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Summary. It is known that the satisfiability problem (SAT) can be solved a semi-
uniform family of deterministic polarizationless P systems with active membranes with
non–elementary membrane division. We present a double improvement of this result by
showing that the satisfiability of a quantified boolean formula (QSAT) can be solved by a
uniform family of P systems of the same kind.

1 Introduction

A particularly interesting class of membrane systems (P systems) are the systems
with active membranes and with three electrical charges (see [8]), where membrane
division can be used in order to solve computationally hard problems in polynomial
or even linear time, by a space–time trade-off.

The first efficient semi–uniform solution to SAT (satisfiability problem) was
given by Gh. Păun in [8], using division for non–elementary membranes. This
result was improved by Gh. Păun, Y. Suzuki, H. Tanaka, and T. Yokomori in [9]
using only division for elementary membranes (in that paper also a semi–uniform
solution to HPP (hamiltonian path problem) using membrane creation is presented).

P. Sosik in [16] provides an efficient semi–uniform solution to QSAT (quan-
tified satisfiability problem), a well known PSPACE–complete problem, in the
framework of P systems with active membranes but using cell division rules for
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non–elementary membranes. A uniform solution for QSAT was presented in [3],
while a semi–uniform polarizationless solution for SAT was presented in [1].

Different efficient uniform solutions have been obtained in the framework of
recognizer P systems with active membranes, with polarizations and only using
division rules for elementary membranes ([12], [11], [4], [14], [2], [13], and [15]).

Nevertheless, the polynomial complexity class associated with recognizer P sys-
tems with active membranes and with polarizations does not seem precise enough
to describe classical complexity classes below PSPACE. Therefore, it is challeng-
ing to investigate weaker variants of cell–like membrane systems able to charac-
terize classical complexity classes.

In this paper we work with a variant of these membrane systems that does
not use polarizations, and where dissolution rules provide a borderline between
efficiency and non–efficiency as shown in [5].

The paper is organized as follows. In the next section some preliminary ideas
about recognizer membrane systems and polynomial complexity classes are intro-
duced. In Section 3 we present a uniform and polynomial solution of the quantified
satisfiability problem by a family of recognizer P systems with active membranes,
without polarization, permitting dissolution rules and division for elementary and
non–elementary membranes. Conclusions and some final remarks are given in Sec-
tion 4.

2 Preliminaries

We start by defining what means to solve decision problems by recognizer P sys-
tems, in a semi–uniform or uniform way.

In order to solve NP–complete problems in polynomial (even linear) time in the
framework of P systems without input membrane, we need to design one system
for each instance of the problem.

Definition 1. Let X = (IX , θX) be a decision problem. We say that X is solvable
in polynomial time by a (countable) family of recognizer membrane systems without
input Π = (Π(u))u∈IX , and we denote it by X ∈ PMC∗

R, if the following is true:

• The family Π is polynomially uniform by Turing machines; that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(u) from the instance u ∈ IX .

• The family Π is polynomially bounded; that is, there exists a polynomial func-
tion p(n) such that for each u ∈ IX , all computations of Π(u) halt in, at most,
p(|u|) steps.

• The family Π is sound with regard to X; that is, for each instance of the
problem u ∈ IX such that there exists an accepting computation of Π(u), we
have θX(u) = 1.

• The family Π is complete with regard to X; that is, for each instance of the
problem u ∈ IX such that θX(u) = 1 every computation of Π(u) is an accepting
computation.
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We say that the family Π is a semi–uniform solution of the problem X.
As a direct consequence of working with recognizer membrane systems (all of

its computations halt) is that the complexity classes PMC∗
R are closed under

complement. Moreover, these complexity classes are closed under polynomial time
reduction, in the classical sense (see [10]).

Now, we deal with recognizer membrane systems with input membrane solving
decision problems in a uniform way in the following sense: all instances of a deci-
sion problem with the same size (according to a previously fixed polynomial time
computable criterion) are processed by the same system, on which an appropriate
input, representing the specific instance, is supplied.

Definition 2. A P system with input membrane is a tuple (Π, Σ, iΠ), where: (a)
Π is a P system with working alphabet Γ , with p membranes labeled with 1, . . . , p,
and initial multisets M1, . . . ,Mp associated with them; (b) Σ is an (input) alpha-
bet strictly contained in Γ and the initial multisets are over Γ −Σ; (c) iΠ is the
label of a distinguished (input) membrane.

