
Time-Driven Computations in P Systems

Matteo Cavaliere1, Claudio Zandron2

1 Microsoft Research - University of Trento
Centre for Computational and Systems Biology, Trento, Italy
matteo.cavaliere@msr-unitn.unitn.it

2 Università degli Studi di Milano - Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
zandron@disco.unimib.it

Summary. It is a well-known fact that the time of execution of a (biochemical) reaction
depends on many factors, and, in particular, on the current situation of the whole system.
With this motivation in mind, we propose a model of computation based on membrane
systems where the various rewriting rules have different times of execution and, moreover,
the time of execution of each rule can vary during the computation, depending on the
configuration of the whole system (in this sense, the computation is “time-driven”). We
show that such systems are universal in a very simple framework: a regular time-mapping
suffices to obtain universality for systems with minimal cooperation (one catalyst).

1 Time-Driven Computations

In [3] a new class of membrane systems, called timed membrane systems have
been introduced. The main idea of timed membrane systems (called also timed P
systems) is to associate, via a mapping, to each rule of the system a certain time
of execution. The motivations for this model come from the fact that, in a living
cell, different chemical reactions may take different times to be executed.

Actually, the time of execution of a chemical reaction may not be a constant but
can change according to the state of the system where the reaction takes place. For
instance, a reaction can be executed in a faster or slower way if certain substances
are present. Motivated by this fact, it is natural to consider a model of timed P
systems where the time of execution of the rules changes dynamically, according to
the state of the system. In fact, it is quite common in biochemical experiments to
control the whole reaction process by modifying the conditions in which the system
operates, in order to speed-up certain reactions and to delay other reactions. In
this way, one can safely assume that some reactions will take place only when some
chemicals have been produced or consumed by other processes.

We formalize this notions by introducing contents-timed P system, that is, P
systems where the time of execution of the rules is defined by a mapping depending



134 M. Cavaliere, C. Zandron

on the contents of the regions of the system; in other words, the time of execution
depends on the current configuration of the system.

We prove that time can indeed be a powerful resource for computation, when
it can be “programmed” and it is used together with maximal parallelism: univer-
sality can be obtained with a quite simple system, using a regular time-mapping
and a single catalyst.

The rest of the paper is organized as follows. In Section 2 we give all formal
language notions we will use in the paper. In Section 3 we formally define contents-
timed P systems and we gives some preliminary results. In Section 4 we show how
a time-driven P system works, by means of an example. Then, in Section 5 we give
a universality results for time-driven P systems with regular time mappings. We
conclude the paper with Section 6, where some open problems and directions for
future research are given.

2 Formal Languages Preliminaries

We will shortly recall the main elements of formal language theory used in the
paper. For more detailed information the reader can consult the standard books
and monographs in the area (as, for instance, [4], [8], and [7]).

As usual, V ∗ denotes the set of all strings over the alphabet V . For a ∈ V
and x ∈ V ∗ we denote by |x|a the number of occurrences of a in x. Then, for
V = {a1, . . . , an}, the Parikh mapping associated with V is the mapping on V ∗

defined by ΨV (x) = (|x|a1 , . . . , |x|an) for each x ∈ V ∗. The family of recursively
enumerable languages is denoted by RE, and the family of Parikh images of RE
languages is denoted by PsRE (this is the family of all recursively enumerable
sets of vectors of natural numbers). The family of all recursively enumerable sets
of natural numbers is denoted by NRE.

The multisets over a given finite support (alphabet) are represented here by
strings of symbols. The order of symbols does not matter, because the number
of copies of an object in a multiset is given by the number of occurrences of the
corresponding symbol in the string.

A context-free programmed grammar with appearance checking is a construct
G = (N, T, S, P ), where N (T , resp.) is a finite set of nonterminals (terminals,
resp.), S ∈ N is the start symbol, and P is a finite set of productions of the form
(b : A → u,Eb, Fb), where b is a label, A → u with A ∈ N and u ∈ (N ∪ T )∗ is a
context-free production, and Eb, Fb are two sets of labels of productions of G (Eb

is called the success field and Fb the failure field of the production). A production
(b : A → u,Eb, Fb) is applied as follows: if A is present in the sentential form,
then the production is applied and the next production to be applied is chosen
from those with the labels in Eb, otherwise, the sentential form remains unchanged
and we choose the next production from the rules labeled by some element of Fb.
A derivation step is denoted by ⇒ while ⇒∗ denotes the reflexive and transitive
closure of ⇒.



