
Evolution-Communication P Systems:
Time-Freeness

Artiom Alhazov1, Matteo Cavaliere2

1 Institute of Mathematics and Computer Science
Academy of Science of Moldova
Str. Academiei 5, Chişinău, MD 2028, Moldova

Research Group on Mathematical Linguistics
Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
E-mail: artiom@math.md, artiome.alhazov@estudiants.urv.es

2 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: martew@inwind.it

Summary. Membrane computing is a (biologically motivated) theoretical framework of
distributed parallel computing. If symbol-objects are considered, then membrane sys-
tems (also called P systems) are distributed multiset processing systems. In evolution-
communication (EC) P systems the computation is carried out with the use of non-
cooperative rewriting rules and with (usually the minimally cooperative) transport rules.

The goal of this article is to improve the existing results on evolution-communication
P systems. It is known that EC P systems with 2 membranes are universal, and so are
time-free EC P systems with targets with 3 membranes. We prove that any recursively
enumerable set of vectors of nonnegative integers can be generated by time-free EC P
systems (without targets) with 2 membranes, thus improving both results.

1 Introduction

Membrane systems with symbol objects are a framework of distributed parallel
multiset rewriting. One can see [10] for the comprehensive bibliography and [9] for
the detailed introduction and a survey.

Evolution-communication P systems were first introduced in [4] as systems
having two kinds of rules: rewriting-like (typically non-cooperative) rules without
targets and (typically minimally cooperative) transport rules. The transport rules
are called symport if they move objects in the same direction, and antiport if
they move objects in different directions. The weight of a transport rule is the
maximal number of objects it moves in either direction. The model was shown

12 A. Alhazov, M. Cavaliere

to be universal with 3 membranes and symport/antiport rules of weight 1, and
this result was improved in [1] by reducing the number of membranes to 2. A
similar result was proved in [7]: universality with symport of weight at most 2 and
2 membranes.

In [2] it was shown that accepting EC P systems are universal with 3 mem-
branes, using either symport/antiport of weight 1, or symport of weight at most
2. Yet another variant proved universal with 3 membranes is proton pumping P
systems, see [3], which is a restricted variant of evolution-communication systems.

Timed and time-free P systems were first introduced in [6], the idea behind the
first notion being that the reactions no longer take one step, but rather an arbitrary
(defined by a mapping from the set of rules to the set of positive integers) number
of steps, the rules still being applied non-deterministically in a maximally parallel
manner. The time-freeness means that the result (set of numbers, vectors or words
produced by all computations) should be independent of this mapping.

A generalized model of EC P systems was introduced in [7], allowing the
rewriting-like rules to have targets. It was then shown in [5] that the time-free
EC P systems with targets are universal with 3 membranes using either sym-
port/antiport rules of weight 1 or symport rules of weight ≤ 2.

2 Preliminaries

First we recall from [4] the definition of evolution-communication P system, and
from [6] the definition of timed and time-free P systems.

Definition 1. An evolution-communication P system (in short, an EC P system),
of degree m ≥ 1, is defined as

Π = (O,µ, w1, w2, · · · , wm, R1, · · · , Rm, R′1, · · · , R′m, i0),

where:

• O is the alphabet of objects;
• µ is a membrane structure with m membranes (and hence m regions) injectively

labelled with 1, 2, · · · ,m;
• wi are strings which represent multisets over O associated with the regions

1, 2, · · · ,m of µ;
• Ri, 1 ≤ i ≤ m, are finite sets of simple evolution rules over O; Ri is associated

with the region i of µ; a simple evolution rule is of the form u → v, where u
and v are strings over the alphabet O;

• R′i, 1 ≤ i ≤ m, are finite sets of symport/antiport rules over O; R′i is associated
with the membrane i of µ;

• i0 ∈ {0, 1, 2, · · · ,m} is the output region; if i0 = 0, then it is the environment,
otherwise i0 is the label of an elementary membrane of µ.

Evolution-Communication P Systems: Time-Freeness 13

Given a time-mapping

e : R1 ∪R2 ∪ · · · ∪Rm ∪R′1 ∪R′2 ∪ · · · ∪R′m −→ N

and an EC P system Π as defined above, it is possible to construct a timed EC
P system Π(e) as (O, µ, w1, w2, . . . , wm, R1, . . . , Rm, R′1, . . . , R

′
m, i0, e) working in

the following way.
We suppose the existence of an external and global clock that ticks at uniform

intervals of time. At each time in the regions of the system we have together rules
(both evolution and transport) in execution and rules not in execution. At each
time all the evolution and transport rules that can be applied (started) in each
region, have to be applied. If a rule r ∈ Ri, R

′
i, 1 ≤ i ≤ m, is applied, then all

objects that can be processed by the rule have to evolve by this rule (a rule is
applied in a maximally parallel manner as standard in P system area).