If m is a multiset over the input alphabet Σ, then the initial configuration of the
P system (Π, Σ, iΠ) with input m is (µ,M1, . . . ,MiΠ

∪m, . . . ,Mp).
Next, we define the concept of polynomial solvability of decision problems

by families of recognizer P systems constructed in polynomial time by Turing
machines.

Definition 3. Let X = (IX , θX) be a decision problem. We say that X is solv-
able in polynomial time by a family of recognizer membrane systems with input
membrane Π = (Π(n))n∈N, and we denote it by X ∈ PMCR, if the following is
true:

• The family Π is polynomially uniform by Turing machines; that is, there exists
a deterministic Turing machine that constructs in polynomial time the system
Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions whose do-
main is L, such that for each u ∈ L, s(u) is a natural number and cod(u) is
an input multiset of the system Π(s(u)), verifying the following:.
– The family Π is polynomially bounded with regard to (X, cod, s); that is,

there exists a polynomial function p(n) such that for each u ∈ IX every
computation of the system Π(s(u)) with input cod(u) is halting and, more-
over, it performs at most p(|u|) steps.

– The family Π is sound with regard to (X, cod, s); that is, for each instance
of the problem u ∈ IX such that there exists an accepting computation of
Π(s(u)) with input cod(u), we have θX(u) = 1.

– The family Π is complete with regard to (X, cod, s); that is, for each instance
of the problem u ∈ IX such that θX(u) = 1, every computation of Π(s(u))
with input cod(u) is an accepting one.
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We say that the family Π is a uniform solution to the problem X.
The complexity classes PMCR are closed under complement and under poly-

nomial time reduction, in the classical sense (see [10]).
Let us note that if Π is a family of recognizer P systems solving a decision

problem X in polynomial time and in a uniform way, then it provides a polynomial
time solution of X in a semi–uniform way. That is, we have PMCR ⊆ PMC∗

R.

2.1 P systems with polarizationless active membranes

Definition 4. A P system with active membranes and without polarizations is a P
system with Γ as working alphabet, with H as the finite set of labels for membranes,
and where the rules are of the following forms:

(a0) [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. These are object evolution rules. An
object a ∈ Γ belonging to a membrane labeled by h evolves to a string u ∈ Γ ∗.

(b0) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ . These are send–in communication rules.
An object from the region immediately outside a membrane labeled by h is
introduced in this membrane, possibly transformed into another object.

(c0) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ . These are send–out communication rules.
An object is sent out from membrane labeled by h to the region immediately
outside, possibly transformed into another object.

(d0) [ a ]h → b for h ∈ H, a, b ∈ Γ . These are dissolution rules. A membrane labeled
by h is dissolved in reaction with an object. The skin is never dissolved.

(e0) [ a ]h → [ b ]h [ c ]h for h ∈ H, a, b, c ∈ Γ . These are division rules for elemen-
tary membranes. An elementary membrane can be divided into two membranes
with the same label, possibly transforming some objects.

(f0) [ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0 , where h0, h1, h2 are labels. These are di-
vision rules for non–elementary membranes. If the membrane with label h0

contains other membranes than those with labels h1, h2, these membranes and
their contents are duplicated and placed in both new copies of the membrane
h0; all membranes and objects placed inside membranes h1, h2, as well as the
objects from membrane h0 placed outside membranes h1 and h2, are reproduced
in the new copies of membrane h0.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

• If at the same time a membrane labeled with h is divided by a rule of type
(e0) or (f0) and there are objects in this membrane which evolve by means of
rules of type (a0), then we suppose that first the evolution rules of type (a0)
are used, and then the division is produced. Of course, this process takes only
one step.
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• The rules associated with membranes labeled with h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
of types (b0)–(f0).

We denote by AM0(α, β), where α ∈ {−d, +d} and β ∈ {−ne,+ne}, the class of
all recognizer P systems with polarizationless active membranes such that:

• if α = +d then dissolution rules are permitted;
• if α = −d then dissolution rules are forbidden;
• if β = +ne then division rules for elementary and non–elementary membranes

are permitted;
• if β = −ne then only division rules for elementary membranes are permitted.

Proposition 1. For each α ∈ {−d, +d} and β ∈ {−ne, +ne} we have:

(1) PMCAM0(α,β) ⊆ PMC∗
AM0(α,β).

(2) PMCAM0(α,−ne) ⊆ PMCAM0(α,+ne).
(3) PMC∗

AM0(α,−ne) ⊆ PMC∗
AM0(α,+ne).

(4) PMCAM0(−d,β) ⊆ PMCAM0(+d,β).
(5) PMC∗

AM0(−d,β) ⊆ PMC∗
AM0(+d,β).

