
On a Class of P Automata as a Machine Model
for Languages over Infinite Alphabets ?

György Vaszil

Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende utca 13-17, 1111 Budapest, Hungary
E-mail: vaszil@sztaki.hu

Summary. We show how P automata having a finite description and working with a
finite object-alphabet can be used to describe languages over countably infinite alphabets.
We propose to relate the language classes characterized by different types of P automata
to some of the existing characterizations of language classes over infinite alphabets, and
give an upper bound for the class of languages accepted by the class of one of the most
straightforward and least complicated variants of these types of P automata.

1 Introduction

Membrane systems, or P systems are distributed computing models inspired by the
functioning of the living cell. Their main components are membrane structures con-
sisting of membranes hierarchically embedded in the outermost skin membrane.
Each membrane encloses a region containing a multiset of objects and possibly
other membranes. Each region has an associated set of operators working on the
objects contained by the region. These operators can be of different types, they
can change the objects present in the regions or they can provide the possibility
of transferring the objects from one region to another one. The system might also
have additional capabilities such as, for example, a dynamically changing mem-
brane structure, or special constraints (like context conditions or priority relations)
added to the sets of operators. The evolution of the objects inside the membrane
structure from an initial configuration to a somehow specified end configuration
corresponds to a computation having a result which is derived from some proper-
ties of the specific end configuration. Several variants of the basic notion have been
introduced and studied proving the power of the framework, see the monograph
[11] for a summary of notions and results of the area. As the reader might notice,
this machinery has relatively strong capabilities, so it might seem reasonable to
? Research supported in part by the Hungarian Scientific Research Fund “OTKA” grants

T042529 and F037567.



318 Gy. Vaszil

look for as simple P system variants as possible, as for example systems using
communication rules only. For more details on these variants, see [8], [10].

Besides their simplicity, the introduction of P automata in [2] was motivated by
the idea of using P systems as language acceptors. The objects in a P automaton
may move through the membranes from region to region, but they may not be
modified during the functioning of the systems, and furthermore, the “words”
accepted by a P automaton correspond to the sequences of multisets containing
the objects entering from the environment in each step of the evolution of the
system.

To characterize formal languages, the strings of multisets read by the P automa-
ton have to be mapped to strings of symbols of an alphabet. If this mapping uses
erasing, that is, some possible input multisets are mapped to the empty symbol,
ε, then the characterization of recursively enumerable languages can be obtained.
This was already established in [2] stating that for any recursively enumerable lan-
guage, there is a P automaton accepting the image of the language under a certain
mapping. Similar results were also obtained in [4], [5], for P automata with different
features and different mappings to obtain the recursively enumerable language.

If the correspondence between the input multisets and the alphabet symbols is
established by a mapping which is non-erasing and “simple”, that is, each possible
input multiset is mapped to a symbol of a finite alphabet in some computation-
ally “easy” way (except the empty multiset which is still mapped to ε), then the
situation is different as shown in [3]. In the case of sequential rule application, the
number of possible input multisets is finite, so the correspondence between the
input multisets and the alphabet symbols is natural. P automata with these types
of mappings and sequential application of symport/antiport rules characterize a
subclass of the languages accepted by Turing machines reading the input tape
one-way and using logarithmic space on the work-tape. (The interested reader is
referred to [3] for the exact definitions and challenging open problems concerning
this computational complexity class.) If the symport/antiport rules are applied in
the maximal parallel manner, then the number of potential inputs is infinite, thus,
the infinite set of possible inputs has to be mapped to a finite alphabet. In this
case (if the mapping is non-erasing and “simple”, as above) the characterization
of the class of context-sensitive languages is obtained.

Because of the infinite number of potential input multisets, it is rather natural
to consider a P automaton with parallel rule application as a machine working with
strings of symbols over infinite alphabets. The only thing necessary to obtain such
a model is to define a mapping establishing the correspondence between the input
multisets and the symbols of the infinite alphabet. In the following we begin the
exploration of this idea. First we introduce the model, then present two examples
which also give a hint towards the relationship of the language classes described
by P automata and those proposed in [9] and [6]. Finally we present a theorem on
the limits of one of the “easiest” infinite alphabet language class described by P
automata.



