complexity measure Symb in the case of Chomsky grammars, namely,
to count the number of symbols (including the symbols describing the membrane
architecture) that are necessary to describe a universal antiport P system. Since
antiport P systems are only one of the different variants of object-based P systems,
studying concise descriptions of other P system variants in this sense are of interest
as well. Comparisons of size complexity measures of different types of P systems are
of importance as well. The most challenging problem, raised by Gheorghe Păun,
is the following: what is the size minimum of a universal P system irrelevant to its
type. These and similar problems are topics of future research.
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Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Curtea de Argeş, Romania,
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