A conjecture known in the membrane computing area under the name of the P–
conjecture (proposed by Gh. Păun in 2005) affirms that P = PMCAM0(+d,−ne).

It has been obtained some partial answers of that conjecture ([5]). Specifically,
in the framework of recognizer P systems with membrane division but without
using polarizations it was shown a surprising role of the dissolution rules, as it
makes the difference between efficiency and non–efficiency for P systems with
membrane division and without polarization.

Theorem 1. We have the following:

(1) P = PMCAM0(−d,β) = PMC∗
AM0(−d,β), for each β ∈ {−ne,+ne}.

(2) NP ⊆ PMC∗
AM0(+d,+ne).

3 A Uniform Solution to QSAT

In this section we extend the result (2) from Theorem 1, providing an uniform and
linear time solution to QSAT (quantified satisfiability) problem, through a family
of recognizer P systems using polarizationless active membranes, dissolution rules,
and division for elementary and non–elementary membranes.

Given a boolean formula ϕ(x1, . . . , xn) in the conjunctive normal form, with
boolean variables x1, . . . , xn, the sentence ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn)
(where Qn is ∃ if n is odd, and Qn is ∀ otherwise) is said to be the (existen-
tial) fully quantified formula associated with ϕ(x1, . . . , xn). Recall that a sentence
is a boolean formula in which every variable is in scope of a quantifier.
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We say that ϕ∗ is satisfiable if there exists a truth assignment, σ, over {i |
1 ≤ i ≤ n ∧ i odd} such that each extension, σ∗, of σ over {1, . . . , n} verifies
σ∗(ϕ(x1, . . . , xn)) = 1.

The QSAT problem is the following one: Given the (existential) fully quantified
formula ϕ∗ associated with a boolean formula ϕ(x1, . . . , xn) in conjunctive normal
form, determine whether or not ϕ∗ is satisfiable.

It is well known that QSAT is a PSPACE–complete problem [7].

Theorem 2. QSAT belongs to the class PMCAM0(+d,+ne).

Proof. The solution proposed follows a brute force approach, in the framework
of recognizer P systems with polarizationless active membranes where dissolution
rules, and division for elementary and non–elementary membranes are permitted.
The solution consists in the following stages:

• Generation Stage: using membrane division for elementary and non–elemen-
tary membranes, all truth assignments for the variables associated with the
boolean formula are produced.

• Assignments stage: in a special membrane we encode the clauses that are sat-
isfied for each truth assignments.

• Checking Stage: we determine what truth assignments make true the boolean
formula.

• Quantifier Stage: the universal and existential gates of the fully quantified
formula are simulated and its satisfiability is encoded by a special object in a
suitable membrane.

• Output Stage: The systems sends out to the environment the right answer
according to the result of the previous stage.

Let us consider a propositional formula in the conjunctive normal form:

ϕ = C1 ∨ · · · ∨ Cm,

Var(ϕ) = {x1, . . . , xn}
Ci = yi,1 ∧ · · · ∧ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

We consider a normal form for QSAT: the number of variables is even (n = 2n′)
and the quantified formula is

ϕ∗ = ∃x1∀x2 · · · ∃xn−1∀xn ϕ(x1, . . . , xn).

Let us consider the pair function from N2 onto N defined by
〈n,m〉 = ((n + m)(n + m + 1)/2) + n.

This function is polynomial time computable and bijective.
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Depending on numbers m (of clauses) and n (of variables), we will con-
sider a system (Π(〈n,m〉), Σ(〈n,m〉), i0), where i0 = 0 is the input region and
Σ(〈n,m〉) = {vi,j , v

′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the input alphabet.

The problem instance will be encoded in the rules of the P system by multisets
X and X ′ of symbols from Σ, corresponding to the clause-variable pairs such that
the clause is satisfied by true and false assignment of the variable:

X = {(vi,j , 1) | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n},
X ′ = {(v′i,j , 1) | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

We now construct the P system

Π(〈n,m〉) = (O,H, µ,w0, · · · , wm+5n+3, R), with
O = Σ(〈n,m〉) ∪ {ui,j , u

′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {di | 0 ≤ i ≤ 2m + 7n + 2} ∪ {ai, ti, fi | 1 ≤ i ≤ n}
∪ {ci | 1 ≤ i ≤ m} ∪ {t, f, z, z′, T, T ′, yes, no},

µ = [ [ · · · [ [ ]0]1 · · · ]m+5n+2]m+5n+3,

w0 = wm+5n+1 = d0,

wm+2n+3i = dm+5n−2, 1 ≤ i ≤ n,

wi = λ, i /∈ {0,m + 5n + 1} ∪ {m + 2n + 3i | 1 ≤ i ≤ n},
H = {0, · · · ,m + 5n + 3},

and the following rules (we also explain their use):

Generation stage

G1 [ d3i → ai+1d3i+1]0, [ d3i+1 → d3i+2]0, [ d3i+2 → d3i+3]0, 0 ≤ i < n.
[ d3n+i → d3n+i+1]0, 0 ≤ i < m + 2n.