P Automata for Languages over Infinite Alphabets 319

2 Preliminaries and Definitions

We first recall the notions and the notations we use. The reader is assumed to be
familiar with the basics of formal language theory, for details see [12]. Let Σ be a
not necessarily finite, but countable set of symbols called alphabet. Let Σ∗ be the
set of all words over Σ, that is, the set of finite strings of symbols from Σ, and let
Σ+ = Σ∗ − {ε} where ε denotes the empty word.

Let U be a set - the universe - of objects, and let N denote the set of natural
numbers. A multiset is a pair M = (V, f), where V ⊆ U and f : U → N is
a mapping which assigns to each object a ∈ V its multiplicity, if a 6∈ V then
f(a) = 0. The support of M = (V, f) is the set supp(M) = {a ∈ V | f(a) ≥ 1}.
If supp(M) is a finite set, then M is called a finite multiset. The set of all finite
multisets over the set V is denoted by V ◦.

The number of objects in a finite multiset M = (V, f), the cardinality of M, is
defined by card(M) =

∑
a∈V f(a). We say that a ∈ M = (V, f) if a ∈ supp(M).

M1 = (V1, f1) ⊆ M2 = (V2, f2) if supp(M1) ⊆ supp(M2) and for all a ∈ V1,
f1(a) ≤ f2(a). The union of two multisets is defined as (M1 ∪M2) = (V1 ∪ V2, f

′)
where for all a ∈ V1∪V2, f ′(a) = f1(a)+f2(a), the difference is defined for M2 ⊆ M1

as (M1−M2) = (V1−V2, f
′′) where f ′′(a) = f1(a)− f2(a) for all a ∈ V1−V2, and

the intersection of two multisets is (M1∩M2) = (V1∩V2, f
′′′) where for a ∈ V1∩V2,

f ′′′(a) = min(f1(a), f2(a)), min(x, y) denoting the minimum of x, y ∈ N. We say
that M is empty, denoted by ε, if its support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string w
over the alphabet V with |w|a = f(a) where a ∈ V and where |w|a denotes the
number of occurrences of the symbol a in the string w, and with ε representing
the empty multiset ε. In the following we sometimes identify the finite multiset of
objects M = (V, f) with the word w over V representing M , thus we write w ∈ V ◦,
or sometimes we enumerate the not necessarily distinct elements a1, . . . , an of a
multiset as M = {{a1, . . . , an}}, by using double brackets to distinguish from the
usual set notation.

A P system is a structure of hierarchically embedded membranes, each hav-
ing a label and enclosing a region containing a multiset of objects and possibly
other membranes. The out-most membrane which is unique and usually labelled
with 1, is called the skin membrane. The membrane structure is denoted by a
sequence of matching parentheses where the matching pairs have the same la-
bel as the membranes they represent. If x ∈ {[i, ]i | 1 ≤ i ≤ n}∗ is such a
string of matching parentheses of length 2n, denoting a structure where mem-
brane i contains membrane j, then x = x1 [i x2 [j x3 ]j x4 ]i x5 for some
xk ∈ {[l, ]l | 1 ≤ l ≤ n, l 6= i, j}∗, 1 ≤ k ≤ 5. If membrane i contains mem-
brane j, and there is no other membrane, k, such that k contains j and i contains
k (x2 and x4 above are strings of matching parentheses themselves), then we say
that membrane i is the parent membrane of j.

The evolution of the contents of the regions of a P system is described by rules
associated to the regions. Applying the rules synchronously in each region, the
system performs a computation by passing from one configuration to another one.



320 Gy. Vaszil

In the following we concentrate on communication rules called symport or antiport
rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. If such a rule is
present in a region i, then the objects of the multiset x must enter from the parent
region or must leave to the parent region, respectively. An antiport rule is of the
form (x, in; y, out), x, y ∈ V ◦, in this case, objects of x enter from the parent
region and in the same step, objects of y leave to the parent region. All types
of these rules might be equipped with a promoter or inhibitor multiset, denoted
as (x, in)|Z , (x, out)|Z , or (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦}, in
which case they can only be applied if region i contains the objects of multiset
z, or if Z = ¬z, then region i must not contain the elements of z. (For more on
symport/antiport see [10], for the use of promoters see [8].)