Time-Driven Computations in P Systems 135

If no failure field is given for any of the productions, then we obtain a pro-
grammed grammar without appearance checking.

We denote the set of labels as Lab(P ) = {b | (b : A → u,Eb, Fb) ∈ P}. Also,
for A ∈ N , we define l(A) = {b | (b : A → u, Eb, Fb) ∈ P}.

In this paper we use the following normal form for programmed grammars with
appearance checking.

Theorem 1. For any programmed grammar G [with appearance checking] there
exists a programmed grammar G′ [with appearance checking, respectively] such
that there is a unique initial production applied (with label l0), the last production
applied in G′ is an erasing production Z → λ (with label lh) and L(G′) = L(G).
The unsuccessful derivations in G′ halts in sentential forms from Z(N∪T )∗ if G′ is
without appearance checking, or from (N ∪T )∗N(N ∪T )∗ if G′ is with appearance
checking.

By PR we denote the family of languages generated by programmed gram-
mars without appearance checking, and by PRac we denote the family of lan-
guages generated by programmed grammars with appearance checking. Proofs of
the following results can be found in [4].

Theorem 2. CF ⊂ PR ⊂ PRac = RE.

3 Contents-Timed P Systems

As mentioned in the Introduction, a contents-timed P system is essentially a P
system where the time of execution of the rules depends on the configuration in
which they are applied.

We start from the standard definition of P system with symbol-objects and
catalytic, non-cooperative evolution rules (we suppose the reader familiar with the
notions of P systems, as, for instance, presented in [6]; many further information
concerning P systems (including an up–to–date bibliography) can be found in [9]).

Definition 1. A P system (of degree m ≥ 1) with symbol-objects is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, i0),

where:

• O is the alphabet of Π; its elements are called objects;
• C ⊆ V is the set of catalysts;
• µ is a membrane structure consisting of m membranes labeled 1, 2, . . . , m;
• wi, 1 ≤ i ≤ m, specifies the multiset of objects present in the corresponding

region i at the beginning of a computation;



136 M. Cavaliere, C. Zandron

• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with regions
1, 2, . . . ,m of µ; the rules can be non-cooperative, that is, of the form a → v,
where a is an object from O − C and v is a string over {ahere, aout, ainj | a ∈
O−C, 1 ≤ j ≤ m}, or they can be catalytic rules, of the form, ca → cv, where
a is an object from O−C, v is a string over {ahere, aout, ainj | a ∈ O−C, 1 ≤
j ≤ m}, and c ∈ Cb; if the target indication is not specified, then it is intended
to be here;

• i0 ∈ {0, 1, . . . , m} is the output region; if i0 = 0, then it indicates the environ-
ment.

A configuration of Π can be represented by a string of parentheses (the structure
µ) and strings over O (contents of the regions). For instance, a possible config-
uration of the system Π with alphabet O = {a, b} and structure µ = [1[2 ]2]1
is represented by the string: [1aab[2a]2]1. Given a string w representing a config-
uration, then all the strings obtained from w by taking any permutation of the
strings representing the contents of the regions or exchanging (with their asso-
ciated contents) two regions present at the same level, still represent the same
configuration.

When we say that a configuration I ∈ L, where L is a set of strings, we mean
that I is one of the configurations represented by the strings present in L.

Given the system Π we denote by I(Π) the set of strings representing all the
possible configurations of the system (not only the reachable ones, i.e., the ones
reached during a possible evolution of the system Π).

We consider a contents time-mapping e that fixes the time of execution of a
rule given a certain configuration.

Formally,
e : (R1 ∪R2 ∪ · · · ∪Rm)× I(Π) −→ N.

We suppose the mapping complete, that is, defined for each pair (r, I), r ∈ R1 ∪
R2 ∪ · · · ∪Rm, I ∈ I(Π).

Now, joining the system Π and the mapping e, it is possible to construct a
contents-timed P system Π(e) as (O, C, µ, w1, . . . , wm, R1, . . . , Rm, i0, eid) working
in the following way.

