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Summary. In this paper we consider symport/antiport P systems with one membrane
and rules having at most two objects. Although it has been proved that only finite number
sets can be generated by both OP1(sym2) (one-membrane systems with symport rules of
weight at most 2) and OP1(sym1, anti1) (one-membrane systems with symport/antiport
rules of weight 1), the exact characterization is still an open question. We give some lower
bounds, consider a few extensions, and state some open questions.

1 Introduction

Membrane systems (also called P systems) with symbol-objects are biologically
motivated models of parallel distributed multiset processing – see details in [6].
Distributivity means that the objects (elements of a finite set) are placed in the
compartments of the system, defined by a tree-like membrane structure. In sym-
port/antiport P systems [5] – from now on we call them communicative P systems
– the objects simply move across the membrane, alone or in groups, in the same
direction (symport) or in the opposite directions (antiport). This feature is so
powerful, that some restricted classes of these systems are already computation-
ally complete.

Each object carries a finite amount of information. It is impossible to perform
any nontrivial computation without interaction of different objects. This note is
devoted to the study of the “weakest” communicative membrane systems: having
at most one membrane and rules of transport of at most two objects.
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2 Definitions

From now on by a number we mean a nonnegative integer. Let NFIN represent
the family of all finite number sets. We will denote by NRE the family of all recur-
sively enumerable number sets, and by NkRE, k ≥ 1, the family of all recursively
enumerable sets of numbers greater then or equal to k.

A communicative P system with m membranes is defined as a tuple

Π = (O, E, µ, w1, · · · , wm, R1, · · · , Rm, i0),

where O is a finite set of objects (an alphabet), E ⊆ O is a subset of objects
present in the environment in unbounded quantities, µ is a hierarchical structure
of m membranes, delimiting the regions, i0 is the label of the output membrane,
wi is the initial multiset of objects in region i, 1 ≤ i ≤ m, Ri is the set of rules
associated to membrane i, 1 ≤ i ≤ m.

The multisets are typically represented by strings with a corresponding multi-
plicity of each object. The rules can be of the following forms: (x, in) and (y, out)
are symport rules, and (y, out; x, in) are antiport rules, x, y ∈ O+. Application
of one of such rules (associated to some membrane i) consists of moving objects
through membrane i: a multiset defined by x is moved from region i (contained in
membrane i) into the immediately outer region and/or a multiset defined by y is
moved from the region containing membrane i into the region i. The weight of a
rule is the maximal number of objects moved in any direction (|x|, |y| in the case
of symport rules, and max{|x|, |y|} in the case of antiport rules).

The rules are applied in a maximally parallel manner, non-deterministically. A
configuration is called halting if no rules are applicable; a sequence of transitions
among configurations is called a computation. The result of a halting computation
is the number of objects present in the output membrane when the system halts.
Collecting the results of all computations of Π, one obtains a number set generated
by Π, denoted by N(Π). By NOPm(symi, antij) we will denote the class of all
number sets generated by P systems with at most m membranes, having symport
rules of weight at most i and antiport rules of weight at most j.

3 Existing Universality Results

The results proved in [4]: NOP1(sym3) ⊇ N13RE and NOP1(sym1, anti2) ⊇
N1RE (the latter result does not use rules exchanging 2 objects for 2 objects)
show that the power of cooperation of 3 objects is enough for universality of P
systems with one membrane. From now on, we will only consider the rules moving
at most 2 objects.

It was proved in [2] that NOP3(sym2) = NOP3(sym1, anti1) = NRE, so the
power of cooperation of 2 objects is sufficient for the computational complete-
ness of P systems with 3 membranes. The results in [3], that DNaOtP2(sym2) =
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DNaOtP2(sym1, anti1) = NRE show that 2 membranes are enough for the tis-
sue case (even for the deterministic computational completeness). Finally, it has
been shown in [1] that NOP2(sym2)T = NOP2(sym1, anti1)T = NRE : 2 mem-
branes are enough to generate any recursively enumerable number set modulo the
terminal alphabet (i.e., ignoring some objects in the output region).

4 Upper Bound

Mainly for these reasons we are especially interested in the following classes:
NOP1(sym1, anti1), NOP1(sym2), NOP1(sym2, anti1).

It has been shown in [3] that NOP1(sym1, anti1) ⊆ NFIN . It has been shown
in [4] that NOP1(sym2) ⊆ NFIN . The idea behind the proofs is that if a P system
has a mechanism of continuously increasing the number of objects in region 1, then
it cannot halt. These results are totally opposite to the completeness ones. We do
not know whether NOP1(sym2, anti1) ⊆ NFIN , but we conjecture that this is
true.

5 Lower Bounds

At any step of the computation, each copy of an object can be in one of the
two possible regions: in region 1 or in the environment. This is a kind of “1-bit
memory”, and the only way this memory can influence the following computation
is by a cooperative transport rule: moving this object to the other region together
with moving another object in the same or opposite direction. Therefore, it is
expected that the number set generated by such P systems is “continuous”, i.e.,
the distance between any two neighboring numbers is bounded.

More formally, let us use the following notion: the segments (finite segments of
arithmetic progression with difference k) are defined as SEGk = {{n + ki | 0 ≤
i ≤ m} | n,m ≥ 0}∪ {∅}. For instance, SEG1 is the class of all sets of consecutive
numbers, while SEG2 is the class of all sets of consecutive even numbers and all
sets of consecutive odd numbers.

Example 1. ∅ ∈ NOP1(sym1, anti1) ∩NOP1(sym2).