As usual, the rules from Ri are applied to objects in region i and the rules
from R′i govern the communication of objects through membrane i. There is no
difference between evolution rules and communication rules: they are chosen and
applied in the non-deterministic maximally parallel manner. When an evolution
rule or a transport rule r is started at time j, its execution terminates at time
j + e(r). If two rules are started in the same time unit, then possible conflicts
for using the occurrences of symbol-objects are solved assigning the objects in a
non-deterministic way (again, in the way usually defined in P system area). Notice
that when the execution of a rule r is started, the occurrences of objects used by
this rule are not anymore available for other rules during the entire execution of r.

The computation stops when no rule can be applied in any region and there are
no rules in execution: in this case the system has reached an halting configuration.
The output of a halting computation is the vector of numbers representing the
multiplicities of object presents in the output region in the halting configuration.
(If i0 = 0, then also the sequence of objects sent outside can be considered as the
result; in this case, if some objects arrive into the environment simultaneously,
then every permutation is considered.) Collecting all the vectors obtained, for
any possible halting computation, we get the set of vectors of natural numbers
generated by the system. (If we collect the sequences of objects, then we obtain a
language.)

An EC P system Π = (O,µ, w1, w2, . . . , wm, R1, . . . , Rm, R′1, . . . , R
′
m, i0) is

time-free if and only if every system in the set

{Π(e) | e : R −→ N}
(where R = R1 ∪ R2 ∪ · · · ∪ Rm ∪ R′1 ∪ R′2 ∪ · · · ∪ R′m) produces the same set of
vectors of natural numbers (or the same language).

Because there is no ambiguity, in this case the set of vectors of natural number
generated by a time-free EC P system Π is indicated by Ps(Π) (the corresponding
language generated is denoted by L(Π)).

We use the notation fPsECPm(i, j) to denote the family of sets of vectors of
natural numbers generated by time-free EC P systems with at most m membranes

14 A. Alhazov, M. Cavaliere

(as usually, m = ∗ if such a number is unbounded), non-cooperative evolution
rules, symport rules of weight at most i, and antiport rules of weight at most j. If
languages are generated, then we replace Ps by L in the notation; when speaking
of usual EC P systems (where rules are applied in one step), we omit f in the
notation.

We also need to recall from [8] the definition of register machines. A non-
deterministic register machine is a 5-tuple M = (m,Q, q0, qf , P), where

• m is the number of registers (let us denote the jth register by cj)
• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• qf ∈ Q is the final state,
• P is a finite set of instructions of the form

qi : (cjγ, qk, ql), with qi, qk, ql ∈ Q, qi 6= qf , 1 ≤ k ≤ m, γ ∈ {+,−}.
“Increment” instruction (γ = “ + ”). The value of register cj is increased by 1,

and the system changes the state from qi to qk or ql, non-deterministically.
“Decrement/zero test” instruction (γ = “ − ”). If the value of register cj is

greater than zero, then this instruction decreases it by 1 and changes the state of
the system from qi to qk. Otherwise (when the value of cj is zero) the state of the
system changes to ql.

3 Results

We recall that every recursively enumerable set of vectors of k letters can be
generated by a register machine with k + 2 registers without decrement and zero
test instructions associated to the first k registers.

Theorem 1. fPsECP2(1, 1) = PsRE.

Proof. Given a deterministic register machine M = (k + 2, Q, q0, qf , P), where
Q+ is the set of states with increment instructions and Q− is the set of states of
decrement/zero test instructions, we construct the following time-free P system

Π = (O, µ = [
1

[
2

]
2

]
1
, w1 = q0, w2 = λ,R1, R2, R

′
1, R

′
2, i0 = 0), where:

O = {cj | 1 ≤ j ≤ k + 2} ∪Q ∪ {pi, ri, si, ti, ui | i ∈ I−} ∪ {#},
R1 = {qi → qkcj , qi → qlcj | qi : (cj+, qk, ql) ∈ P}

∪ {pi → qk, si → ti, ti → #, ui → ql | qi : (cj−, qk, ql) ∈ P}
∪ {# → #},

R2 = {qi → pi, qi → #, qi → risi, ti → ui | qi ∈ Q−}
∪ {# → #},

R′1 = {(cj , out) | 1 ≤ j ≤ k},
R′2 = {(qi, in), (si, out), (ri, out; ti, in), (ui, out) | qi ∈ Q−}

∪ {(pi, out; cj , in) | qi : (cj−, qk, ql) ∈ P}.