We count to m+5n, which is the time needed for producing all 2n truth assignments
for the n variables, as well as membrane sub-structures which will examine the
truth value of formula ϕ for each of these truth assignments; this counting is done
in the central membrane; moreover during steps 3i, 0 ≤ i ≤ n, symbols a1, · · · , an

are subsequently produced.

G2 [ ai]0 → [ ti]0[ fi]0, 1 ≤ i ≤ n.

In membrane 0, we subsequently choose each variable xi, 1 ≤ i ≤ n, and both
values true and false are associated with it, in form of objects ti and fi, which are
separated in two membranes with label 0. The division of membrane 0 is triggered
by the objects ai, which are introduced by the first rule from group G1 in odd
steps; this is important in interleaving the use of these rules (hence the division
of membrane 0) with the use of the rules of group G4, for dividing membranes
placed above membrane 0.
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Fig. 1. The membrane structure of the system Π after m + 5n steps.

G3 [ dj → dj−1]m+2n+3i
, 1 ≤ j ≤ m + 5n− 2, 1 ≤ i < j,

[ d0]m+2n+3i → z′, 1 ≤ i ≤ n.

After m + 5n− 2 steps, dissolution rules are applied to membranes m + 2n + 3i.

G4 [ [ ] i[ ] i] i+1 → [ [ ] i] i+1[ [ ] i] i+1, 0 ≤ i < m + 5n.

These are division rules for membranes with label 0, 1, · · · ,m + 5n, to be used
for the central membrane 0 in steps which follow the use of the first rule of type
G1. The division of a membrane with label 1 is then propagated from lower levels
to upper levels of the membrane structure and the membranes are continuously
divided. The membrane division stops at the level where a membrane m + 2n + 3i
has been already dissolved by a rule from group G3. This results in the structure
as shown in Figure 1 after m + 5n steps.

G5 [ dm+5n]
0
→ T .

After m + 5n steps, each copy of membrane with label 0 is dissolved and the
contents is released into the surrounding membrane, which is labeled with 1.

Assignments stage
A1 [ ti → t′]2i−1,

[ t′]2i−1 → z,
[ fi]2i−1

→ f ′,
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[ f ′ → z]
2i

,
[ z]2i → z′, 1 ≤ i ≤ n.

Depending on the variable assignments, we need to determine what clauses are
satisfied. For a variable xi, this is done in membranes 2i − 1 and 2i. The ob-
jects encoding the problem propagate through the membrane structure: object
ti dissolves membrane 2i − 1 after one step, and then it dissolves membrane 2i
immediately, while object fi dissolves membrane 2i − 1 immediately, and then it
dissolves membrane 2i after one step.

A2 [ vi,j → ui,j ]2i−1
,

[ v′i,j → u′i,j ]2i−1
.

Once in membrane 2i− 1, objects vi,j and v′i,j wait for one step.

A3 [ u′i,j → λ]
2i−1

,
[ ui,j → ci]2i−1

,
[ ui,j → λ]

2i
,

[ u′i,j → ci]2i, 1 ≤ i ≤ n.

If membrane 2i − 1 is not dissolved in the meantime, then the objects encoding
the instance of SAT evolve according to the value true of xi, otherwise, they evolve
according to the value false of xi.

At the end of this routine (it takes 3n steps), a membrane with label 2n + 1
which contains all the symbols c1, · · · , cm corresponds to the truth assignment
satisfying all clauses, hence it satisfies formula ϕ, and vice-versa.

Checking stage
C1 [ ci]2n+i

→ ci, 1 ≤ i ≤ m.

A membrane with label 2n + i, 1 ≤ i ≤ m, is dissolved if and only if cj appears in
it (i.e., clause Cj is satisfied by the current truth assignment); if this is the case,
the truth assignment associated with the membrane is released in the surrounding
membrane. Otherwise, the truth assignment remains blocked in membrane 2n + i
and never used at the next steps by the membranes placed above.