Consider a P system Π0 = (O = {b}, E = ∅, µ = [1 ]1, w1 = b,R = {(b, in),
(b, out)}, i0 = 1). There is one possible computation: object b oscillates between
region 1 and the environment, so the set of results of the halting computations
is empty. This system only uses symport rules of weight 1, so it belongs to both
OP1(sym1, anti1) and OP1(sym2).

Example 2. NOP1(sym1, anti1) ⊇ SEG1.
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Fix the numbers m,n ≥ 0. Consider a P system Π1 = (O = {a, b}, E = {a},
µ = [1 ]1, w1 = anbm, R = {(b, out), (b, out; a, in)}, i0 = 1). Any computation of
Π1 halts in at most one step: every object b exit region 1, in exchange for either
an object a or for nothing.

This is why the computation halts, with region 1 containing n copies of object
a initially present there, and some number i of copies of a that were brought inside.
Notice that 0 ≤ i ≤ m, and every number is possible. Thus, N(Π1) = {n + i | 0 ≤
i ≤ m}. Since m,n were chosen arbitrary, together with the previous example we
obtain the result we claim: SEG1 can be generated.

Example 3. NOP1(sym2) ⊇ SEG1 ∪ SEG2.

Fix the numbers m, n ≥ 0. Consider P systems Π2 = (O = {a, b}, E = ∅, µ =
[
1

]
1
, w1 = an+mbm, R = {(b, out), (ab, out)}, i0 = 1), Π3 = (O = {a, b}, E =

∅, µ = [
1

]
1
, w1 = an+2mb2m, R = {(bb, out), (ab, out)}, i0 = 1). Any computation

of Π2 halts in at most one step: every object b exit region 1, together with either
an object a or for nothing.

This is why the computation halts, with region 1 containing n + m copies of
object a initially present there, except some number j of copies of a that were
taken outside. Notice that 0 ≤ j ≤ m, and every number is possible. Substituting
j = m− i, 0 ≤ i ≤ m, we obtain (n+m)− (m− i) = n+ i. Thus, N(Π2) = {n+ i |
0 ≤ i ≤ m}.

System Π3 has a similar behavior, except there are 2m objects b initially present
in region 1, and some number 2i of them leave region 1 in pairs, 0 ≤ i ≤ m,
while each of the others comes into the environment together with an object a.
The number of objects a remaining in the system is (n + 2m) − (2m − 2i) = 2i.
Therefore, N(Π3) = {n + 2i | 0 ≤ i ≤ m}.

In this way, SEG1 ∪ SEG2 can be generated by systems Π2 and Π3 for all
possible numbers m,n, together with Π0.

6 Extensions

It might be interesting to distinguish between the different objects obtained in
region 1 when the system halts, thus obtaining vectors instead of numbers (in
the notations, N is replaced by Ps). It might be also interesting to allow the
environment to initially contain also some objects in finite multiplicities (extended
environment; let us denote this feature with eenv).

One of the common features of segments introduced above is that of “continu-
ity”: there exists a number k such that the graph defined by numbers of the set
as nodes, where two nodes i and j are adjacent if |i− j| ≤ q, is connected. Let us
define the distance between two vectors as a sum of absolute values of differences of
their components. Then the notion of continuity can be extended to vector sets in
the natural way: a vector set M is k-continuous if any two vectors in M belong to
some sequence of vectors in M , such that the neighboring vectors of this sequence
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have distance at most k. Choose a number n. Below is an example of a P system
with one membrane and transport rules of minimal cooperation that generates a
vector set which is not n-continuous.

Example 4. (discontinuity for vectors)

Consider Π4 = (O = {a, b, c, d}, E = ∅, µ = [1 ]1, w0 = bncndn+1, w1 = an,
R, i0 = 1), where R = {(a, out; b, in), (a, out; c, in), (a, out; d, in), (d, out; d, in),
(bc, out), (bc, in)} Consider a halting computation of Π4. First, each object a must
exit region 1, exchanged either for b or c (otherwise d will come inside the system
and the computation will never halt). Then, the only way to make rules (bc, out),
(bc, in) inapplicable is to separate object b and c, and this can only be done in the
first step by the first two rules, and only if one of them is applied n times and the
other one is not applied. Therefore, when Π4 halts, region 1 will either contain bn

or cn.
The distance between the two resulting vectors is 2n. Notice that we took

advantage of extended environment, and of both forms of minimal cooper-
ation. We suppose that this result cannot be achieved with only one form
of minimal cooperation, so we conjecture that PsOP1(sym2, anti1, eenv) 6=
PsOP1(sym1, anti1, eenv) ∪ PsOP1(sym2, eenv).

7 Conclusions and Open Questions

The generative power of the first two classes of one-membrane communicative
P systems with minimal cooperation considered above is between the class of
finite number sets and the class of finite segments of arithmetic progressions (with
difference 1 for OP1(sym1, anti1) and differences 1,2 for OP1(sym2)). It is still
open what are the exact bounds, but we conjecture that NOP1(sym1, anti1) =
SEG1 and NOP1(sym2) = SEG1 ∪ SEG2 because, informally, the fact that the
objects have “1-bit memory” can only influence one elementary decision.

It is interesting to consider the class of P systems with both forms of minimal
cooperation: OP1(sym2, anti1). Does it generate more than SEG1 ∪SEG2? Does
it only generate finite languages? We are unable to answer these questions, but we
conjecture answer to the latter one is positive.

Finally, the similar questions were not studied much for the extensions, like
allowing the environment to initially also have finite multiplicities of some objects.
Does this extension increase the generative power of P systems with minimally
cooperative communication and one membrane? We do not know the answer to
these questions, but we conjecture that NOP1(sym1, anti1, eenv) ⊆ NFIN and
NOP1(sym2, eenv) ⊆ NFIN are true, i.e., while using only one form of coopera-
tion, the generated number sets are still finite.
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