Now we recall the formal definition of a P automaton.

Definition 1 A P automaton is a construct Γ = (V, µ, (w1, P1, F1), . . . , (wn, Pn, Fn))
where n ≥ 1 is the number of membranes, V is a finite set of objects, µ is a mem-
brane structure of n membranes with membrane 1 being the skin membrane, and
for all i, 1 ≤ i ≤ n,

• wi ∈ V ◦ is the initial contents (state) of region i, that is, it is the finite multiset
of all objects contained by region i,

• Pi is a finite set of communication rules associated to membrane i, they can
be symport rules or antiport rules, with or without promoters or inhibitors, as
above, and

• Fi ⊆ V ◦ is a finite set of finite multisets over V called the set of final states of
region i. If Fi = ∅, then all the states of membrane i are considered to be final.

To simplify the notations we denote symport and antiport rules with or without
promoters/inhibitors as (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦} where we
also allow x, y, z to be the empty string. If y = ε or x = ε, then the notation above
denotes the symport rule (x, in)|Z or (y, out)|Z , respectively, if Z = ε, then the
rules above are without promoters or inhibitors.

The n-tuple of finite multisets of objects present in the n regions of the P au-
tomaton Γ describes a configuration of Γ , the n-tuple (w1, . . . , wn) ∈ (V ◦)n is the
initial configuration.

The application of the rules can take place in a sequential, or in a maximally
parallel manner. Here we only consider parallel rule application, but we keep the
subscript “par” in order to emphasize that maximal parallel application is just
one of the different possibilities.

Definition 2 The transition mapping of a P automaton is a partial mapping
δpar : V ◦× (V ◦)n → 2(V ◦)n

. These mappings are defined implicitly by the rules of
the rule sets Pi, 1 ≤ i ≤ n. For a configuration (u1, . . . , un),

(u′1, . . . , u
′
n) ∈ δpar(u, (u1, . . . , un))

holds, that is, while reading the input u ∈ V ◦ the automaton may enter the new
configuration (u′1, . . . , u

′
n) ∈ (V ◦)n, if there exist rules as follows.



P Automata for Languages over Infinite Alphabets 321

• For all i, 1 ≤ i ≤ n, there is a multiset of rules Ri = {{ri,1, . . . , ri,mi}}, where
ri,j = (xi,j , in; yi,j , out)|Zi,j

∈ Pi with z ⊆ ui for Zi,j = z ∈ V ◦, and z ∩ ui = ε
for Zi,j = ¬z, z ∈ V ◦, 1 ≤ j ≤ mi, satisfying the conditions below, where xi, yi

denote the multisets
⋃

1≤j≤mi
xi,j and

⋃
1≤j≤mi

yi,j , respectively. Furthermore,
there is no rule occurrence r ∈ Pj , for any j, 1 ≤ j ≤ n, such that if r ∈ P1

then r 6= (x, in)|Z , but the rule multisets R′i with R′i = Ri for i 6= j and
R′j = {{r}} ∪Rj , also satisfy the conditions.

The conditions are given as

1. x1 = u, and
2.

⋃
parent(j)=i xj ∪ yi ⊆ ui, 1 ≤ i ≤ n,

and then the new configuration is obtained by

u′i = ui ∪ xi − yi ∪
⋃

parent(j)=i

yj −
⋃

parent(j)=i

xj , 1 ≤ i ≤ n.

The definition of the transition given above differs from the one presented [3].
The difference comes from the use of symport rules of the form (x, in)|Z in the
region of the skin membrane. In [3] (and other previous work on P automata),
the environment is considered to have an infinite supply of objects in every step
of the computation, so the maximal parallel use of a symport rule of the above
form would result in the import of the objects of x in an infinite number of copies,
thus, the use of these types of rules is simply not allowed. Here, for the sake of
being as general as possible, we allow the use of rules of type (x, in)|Z in the skin
membrane, and say that the use of any number of these rules is considered to be
maximally parallel.