We suppose the existence of an external global clock that ticks at uniform
intervals, taken as time unit, starting at time 0.

With each region of the system a finite number of objects and a finite number
of evolution rules are associated.

At each time in the regions of the system we have together rules in execution
and rules not in execution; at each time, all the rules that can be started in each
region have to be applied.

If a rule r ∈ Ri, 1 ≤ i ≤ m, is applied, then all objects that can be processed
by the rule have to evolve by this rule (a rule is applied in a maximally parallel
manner as standard in P systems area).

When a rule r is started at step j, and the current configuration of the system
is I, then the execution of r terminates at step j + eid(r, I).



Time-Driven Computations in P Systems 137

If two rules start at the same time, then possible conflicts for using the occur-
rences of symbol-objects are solved by assigning the objects in a non-deterministic
way (again, in the way usually defined in P systems area).

Notice that when the execution of a rule r is started, the occurrences of symbol-
objects used by this rule are not anymore available for other rules during the entire
execution of r.

The computation halts when no rule can be applied in any region and there
are no rules in execution (that is, the system reaches a halting configuration).

The output of a halting computation is the vector of numbers representing the
multiplicities of objects present in the output region in the halting configuration.

Collecting all the vectors obtained, for all possible halting computations, we
get the set Ps(Π(e)) of vectors of natural numbers generated by the system Π(e).

We say that the time-mapping e is regular if it can be calculated by using a
monadic transducer, that is, a finite state automaton with a label associated to
each state, as defined in [2]. As in [2], we will indicate only the time-mapping and
not the monadic transducer that implements it. The reader can find more details in
[2], but as general idea, the monadic transducer that implements a time-mapping
reads, like a finite state automaton, the configuration I of the system followed by
the label of the rule r, and produces (outputs) the label associated to the state
where it halts. This label represents the time of execution of the rule r, when
the system is in the configuration I, that means e(I, r). In what follows we will
use only regular time-mappings, even if the idea can be easily extended to more
general time-mappings.

Therefore, we use the following notation

TPsPm(α, reg), α ∈ {ncoo} ∪ {catk | k ≥ 0},
to denote the family of sets of vectors of natural numbers generated by contents-
timed P systems with at most m membranes, evolution rules that can be non-
cooperative (ncoo) or catalytic (catk), using at most k catalysts (as usual ∗ is
used if the corresponding number of membranes or catalysts/bi-stable catalysts is
unknown) and a regular time-mapping.

In [3] a special class of P systems is defined. A P system is called time-free if it
generates always the same set of vectors, independently of the time-mapping used.

The following Theorem can be found in ([1]).

Theorem 3. Every P system with non–cooperative rules is time-free.

In fact, each computation of such a system can be described by a tree, in which
the result of a computation is stored in the yield, and such that the length of an
application of a rule to an object is represented by the length of the corresponding
edge. Thus, it is clear that the result of the computation, obtained on the leaves
of the tree, does not depend on the length of the edges in the tree itself. This is
also true even in the case when the same rule on the same object could require, in
different moment, a different number of steps to be executed.



138 M. Cavaliere, C. Zandron

Therefore, since P systems with symbol-objects and non-cooperative evolution
rules generate exactly PsCF (see, e.g., [6]), it follows that

Theorem 4. TPsPm(ncoo, reg) = PsCF, m ≥ 1.

4 Time-Driven Computations: An Example

While time does not “help” in case of systems using only non-cooperative evolution
rules (Theorem 4), the situation is clearly different when a minimal amount of
cooperation is introduced.

In fact, the following example shows that a contents-timed P system using one
occurrence of one catalyst and a regular time-mapping can generate the Parikh
image of a non-semilinear language.

Π = (O,µ = [
1

[
2

]
2

]
1
, w1 = λ,w2 = Acb,R1, R2, i0 = 1), where:

O = {A, a, A′, A′′, b, b′, b′′, b′′′, c, b′h, b′′h, b′′′h , #},
R1 = ∅,
R2 = {r1 : A → A′A′, r2 : A → aout, r3 : A′ → A′′, r4 : A′′ → A}

∪ {r5 : cb → cb′b′′, r6 : b′ → b′′′, r7 : cb′′ → c, r8 : cb′′′ → cb, r9 : b′′′ → #}
∪ {r10 : cb → cb′hb′′h, r11 : cb′′h → c, r12 : b′h → b′′′h , r13 : b′′′h → #, r14 : cb′′′h → c}
∪ {r15 : # → #}.