Evolution-Communication P Systems: Time-Freeness 15

The objects used are: those representing the values of the registers (cj), those
associated to the instructions (qi), those associated to the decrement (pi)/zero test
(ri, si, ti, ui) instructions, as well as the trap symbol (#). The computation starts
with q0 in the skin membrane, the instructions of M are simulated, and symbols
cj , 1 ≤ j ≤ k, are ejected in the environment as the result. Addition instructions
are simulated by qi → qkcj , qi → qlcj : changing the label of the current instruction
and producing one more object associated to the corresponding counter.

The details of decrement/zero test instructions are shown in Figure 1. After
qi enters the elementary membrane, it “guesses” whether decrementing register j
will be successful (qi → pi) or not (qi → risi).

First case: pi must come to region 1, removing one copy of cj from there
(otherwise the trap object will be produced and the computation will never finish).
Then pi evolves to qk (label of the next instruction if the register had value zero).

Second case: object ri will wait if and only if there are no objects cj in the
skin region (the register is empty). If it does, then eventually si will come to region
1, be rewritten to ti, and then remove ri from the inner region. Then ti will change
to ui, which will come back to region 1 and be rewritten to ql (label of the next
instruction if the register was decremented). If ri does not wait for ti, then the
latter will produce the trap object, causing an endless computation.

qi ¡
¡µ

qi - pi

cj

@
@R¡
¡µ

pi - qk

¡
¡µ

¾

qi ¡
¡µ

qi - si¡
¡µ

ri

cj
@

@R¡
¡µ

@
@R si - ti

@
@R # ¾

aaaaa
@

@R¡
¡µ

ti - ui
@

@R ui - qk

Fig. 1. Illustrating instruction qi : (cj−, qk, ql).

We will now show a similar result to the one above: using rules moving two
objects in the same direction (symport of weight 2) instead of using rules exchang-

16 A. Alhazov, M. Cavaliere

ing two objects (antiport of weight 1) leads to time-free P systems with the same
generative power.

Theorem 2. fPsECP2(2, 0) = PsRE.

Proof. Given a register machine M = (k + 2, Q, q0, qf , P), where Q+ is the set of
states with increment instructions and Q− is the set of states with decrement/zero
test instructions, we construct the following time-free P system

Π = (O, µ = [
1

[
2

]
2

]
1
, w1 = q0, w2 = λ,R1, R2, R

′
1, R

′
2, i0 = 0), where:

O = {cj | 1 ≤ j ≤ k + 2} ∪Q ∪ {pi, ri, si, ti | i ∈ I−} ∪ {#},
R1 = {qi → qkcj , qi → qlcj | qi : (cj+, qk, ql) ∈ P}

∪ {qi → pi, pi → #, qi → risi, si → ti, ti → # | qi ∈ Q−}
∪ {# → #},

R2 = {pi → qk, ti → ql |: (cj+, pk, pl)},
R′1 = {(cj , out) | 1 ≤ j ≤ k},
R′2 = {(qi, out) | i ∈ I} ∪ {(riti, in) | qi ∈ Q−}

∪ {(picj , in), (ricj , in) | qi : (cj−, qk, ql) ∈ P}.

Like in the previous theorem, we use the objects representing the values of the
registers (cj), those associated to the instructions (qi), those associated to the
decrement (pi)/zero test (ri, si, ti) instructions, and the trap symbol (#). The
computation starts with q0 in the skin membrane, the instructions of M are sim-
ulated, and symbols cj , 1 ≤ j ≤ k, are ejected in the environment as the result.
Addition instructions are simulated in one step: changing the label of the cur-
rent instruction and producing one more object associated to the corresponding
counter.

The details of decrement/zero test instructions are shown in Figure 2. qi

“guesses” whether decrementing register j will be successful (qi → pi) or not
(qi → risi).

First case: pi must leave region 1, removing one copy of cj from there (oth-
erwise the trap object will be produced and the computation will never finish).
Then pi evolves to qk (label of the next instruction if the register had value zero),
which comes to region 1.

Second case: object ri will wait if and only if there are no objects cj in the
skin region (the register is empty). If it does, then eventually si will be rewritten
to ti, which will come to region 1, and then remove ri from the skin region. Then
ti will change to ql (label of the next instruction if the register was decremented).
If ri does not wait for ti, then the latter will produce the trap object, causing an
endless computation.