We define the sequence of multisets of objects accepted by the P automaton as
the sequence of input multisets which appear in the environment and are consumed
by the skin membrane in each computational step while the system reaches a
final state, a configuration where for all j with Fj 6= ∅, the contents uj ∈ V ◦ of
membrane j is “final”, i.e., uj ∈ Fj .

Definition 3 Let us extend δpar to δ̄par, a function mapping (V ◦)∗, the sequences
of finite multisets over V , and (V ◦)n, the configurations of Γ , to new configura-
tions. We define δ̄par as

1. δ̄par(v, (u1, . . . , un)) = δpar(v, (u1, . . . , un)), v, ui ∈ V ◦, 1 ≤ i ≤ n, and
2. δ̄par((v1) . . . (vs+1), (u1, . . . , un)) =

⋃
δpar(vs+1, (u′1, . . . , u

′
n))

for all (u′1, . . . , u
′
n) ∈ δ̄par((v1) . . . (vs), (u1, . . . , un)), vj , ui, u

′
i ∈ V ◦,

1 ≤ i ≤ n, 1 ≤ j ≤ s + 1.

Note that we use brackets in the multiset sequence (v1) . . . (vs+1) ∈ (V ◦)∗ in order
to distinguish it from the multiset v1 ∪ . . . ∪ vs+1 ∈ V ◦.

Definition 4 Let Γ be a P automaton as above with initial configuration (w1,
. . . , wn), let Σ be an alphabet, and let f : V ◦ −→ Σ ∪ {ε} be a mapping with
f(x) = ε if and only if x = ε.



322 Gy. Vaszil

The language accepted by Γ is defined as

L(Γ, f) = {f(v1) . . . f(vs) ∈ Σ∗ | (u1, . . . , un) ∈ δ̄par((v1) . . . (vs), (w1, . . . , wn))
with uj ∈ Fj for all j with Fj 6= ∅, 1 ≤ j ≤ n, 1 ≤ s}.

Obviously, the choice of the mapping f is essential. It has to be “easily” com-
putable because the power of the P automaton should be provided by the under-
lying membrane system and not by f itself. The notion of “easiness”, however,
greatly depends on the context we are working in, so we do not give it a general
specification here.

3 Examples

Before continuing the study of our model, we recall two previous attempts to
define the generalization of the notion of “regular languages” to the case of infinite
alphabets. The language class denoted here as L(REG∞1 ) is characterized in [9]
through an encoding of the words over the infinite alphabet Σ = {a1, a2, . . .} to
words over the binary alphabet {0, 1} defined as γ(ai) = 0i−11 for each i ≥ 1.
For a language L ⊆ Σ∗, the property of L ∈ L(REG∞1 ) holds if γ(L) = {γ(w) |
w ∈ L} ⊆ {0, 1}∗ is a regular language. The class of L(REG∞1 ) has several nice
properties, but also strong limitations, for example, the simple language L1 =
{aia1ai | i ≥ 1} 6∈ L(REG∞1 ).

A different language class, denoted here as L(REG∞2 ), is proposed in [6] by
generalizing the notion of finite automata to so called finite memory automata
which process inputs over infinite alphabets. Without going into the details, a
finite memory automaton is a finite automaton equipped with a finite number of
registers which are used for storing certain symbols of the input word in some
well defined way during the computation. To be able to give a finite description of
the machine, the transitions are based on the finitely many possible states of the
internal control and the equality or non-equality of the input with the contents
of one or more of the finitely many registers. The class of L(REG∞2 ) also has its
limitations, for example, L2 = {a2i | i ≥ 1} 6∈ L(REG∞2 ).

Note also that L2 ∈ L(REG∞1 ) and L1 ∈ L(REG∞2 ), thus, L(REG∞1 ) and
L(REG∞2 ) are incomparable.

Now we give two examples of P automata by showing how L1 and L2 can be
accepted.