The time mapping e is defined as follows.
e(rj , I) = 1, for each rj , j ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14} and any I ∈ I(Π).

e(r7, I) =
{

1 if I ∈ {[1λ[2cb′b′′w]2]1, w ∈ (A′)+}
2 else

e(r11, I) =
{

1 if I ∈ {[1w[2cb′hb′′h]2]1, w ∈ (a)+}
2 else

The contents-timed P system Π(e) generates the Parikh image of the language
{a2n | n ≥ 1}.

In fact, the computation starts with region 1 empty (it is the output region)
and region 2 containing the multiset Acb.

The rule r1 takes care of the duplication of the objects A. In case the duplication
is not done in the correct way, then the entire computation is trashed by using
the change in run-time of the execution time of rule r7, according to the defined
time-mapping e. The change in run-time of the execution time of rule r11 is used
to check that the system halts in a correct way. Notice that all the rules, except
r7 and r11 have an execution time always fixed to be one step.



Time-Driven Computations in P Systems 139

Suppose that in region 2, at certain step k − 1, there is the multiset Ai, for
some i that is a power of two, together with objects c and b. Suppose now that,
at step k − 1, all the occurrences of A are changed by applying the rule r1 while
c and b are rewritten by using the rule r5. The next configuration obtained (at
step k; the rule applied last one step) will contain the multiset (A′)i+1, and the
objects c, b′′ and b′ in region 2, while region 1 remains empty. Now at step k the
rule r7 is applied, together with the rule r3 and r6. Because, at step k, the system
contains only A′ and c, b′′, b′, then, for definition of the used time-mapping, the
rule r7 lasts exactly one step. Therefore, at step k +1, the system will contain the
multiset (A′′)i+1 and the objects c and b′′′ in region 2, while region 1 is still empty.
In the next step all the objects A′′ are changed to A by using the rule r4 while,
at the same time, the objects c and b′′′ are rewritten to c and b, by using the rule
r8 (both rules take one step to be executed). The initial configuration is obtained
again, the number of A has been duplicated, and the process can be iterated.

In case the duplication of objects A has not been done in the correct way, then
the entire computation is trashed. In fact, suppose that at step k − 1 some of the
occurrences of A are changed to A′ by rule r1, while some of them are changed to
a and sent out to region 1 by rule r2. Then, in the same step, objects c and b are
rewritten to objects c, b′′ and b′ by rule r5. At step k (rules r1, r2, r5 take one step
to be executed) the system contains some A′ and objects c, b′′ and b′ in region 2
and some a in region 1. Now the rules r3 and r7, r6 are applied, but because of
the time-mapping used, and because of the configuration of the system at step k,
the rule r7 takes two steps to be executed. Therefore at step k + 1, object b′′′ is
produced, but because the catalysts c is still busy by rule r7, the rule r9 is used,
object # is produced and the computation is non-halting.

The correct halting of the system is guaranteed from the presence of rule r10

and rules r11, r12. In fact, suppose that in region 2, at step k − 1, there is the
multiset Ai, for some i that is a power of two, together with objects c and b. To
halt the system it is necessary to apply the rule r10. At the same time all the
objects A need to be changed in a and sent to region 1, by using rule r2. In the
next step k, the system contains the multiset ai in region 1, and objects c, b′′h, b′h
in region 2. The computation will halt in two more steps by using rules r12 and
r11 that will last exactly one step and finally rule r14.

If not all the objects A are changed to a in the step k − 1, then some of them
are changed to A′ by using rule r1, and therefore, at step k, the system will contain
some a in region 1, some A′ in region 2, together with objects c, b′′h and b′h. At
step k, the rule r11 and r12 are started, but because of the current configuration,
rule r11 lasts two steps, while r12 lasts only one step. Then, objects b′′′h is produced
at step k + 1, while catalyst c is still busy by rule r11. Therefore rule r13 is used,
object # produced and the computation cannot halt.