Evolution-Communication P Systems: Time-Freeness 17

qi - pi

cj
¡

¡
¡µ

¡
¡µ

pi - qk
@

@R qk
- # ¾

qi ¡
¡µ

ricj¡
¡µ
¡

¡µ

- si - ti - # ¾

¡
¡µ

¡
¡

¡
¡µ

ti - ql
@

@R ql

Fig. 2. Illustrating instruction qi : (cj−, qk, ql).

4 Concluding Remarks

Recall that register machines, at a price of one more register, can generate recur-
sively enumerable languages (assuming that incrementing counter j, 1 ≤ j ≤ k,
corresponds to “writing” cj). Adding another register to the constructions of
both theorems, one can notice that these systems generate recursively enumer-
able languages if we assume that all reactions happen in one step (LECP2(1, 1) =
LECP2(2, 0) = RE).

In the time-free systems, we have no way of controlling the order in which
objects cj exit the system, and the order cannot be enforced because nothing else
should be sent into the environment except the result. However, sending objects
cj directly to the environment (for output registers only) using targets will yield
a similar result for the time-free EC P systems with targets (fLECtP2(1, 1) =
fLECtP2(2, 0) = RE).

Finally, it would be interesting to combine the ideas of determinism and time-
freeness, for example by considering time-free systems that are deterministic mod-
ulo the time when the rules are applied (i.e., the total number of applications of
any rule does not depend on the times of rule execution).

Acknowledgements

The first author is supported by the project TIC2002-04220-C03-02 of the Research
Group on Mathematical Linguistics, Tarragona. The first author also acknowledges

18 A. Alhazov, M. Cavaliere

the Moldovan Research and Development Association (MRDA) and the U.S. Civil-
ian Research and Development Foundation (CRDF), Award No. MM2-3034.

References

1. A. Alhazov: Minimizing evolution-communication P systems and EC P automata.
In Brainstorming Week on Membrane Computing, Tarragona, 2003 (M. Cavaliere,
C. Mart́ın–Vide, Gh. Păun, eds.), GRLMC Report 26/03, Rovira i Virgili University,
2003, 23–31, and New Generation Computing, 22, 4 (2004), 299–310.

2. A. Alhazov: On determinism of evolution-communication P systems. In Second Brain-
storming Week on Membrane Computing, Sevilla, 2004 (Gh. Păun, A. Riscos–Núñez,
A. Romero–Jiménez, F. Sancho–Caparrini, eds.), GCN TR 01/2004, University of
Sevilla, 2004, 11–15, and Journal of Universal Computer Science, 10, 5 (2004), 502–
508.

3. A. Alhazov, M. Cavaliere: Proton pumping P systems. In Preproceedings of the Work-
shop on Membrane Computing, Tarragona, 2003 (A. Alhazov, C. Mart́ın–Vide, Gh.
Păun, eds.), GRLMC Report 28/03, Rovira i Virgili University, 2003, 1–16, and
Membrane Computing, International Workshop, WMC 2003, Tarragona, 2003, Re-
vised Papers (C. Mart́ın–Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa,
eds.), LNCS 2933, Springer-Verlag, Berlin, 2004, 1–18.

4. M. Cavaliere: Evolution-communication P systems. In Membrane Computing. Inter-
national Workshop, WMC-CdeA 2002, Curtea de Argeş (Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer-Verlag, Berlin, 2003, 134–145.

5. M. Cavaliere, V. Deufemia: Further results on time-free P systems. In Cellular
Computing. Complexity Aspects (M.A. Gutiérrez–Naranjo, Gh. Păun, M.J. Pérez–
Jiménez, eds.), Fénix Editora, Sevilla, 2005, 96–116.

6. M. Cavaliere, D. Sburlan: Time-independent P systems. In Membrane Computing.
International Workshop WMC 2004, Milan, Italy, 2004, Revised Selected and Invited
Papers (G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.),
LNCS 3365, Springer-Verlag, Berlin, 2005, 239–258.

7. S.N. Krishna, A. Păun: Some universality results on evolution-communication P
systems. In Brainstorming Week on Membrane Computing, Tarragona, 2003 (M.
Cavaliere, C. Mart́ın–Vide, Gh. Păun, eds.), GRLMC Report 26/03, Rovira i Virgili
University, 2003, 207–215, and New Generation Computing, 22, 4 (2004), 377–394.

8. M.L. Minsky: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, 1967.

9. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
10. The P Systems Web Page: http://psystems.disco.unimib.it