Example 1 Let Γ1 = ({a,#, $, @}, [1 [2 ]2 ]1, (w1, P1, F1), (w2, P2, F2)) with

w1 = {{#}},
P1 = {(a, in)|#, (a, in; $, out), (a, in; a, out)|@},
F1 = ∅, and
w2 = {{$, @}},



P Automata for Languages over Infinite Alphabets 323

P2 = {(#, in; $, out), (a, in; @, out)|#, (a, out)},
F2 = { {{#}} }.

In the first step, an arbitrary number of a symbols, say k, is imported into the
system and the symbol # in region 1 is exchanged to the symbol $ from region 2.
In the second step, one a symbol from the environment is exchanged to the symbol
$, and one a symbol and the @ symbol is exchanged between region 1 and 2. Now
the number of a symbols in region 1 is k, so using the rule (a, in; a, out)|@, the
same number, k, of a symbols are imported to the system from the environment
while one a symbol is sent out of the second region, thus, the system reaches a
final state.

If for x ∈ V ◦ and Σ = {a1, a2, . . .} we have f(x) = acard(x), then L(Γ1, f) =
L1 = {aia1ai | i ≥ 1}.
Example 2 Let Γ2 = ({a,#}, [1 [2 ]2 ]1, (w1, P1, F1), (w2, P2, F2)) with

w1 = {{#}},
P1 = {(a, in)|#},
F1 = {{ε}}, and
w2 = ε,

P2 = {(#, in), (aa, in)|#},
F2 = ∅.

This system inputs an arbitrary number of a symbols from the environment in
the first computational step while also moving the symbol # to region 2. After
the first step, no more input from the environment is possible, but using the rules
(aa, in)|# the system moves an even number of a symbols from the first region
to the second. If there is nothing left in the first region, thus, if the number of a
symbols input in the first step was even, the system enters the final state.

If for x ∈ V ◦ and Σ = {a1, a2, . . .} we again have f(x) = acard(x), then
L(Γ2, f) = L2 = {a2i | i ≥ 1}.

Before we abandon this line of investigation, at least for the present paper,
we mention that similar approaches to the ones described above also exist for
the definition of the class of context-free languages over infinite alphabets, see
[9] and [1]. To establish the precise relationship of the language classes described
by P automata and these infinite alphabet analogues of regular and context-free
languages would certainly be an interesting and fruitful research topic (not to
mention the comparison with the other – not too many – classes of infinite alphabet
languages which can be found in the literature).

4 A Preliminary Result

For now, we would like to present a theorem providing an upper bound to the
power of those P automata which use mappings between the input multisets and



324 Gy. Vaszil

the infinite alphabet that are similar to those of the previous examples, namely, if
Σ is an infinite alphabet with Σ = {a1, a2, . . .}, then let F be the class of mappings
f : V ◦ −→ Σ ∪ {ε} defined as f(M) = aj where j = card(M), and furthermore,
if f−1(ai) = M , then M = ({a}, g) for a fixed element a ∈ V and g(a) = j, thus,
the possible input multisets consist of different number of occurrences of a single
object.

Now let us denote by L(PA, card) the class of languages L(Γ, f) over Σ for
some P automata Γ and mapping f ∈ F , and let also the value of the integer
expressed by the binary string x ∈ {1}{0, 1}∗ be denoted by val(x).

We present the following theorem mainly for the purpose of demonstrating a
type of the results which can be expected in this framework and to invite the
reader to continue this chain of thoughts by trying to relax one or more of the
very strict conditions of the statement.

Theorem 1. If L ∈ L(PA, card) then γ(L) ∈ L(CS3) where γ : Σ∗ → {0, 1, $}∗
defined by γ(ai) = x$ with x ∈ {1}{0, 1}∗, val(x) = i for all ai ∈ Σ and L(CS3) de-
notes the class of context-sensitive languages over the three letter alphabet {0, 1, $}.
Proof. Let Γ be a P automaton and let L = L(Γ, f) for some f ∈ F as above.
Consider now a Turing machine having one read only input tape and n2 work-tapes
where n is the number of membranes of the P automaton. The input alphabet
is {0, 1, $}, the work-tape alphabet is {0, 1}. What this Turing machine does,
is keeping track of the configurations of Γ by writing (in binary notation) the
number of objects in each membrane on the first n work-tapes and simulating the
configuration changes using the rest of the tapes for keeping track of intermediate
results.