This guarantees that the system halts in a correct way and with a number of
objects a in the output region that is a power of 2.



140 M. Cavaliere, C. Zandron

5 Time-Driven Universality

It is possible to show even more than in the example presented in Section 4: a P
system using a regular time-mapping and only one occurrence of one catalyst is
universal, in the sense that it can generate the family of Parikh images of recur-
sively enumerable languages.

As in the previous example, the non-cooperative rules implement the rewriting
of the objects, while the catalytic rules check that the rewriting is done in the
correct way. If this does not happen, the time of execution of the catalytic rules is
set in such a way that the computation does not halt.

The proof is based on the simulation of programmed grammars with appear-
ance checking.

Theorem 5. TPsP (cat1, reg) = PsRE.

Proof. We show that, for every programmed grammar G = (N, T, S, P ) with ap-
pearance checking is possible to construct a P system Π, using one catalyst, and a
regular time-mapping e, such that Ps(Π(e)) is exactly the Parikh image of L(G).
We use the morphism h defined as h(a) = a′, a ∈ N , and h(a) = aout, a ∈ T . We
suppose that G is in the normal form presented in Theorem 1.

We construct the following P system.

Π = (O, µ = [
1

[
2

]
2

]
1
, w1 = λ,w2 = l0SX1cX2h,R1, R2, i0 = 1), where:

O = N ∪ T ∪N ′ ∪ T ′ ∪ Lab(P ) ∪ Lab′(P ) ∪ Lab(P )
∪ {#, c, h, h′, X1, X

′
1, X2, X

′
2, X

′′
1 , X ′′

2 , h′},
R1 = ∅,
R2 = {r1 : li → λ, r2 : l′i → li, li → li | li ∈ Lab(P )}

∪ {A → h(u)l′j | (li : A → u,Eli , Fli) ∈ P, lj ∈ Eli}
∪ {r3 : A′ → A | A ∈ N} ∪ {A → A | A ∈ N}
∪ {h → h′, h → h, r4 : h′ → h, r5 : h → h}
∪ {X1 → X ′

1, X1 → X ′′
1 , cX ′′

1 → cX1, cX2 → cX ′
2, r6 : cX ′

2 → cX ′′
2 , X ′′

2 → X2}
∪ {X ′′

1 → #, # → #},

where N ′ and T ′ are obtained by priming the symbols in N and T , respectively,
and Lab′(P ) and Lab(P ) are obtained from Lab(P ) by priming and overlining the
symbols in Lab(P ).

The regular time-mapping e is defined as follows.
Let R′ be the set {r1, r2, r3, r4, r5}.
Then e(r, I) = 2, for r ∈ R′, and e(r, I) = 1 for r ∈ R2 −R′, I ∈ I(Π).
The time-mapping for r6 is then fixed in the following way.



Time-Driven Computations in P Systems 141

e(r6, I) =





1 if I ∈ {[1w[2w′lil′jh
′X ′

1cX
′
2]2]1

| li, lj ∈ Lab(P ), lj ∈ Eli , w
′ ∈ (N ∪N ′)∗, w ∈ T ∗}

∪{[1w[2w′lil′jhX ′
1cX

′
2]2]1

| li, lj ∈ Lab(P ), lj ∈ Fli , w
′ ∈ ((N ∪N ′)−A))∗, w ∈ T ∗,

(li : A → u,Eli , Fli) ∈ P}
∪{[1w[2Zlil

′
hh′X ′

1cX
′
2]2]1 | w ∈ T ∗}

2 otherwise.

The idea of the proof is simple: non-cooperative evolution rules of Π simulate
the productions of G, the catalytic evolution rules, together with the appropriate
regular time-mapping e can be used to check that the grammar productions are
applied in the correct order, and this is done very much in the spirit of the example
shown in Section 4 (one catalyst is then enough). Notice that some of the rules are
labeled, some of them with the same label (when it is not necessary to distinguish
them in the time-mapping). The “critical” rule whose time is modified in an ap-
propriate way is r6: the time of execution is fixed to be 1 if a correct configuration
is reached (grammar productions applied correctly), otherwise is fixed to be 2, and
this brings to a non-halting computation (# is produced).