C2 [ T ]m+2n+1 → T .

The fact that the object T appears in the membrane with the label m + 2n + 1
means that there is a truth assignment which satisfies the formula ϕ. In this case,
the membrane with label m+2n+1 is dissolved and the contents are released into
the membrane with label m+2n+2. Otherwise, the formula is not satisfiable, and
the membrane with label m + 2n + 1 will not dissolve.

Quantifier stage
Q1 [ T ]m+2n+6i+1 → T ′,

[ T ]m+2n+6i+2 → T ,
[ T ′ → λ]

m+2n+6i+2
, 1 ≤ 2i ≤ m.
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The universal gate of the formula is simulated by dissolution of two membranes:
this happens if and only if two copies of T are present. One copy dissolves mem-
brane m + 2n + 6i + 1 and is erased while the other copy dissolves membrane
m+2n+6i+2 and sends one copy of T outside; otherwise the computation in this
gate stops without sending any object out. Recall that membrane m + 2n + 6i + 3
has been erased by rule from group G3.

Q2 [ T ]
m+2n+6i+4

→ T ′,
[ T ′]

m+2n+6i+5
→ T ,

[ T → λ]
m+2n+6i+5

, 1 ≤ 2i ≤ m.

The existential gate of the formula is simulated by the dissolution of two mem-
branes: this happens if and only at least one copy of T is present. One copy dissolves
membrane m + 2n + 6i + 4 and then it also dissolves membrane m + 2n + 6i + 2
(thus sending one copy of T outside), while the other copy (if exists) is erased;
if no copy of T is present, no rule is applied, so the gate sends nothing outside.
Recall that membrane m + 2n + 6i + 6 has been erased by rule from group G3.

Q3 [ di → di+1]m+5n+1
, 0 ≤ i ≤ 2m + 8n + 1.

At the same time as the membrane with label m + 5n + 1 is dissolved (at step
2m + 8n + 1), the object d2m+8n+1 evolves to d2m+8n+2, and then released to the
membrane with label m + 5n + 2.

Output stage
O1 [ d2m+8n+2]m+5n+2

→ yes.
O2 [ a]

m+8n+3
→ [ ]

m+5n+3
a, a ∈ {yes, no}.

In the next two steps, the object yes is produced, and then send out to the
environment.

O3 [ d2m+8n+2]m+5n+1
→ no.

O4 [ no]m+5n+2 → no.

If the formula is not satisfiable, then the object d2m+8n+1 remains in the membrane
with label m+5n+1, which produces the object no, ejecting it into the membrane
with label m + 5n + 2, then into the membrane with label m + 5n + 3, finally into
the environment.

Therefore, in step 2m+8n+3 the system halts and sends into the environment
one of the objects yes, no, indicating whether or not the formula ϕ∗ is satisfiable.

It is easy to see that the system Π can be constructed in a polynomial time
starting from numbers m,n, and this concludes the proof. ut
Remark 1. The systems constructed above are deterministic.

Remark 2. It is possible to speed up the system; the present construction is made
for an easier explanation: the stages do not overlap in time.
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Remark 3. Notice that the only rules of type (c0) in the system are rules O2,
that are executed in the last step of the computation. Hence, these rules are not
important for deciding whether ϕ∗ is satisfied; they are only needed to send the
answer out of the skin membrane.

From Theorem 2, and having in mind that the complexity class
PMCAM0(+d,+ne) is closed under polynomial time reductions, we have the fol-
lowing result.

Corollary 1. PSPACE ⊆ PMCAM0(+d,+ne).

4 Conclusions

The framework of recognizer P systems with active membranes and with three
electrical charges does not seem precise enough to describe classical complexity
classes below PSPACE. In ([5], [6]) weaker variants of these P systems removing
polarizations but keeping other usual ingredients associated with active membranes
(no cooperation, no priorities, and without changing the labels of membranes) have
been considered. It was shown ([5]) that in the above framework, but do not using
dissolution rules, it is possible to solve in polynomial time only decision problems
which are tractable in the standard sense. Moreover, if we consider membrane
dissolution rules then we can solve NP–complete problems in polynomial time,
in a semi–uniform way, and using division for elementary and non–elementary
membranes ([5]).

In this paper we give a polynomial time and uniform solution to QSAT, a well
known PSPACE–complete problem, through a family of recognizer P systems
using polarizationless active membranes, dissolution rules and division for elemen-
tary and non–elementary membranes. It remain as an open question if the division
for non–elementary membranes can be removed.
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