Without entering any details of the construction (which is very similar to the
proof of Theorem 1 in [3]) we intend to convince the reader that this is not only
possible, but it is possible using a workspace which is a linear function of the length
of the input. The rules and the position of the finite number of input symbols can
be encoded in the finite control and all the additional information necessary to
record the configurations of Γ is stored on the first n work-tapes. The Turing
machine first writes the number of symbols leaving from each membrane to all
of the others using the rest of the work-tapes making sure that the simulated
rule application is maximally parallel, and also checking whether the number of
objects given by the next binary sequence of the input word can be read from the
environment. Then it updates the values corresponding to the configuration of Γ
stored on the first n work-tapes.

Since the number of work-tapes is fixed, and the numbers which need to be
written on the individual tapes are bounded by the sum of the values of binary
sequences of the input, not to mention the simple computation of f and f−1, this
whole process can be realized in linear space. 2



P Automata for Languages over Infinite Alphabets 325

5 Conclusion

We have proposed the idea of using P automata for the description and classifica-
tion of languages over infinite alphabets which is a so far unexplored area with a
whole lot of research topics yet to be studied.

For easier orientation we would like to stress two important problems which
deserve to be the first among the questions that need to be investigated. First,
it would be necessary to try to relate the model to existing characterizations
of languages over infinite alphabets, some of which are mentioned in the earlier
sections. Secondly, to investigate the role of the choice of f , the mapping between
the input multisets and the infinite alphabet would be of great importance. It
would be necessary to find mappings which are easily computed but complicated
enough in order to not suppress the power of the underlying membrane framework
(as it is probably suppressed by members of the class F of Theorem 1).

References

1. E.H.Y. Cheng, M. Kaminski: Context-free languages over infinite alphabets. Acta
Informatica, 35 (1998), 245–267.

2. E. Csuhaj-Varjú, Gy. Vaszil: P Automata. In Pre-Proceedings of the Workshop on
Membrane Computing WMC-CdeA 2002 (Gh. Păun, C. Zandron, eds.), Curtea de
Argeş, Romania, August 19-23, 2002. Pub. No. 1 of MolCoNet-IST-2001-32008 (2002)
177–192, and also in Membrane Computing, (Gh. Păun, G. Rozenberg, A. Salomaa,
C. Zandron, eds.), LNCS 2597, Springer-Verlag, Berlin, 2003, 219–233.

3. E. Csuhaj-Varjú, O.H. Ibarra, Gy. Vaszil: On the computational complexity of P
automata. In Preliminary Proceedings of DNA 10, Tenth International Meeting on
DNA Computing (C. Ferretti, G. Mauri, C. Zandron, eds.), June 7-10, 2004, Univer-
sity of Milano-Bicocca, 2004, 97–106.

4. R. Freund, C. Mart́ın-Vide, A. ObtuÃlowicz, Gh. Păun: On three classes of automata-
like P systems. In Developments in Language Theory. 7th International Confer-
ence, DLT 2003, Szeged, Hungary, July 2003 (Z. Ésik, Z. Fülöp, eds.), LNCS 2710,
Springer-Verlag, Berlin, 2003, 292–303.

5. R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS,
78 (October 2002), 231–236.

6. M. Kaminski, N. Francez: Finite-memory automata. Theoretical Computer Science,
134, (1994), 329–363.

7. M. Madhu, K. Krithivasan: On a class of P automata. Intern. J. Computer Math.,
80, 9 (2003), 1111–1120.

8. C. Mart́ın-Vide, A. Păun, Gh. Păun: On the power of P systems with symport rules.
Journal of Universal Computer Science, 8, 2, (2002), 317–331.

9. F. Otto: Classes of regular and context-free languages over countably infinite alpha-
bets. Discrete Applied Mathematics, 12, (1985), 41–56.

10. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 3, (2002), 295–306.

11. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
12. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,

Berlin, 1997.