The rules A → h(u)l′j simulates the productions of G. Each rule, when applied,
produces the symbol l′j that indicates the next production to simulate. The role of
r1 is to guarantee that the productions are applied or skipped in the correct way.
Therefore, the time of execution of r1 is fixed in an appropriate way by e.

In particular:

The configurations of Π represented by the strings in the set

{P [1w[2w′lil′jh
′X ′

1cX
′
2]2]1 | li, lj ∈ Lab(P ), lj ∈ Eli , w

′ ∈ (N ∪N ′)∗, w ∈ T ∗}

correspond to all (and only) the configurations obtained when a production of G
(the one with label li) has been correctly simulated (lj is the label of the next
production to apply).

The configurations represented by the strings in the set

{[1w[2w′lil′jhX ′
1cX

′
2]2]1 | li, lj ∈ Lab(P ), lj ∈ Fli , w

′ ∈ ((N ∪N ′)−A))∗, w ∈ T ∗,

(li : A → u,Eli , Fli) ∈ P}

correspond to all (and only) the configurations obtained when the production of
G with label li has been correctly skipped (appearance checking) and the next
production to apply is the one with label lj .

Finally the strings in the set

{[1w[2Zlil
′
hh′X ′

1cX
′
2]2]1 | w ∈ T ∗}

correspond to the configurations where the next production to simulate is the one
with label lh (that, recalling the normal form of G, there should not be nontermi-
nals).



142 M. Cavaliere, C. Zandron

If the configuration where r1 is started is not among those presented, then the
time of execution of r1 is set to be 2 and this brings Π to produce # (by using
the rule X ′′

1 → #). Therefore, the system Π can simulate all and only the correct
derivations of G; from this the result follows.

6 Conclusions

We have proposed a model of computation based on membrane systems, called
contents-timed P systems, where rewriting rules have different times of execution
which can vary during the whole computation, depending on the configuration of
the system. This is motivated by the fact that the time required by different reac-
tions in a biochemical process may be different and, moreover, the time required
by the same reaction can change dynamically according to the state of the system
where that reaction takes place.

We have shown that such systems are universal in a very simple framework:
a regular time-mapping suffices to obtain universality for systems with a single
catalyst.

An interesting aspect which remains to investigate concerns systems with the
time mapping of more restricted forms.

For instance, we could consider systems in which the time required by the
various rewriting rules depends only upon specific regions or only upon the regions
which are close (i.e., immediately outside or immediately inside) the region where
the rule is applied.

Another possibility is to consider time mapping only depending upon some
specific objects, representing specific conditions in which the systems is (e.g., an
object representing the temperature).

Another fruitful research direction could be to compare this kind of systems
with timed Petri nets, to point out similarities and differences with those systems.

Finally, we think that the application of the same idea of time mapping to
some variants of P systems, such as symport/antiport P systems, could be useful
to clarify the role of dynamically changing execution time with respect to various
aspects of P systems.

Acknowledgements

The authors would like to thank Artiom Alhazov for useful discussions.
The work of Claudio Zandron has been partially supported by the Italian Min-

istry of University (MIUR), under project PRIN-04 “Systems Biology: model-
lazione, linguaggi e analisi (SYBILLA)”.

References

1. M. Cavaliere, V. Deufemia: Further results on time-sndependent P Systems. Int.
Journal Foundation Computer Science, 17, 1 (2006), 69–89.



Time-Driven Computations in P Systems 143

2. M. Cavaliere, P. Leupold: Evolution and observation: A non-standard way to accept
formal languages. In Machines, Computations, and Universality, Saint Petersburg,
Russia, 2004, (M. Margenstern, ed.), LNCS 3354, Springer-Verlag, 2005, 153–163.

3. M. Cavaliere, D. Sburlan: Time-independent P systems. In Membrane Computing.
International Workshop WMC 2004, Milan, Italy, 2004, Revised Selected and Invited
Papers, (G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.)
LNCS 3365, Springer-Verlag, 2005, 239–258.

4. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

5. M.L. Minsky: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, 1967.

6. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin (Natural
Computing Series), 2002.

7. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

8. J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

9. The P systems web page: http://psystems.disco.unimib.it




